51
|
Domingo M, Faraudo J. Interaction between SARS-CoV-2 spike glycoprotein and human skin models: a molecular dynamics study. SOFT MATTER 2021; 17:9457-9468. [PMID: 34612290 DOI: 10.1039/d1sm01026c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The possibility of contamination of human skin by infectious virions plays an important role in indirect transmission of respiratory viruses but little is known about the fundamental physico-chemical aspects of the virus-skin interactions. In the case of coronaviruses, the interaction with surfaces (including the skin surface) is mediated by their large glycoprotein spikes that protrude from (and cover) the viral envelope. Here, we perform all atomic simulations between the SARS-CoV-2 spike glycoprotein and human skin models. We consider an "oily" skin covered by sebum and a "clean" skin exposing the stratum corneum. The simulations show that the spike tries to maximize the contacts with stratum corneum lipids, particularly ceramides, with substantial hydrogen bonding. In the case of "oily" skin, the spike is able to retain its structure, orientation and hydration over sebum with little interaction with sebum components. Comparison of these results with our previous simulations of the interaction of SARS-CoV-2 spike with hydrophilic and hydrophobic solid surfaces, suggests that the "soft" or "hard" nature of the surface plays an essential role in the interaction of the spike protein with materials.
Collapse
Affiliation(s)
- Marc Domingo
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain.
| | - Jordi Faraudo
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
52
|
Meshkin H, Zhu F. Toward Convergence in Free Energy Calculations for Protein Conformational Changes: A Case Study on the Thin Gate of Mhp1 Transporter. J Chem Theory Comput 2021; 17:6583-6596. [PMID: 34523931 DOI: 10.1021/acs.jctc.1c00585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
It has been challenging to obtain reliable free energies for protein conformational changes from all-atom molecular dynamics simulations, despite the availability of many enhanced sampling techniques. To alleviate the difficulties associated with the enormous complexity of the conformational space, here we propose a few practical strategies for such calculations, including (1) a stringent method to examine convergence by comparing independent simulations starting from different initial coordinates, (2) adoption of multistep schemes in which the complete conformational change consists of multiple transition steps, each sampled using a distinct reaction coordinate, and (3) application of boundary restraints to simplify the conformational space. We demonstrate these strategies on the conformational changes between the outward-facing and outward-occluded states of the Mhp1 membrane transporter, obtaining the equilibrium thermodynamics of the relevant metastable states, the kinetic rates between these states, and the reactive trajectories that reveal the atomic details of spontaneous transitions. Our approaches thus promise convergent and reliable calculations to examine intuition-based hypotheses and to eventually elucidate the underlying molecular mechanisms of reversible conformational changes in complex protein systems.
Collapse
Affiliation(s)
- Hamed Meshkin
- Department of Physics, Indiana University Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| | - Fangqiang Zhu
- Department of Physics, Indiana University Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202, United States
| |
Collapse
|
53
|
Siani P, Donadoni E, Ferraro L, Re F, Di Valentin C. Molecular dynamics simulations of doxorubicin in sphingomyelin-based lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1864:183763. [PMID: 34506799 DOI: 10.1016/j.bbamem.2021.183763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/22/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
Doxorubicin (DOX) is one of the most efficient antitumor drugs employed in numerous cancer therapies. Its incorporation into lipid-based nanocarriers, such as liposomes, improves the drug targeting into tumor cells and reduces drug side effects. The carriers' lipid composition is expected to affect the interactions of DOX and its partitioning into liposomal membranes. To get a rational insight into this aspect and determine promising lipid compositions, we use numerical simulations, which provide unique information on DOX-membrane interactions at the atomic level of resolution. In particular, we combine classical molecular dynamics simulations and free energy calculations to elucidate the mechanism of penetration of a protonated Doxorubicin molecule (DOX+) into potential liposome membranes, here modeled as lipid bilayers based on mixtures of phosphatidylcholine (PC), sphingomyelin (SM) and cholesterol lipid molecules, of different compositions and lipid phases. Moreover, we analyze DOX+ partitioning into relevant regions of SM-based lipid bilayer systems using a combination of free energy methods. Our results show that DOX+ penetration and partitioning are facilitated into less tightly packed SM-based membranes and are dependent on lipid composition. This work paves the way to further investigations of optimal formulations for lipid-based carriers, such as those associated with pH-responsive membranes.
Collapse
Affiliation(s)
- Paulo Siani
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Edoardo Donadoni
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Lorenzo Ferraro
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca, via Raoul Follereau 3, Vedano al Lambro, MB 20854, Italy; BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, Italy
| | - Cristiana Di Valentin
- Department of Materials Science, University of Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy; BioNanoMedicine Center NANOMIB, University of Milano-Bicocca, Italy.
| |
Collapse
|
54
|
T RR, Saharay M, Smith JC, Krishnan M. Correlated Response of Protein Side-Chain Fluctuations and Conformational Entropy to Ligand Binding. J Phys Chem B 2021; 125:9641-9651. [PMID: 34423989 DOI: 10.1021/acs.jpcb.1c01227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The heterogeneous fast side-chain dynamics of proteins plays crucial roles in molecular recognition and binding. Site-specific NMR experiments quantify these motions by measuring the model-free order parameter (Oaxis2) on a scale of 0 (most flexible) to 1 (least flexible) for each methyl-containing residue of proteins. Here, we have examined ligand-induced variations in the fast side-chain dynamics and conformational entropy of calmodulin (CaM) using five different CaM-peptide complexes. Oaxis2 of CaM in the ligand-free (Oaxis,U2) and ligand-bound (Oaxis,B2) states are calculated from molecular dynamics trajectories and conformational energy surfaces obtained using the adaptive biasing force (ABF) method. ΔOaxis2 = Oaxis,B2 - Oaxis,U2 follows a Gaussian-like unimodal distribution whose second moment is a potential indicator of the binding affinity of these complexes. The probability for the binding-induced Oaxis,U2 → Oaxis,B2 transition decreases with increasing magnitude of ΔOaxis2, indicating that large flexibility changes are improbable for side chains of CaM after ligand binding. A linear correlation established between ΔOaxis2 and the conformational entropy change of the protein makes possible the determination of the conformational entropy of binding of protein-ligand complexes. The results not only underscore the functional importance of fast side-chain fluctuations but also highlight key motional and thermodynamic correlates of protein-ligand binding.
Collapse
Affiliation(s)
- Rajitha Rajeshwar T
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States.,UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6309, United States
| | - Moumita Saharay
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Jeremy C Smith
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996, United States.,UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6309, United States
| | - Marimuthu Krishnan
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad 500032, India
| |
Collapse
|
55
|
Ledoux J, Trouvé A, Tchertanov L. Folding and Intrinsic Disorder of the Receptor Tyrosine Kinase KIT Insert Domain Seen by Conventional Molecular Dynamics Simulations. Int J Mol Sci 2021; 22:ijms22147375. [PMID: 34298994 PMCID: PMC8307779 DOI: 10.3390/ijms22147375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
The kinase insert domain (KID) of RTK KIT is the key recruitment region for downstream signalling proteins. KID, studied by molecular dynamics simulations as a cleaved polypeptide and as a native domain fused to KIT, showed intrinsic disorder represented by a set of heterogeneous conformations. The accurate atomistic models showed that the helical fold of KID is mainly sequence dependent. However, the reduced fold of the native KID suggests that its folding is allosterically controlled by the kinase domain. The tertiary structure of KID represents a compact array of highly variable α- and 310-helices linked by flexible loops playing a principal role in the conformational diversity. The helically folded KID retains a collapsed globule-like shape due to non-covalent interactions associated in a ternary hydrophobic core. The free energy landscapes constructed from first principles-the size, the measure of the average distance between the conformations, the amount of helices and the solvent-accessible surface area-describe the KID disorder through a collection of minima (wells), providing a direct evaluation of conformational ensembles. We found that the cleaved KID simulated with restricted N- and C-ends better reproduces the native KID than the isolated polypeptide. We suggest that a cyclic, generic KID would be best suited for future studies of KID f post-transduction effects.
