51
|
Choi JH, Xiong T, Ostermeier M. The interplay between effector binding and allostery in an engineered protein switch. Protein Sci 2016; 25:1605-16. [PMID: 27272021 DOI: 10.1002/pro.2962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/02/2016] [Accepted: 06/03/2016] [Indexed: 01/05/2023]
Abstract
The protein design rules for engineering allosteric regulation are not well understood. A fundamental understanding of the determinants of ligand binding in an allosteric context could facilitate the design and construction of versatile protein switches and biosensors. Here, we conducted extensive in vitro and in vivo characterization of the effects of 285 unique point mutations at 15 residues in the maltose-binding pocket of the maltose-activated β-lactamase MBP317-347. MBP317-347 is an allosteric enzyme formed by the insertion of TEM-1 β-lactamase into the E. coli maltose binding protein (MBP). We find that the maltose-dependent resistance to ampicillin conferred to the cells by the MBP317-347 switch gene (the switch phenotype) is very robust to mutations, with most mutations slightly improving the switch phenotype. We identified 15 mutations that improved switch performance from twofold to 22-fold, primarily by decreasing the catalytic activity in the absence of maltose, perhaps by disrupting interactions that cause a small fraction of MBP in solution to exist in a partially closed state in the absence of maltose. Other notable mutations include K15D and K15H that increased maltose affinity 30-fold and Y155K and Y155R that compromised switching by diminishing the ability of maltose to increase catalytic activity. The data also provided insights into normal MBP physiology, as select mutations at D14, W62, and F156 retained high maltose affinity but abolished the switch's ability to substitute for MBP in the transport of maltose into the cell. The results reveal the complex relationship between ligand binding and allostery in this engineered switch.
Collapse
Affiliation(s)
- Jay H Choi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St, Baltimore, Maryland, 21218
| | - Tina Xiong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St, Baltimore, Maryland, 21218
| | - Marc Ostermeier
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St, Baltimore, Maryland, 21218
| |
Collapse
|
52
|
Deis LN, Pemble CW, Qi Y, Hagarman A, Richardson DC, Richardson JS, Oas TG. Multiscale conformational heterogeneity in staphylococcal protein a: possible determinant of functional plasticity. Structure 2016; 22:1467-77. [PMID: 25295398 DOI: 10.1016/j.str.2014.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/12/2014] [Accepted: 08/17/2014] [Indexed: 10/24/2022]
Abstract
The Staphylococcus aureus virulence factor staphylococcal protein A (SpA) is a major contributor to bacterial evasion of the host immune system, through high-affinity binding to host proteins such as antibodies. SpA includes five small three-helix-bundle domains (E-D-A-B-C) separated by conserved flexible linkers. Prior attempts to crystallize individual domains in the absence of a binding partner have apparently been unsuccessful. There have also been no previous structures of tandem domains. Here we report the high-resolution crystal structures of a single C domain, and of two B domains connected by the conserved linker. Both structures exhibit extensive multiscale conformational heterogeneity, which required novel modeling protocols. Comparison of domain structures shows that helix1 orientation is especially heterogeneous, coordinated with changes in side chain conformational networks and contacting protein interfaces. This represents the kind of structural plasticity that could enable SpA to bind multiple partners.
Collapse
Affiliation(s)
- Lindsay N Deis
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Charles W Pemble
- Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Macromolecular Crystallography Center, Duke University, Durham, NC 27710, USA
| | - Yang Qi
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | - Andrew Hagarman
- Department of Biochemistry, Duke University, Durham, NC 27710, USA
| | | | | | - Terrence G Oas
- Department of Biochemistry, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
53
|
Gobeil SMC, Gagné D, Doucet N, Pelletier JN. 15N, 13C and 1H backbone resonance assignments of an artificially engineered TEM-1/PSE-4 class A β-lactamase chimera and its deconvoluted mutant. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:93-99. [PMID: 26386961 PMCID: PMC5419827 DOI: 10.1007/s12104-015-9645-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/09/2015] [Indexed: 06/05/2023]
Abstract
The widespread use of β-lactam antibiotics has given rise to a dramatic increase in clinically-relevant β-lactamases. Understanding the structure/function relation in these variants is essential to better address the ever-growing incidence of antibiotic resistance. We previously reported the backbone resonance assignments of a chimeric protein constituted of segments of the class A β-lactamases TEM-1 and PSE-4 (Morin et al. in Biomol NMR Assign 4:127-130, 2010. doi: 10.1007/s12104-010-9227-8 ). That chimera, cTEM17m, held 17 amino acid substitutions relative to TEM-1 β-lactamase, resulting in a well-folded and fully functional protein with increased dynamics. Here we report the (1)H, (13)C and (15)N backbone resonance assignments of chimera cTEM-19m, which includes 19 substitutions and exhibits increased active-site perturbation, as well as one of its deconvoluted variants, as the first step in the analysis of their dynamic behaviours.
Collapse
Affiliation(s)
- Sophie M C Gobeil
- Department of Biochemistry, Université de Montréal, Montréal, QC, Canada
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, QC, Canada
| | - Donald Gagné
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, QC, Canada
- INRS-Institut Armand-Frappier, Université du Québec, Québec, QC, Canada
- GRASP, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, QC, Canada
- Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY, USA
| | - Nicolas Doucet
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, QC, Canada
- INRS-Institut Armand-Frappier, Université du Québec, Québec, QC, Canada
- GRASP, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montréal, QC, Canada
| | - Joelle N Pelletier
- Department of Biochemistry, Université de Montréal, Montréal, QC, Canada.
- PROTEO, The Québec Network for Research on Protein Function, Engineering and Applications, Québec, QC, Canada.
- Department of Chemistry, Université de Montréal, Montréal, Canada.
| |
Collapse
|
54
|
DARPin-Based Crystallization Chaperones Exploit Molecular Geometry as a Screening Dimension in Protein Crystallography. J Mol Biol 2016; 428:1574-88. [DOI: 10.1016/j.jmb.2016.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/28/2016] [Accepted: 03/02/2016] [Indexed: 11/21/2022]
|
55
|
Vandavasi VG, Weiss KL, Cooper JB, Erskine PT, Tomanicek SJ, Ostermann A, Schrader TE, Ginell SL, Coates L. Exploring the Mechanism of β-Lactam Ring Protonation in the Class A β-lactamase Acylation Mechanism Using Neutron and X-ray Crystallography. J Med Chem 2015; 59:474-9. [PMID: 26630115 DOI: 10.1021/acs.jmedchem.5b01215] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The catalytic mechanism of class A β-lactamases is often debated due in part to the large number of amino acids that interact with bound β-lactam substrates. The role and function of the conserved residue Lys 73 in the catalytic mechanism of class A type β-lactamase enzymes is still not well understood after decades of scientific research. To better elucidate the functions of this vital residue, we used both neutron and high-resolution X-ray diffraction to examine both the structures of the ligand free protein and the acyl-enzyme complex of perdeuterated E166A Toho-1 β-lactamase with the antibiotic cefotaxime. The E166A mutant lacks a critical glutamate residue that has a key role in the deacylation step of the catalytic mechanism, allowing the acyl-enzyme adduct to be captured for study. In our ligand free structures, Lys 73 is present in a single conformation, however in all of our acyl-enzyme structures, Lys 73 is present in two different conformations, in which one conformer is closer to Ser 70 while the other conformer is positioned closer to Ser 130, which supports the existence of a possible pathway by which proton transfer from Lys 73 to Ser 130 can occur. This and further clarifications of the role of Lys 73 in the acylation mechanism may facilitate the design of inhibitors that capitalize on the enzyme's native machinery.