Collapse
|
56
|
Sun Q, Wang W, Cui S. Directional nature of hydrophobic interactions: Implications for the mechanism of molecular recognition. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
57
|
Shrivastav G, Abrams CF. Optimizing String Method's Reproducibility Using Generalized Solute Tempering Replica Exchange. J Phys Chem B 2021; 125:6609-6616. [PMID: 34110824 DOI: 10.1021/acs.jpcb.1c02143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Obtaining accurate and reproducible free energies from molecular simulations is somewhat tricky due to incomplete knowledge of crucial slow degrees of freedom leading to hidden barriers that can stymie sampling. Employing a sufficiently large number of collective variables (CV) and ensuring ergodic sampling in orthogonal CV space, perhaps via tempering methods, can reduce these issues to some extent. For complex systems with high-dimensional free energy landscapes, both these approaches become computationally expensive. For high-dimensional landscapes, efficient exploration can be enabled by using temperature-accelerated MD (TAMD) and identification and characterization of minimum free energy pathways connecting minima can be found by using the string method (SM). Both TAMD and SM use mean-force estimates from finite MD simulations and are thus susceptible to sampling restrictions from hidden variables. A recent development in parallel tempering methods, "generalized replica exchange solute tempering" (gREST), can enhance sampling at a reasonable computational cost with its flexibility to target very specific "solutes" which can include arbitrary independent variables. Considering the advantages of both methods, we implement gREST-enabled TAMD and SM. By considering two different collective variable representations of the pentapeptide neurotransmitter met-enkephalin, we show that both gREST-enabled TAMD and SM yield more accurate and reproducible free energy predictions than TAMD and SM alone. Given the moderate computational cost of gREST compared with other replica-exchange methods, gREST-enabled SM represents a more attractive method for characterizing free energy minima and pathways among them for a large variety of systems.
Collapse
Affiliation(s)
- Gourav Shrivastav
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Cameron F Abrams
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
58
|
Kameda T, Asano K, Togashi Y. Free energy landscape of RNA binding dynamics in start codon recognition by eukaryotic ribosomal pre-initiation complex. PLoS Comput Biol 2021; 17:e1009068. [PMID: 34125830 PMCID: PMC8224888 DOI: 10.1371/journal.pcbi.1009068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/24/2021] [Accepted: 05/12/2021] [Indexed: 12/25/2022] Open
Abstract
Specific interaction between the start codon, 5'-AUG-3', and the anticodon, 5'-CAU-3', ensures accurate initiation of translation. Recent studies show that several near-cognate start codons (e.g. GUG and CUG) can play a role in initiating translation in eukaryotes. However, the mechanism allowing initiation through mismatched base-pairs at the ribosomal decoding site is still unclear at an atomic level. In this work, we propose an extended simulation-based method to evaluate free energy profiles, through computing the distance between each base-pair of the triplet interactions involved in recognition of start codons in eukaryotic translation pre-initiation complex. Our method provides not only the free energy penalty for mismatched start codons relative to the AUG start codon, but also the preferred pathways of transitions between bound and unbound states, which has not been described by previous studies. To verify the method, the binding dynamics of cognate (AUG) and near-cognate start codons (CUG and GUG) were simulated. Evaluated free energy profiles agree with experimentally observed changes in initiation frequencies from respective codons. This work proposes for the first time how a G:U mismatch at the first position of codon (GUG)-anticodon base-pairs destabilizes the accommodation in the initiating eukaryotic ribosome and how initiation at a CUG codon is nearly as strong as, or sometimes stronger than, that at a GUG codon. Our method is expected to be applied to study the affinity changes for various mismatched base-pairs.
Collapse
Affiliation(s)
- Takeru Kameda
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- RIKEN Center for Biosystems Dynamics Research (BDR), Wako, Saitama, Japan
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Yuichi Togashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- RIKEN Center for Biosystems Dynamics Research (BDR), Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
59
|
Yang Y, Dong H, Zhou HX. Effects of Cholesterol on the Partitioning of a Drug Molecule in Lipid Bilayers. J Phys Chem B 2021; 125:5338-5345. [PMID: 33984232 DOI: 10.1021/acs.jpcb.1c02436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Drug molecules either bind to membrane-bound targets or permeate through cell membranes to reach intracellular targets, and hence, their membrane partition and permeation are of great importance. Here, we studied the effects of cholesterol on the partition of amantadine, an antiflu drug molecule, into 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayers using molecular dynamics simulations. The membrane partition of amantadine is sensitive to the cholesterol mole fraction (xchol). In the absence of cholesterol, amantadine is stably bound in membranes, but at xchol = 32%, it can escape to the aqueous phase, in agreement with recent experiments. The reduced membrane partition of amantadine at a high cholesterol content is mainly due to the perturbation of the bilayer structure and dynamics. Surrounding lipids stabilize amantadine by having their tails wrapped around the drug molecule, and this ability is compromised when cholesterol is present to increase the order in lipid tails. The atomic details on interactions with lipids and perturbations by cholesterol revealed here provide insight into membrane partition and delivery of drug molecules to their targets.
Collapse
Affiliation(s)
- Yuqin Yang
- Kuang Yaming Honors School, Nanjing University, 210023 Nanjing, China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, 210023 Nanjing, China.,Institute for Brain Sciences, Nanjing University, 210023 Nanjing, China
| | - Huan-Xiang Zhou
- Department of Chemistry and Department of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
60
|
Hernández-López L, Martínez-Esaín J, Carné-Sánchez A, Grancha T, Faraudo J, Maspoch D. Steric Hindrance in Metal Coordination Drives the Separation of Pyridine Regioisomers Using Rhodium(II)-Based Metal-Organic Polyhedra. Angew Chem Int Ed Engl 2021; 60:11406-11413. [PMID: 33620767 DOI: 10.1002/anie.202100091] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/04/2021] [Indexed: 11/11/2022]
Abstract
The physicochemical similarity of isomers makes their chemical separation through conventional techniques energy intensive. Herein, we report that, instead of using traditional encapsulation-driven processes, steric hindrance in metal coordination on the outer surface of RhII -based metal-organic polyhedra (Rh-MOPs) can be used to separate pyridine-based regioisomers via liquid-liquid extraction. Through molecular dynamics simulations and wet experiments, we discovered that the capacity of pyridines to coordinatively bind to Rh-MOPs is determined by the positions of the pyridine substituents relative to the pyridine nitrogen and is influenced by steric hindrance. Thus, we exploited the differential solubility of bound and non-bound pyridine regioisomers to engineer liquid-liquid self-sorting systems. As a proof of concept, we separated four different equimolecular mixtures of regioisomers, including a mixture of the industrially relevant compounds 2-chloropyridine and 3-chloropyridine, isolating highly pure compounds in all cases.
Collapse
Affiliation(s)
- Laura Hernández-López
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Jordi Martínez-Esaín
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Arnau Carné-Sánchez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Thais Grancha
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
| | - Jordi Faraudo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193, Bellaterra, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
61
|
Hernández‐López L, Martínez‐Esaín J, Carné‐Sánchez A, Grancha T, Faraudo J, Maspoch D. Steric Hindrance in Metal Coordination Drives the Separation of Pyridine Regioisomers Using Rhodium(II)‐Based Metal–Organic Polyhedra. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Laura Hernández‐López
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and The Barcelona Institute of Science and Technology Campus UAB Bellaterra 08193 Barcelona Spain
| | - Jordi Martínez‐Esaín
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and The Barcelona Institute of Science and Technology Campus UAB Bellaterra 08193 Barcelona Spain
| | - Arnau Carné‐Sánchez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and The Barcelona Institute of Science and Technology Campus UAB Bellaterra 08193 Barcelona Spain
| | - Thais Grancha
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and The Barcelona Institute of Science and Technology Campus UAB Bellaterra 08193 Barcelona Spain
| | - Jordi Faraudo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) 08193 Bellaterra Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2) CSIC and The Barcelona Institute of Science and Technology Campus UAB Bellaterra 08193 Barcelona Spain
- ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
62
|
Abstract
The design of molecular architectures exhibiting functional motions is a promising area for disruptive technological development. Toward this goal, rotaxanes and catenanes, which undergo relative motions of their subunits in response to external stimuli, are prime candidates. Here, we report on the computational analysis of the contraction/extension of a bistable [c2]daisy chain rotaxane. Using free-energy calculations and transition path optimizations, we explore the free-energy landscape governing the functional motions of a prototypical molecular machine with atomic resolution. The calculations reveal a sequential mechanism in which the asynchronous gliding of each ring is preferred over the concerted movement. Analysis of the underlying free-energy surface indicates that the formation of partially rearranged intermediates entails crossing of much smaller barriers. Our findings illustrate an important design principle for molecular machines, namely that efficient exploitation of thermal fluctuations may be realized by breaking down the large-scale functional motions into smaller steps.