Collapse
Affiliation(s)
- Venu Gopal Vandavasi
- Oak Ridge National Laboratory , 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Kevin L Weiss
- Oak Ridge National Laboratory , 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Jonathan B Cooper
- Birkbeck University of London , Malet Street, London WC1E 7HX, United Kingdom
| | - Peter T Erskine
- Birkbeck University of London , Malet Street, London WC1E 7HX, United Kingdom
| | - Stephen J Tomanicek
- Oak Ridge National Laboratory , 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Andreas Ostermann
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München , Lichtenbergstr. 1, 85748 Garching, Germany
| | - Tobias E Schrader
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH , Lichtenbergstr. 1, 85747 Garching, Germany
| | - Stephan L Ginell
- Structural Biology Center, Argonne National Laboratory , 9700 St. Cass Avenue, Argonne, Illinois 60439, United States
| | - Leighton Coates
- Oak Ridge National Laboratory , 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
56
|
Meziane-Cherif D, Bonnet R, Haouz A, Courvalin P. Structural insights into the loss of penicillinase and the gain of ceftazidimase activities by OXA-145 β-lactamase in Pseudomonas aeruginosa. J Antimicrob Chemother 2015; 71:395-402. [PMID: 26568564 DOI: 10.1093/jac/dkv375] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/13/2015] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES We previously described extended-spectrum oxacillinase OXA-145 from Pseudomonas aeruginosa, which differs from narrow-spectrum OXA-35 by loss of Leu-155. The deletion results in loss of benzylpenicillin hydrolysis and acquisition of activity against ceftazidime. We report the crystal structure of OXA-145 and provide the basis of its switch in substrate specificity. METHODS OXA-145 variants were generated by site-directed mutagenesis and purified to homogeneity. The crystal structure of OXA-145 was determined and molecular dynamics simulations were performed. Kinetic parameters were investigated in the absence and in the presence of sodium hydrogen carbonate (NaHCO3) for representative substrates. RESULTS The structure of OXA-145 was obtained at a resolution of 2.3 Å and its superposition with that of OXA-10 showed that Trp-154 was shifted by 1.8 Å away from the catalytic Lys-70, which was not N-carboxylated. Addition of NaHCO3 significantly increased the catalytic efficiency against penicillins, but not against ceftazidime. The active-site cavity of OXA-145 was larger than that of OXA-10, which may favour the accommodation of large molecules such as ceftazidime. Molecular dynamics simulations of OXA-145 in complex with ceftazidime revealed two highly coordinated water molecules on the α- or β-face of the acyl ester bond, between Ser-67 and ceftazidime, which could be involved in the catalytic process. CONCLUSIONS Deletion of Leu-155 resulted in inefficient positioning of Trp-154, leading to a non-carboxylated Lys-70 and thus to loss of hydrolysis of the penicillins. Ceftazidime hydrolysis could be attributed to enlargement of the active site and to a catalytic mechanism independent of the carboxylated Lys-70.
Collapse
Affiliation(s)
- D Meziane-Cherif
- Institut Pasteur, Unité des Agents Antibactériens, 25 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - R Bonnet
- Laboratoire de bactériologie mycologie et parasitologie, Pôle de biologie médicale et d'anatomie pathologique, CHU de Clermont Ferrand - Hôpital Gabriel Montpied, 58 rue Montalembert, 63003 Clermont-Ferrand cedex 1, France
| | - A Haouz
- Institut Pasteur, Plateforme de cristallographie, CNRS-UMR3528, 25 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - P Courvalin
- Institut Pasteur, Unité des Agents Antibactériens, 25 rue du Docteur Roux, 75724 Paris cedex 15, France
| |
Collapse
|
57
|
Figliuzzi M, Jacquier H, Schug A, Tenaillon O, Weigt M. Coevolutionary Landscape Inference and the Context-Dependence of Mutations in Beta-Lactamase TEM-1. Mol Biol Evol 2015; 33:268-80. [PMID: 26446903 PMCID: PMC4693977 DOI: 10.1093/molbev/msv211] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The quantitative characterization of mutational landscapes is a task of outstanding importance in evolutionary and medical biology: It is, for example, of central importance for our understanding of the phenotypic effect of mutations related to disease and antibiotic drug resistance. Here we develop a novel inference scheme for mutational landscapes, which is based on the statistical analysis of large alignments of homologs of the protein of interest. Our method is able to capture epistatic couplings between residues, and therefore to assess the dependence of mutational effects on the sequence context where they appear. Compared with recent large-scale mutagenesis data of the beta-lactamase TEM-1, a protein providing resistance against beta-lactam antibiotics, our method leads to an increase of about 40% in explicative power as compared with approaches neglecting epistasis. We find that the informative sequence context extends to residues at native distances of about 20 Å from the mutated site, reaching thus far beyond residues in direct physical contact.