Collapse
Affiliation(s)
- Florian E Blanc
- Laboratoire d'Ingénierie des Fonctions Moléculaires, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
| | - Marco Cecchini
- Laboratoire d'Ingénierie des Fonctions Moléculaires, Institut de Chimie de Strasbourg, UMR 7177 CNRS, Université de Strasbourg, F-67083 Strasbourg Cedex, France
| |
Collapse
|
63
|
Mukherjee A, Saurabh S, Olive E, Jang YH, Lansac Y. Protamine Binding Site on DNA: Molecular Dynamics Simulations and Free Energy Calculations with Full Atomistic Details. J Phys Chem B 2021; 125:3032-3044. [DOI: 10.1021/acs.jpcb.0c09166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Arnab Mukherjee
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
| | - Suman Saurabh
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
| | - Enrick Olive
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
| | - Yun Hee Jang
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
| | - Yves Lansac
- GREMAN, CNRS UMR 7347, Université de Tours, 37200 Tours, France
- Department of Energy Science and Engineering, DGIST, Daegu 42988, Korea
- Laboratoire de Physique des Solides, CNRS UMR 8502, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
64
|
Martí J, Lu H. Microscopic Interactions of Melatonin, Serotonin and Tryptophan with Zwitterionic Phospholipid Membranes. Int J Mol Sci 2021; 22:2842. [PMID: 33799606 PMCID: PMC8001758 DOI: 10.3390/ijms22062842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
The interactions at the atomic level between small molecules and the main components of cellular plasma membranes are crucial for elucidating the mechanisms allowing for the entrance of such small species inside the cell. We have performed molecular dynamics and metadynamics simulations of tryptophan, serotonin, and melatonin at the interface of zwitterionic phospholipid bilayers. In this work, we will review recent computer simulation developments and report microscopic properties, such as the area per lipid and thickness of the membranes, atomic radial distribution functions, angular orientations, and free energy landscapes of small molecule binding to the membrane. Cholesterol affects the behaviour of the small molecules, which are mainly buried in the interfacial regions. We have observed a competition between the binding of small molecules to phospholipids and cholesterol through lipidic hydrogen-bonds. Free energy barriers that are associated to translational and orientational changes of melatonin have been found to be between 10-20 kJ/mol for distances of 1 nm between melatonin and the center of the membrane. Corresponding barriers for tryptophan and serotonin that are obtained from reversible work methods are of the order of 10 kJ/mol and reveal strong hydrogen bonding between such species and specific phospholipid sites. The diffusion of tryptophan and melatonin is of the order of 10-7 cm2/s for the cholesterol-free and cholesterol-rich setups.
Collapse
Affiliation(s)
- Jordi Martí
- Department of Physics, Technical University of Catalonia-Barcelona Tech, 08034 Barcelona, Spain
| | - Huixia Lu
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, China;
| |
Collapse
|
65
|
De Luca S, Treny J, Chen F, Seal P, Stenzel MH, Smith SC. Enhancing Cationic Drug Delivery with Polymeric Carriers: The Coulomb‐pH Switch Approach. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Sergio De Luca
- Research School of Physics and Engineering The Australian National University Canberra ACT 2601 Australia
| | - Jennifer Treny
- Centre for Advanced Macromolecular Design School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Fan Chen
- Centre for Advanced Macromolecular Design School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Prasenjit Seal
- Department of Chemistry University of Helsinki P.O. Box 55 (A.I. Virtasen aukio 1) Helsinki 00014 Finland
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular Design School of Chemistry The University of New South Wales Sydney NSW 2052 Australia
| | - Sean C. Smith
- Research School of Physics and Engineering The Australian National University Canberra ACT 2601 Australia
| |
Collapse
|
66
|
Lahey SLJ, Thien Phuc TN, Rowley CN. Benchmarking Force Field and the ANI Neural Network Potentials for the Torsional Potential Energy Surface of Biaryl Drug Fragments. J Chem Inf Model 2020; 60:6258-6268. [PMID: 33263401 DOI: 10.1021/acs.jcim.0c00904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many drug molecules contain biaryl fragments, resulting in a torsional barrier corresponding to rotation around the bond linking the aryls. The potential energy surfaces of these torsions vary significantly because of steric and electronic effects, ultimately affecting the relative stability of the molecular conformations in the protein-bound and solution states. Simulations of protein-ligand binding require accurate computational models to represent the intramolecular interactions to provide accurate predictions of the structure and dynamics of binding. In this article, we compare four force fields [generalized AMBER force field (GAFF), open force field (OpenFF), CHARMM general force field (CGenFF), optimized potentials for liquid simulations (OPLS)] and two neural network potentials (ANI-2x and ANI-1ccx) for their ability to predict the torsional potential energy surfaces of 88 biaryls extracted from drug fragments. The root mean square deviation (rmsd) over the full potential energy surface and the mean absolute deviation of the torsion rotational barrier height (MADB) relative to high-level ab initio reference data (CCSD(T1)*) were used as the measure of accuracy. Uncertainties in these metrics due to the composition of the data set were estimated using bootstrap analysis. In comparison to high-level ab initio data, ANI-1ccx was most accurate for predicting the barrier height (rmsd: 0.5 ± 0.0 kcal/mol, MADB: 0.8 ± 0.1 kcal/mol), followed closely by ANI-2x (rmsd: 0.5 ± 0.0 kcal/mol, MADB: 1.0 ± 0.2 kcal/mol), then CGenFF (rmsd: 0.8 ± 0.1 kcal/mol, MADB: 1.3 ± 0.1 kcal/mol) and OpenFF (rmsd: 0.7 ± 0.1 kcal/mol, MADB: 1.3 ± 0.1 kcal/mol), then GAFF (rmsd: 1.2 ± 0.2 kcal/mol, MADB: 2.6 ± 0.5 kcal/mol), and finally OPLS (rmsd: 3.6 ± 0.3 kcal/mol, MADB: 3.6 ± 0.3 kcal/mol). Significantly, the neural network potentials (NNPs) are systematically more accurate and more reliable than any of the force fields. As a practical example, the NNP/molecular mechanics method was used to simulate the isomerization of ozanimod, a drug used for multiple sclerosis. Multinanosecond molecular dynamics (MD) simulations in an explicit aqueous solvent were performed, as well as umbrella sampling and adaptive biasing force-enhanced sampling techniques. The rate constant for this isomerization calculated using transition state theory was 4.30 × 10-1 ns-1, which is consistent with direct MD simulations.
Collapse
Affiliation(s)
- Shae-Lynn J Lahey
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3T4, Canada
| | - Tu Nguyen Thien Phuc
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3T4, Canada
| | - Christopher N Rowley
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3T4, Canada
| |
Collapse
|
67
|
Prebiotic chemistry and origins of life research with atomistic computer simulations. Phys Life Rev 2020; 34-35:105-135. [DOI: 10.1016/j.plrev.2018.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 02/02/2023]
|
68
|
Lu H, Martí J. Long-lasting Salt Bridges Provide the Anchoring Mechanism of Oncogenic Kirsten Rat Sarcoma Proteins at Cell Membranes. J Phys Chem Lett 2020; 11:9938-9945. [PMID: 33170712 DOI: 10.1021/acs.jpclett.0c02809] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
RAS proteins work as GDP-GTP binary switches and regulate cytoplasmic signaling networks that are able to control several cellular processes, playing an essential role in signal transduction pathways involved in cell growth, differentiation, and survival, so that overacting RAS signaling can lead to cancer. One of the hardest challenges to face is the design of mutation-selective therapeutic strategies. In this work, a G12D-mutated farnesylated GTP-bound Kirsten RAt sarcoma (KRAS) protein has been simulated at the interface of a DOPC/DOPS/cholesterol model anionic cell membrane. A specific long-lasting salt bridge connection between farnesyl and the hypervariable region of the protein has been identified as the main mechanism responsible for the binding of oncogenic farnesylated KRAS-4B to the cell membrane. Free-energy landscapes allowed us to characterize local and global minima of KRAS-4B binding to the cell membrane, revealing the main pathways between anchored and released states.