Collapse
Affiliation(s)
- Matteo Figliuzzi
- UPMC, Institut de Calcul et de la Simulation, Sorbonne Universités, Paris, France Computational and Quantitative Biology, UPMC, UMR 7238, Sorbonne Universités, Paris, France Computational and Quantitative Biology, CNRS, UMR 7238, Paris, France
| | - Hervé Jacquier
- Infection, Antimicrobials, Modelling, Evolution, INSERM, Université Denis Diderot Paris 7, UMR 1137, Sorbonne Paris Cité, Paris, France Service de Bactériologie-Virologie, Groupe Hospitalier Lariboisiére-Fernand Widal, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Alexander Schug
- Steinbuch Centre for Computing, Karlsruhe Institute for Technology, Eggenstein-Leopoldshafen, Germany
| | - Oliver Tenaillon
- Infection, Antimicrobials, Modelling, Evolution, INSERM, Université Denis Diderot Paris 7, UMR 1137, Sorbonne Paris Cité, Paris, France
| | - Martin Weigt
- Computational and Quantitative Biology, UPMC, UMR 7238, Sorbonne Universités, Paris, France Computational and Quantitative Biology, CNRS, UMR 7238, Paris, France
| |
Collapse
|
58
|
Nichols DA, Hargis JC, Sanishvili R, Jaishankar P, Defrees K, Smith E, Wang KK, Prati F, Renslo AR, Woodcock HL, Chen Y. Ligand-Induced Proton Transfer and Low-Barrier Hydrogen Bond Revealed by X-ray Crystallography. J Am Chem Soc 2015; 137:8086-95. [PMID: 26057252 PMCID: PMC4530788 DOI: 10.1021/jacs.5b00749] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ligand binding can change the pKa of protein residues and influence enzyme catalysis. Herein, we report three ultrahigh resolution X-ray crystal structures of CTX-M β-lactamase, directly visualizing protonation state changes along the enzymatic pathway: apo protein at 0.79 Å, precovalent complex with nonelectrophilic ligand at 0.89 Å, and acylation transition state (TS) analogue at 0.84 Å. Binding of the noncovalent ligand induces a proton transfer from the catalytic Ser70 to the negatively charged Glu166, and the formation of a low-barrier hydrogen bond (LBHB) between Ser70 and Lys73, with a length of 2.53 Å and the shared hydrogen equidistant from the heteroatoms. QM/MM reaction path calculations determined the proton transfer barrier to be 1.53 kcal/mol. The LBHB is absent in the other two structures although Glu166 remains neutral in the covalent complex. Our data represents the first X-ray crystallographic example of a hydrogen engaged in an enzymatic LBHB, and demonstrates that desolvation of the active site by ligand binding can provide a protein microenvironment conducive to LBHB formation. It also suggests that LBHBs may contribute to stabilization of the TS in general acid/base catalysis together with other preorganized features of enzyme active sites. These structures reconcile previous experimental results suggesting alternatively Glu166 or Lys73 as the general base for acylation, and underline the importance of considering residue protonation state change when modeling protein-ligand interactions. Additionally, the observation of another LBHB (2.47 Å) between two conserved residues, Asp233 and Asp246, suggests that LBHBs may potentially play a special structural role in proteins.
Collapse
Affiliation(s)
- Derek A. Nichols
- University of South Florida College of Medicine, Dept of Molecular Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, FL 33612
| | | | - Ruslan Sanishvili
- GMCA@APS, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, 1700 4 Street, Byers Hall S504, San Francisco, CA 94158
| | - Kyle Defrees
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, 1700 4 Street, Byers Hall S504, San Francisco, CA 94158
| | - Emmanuel Smith
- University of South Florida College of Medicine, Dept of Molecular Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, FL 33612
| | - Kenneth K. Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620
| | - Fabio Prati
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, 1700 4 Street, Byers Hall S504, San Francisco, CA 94158
| | - H. Lee Woodcock
- Department of Chemistry, University of South Florida, Tampa, Florida 33620
| | - Yu Chen
- University of South Florida College of Medicine, Dept of Molecular Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, FL 33612
| |
Collapse
|
59
|
Avibactam and inhibitor-resistant SHV β-lactamases. Antimicrob Agents Chemother 2015; 59:3700-9. [PMID: 25691639 DOI: 10.1128/aac.04405-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/18/2015] [Indexed: 11/20/2022] Open
Abstract
β-Lactamase enzymes (EC 3.5.2.6) are a significant threat to the continued use of β-lactam antibiotics to treat infections. A novel non-β-lactam β-lactamase inhibitor with activity against many class A and C and some class D β-lactamase variants, avibactam, is now available in the clinic in partnership with ceftazidime. Here, we explored the activity of avibactam against a variety of characterized isogenic laboratory constructs of β-lactamase inhibitor-resistant variants of the class A enzyme SHV (M69I/L/V, S130G, K234R, R244S, and N276D). We discovered that the S130G variant of SHV-1 shows the most significant resistance to inhibition by avibactam, based on both microbiological and biochemical characterizations. Using a constant concentration of 4 mg/liter of avibactam as a β-lactamase inhibitor in combination with ampicillin, the MIC increased from 1 mg/liter for blaSHV-1 to 256 mg/liter for blaSHV S130G expressed in Escherichia coli DH10B. At steady state, the k2/K value of the S130G variant when inactivated by avibactam was 1.3 M(-1) s(-1), versus 60,300 M(-1) s(-1) for the SHV-1 β-lactamase. Under timed inactivation conditions, we found that an approximately 1,700-fold-higher avibactam concentration was required to inhibit SHV S130G than the concentration that inhibited SHV-1. Molecular modeling suggested that the positioning of amino acids in the active site of SHV may result in an alternative pathway of inactivation when complexed with avibactam, compared to the structure of CTX-M-15-avibactam, and that S130 plays a role in the acylation of avibactam as a general acid/base. In addition, S130 may play a role in recyclization. As a result, we advance that the lack of a hydroxyl group at position 130 in the S130G variant of SHV-1 substantially slows carbamylation of the β-lactamase by avibactam by (i) removing an important proton acceptor and donator in catalysis and (ii) decreasing the number of H bonds. In addition, recyclization is most likely also slow due to the lack of a general base to initiate the process. Considering other inhibitor-resistant mechanisms among class A β-lactamases, S130 may be the most important amino acid for the inhibition of class A β-lactamases, perhaps even for the novel diazabicyclooctane class of β-lactamase inhibitors.