Collapse
Affiliation(s)
- Huixia Lu
- Department of Physics, Technical University of Catalonia-Barcelona Tech, B4-B5 Northern Campus, Barcelona, Catalonia, Spain
| | - Jordi Martí
- Department of Physics, Technical University of Catalonia-Barcelona Tech, B4-B5 Northern Campus, Barcelona, Catalonia, Spain
| |
Collapse
|
69
|
Thermodynamics and Mechanism of the Membrane Permeation of Hv1 Channel Blockers. J Membr Biol 2020; 254:5-16. [PMID: 33196887 DOI: 10.1007/s00232-020-00149-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
The voltage-gated proton channel Hv1 mediates efflux of protons from the cell. Hv1 integrally contributes to various physiological processes including pH homeostasis and the respiratory burst of phagocytes. Inhibition of Hv1 may provide therapeutic avenues for the treatment of inflammatory diseases, breast cancer, and ischemic brain damage. In this work, we investigate two prototypical Hv1 inhibitors, 2-guanidinobenzimidazole (2GBI), and 5-chloro-2-guanidinobenzimidazole (GBIC), from an experimentally screened class of guanidine derivatives. Both compounds block proton conduction by binding the same site located on the intracellular side of the channel. However, when added to the extracellular medium, the compounds strongly differ in their ability to inhibit proton conduction, suggesting substantial differences in membrane permeability. Here, we compute the potential of mean force for each compound to permeate through the membrane using atomistic molecular dynamics simulations with the adaptive biasing force method. Our results rationalize the putative distinction between these two blockers with respect to their abilities to permeate the cellular membrane.
Collapse
|
70
|
Zhang JL, Liu X, Zhang HX. Interaction Mechanism of the Germination Stimulants Karrikins and Their Receptor ShKAI2iB. J Phys Chem B 2020; 124:9812-9819. [PMID: 33089685 DOI: 10.1021/acs.jpcb.0c06734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The significance of karrikins (KARs) in plant physiology opens a door for their application in the agricultural production. As the first event of the whole signaling pathway, the binding of smoke-derived signal molecules KARs to the receptor protein KAI2 triggers the germination of the primary dormant seeds of all angiosperms, not just the "fire-prone" taxa. In the present study, all-atom molecular dynamics simulations, along with the accurate estimation of the ligand-receptor binding free energy, were used to investigate the atomic level interaction of all the members of the KARs family (from KAR1 to KAR6) with the receptor ShKAI2iB, an intermediate-evolving KAI2 from Striga hermonthica. The calculated binding energy value of KAR1 to ShKAI2iB, -5.64 kcal/mol, is in good agreement with the available experimental data, -5.67 kcal/mol. The further analysis of the detailed interaction between each KAR and the protein reveals the primary reasons for the difference of the affinity of the diverse ligands with the receptor and displays the regional characteristics of the protein's active site. Our research will not only provide clues for the study of equivalent endogenous phytohormone, but also contribute to the development of synthetic germinating chemicals.
Collapse
Affiliation(s)
- Ji-Long Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, Jilin, People's Republic of China
| | - Xiaoting Liu
- College of Food Science and Engineering, National Engineering Laboratory of Wheat and Corn Deep Processing, Jilin Agricultural University, Changchun 130118, Jilin, People's Republic of China
| | - Hong-Xing Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, Jilin, People's Republic of China
| |
Collapse
|
71
|
Kuang Z, Singh KM, Oliver DJ, Dennis PB, Perry CC, Naik RR. Gamma estimator of Jarzynski equality for recovering binding energies from noisy dynamic data sets. Nat Commun 2020; 11:5517. [PMID: 33139719 PMCID: PMC7606380 DOI: 10.1038/s41467-020-19233-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/28/2020] [Indexed: 11/26/2022] Open
Abstract
A fundamental problem in thermodynamics is the recovery of macroscopic equilibrated interaction energies from experimentally measured single-molecular interactions. The Jarzynski equality forms a theoretical basis in recovering the free energy difference between two states from exponentially averaged work performed to switch the states. In practice, the exponentially averaged work value is estimated as the mean of finite samples. Numerical simulations have shown that samples having thousands of measurements are not large enough for the mean to converge when the fluctuation of external work is above 4 kBT, which is easily observable in biomolecular interactions. We report the first example of a statistical gamma work distribution applied to single molecule pulling experiments. The Gibbs free energy of surface adsorption can be accurately evaluated even for a small sample size. The values obtained are comparable to those derived from multi-parametric surface plasmon resonance measurements and molecular dynamics simulations. Measuring interaction energies from experimentally measured single-molecular interactions is challenging. Here, the authors report a gamma work distribution applied to single molecule pulling events for estimating peptide absorption free energy.
Collapse
Affiliation(s)
- Zhifeng Kuang
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Kristi M Singh
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Daniel J Oliver
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Patrick B Dennis
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Carole C Perry
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Rajesh R Naik
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 45433, USA.
| |
Collapse
|
72
|
Computer simulations of the interaction between SARS-CoV-2 spike glycoprotein and different surfaces. Biointerphases 2020; 15:051008. [PMID: 33105999 DOI: 10.1116/6.0000502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A prominent feature of coronaviruses is the presence of a large glycoprotein spike protruding from a lipidic membrane. This glycoprotein spike determines the interaction of coronaviruses with the environment and the host. In this paper, we perform all atomic molecular dynamics simulations of the interaction between the SARS-CoV-2 trimeric glycoprotein spike and surfaces of materials. We considered a material with high hydrogen bonding capacity (cellulose) and a material capable of strong hydrophobic interactions (graphite). Initially, the spike adsorbs to both surfaces through essentially the same residues belonging to the receptor binding subunit of its three monomers. Adsorption onto cellulose stabilizes in this configuration, with the help of a large number of hydrogen bonds developed between cellulose and the three receptor-binding domains of the glycoprotein spike. In the case of adsorption onto graphite, the initial adsorption configuration is not stable and the surface induces a substantial deformation of the glycoprotein spike with a large number of adsorbed residues not pertaining to the binding subunits of the spike monomers.
Collapse
|
73
|
Wu K, Xu S, Wan B, Xiu P, Zhou X. A novel multiscale scheme to accelerate atomistic simulations of bio-macromolecules by adaptively driving coarse-grained coordinates. J Chem Phys 2020; 152:114115. [PMID: 32199430 DOI: 10.1063/1.5135309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
All-atom molecular dynamics (MD) simulations of bio-macromolecules can yield relatively accurate results while suffering from the limitation of insufficient conformational sampling. On the other hand, the coarse-grained (CG) MD simulations efficiently accelerate conformational changes in biomolecules but lose atomistic details and accuracy. Here, we propose a novel multiscale simulation method called the adaptively driving multiscale simulation (ADMS)-it efficiently accelerates biomolecular dynamics by adaptively driving virtual CG atoms on the fly while maintaining the atomistic details and focusing on important conformations of the original system with irrelevant conformations rarely sampled. Herein, the "adaptive driving" is based on the short-time-averaging response of the system (i.e., an approximate free energy surface of the original system), without requiring the construction of the CG force field. We apply the ADMS to two peptides (deca-alanine and Ace-GGPGGG-Nme) and one small protein (HP35) as illustrations. The simulations show that the ADMS not only efficiently captures important conformational states of biomolecules and drives fast interstate transitions but also yields, although it might be in part, reliable protein folding pathways. Remarkably, a ∼100-ns explicit-solvent ADMS trajectory of HP35 with three CG atoms realizes folding and unfolding repeatedly and captures the important states comparable to those from a 398-µs standard all-atom MD simulation.
Collapse
Affiliation(s)
- Kai Wu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Shun Xu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Biao Wan
- Beijing Computational Science Research Center, Beijing 1100193, China
| | - Peng Xiu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Xin Zhou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
74
|
Structure and Function of the T4 Spackle Protein Gp61.3. Viruses 2020; 12:v12101070. [PMID: 32987925 PMCID: PMC7650644 DOI: 10.3390/v12101070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/19/2020] [Accepted: 09/21/2020] [Indexed: 01/13/2023] Open
Abstract
The bacteriophage T4 genome contains two genes that code for proteins with lysozyme activity—e and 5. Gene e encodes the well-known T4 lysozyme (commonly called T4L) that functions to break the peptidoglycan layer late in the infection cycle, which is required for liberating newly assembled phage progeny. Gene product 5 (gp5) is the tail-associated lysozyme, a component of the phage particle. It forms a spike at the tip of the tail tube and functions to pierce the outer membrane of the Escherichia coli host cell after the phage has attached to the cell surface. Gp5 contains a T4L-like lysozyme domain that locally digests the peptidoglycan layer upon infection. The T4 Spackle protein (encoded by gene 61.3) has been thought to play a role in the inhibition of gp5 lysozyme activity and, as a consequence, in making cells infected by bacteriophage T4 resistant to later infection by T4 and closely related phages. Here we show that (1) gp61.3 is secreted into the periplasm where its N-terminal periplasm-targeting peptide is cleaved off; (2) gp61.3 forms a 1:1 complex with the lysozyme domain of gp5 (gp5Lys); (3) gp61.3 selectively inhibits the activity of gp5, but not that of T4L; (4) overexpression of gp5 causes cell lysis. We also report a crystal structure of the gp61.3-gp5Lys complex that demonstrates that unlike other known lysozyme inhibitors, gp61.3 does not interact with the active site cleft. Instead, it forms a “wall” that blocks access of an extended polysaccharide substrate to the cleft and, possibly, locks the enzyme in an “open-jaw”-like conformation making catalysis impossible.