Collapse
|
60
|
Kumar KM, Lavanya P, Anbarasu A, Ramaiah S. Molecular dynamics and molecular docking studies on E166A point mutant, R274N/R276N double mutant, and E166A/R274N/R276N triple mutant forms of class A β-lactamases. J Biomol Struct Dyn 2014; 32:1953-68. [PMID: 24261683 DOI: 10.1080/07391102.2013.847804] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Bacterial resistance to β-lactams antibiotics is a serious threat to human health. The most common cause of resistance to the β-lactams is the production of β-lactamase that inactivates β-lactams. Specifically, class A extended-spectrum β-lactamase produced by antibiotic resistant bacteria is capable of hydrolyzing extended-spectrum Cephalosporins and Monobactams. Mutations in class A β-lactamases play a crucial role in substrate and inhibitor specificity. In this present study, the E166A point mutant, R274N/R276N double mutant, and E166A/R274N/R276N triple mutant class A β-lactamases are analyzed. Molecular dynamics (MD) simulations are done to understand the consequences of mutations in class A β-lactamases. Root mean square deviation, root mean square fluctuation, radius of gyration, solvent accessibility surface area, hydrogen bond, and essential dynamics analysis results indicate notable loss in stability for mutant class A β-lactamases. MD simulations of native and mutant structures clearly confirm that the substitution of alanine at the position of 166, Asparagine at 274 and 276 causes more flexibility in 3D space. Molecular docking results indicate the mutation in class A β-lactamases which decrease the binding affinity of Cefpirome and Ceftobiprole which are third and fifth generation Cephalosporins, respectively. MD simulation of Ceftobiprole-native and mutant type Class A β-lactamases complexes reveal that E166A/R274N/R276N mutations alter the structure and notable loss in the stability for Ceftobirole-mutant type Class A β-lactamases complexes. Ceftobiprole is currently prescribed for patients with serious bacterial infections; this phenomenon is the probable cause for the effectiveness of Ceftobiprole in controlling bacterial infections.
Collapse
Affiliation(s)
- K M Kumar
- a School of Biosciences and Technology, VIT University , Vellore 632014 , Tamil Nadu , India
| | | | | | | |
Collapse
|
61
|
Sgrignani J, Grazioso G, De Amici M, Colombo G. Inactivation of TEM-1 by Avibactam (NXL-104): Insights from Quantum Mechanics/Molecular Mechanics Metadynamics Simulations. Biochemistry 2014; 53:5174-85. [DOI: 10.1021/bi500589x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jacopo Sgrignani
- Istituto di Chimica
del Riconscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milan, Italy
| | - Giovanni Grazioso
- Dipartimento
di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica “Pietro
Pratesi”, Università degli Studi di Milano, Via
Mangiagalli 25, 20133, Milan, Italy
| | - Marco De Amici
- Dipartimento
di Scienze Farmaceutiche, Sezione di Chimica Farmaceutica “Pietro
Pratesi”, Università degli Studi di Milano, Via
Mangiagalli 25, 20133, Milan, Italy
| | - Giorgio Colombo
- Istituto di Chimica
del Riconscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milan, Italy
| |
Collapse
|
62
|
Hargis JC, White JK, Chen Y, Woodcock HL. Can molecular dynamics and QM/MM solve the penicillin binding protein protonation puzzle? J Chem Inf Model 2014; 54:1412-24. [PMID: 24697903 PMCID: PMC4036751 DOI: 10.1021/ci5000517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
Benzylpenicillin, a member of the
β-lactam antibiotic class, has been widely used to combat bacterial
infections since 1947. The general mechanism is well-known: a serine
protease enzyme (i.e., DD-peptidase) forms a long lasting intermediate
with the lactam ring of the antibiotic known as acylation, effectively
preventing biosynthesis of the bacterial cell wall. Despite this overall
mechanistic understanding, many details of binding and catalysis are
unclear. Specifically, there is ongoing debate about active site protonation
states and the role of general acids/bases in the reaction. Herein,
a unique combination of MD simulations, QM/MM minimizations, and QM/MM
orbital analyses is combined with systematic variation of active site
residue protonation states. Critical interactions that maximize the
stability of the bound inhibitor are examined and used as metrics.
This approach was validated by examining cefoxitin interactions in
the CTX-M β-lactamase from E. coli and compared to an ultra high-resolution (0.88 Å) crystal structure.
Upon confirming the approach used, an investigation of the preacylated Streptomyces R61 active site with bound benzylpenicillin
was performed, varying the protonation states of His298 and Lys65.
We concluded that protonated His298 and deprotonated Lys65 are most
likely to exist in the R61 active site.
Collapse
Affiliation(s)
- Jacqueline C Hargis
- Department of Chemistry, University of South Florida , Tampa, Florida 33620, United States
| | | | | | | |
Collapse
|
63
|
Abstract
The production of β-lactamase is one of the primary resistance mechanisms used by Gram-negative bacterial pathogens to counter β-lactam antibiotics, such as penicillins, cephalosporins and carbapenems. There is an urgent need to develop novel β-lactamase inhibitors in response to ever evolving β-lactamases possessing an expanded spectrum of β-lactam hydrolyzing activity. Whereas traditional high-throughput screening has proven ineffective against serine β-lactamases, fragment-based approaches have been successfully employed to identify novel chemical matter, which in turn has revealed much about the specific molecular interactions possible in the active site of serine and metallo β-lactamases. In this review, we summarize recent progress in the field, particularly: the identification of novel inhibitor chemotypes through fragment-based screening; the use of fragment-protein structures to understand key features of binding hot spots and inform the design of improved leads; lessons learned and new prospects for β-lactamase inhibitor development using fragment-based approaches.
Collapse
Affiliation(s)
- Derek A Nichols
- University of South Florida College of Medicine, Department of Molecular Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, FL 33612, USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry & Small Molecule Discovery Center, University of California San Francisco, 1700 4th Street, Byers Hall S504, San Francisco, CA 94158, USA
| | - Yu Chen
- University of South Florida College of Medicine, Department of Molecular Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, FL 33612, USA
| |
Collapse
|
64
|
Golden EA, Vrielink A. Looking for Hydrogen Atoms: Neutron Crystallography Provides Novel Insights Into Protein Structure and Function. Aust J Chem 2014. [DOI: 10.1071/ch14337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neutron crystallography allows direct localization of hydrogen positions in biological macromolecules. Within enzymes, hydrogen atoms play a pivotal role in catalysis. Recent advances in instrumentation and sample preparation have helped to overcome the difficulties of performing neutron diffraction experiments on protein crystals. The application of neutron macromolecular crystallography to a growing number of proteins has yielded novel structural insights. The ability to accurately position water molecules, hydronium ions, and hydrogen atoms within protein structures has helped in the study of low-barrier hydrogen bonds and hydrogen-bonding networks. The determination of protonation states of protein side chains, substrates, and inhibitors in the context of the macromolecule has provided important insights into enzyme chemistry and ligand binding affinities, which can assist in the design of potent therapeutic agents. In this review, we give an overview of the method and highlight advances in knowledge attained through the application of neutron protein crystallography.
Collapse
|
65
|
Valegård K, Iqbal A, Kershaw NJ, Ivison D, Généreux C, Dubus A, Blikstad C, Demetriades M, Hopkinson RJ, Lloyd AJ, Roper DI, Schofield CJ, Andersson I, McDonough MA. Structural and mechanistic studies of the orf12 gene product from the clavulanic acid biosynthesis pathway. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1567-79. [PMID: 23897479 DOI: 10.1107/s0907444913011013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/23/2013] [Indexed: 11/10/2022]
Abstract
Structural and biochemical studies of the orf12 gene product (ORF12) from the clavulanic acid (CA) biosynthesis gene cluster are described. Sequence and crystallographic analyses reveal two domains: a C-terminal penicillin-binding protein (PBP)/β-lactamase-type fold with highest structural similarity to the class A β-lactamases fused to an N-terminal domain with a fold similar to steroid isomerases and polyketide cyclases. The C-terminal domain of ORF12 did not show β-lactamase or PBP activity for the substrates tested, but did show low-level esterase activity towards 3'-O-acetyl cephalosporins and a thioester substrate. Mutagenesis studies imply that Ser173, which is present in a conserved SXXK motif, acts as a nucleophile in catalysis, consistent with studies of related esterases, β-lactamases and D-Ala carboxypeptidases. Structures of wild-type ORF12 and of catalytic residue variants were obtained in complex with and in the absence of clavulanic acid. The role of ORF12 in clavulanic acid biosynthesis is unknown, but it may be involved in the epimerization of (3S,5S)-clavaminic acid to (3R,5R)-clavulanic acid.