Collapse
|
75
|
Xie YC, Eriksson LA, Zhang RB. Molecular dynamics study of the recognition of ATP by nucleic acid aptamers. Nucleic Acids Res 2020; 48:6471-6480. [PMID: 32442296 PMCID: PMC7337527 DOI: 10.1093/nar/gkaa428] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/21/2022] Open
Abstract
Despite their great success in recognizing small molecules in vitro, nucleic acid aptamers are rarely used in clinical settings. This is partially due to the lack of structure-based mechanistic information. In this work, atomistic molecular dynamics simulations are used to study the static and dynamic supramolecular structures relevant to the process of the wild-type (wt) nucleic acid aptamer recognition and binding of ATP. The effects brought about by mutation of key residues in the recognition site are also explored. The simulations reveal that the aptamer displays a high degree of rigidity and is structurally very little affected by the binding of ATP. Interaction energy decomposition shows that dispersion forces from π-stacking between ATP and the G6 and A23 nucleobases in the aptamer binding site plays a more important role in stabilizing the supramolecular complex, compared to hydrogen-bond interaction between ATP and G22. Moreover, metadynamics simulations show that during the association process, water molecules act as essential bridges connecting ATP with G22, which favors the dynamic stability of the complex. The calculations carried out on three mutated aptamer structures confirm the crucial role of the hydrogen bonds and π-stacking interactions for the binding affinity of the ATP nucleic acid aptamer.
Collapse
Affiliation(s)
- Ya-Chen Xie
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, South Street No. 5, Zhongguancun, Haidian District, 100081 Beijing, China
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9c, 405 30 Göteborg, Sweden
| | - Ru-Bo Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, South Street No. 5, Zhongguancun, Haidian District, 100081 Beijing, China
| |
Collapse
|
76
|
Phillips JC, Hardy DJ, Maia JDC, Stone JE, Ribeiro JV, Bernardi RC, Buch R, Fiorin G, Hénin J, Jiang W, McGreevy R, Melo MCR, Radak BK, Skeel RD, Singharoy A, Wang Y, Roux B, Aksimentiev A, Luthey-Schulten Z, Kalé LV, Schulten K, Chipot C, Tajkhorshid E. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys 2020; 153:044130. [PMID: 32752662 PMCID: PMC7395834 DOI: 10.1063/5.0014475] [Citation(s) in RCA: 1538] [Impact Index Per Article: 307.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
NAMDis a molecular dynamics program designed for high-performance simulations of very large biological objects on CPU- and GPU-based architectures. NAMD offers scalable performance on petascale parallel supercomputers consisting of hundreds of thousands of cores, as well as on inexpensive commodity clusters commonly found in academic environments. It is written in C++ and leans on Charm++ parallel objects for optimal performance on low-latency architectures. NAMD is a versatile, multipurpose code that gathers state-of-the-art algorithms to carry out simulations in apt thermodynamic ensembles, using the widely popular CHARMM, AMBER, OPLS, and GROMOS biomolecular force fields. Here, we review the main features of NAMD that allow both equilibrium and enhanced-sampling molecular dynamics simulations with numerical efficiency. We describe the underlying concepts utilized by NAMD and their implementation, most notably for handling long-range electrostatics; controlling the temperature, pressure, and pH; applying external potentials on tailored grids; leveraging massively parallel resources in multiple-copy simulations; and hybrid quantum-mechanical/molecular-mechanical descriptions. We detail the variety of options offered by NAMD for enhanced-sampling simulations aimed at determining free-energy differences of either alchemical or geometrical transformations and outline their applicability to specific problems. Last, we discuss the roadmap for the development of NAMD and our current efforts toward achieving optimal performance on GPU-based architectures, for pushing back the limitations that have prevented biologically realistic billion-atom objects to be fruitfully simulated, and for making large-scale simulations less expensive and easier to set up, run, and analyze. NAMD is distributed free of charge with its source code at www.ks.uiuc.edu.
Collapse
Affiliation(s)
| | - David J. Hardy
- NIH Center for Macromolecular Modeling and
Bioinformatics, Theoretical and Computational Biophysics Group, Beckman Institute for
Advanced Science and Technology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Julio D. C. Maia
- NIH Center for Macromolecular Modeling and
Bioinformatics, Theoretical and Computational Biophysics Group, Beckman Institute for
Advanced Science and Technology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, USA
| | - John E. Stone
- NIH Center for Macromolecular Modeling and
Bioinformatics, Theoretical and Computational Biophysics Group, Beckman Institute for
Advanced Science and Technology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, USA
| | - João V. Ribeiro
- NIH Center for Macromolecular Modeling and
Bioinformatics, Theoretical and Computational Biophysics Group, Beckman Institute for
Advanced Science and Technology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Rafael C. Bernardi
- NIH Center for Macromolecular Modeling and
Bioinformatics, Theoretical and Computational Biophysics Group, Beckman Institute for
Advanced Science and Technology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | - Giacomo Fiorin
- National Heart, Lung and Blood Institute, National
Institutes of Health, Bethesda, Maryland 20814,
USA
| | - Jérôme Hénin
- Laboratoire de Biochimie Théorique UPR 9080, CNRS
and Université de Paris, Paris, France
| | | | - Ryan McGreevy
- NIH Center for Macromolecular Modeling and
Bioinformatics, Theoretical and Computational Biophysics Group, Beckman Institute for
Advanced Science and Technology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | - Brian K. Radak
- NIH Center for Macromolecular Modeling and
Bioinformatics, Theoretical and Computational Biophysics Group, Beckman Institute for
Advanced Science and Technology, University of Illinois at
Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Robert D. Skeel
- School of Mathematical and Statistical Sciences,
Arizona State University, Tempe, Arizona 85281,
USA
| | - Abhishek Singharoy
- School of Molecular Sciences, Arizona State
University, Tempe, Arizona 85281, USA
| | - Yi Wang
- Department of Physics, The Chinese University of
Hong Kong, Shatin, Hong Kong, China
| | - Benoît Roux
- Department of Biochemistry, University of
Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | - Christophe Chipot
- Authors to whom correspondence should be addressed:
and . URL: http://www.ks.uiuc.edu
| | - Emad Tajkhorshid
- Authors to whom correspondence should be addressed:
and . URL: http://www.ks.uiuc.edu
| |
Collapse
|
77
|
Shobhna, Kumari M, Kashyap HK. A coarse-grained model of dimethyl sulfoxide for molecular dynamics simulations with lipid membranes. J Chem Phys 2020; 153:035104. [DOI: 10.1063/5.0014614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Shobhna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
78
|
Woods DC, Wereszczynski J. Elucidating the influence of linker histone variants on chromatosome dynamics and energetics. Nucleic Acids Res 2020; 48:3591-3604. [PMID: 32128577 PMCID: PMC7144933 DOI: 10.1093/nar/gkaa121] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/23/2022] Open
Abstract
Linker histones are epigenetic regulators that bind to nucleosomes and alter chromatin structures and dynamics. Biophysical studies have revealed two binding modes in the linker histone/nucleosome complex, the chromatosome, where the linker histone is either centered on or askew from the dyad axis. Each has been posited to have distinct effects on chromatin, however the molecular and thermodynamic mechanisms that drive them and their dependence on linker histone compositions remain poorly understood. We present molecular dynamics simulations of chromatosomes with the globular domain of two linker histone variants, generic H1 (genGH1) and H1.0 (GH1.0), to determine how their differences influence chromatosome structures, energetics and dynamics. Results show that both unbound linker histones adopt a single compact conformation. Upon binding, DNA flexibility is reduced, resulting in increased chromatosome compaction. While both variants enthalpically favor on-dyad binding, energetic benefits are significantly higher for GH1.0, suggesting that GH1.0 is more capable than genGH1 of overcoming the large entropic reduction required for on-dyad binding which helps rationalize experiments that have consistently demonstrated GH1.0 in on-dyad states but that show genGH1 in both locations. These simulations highlight the thermodynamic basis for different linker histone binding motifs, and details their physical and chemical effects on chromatosomes.
Collapse
Affiliation(s)
- Dustin C Woods
- Department of Chemistry and the Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Jeff Wereszczynski
- Department of Physics and the Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL 60616, USA
| |
Collapse
|
79
|
Liu P, Hao W, Bian X, Mei D. The shuttling mechanism of foldaxanes: more than just translocation and rotation. Phys Chem Chem Phys 2020; 22:12967-12972. [PMID: 32490445 DOI: 10.1039/d0cp01952f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tailoring the structures of nanomachines to achieve specific functions is one of the major challenges in chemistry. Disentangling the different movements of nanomachines is critical to characterize their functions. Here, the motions within one kind of molecular machine, a foldaxane, composed of a foldamer with a spring-like conformation on an axle have been examined at the molecular level. With the aid of molecular dynamics simulations and enhanced sampling methods, the free-energy landscape characterizing the shuttling of the foldaxane has been drawn. The calculated free-energy barrier, amounting to 20.7 kcal mol-1, is in good agreement with experiments. Further analysis reveals that the predominant contribution to the free-energy barrier stems from the disruption of the hydrogen bonds between the foldamer and the thread. In the absence of hydrogen bonding interactions between the terminals of the foldamer and the thread, shrinkage and swelling movements of the foldamer have been identified and investigated in detail. By deciphering the intricate mechanism of how the foldaxane shuttles, our understanding of motions within molecular machines is expected to be improved, which will, in turn, assist the construction of molecular machines with specific functions.
Collapse
Affiliation(s)
- Peng Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China.
| | | | | | | |
Collapse
|
80
|
Shankla M, Aksimentiev A. Molecular Transport across the Ionic Liquid-Aqueous Electrolyte Interface in a MoS 2 Nanopore. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26624-26634. [PMID: 32393017 PMCID: PMC7292782 DOI: 10.1021/acsami.0c04523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanopore sequencing of DNA has been enabled by the use of a biological enzyme to thread DNA through an engineered biological nanopore while recording the ionic current flowing through the nanopore. Efforts to realize a similar concept using a solid-state nanopore have been met with several technical challenges, one of which is the high speed of DNA translocation and the other the low ionic current contrast among individual nucleotides. A promising avenue to addressing both problems is using an ionic liquid to slow DNA translocation and a tiny nanopore in the MoS2 membrane to distinguish individual nucleotides. The physical mechanisms enabling these technical advances have remained elusive. Here, we characterize the ion and DNA transport through the ionic liquid/aqueous electrolyte interface, with and without a MoS2 nanopore, using the all-atom molecular dynamics method. We find that the partial miscibility of the ionic liquid and the aqueous electrolyte considerably alters the physics of the nanopore translocation process. Thus, the interface of the two phases generates a contact potential of 600 mV, the ionic current is dominated by the motion of ionic liquid molecules through the aqueous solution phase, and the DNA nucleotides exhibit preferential partitioning into the aqueous electrolyte, which leads to spontaneous transport of DNA polymers from the ionic liquid to the aqueous solution compartment in the absence of external voltage bias. The complex physics of the two-phase nanopore system offers a multitude of opportunities for extending the functionality of nanopore-sensing platforms.
Collapse
Affiliation(s)
- Manish Shankla
- Department of Physics, University of Illinois, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois, 1110 West Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
81
|
Cellular absorption of small molecules: free energy landscapes of melatonin binding at phospholipid membranes. Sci Rep 2020; 10:9235. [PMID: 32513935 PMCID: PMC7280225 DOI: 10.1038/s41598-020-65753-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 05/05/2020] [Indexed: 12/28/2022] Open
Abstract
Free energy calculations are essential to unveil mechanisms at the atomic scale such as binding of small solutes and their translocation across cell membranes, eventually producing cellular absorption. Melatonin regulates biological rhythms and is directly related to carcinogenesis and neurodegenerative disorders. Free energy landscapes obtained from well-tempered metadynamics simulations precisely describe the characteristics of melatonin binding to specific sites in the membrane and reveal the role of cholesterol in free energy barrier crossing. A specific molecular torsional angle and the distance between melatonin and the center of the membrane along the normal to the membrane Z-axis have been considered as suitable reaction coordinates. Free energy barriers between two particular orientations of the molecular structure (folded and extended) have been found to be of about 18 kJ/mol for z-distances of about 1–2 nm. The ability of cholesterol to expel melatonin out of the internal regions of the membrane towards the interface and the external solvent is explained from a free energy perspective. The calculations reported here offer detailed free energy landscapes of melatonin embedded in model cell membranes and reveal microscopic information on its transition between free energy minima, including the location of relevant transition states, and provide clues on the role of cholesterol in the cellular absorption of small molecules.
Collapse
|
82
|
Luca S, Seal P, Parekh HS, Tupally KR, Smith SC. Cell Membrane Penetration without Pore Formation: Chameleonic Properties of Dendrimers in Response to Hydrophobic and Hydrophilic Environments. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.201900152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sergio Luca
- Integrated Materials Design LaboratoryDepartment of Applied MathematicsResearch School of PhysicsAustralian National University Acton ACT 2601 Australia
| | - Prasenjit Seal
- Department of ChemistryUniversity of Helsinki P.O. Box 55 (A.I. Virtasen aukio 1) Helsinki 00014 Finland
| | - Harendra S. Parekh
- School of PharmacyThe University of Queensland Brisbane QLD 4072 Australia
| | | | - Sean C. Smith
- Integrated Materials Design LaboratoryDepartment of Applied MathematicsResearch School of PhysicsAustralian National University Acton ACT 2601 Australia
| |
Collapse
|
83
|
Mitsuta Y, Shigeta Y. Analytical Method Using a Scaled Hypersphere Search for High-Dimensional Metadynamics Simulations. J Chem Theory Comput 2020; 16:3869-3878. [PMID: 32384233 DOI: 10.1021/acs.jctc.0c00010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Metadynamics (MTD) is one of the most effective methods for calculating the free energy surface and finding rare events. Nevertheless, numerous studies using MTD have been carried out using 3D or lower dimensional collective variables (CVs), as higher dimensional CVs require costly computational resources and the obtained results are too complex to understand the important events. The latter issue can be conveniently solved by utilizing the free energy reaction network (FERN), which is a graph structure consisting of edges of minimum free energy paths (MFEPs), nodes of equation (EQ) points, and transition state (TS) points. In the present article, a new method for exploring FERNs on high-dimensional CVs using MTD and the scaled hypersphere search (SHS) method is described. A test calculation based on the MTD-SHS simulation of met-enkephalin in explicit water with 7 CVs was conducted. As a result, 889 EQ points and 1805 TS points were found. The MTD-SHS approach can find MFEPs exhaustively; therefore, the FERNs can be estimated without any a priori knowledge of the EQ and TS points.
Collapse
Affiliation(s)
- Yuki Mitsuta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
84
|
Fu H, Chen H, Wang X, Chai H, Shao X, Cai W, Chipot C. Finding an Optimal Pathway on a Multidimensional Free-Energy Landscape. J Chem Inf Model 2020; 60:5366-5374. [DOI: 10.1021/acs.jcim.0c00279] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Haohao Fu
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Haochuan Chen
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xin’ao Wang
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Hao Chai
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Xueguang Shao
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Christophe Chipot
- Laboratoire International Associé CNRS and University of Illinois at Urbana−Champaign, F-54506 Vandœuvre-lès-Nancy, France
- Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
85
|
Lopez AJ, Barros EP, Martínez L. On the Interpretation of subtilisin Carlsberg Time-Resolved Fluorescence Anisotropy Decays: Modeling with Classical Simulations. J Chem Inf Model 2020; 60:747-755. [PMID: 31524394 DOI: 10.1021/acs.jcim.9b00539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this work, we discuss the challenging time-resolved fluorescence anisotropy of subtilisin Carlsberg (SC), which contains a single Trp residue and is a model fluorescence system. Experimental decay rates and quenching data suggest that the fluorophore should be exposed to water, but the Trp is partially buried in a hydrophobic pocket in the crystallographic structure. In order to study this inconsistency, molecular dynamics simulations were performed to predict the anisotropy decay rates and emission wavelengths of the Trp. We confirmed the inconsistency of the crystallographic structure with the experimentally observed fluorescence data and performed free energy calculations to show that the buried Trp conformation is 2 orders of magnitude (∼3 kcal/mol) more stable than the solvent-exposed one. However, molecular dynamics simulations in which the Trp side chain was restricted to solvent-exposed conformations displayed a maximum Trp emission wavelength shifted toward lower energies and decay rates compatible with the experimentally probed rates. Therefore, if the solvent-exposed conformations are the most important emitters, the experimental anisotropy can be compatibilized with the crystallographic structure. The most likely explanation is that the fluorescence of the most probable conformation in solution, observed in the crystal, is quenched, and this is consistent with the low quantum yield of Trp113 of SC. Additionally, some experiments might have probed denatured or lysed SC structures. SC anisotropy provides an interesting target for the study of fluorescence anisotropy using simulations, which can be used to test and exemplify how modeling can aid the interpretation of experimental data in a system where structure and solution experiments appear to be inconsistent.
Collapse
Affiliation(s)
- Alvaro J Lopez
- Institute of Chemistry and Center for Computing in Engineering & Science , University of Campinas , 13083-861 Campinas - SP , Brazil
| | - Emília P Barros
- Institute of Chemistry and Center for Computing in Engineering & Science , University of Campinas , 13083-861 Campinas - SP , Brazil
| | - Leandro Martínez
- Institute of Chemistry and Center for Computing in Engineering & Science , University of Campinas , 13083-861 Campinas - SP , Brazil
| |
Collapse
|
86
|
Yeo J, Qiu Y, Jung GS, Zhang YW, Buehler MJ, Kaplan DL. Adverse effects of Alport syndrome-related Gly missense mutations on collagen type IV: Insights from molecular simulations and experiments. Biomaterials 2020; 240:119857. [PMID: 32085975 DOI: 10.1016/j.biomaterials.2020.119857] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 01/28/2020] [Accepted: 02/08/2020] [Indexed: 12/13/2022]
Abstract
Patients with Alport syndrome (AS) exhibit blood and elevated protein levels in their urine, inflamed kidneys, and many other abnormalities. AS is attributed to mutations in type IV collagen genes, particularly glycine missense mutations in the collagenous domain of COL4A5 that disrupt common structural motifs in collagen from the repeat (Gly-Xaa-Yaa)n amino acid sequence. To characterize and elucidate the molecular mechanisms underlying how AS-related mutations perturb the structure and function of type IV collagen, experimental studies and molecular simulations were integrated to investigate the structure, stability, protease sensitivity, and integrin binding affinity of collagen-like proteins containing amino acid sequences from the α5(IV) chain and AS-related Gly missense mutations. We show adverse effects where (i) three AS-related Gly missense mutations significantly reduced the structural stability of the collagen in terms of decreased melting temperatures and calorimetric enthalpies, in conjunction with a collective drop in the external work needed to unfold the peptides containing mutation sequences; (ii) due to local unwinding around the sites of mutations, these triple helical peptides were also degraded more rapidly by trypsin and chymotrypsin, as these enzymes could access the collagenous triple helix more easily and increase the number of contacts; (iii) the mutations further abolished the ability of the recombinant collagens to bind to integrins and greatly reduced the binding affinities between collagen and integrins, thus preventing cells from adhering to these mutants. Our unified experimental and computational approach provided underlying insights needed to guide potential therapies for AS that ameliorate the adverse effects from AS disease onset and progression.
Collapse
Affiliation(s)
- Jingjie Yeo
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA; Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, Singapore 138632, Singapore; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yimin Qiu
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA; National Biopesticide Engineering Technology Research Center, Hubei Biopesticide Engineering Research Center, Hubei Academy of Agricultural Sciences, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Wuhan, 430064, PR China
| | - Gang Seob Jung
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yong-Wei Zhang
- Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, Singapore 138632, Singapore
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
87
|
Yoon J, Ulissi ZW. Capturing Structural Transitions in Surfactant Adsorption Isotherms at Solid/Solution Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:819-826. [PMID: 31891511 DOI: 10.1021/acs.langmuir.9b02235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although adsorption isotherms of surfactants are critical in determining the relationship between interfacial properties and structures of surfactants, providing quantitative predictions of the isotherms remains challenging. This is especially true for adsorption at hard interfaces such as on two-dimensional (2D) layered materials or on nanoparticles where simulation techniques developed for fluid-fluid interfaces that dynamically change surface properties by adjusting unit cells do not apply. In this work, we predict nonideal adsorption at a solid-solution interface with a molecular thermodynamic theory (MTT) model that utilizes molecular dynamics (MD) simulations for the determination of free-energy parameters in the MTT. Furthermore, the MD/MTT model provides atomistic insights into the nonideal behavior of surfactants by capturing structural phases of the surfactants at the interface. Our approach captures structural transitions from the ideal state at low concentrations and then to the critical surface aggregation concentration (CSAC) and finally through the critical micelle concentration (CMC). We validate our model against the original MTT model by comparing predicted adsorption isotherms of a simplified surfactant system from both approaches. We further substantiate the applicability of our model in complex systems by providing adsorption isotherms in an aqueous sodium dodecyl sulfate (SDS)-graphene system, in good agreement with the experimental observations of the CSAC for the same system.
Collapse
Affiliation(s)
- Junwoong Yoon
- Department of Chemical Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Zachary W Ulissi
- Department of Chemical Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
88
|
Malaspina DC, Viñas C, Teixidor F, Faraudo J. Atomistic Simulations of COSAN: Amphiphiles without a Head-and-Tail Design Display "Head and Tail" Surfactant Behavior. Angew Chem Int Ed Engl 2020; 59:3088-3092. [PMID: 31805215 DOI: 10.1002/anie.201913257] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/04/2019] [Indexed: 12/11/2022]
Abstract
Cobaltabisdicarbollide (COSAN) anions have an unexpectedly rich self-assembly behavior, which can lead to vesicles and micelles without having a classical surfactant molecular architecture. This was rationalized by the introduction of new terminology and novel driving forces. A key aspect in the interpretation of COSAN behavior is the assumption that the most stable form of these ions is the transoid rotamer, which lacks a "hydrophilic head" and a "hydrophobic tail". Using implicit solvent DFT calculations and MD simulations we show that in water, 1) the cisoid rotamer is the most stable form of COSAN and 2) this cisoid rotamer has a well-defined hydrophilic polar region ("head") and a hydrophobic apolar region ("tail"). In addition, our simulations show that the properties of this rotamer in water (interfacial affinity, micellization) match those expected for a classical surfactant. Therefore, we conclude that the experimental results for the COSAN ions can now be understood in terms of its amphiphilic molecular architecture.
Collapse
Affiliation(s)
- David C Malaspina
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193, Bellaterra, Spain
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193, Bellaterra, Spain
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193, Bellaterra, Spain
| | - Jordi Faraudo
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193, Bellaterra, Spain
| |
Collapse
|
89
|
Malaspina DC, Viñas C, Teixidor F, Faraudo J. Atomistic Simulations of COSAN: Amphiphiles without a Head‐and‐Tail Design Display “Head and Tail” Surfactant Behavior. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- David C. Malaspina
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC Campus de la UAB 08193 Bellaterra Spain
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC Campus de la UAB 08193 Bellaterra Spain
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC Campus de la UAB 08193 Bellaterra Spain
| | - Jordi Faraudo
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC Campus de la UAB 08193 Bellaterra Spain
| |
Collapse
|
90
|
Kumari P, Kashyap HK. DMSO induced dehydration of heterogeneous lipid bilayers and its impact on their structures. J Chem Phys 2019; 151:215103. [DOI: 10.1063/1.5127852] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Pratibha Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
91
|
Wu G, Szabó I, Rosta E, Scherman OA. Cucurbit[8]uril-mediated pseudo[2,3]rotaxanes. Chem Commun (Camb) 2019; 55:13227-13230. [PMID: 31631210 DOI: 10.1039/c9cc07144j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pseudo[2,3]rotaxanes have been successfully fabricated by the complexation of cucurbit[8]uril (CB[8]) macrocycles with extended viologen derivatives. Two design rules enable the incorporation of a third CB[8] onto a recently reported pseudo[2,2]rotaxane. Incorporation of a third macrocycle confines the dimeric stacking of chromophores into specific alignment, leading to effective electron-delocalisation along their long molecular axis.
Collapse
Affiliation(s)
- Guanglu Wu
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - István Szabó
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK
| | - Edina Rosta
- Department of Chemistry, King's College London, 7 Trinity Street, London, SE1 1DB, UK
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
92
|
Kumari P, Kumari M, Kashyap HK. Counter-effects of Ethanol and Cholesterol on the Heterogeneous PSM–POPC Lipid Membrane: A Molecular Dynamics Simulation Study. J Phys Chem B 2019; 123:9616-9628. [DOI: 10.1021/acs.jpcb.9b07107] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Pratibha Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Monika Kumari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Hemant K. Kashyap
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
93
|
Liu L, Chen Y, Dang F, Liu Y, Tian X, Chen X. Synergistic effect of supercritical CO 2 and organic solvent on exfoliation of graphene: experiment and atomistic simulation studies. Phys Chem Chem Phys 2019; 21:22149-22157. [PMID: 31573003 DOI: 10.1039/c9cp03654g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, experiments and molecular dynamics (MD) simulations are carried out to explore the synergistic effect of supercritical CO2 (scCO2) and organic solvent on intercalation and exfoliation of graphene. Experimental characterizations via transmission electron microscopy, atomic force microscopy and Raman spectroscopy indicate that by combining scCO2 and organic solvent (N-methylpyrrolidone, NMP), few-layer graphene is successfully exfoliated from graphite, among which over 30% is 1-4 layers, and 55% is 5-8 layers. Systematic experiments have shown that compared with pure scCO2 or NMP, the mixed scCO2 and NMP can significantly increase the amount of graphene and the rate of few-layer graphene, and the optimum volume fraction of NMP is 25%. Parallel MD simulations indicate that the scCO2 molecules first diffuse into the interlayer of graphite, and then the larger NMP molecules insert as wedges and further expand interlayer spacing, promoting intercalation and exfoliation. The iteration of scCO2 diffusion and the NMP wedge can generate positive feedback to improve the exfoliation productivity and efficiency. This work explores the synergistic effect of scCO2 and NMP on the exfoliation of graphene, which may provide useful insights for exfoliation of other two dimensional materials.
Collapse
Affiliation(s)
- Lixi Liu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, China
| | | | | | | | | | | |
Collapse
|
94
|
Muttathukattil AN, Srinivasan S, Halder A, Reddy G. Role of Guanidinium-Carboxylate Ion Interaction in Enzyme Inhibition with Implications for Drug Design. J Phys Chem B 2019; 123:9302-9311. [DOI: 10.1021/acs.jpcb.9b06130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Aswathy N. Muttathukattil
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sriraksha Srinivasan
- Department of Chemistry, St. Joseph’s College, Bangalore, Karnataka 560027, India
| | - Antarip Halder
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Govardhan Reddy
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
95
|
Noé F, Olsson S, Köhler J, Wu H. Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning. Science 2019; 365:365/6457/eaaw1147. [DOI: 10.1126/science.aaw1147] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/19/2019] [Indexed: 02/01/2023]
Abstract
Computing equilibrium states in condensed-matter many-body systems, such as solvated proteins, is a long-standing challenge. Lacking methods for generating statistically independent equilibrium samples in “one shot,” vast computational effort is invested for simulating these systems in small steps, e.g., using molecular dynamics. Combining deep learning and statistical mechanics, we developed Boltzmann generators, which are shown to generate unbiased one-shot equilibrium samples of representative condensed-matter systems and proteins. Boltzmann generators use neural networks to learn a coordinate transformation of the complex configurational equilibrium distribution to a distribution that can be easily sampled. Accurate computation of free-energy differences and discovery of new configurations are demonstrated, providing a statistical mechanics tool that can avoid rare events during sampling without prior knowledge of reaction coordinates.
Collapse
|
96
|
Drenscko M, Loverde SM. Molecular dynamics simulations of the interaction of phospholipid bilayers with polycaprolactone. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1606425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mihaela Drenscko
- Department of Chemistry, College of Staten Island, City University of New York, New York, NY, USA
- Department of Physics, Graduate Center, City University of New York, New York, NY, USA
- Program in Chemistry, Biochemistry, and Physics, The Graduate Center of the City University of New York, New York, NY, USA
| | - Sharon M. Loverde
- Department of Chemistry, College of Staten Island, City University of New York, New York, NY, USA
- Department of Physics, Graduate Center, City University of New York, New York, NY, USA
- Program in Chemistry, Biochemistry, and Physics, The Graduate Center of the City University of New York, New York, NY, USA
| |
Collapse
|
97
|
Losasso V, Hsiao YW, Martelli F, Winn MD, Crain J. Modulation of Antimicrobial Peptide Potency in Stressed Lipid Bilayers. PHYSICAL REVIEW LETTERS 2019; 122:208103. [PMID: 31172786 DOI: 10.1103/physrevlett.122.208103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Indexed: 06/09/2023]
Abstract
It is shown that the tendency of an archetypal antimicrobial peptide to insert into and perforate a simple lipid bilayer is strongly modulated by tensile stress in the membrane. The results, obtained through molecular dynamics simulations, have been demonstrated with several lipid compositions and appear to be general, although quantitative details differ. The findings imply that the potency of antimicrobial peptides may not be a purely intrinsic chemical property and, instead, depends on the mechanical state of the target membrane.
Collapse
Affiliation(s)
- Valeria Losasso
- Daresbury Laboratory, STFC, Daresbury, Warrington, England WA4 4AD, United Kingdom
| | - Ya-Wen Hsiao
- Daresbury Laboratory, STFC, Daresbury, Warrington, England WA4 4AD, United Kingdom
| | - Fausto Martelli
- IBM Research, Hartree Centre, Daresbury, England WA4 4AD, United Kingdom
| | - Martyn D Winn
- Daresbury Laboratory, STFC, Daresbury, Warrington, England WA4 4AD, United Kingdom
| | - Jason Crain
- IBM Research, Hartree Centre, Daresbury, England WA4 4AD, United Kingdom
- Dept. of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, England
| |
Collapse
|
98
|
Molecular insight into the wetting behavior and amphiphilic character of cellulose nanocrystals. Adv Colloid Interface Sci 2019; 267:15-25. [PMID: 30884357 DOI: 10.1016/j.cis.2019.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 02/05/2023]
Abstract
The study of nanocellulose is a field of growing interest due to its many applications and its use in the development of biocompatible and eco-friendly materials. In spite of the vast number of studies in the field, many questions about the role of the molecular structure in the properties of cellulose are still subject of debate. One of these fundamental questions is the possible amphiphilic nature of cellulose and the relative role of hydrogen bonding and hydrophobic effect on the interactions of cellulose. In this work we present an extensive molecular dynamics simulation study of this question by analyzing the wetting of cellulose with water and organic solvent, its interaction with hydrophilic and hydrophobic ions and its interaction with a protein (human epidermal growth factor, hEGF). We consider two characteristic cellulose crystal planes of Iβ cellulose with very different roughness, different hydrogen bonding capability and different exposure of cellulose hydrophobic groups (the (010) plane which has exposed -OH groups and the (100) plane with buried -OH groups). Our results show that both surfaces are simultaneously hydrophilic and lipophilic, with both surfaces having very similar contact angles. In spite of the global similarity of wetting of both surfaces, the molecular details of wetting are very different and substantial local wetting heterogeneities (which strongly depend on the surface) appear for both solvents. We also observe a weak interaction of both surfaces with hydrophobic and hydrophilic solutes. These weak interactions are attributed to the simultaneous lipophilic and hydrophilic character of both (100) and (010) cellulose surfaces. Interestingly, we found a substantial interaction of both cellulose planes with polar and apolar residues of the hEGF protein.
Collapse
|
99
|
Pires de Oliveira I, Lescano CH, De Nucci G. Q817G mutation in phosphodiesterase type 5: Conformational analysis and dissociation profile of the inhibitor Tadalafil. Chem Biol Drug Des 2019; 93:419-429. [PMID: 30381900 DOI: 10.1111/cbdd.13426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/08/2018] [Accepted: 10/18/2018] [Indexed: 01/08/2023]
Abstract
Phosphodiesterase type 5 (PDE-5) is an important enzyme involved in the hydrolysis of cyclic guanosine monophosphate (cGMP) to guanosine monophosphate (GMP). The inhibition of this protein leads to the accumulation of cGMP in cells with various biological and therapeutic effects. Several PDE-5 inhibitors exist, with Tadalafil being one of the most commonly studied and used in clinical therapy. In this study, we applied Molecular Dynamics simulations coupled to the ABF (Adaptive Biasing Force) method to study the effect of the mutation on the Gln817 residue (Q817G). The results of the free energy profiles made clear that the affinity of the inhibitor for PDE-5 is dependent on the amino acid residue Gln817. The hydrogen bond made between the side chain of glutamine and the indole ring of Tadalafil results in the stabilization of the ligand in the catalytic site. Despite the prominent role of this interaction, it is important to highlight the contribution of other residues of the catalytic domain for the stabilization of the compound, due to the set of polar, hydrophobic and electrostatic interactions performed by specific amino acid residues.
Collapse
Affiliation(s)
| | | | - Gilberto De Nucci
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Faculty of Medical Sciences, University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
100
|
Hydration structures of vanadium/oxovanadium cations in the presence of sulfuric acid: A molecular dynamics simulation study. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|