Collapse
Affiliation(s)
- Karin Valegård
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, S-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Shao Q, Zheng Y, Dong X, Tang K, Yan X, Xing B. A Covalent Reporter of β-Lactamase Activity for Fluorescent Imaging and Rapid Screening of Antibiotic-Resistant Bacteria. Chemistry 2013; 19:10903-10. [DOI: 10.1002/chem.201301654] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Indexed: 01/16/2023]
|
67
|
Chow C, Xu H, Blanchard JS. Kinetic characterization of hydrolysis of nitrocefin, cefoxitin, and meropenem by β-lactamase from Mycobacterium tuberculosis. Biochemistry 2013; 52:4097-104. [PMID: 23672214 DOI: 10.1021/bi400177y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The constitutively expressed, chromosomally encoded β-lactamase (BlaC) is the enzyme responsible for the intrinsic resistance to β-lactam antibiotics in Mycobacterium tuberculosis. Previous studies from this laboratory have shown that the enzyme exhibits an extended-spectrum phenotype, with very high levels of penicillinase and cephalosporinase activity, as well as weak carbapenemase activity [Tremblay, L. W., et al. (2008) Biochemistry 47, 5312-5316]. In this report, we have determined the pH dependence of the kinetic parameters, revealing that the maximal velocity depends on the ionization state of two groups: a general base exhibiting a pK value of 4.5 and a general acid exhibiting a pK value of 7.8. Having defined a region where the kinetic parameters are pH-independent (pH 6.5), we determined solvent kinetic isotope effects (SKIEs) for three substrates whose kcat values differ by 5.5 orders of magnitude. Nitrocefin is a highly activated, chromogenic cephalosporin derivative that exhibits steady-state solvent kinetic isotope effects of 1.4 on both V and V/K. Cefoxitin is a slower cephalosporin derivative that exhibits a large SKIE on V of 3.9 but a small SKIE of 1.8 on V/K in steady-state experiments. Pre-steady-state, stopped-flow experiments with cefoxitin revealed a burst of β-lactam ring opening with associated SKIE values of 1.6 on the acylation step and 3.4 on the deacylation step. Meropenem is an extremely slow substrate for BlaC and exhibits burst kinetics in the steady-state experiments. SKIE determinations with meropenem revealed large SKIEs on both the acylation and deacylation steps of 3.8 and 4.0, respectively. Proton inventories in all cases were linear, indicating the participation of a single solvent-derived proton in the chemical step responsible for the SKIE. The rate-limiting steps for β-lactam hydrolysis of these substrates are analyzed, and the chemical steps responsible for the observed SKIE are discussed.
Collapse
Affiliation(s)
- Carmen Chow
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
68
|
Meneksedag D, Dogan A, Kanlikilicer P, Ozkirimli E. Communication between the active site and the allosteric site in class A beta-lactamases. Comput Biol Chem 2013; 43:1-10. [DOI: 10.1016/j.compbiolchem.2012.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 11/22/2012] [Accepted: 12/03/2012] [Indexed: 11/16/2022]
|
69
|
Chakraborty S. A quantitative measure of electrostatic perturbation in holo and apo enzymes induced by structural changes. PLoS One 2013; 8:e59352. [PMID: 23516628 PMCID: PMC3597595 DOI: 10.1371/journal.pone.0059352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/13/2013] [Indexed: 11/19/2022] Open
Abstract
Biological pathways are subject to subtle manipulations that achieve a wide range of functional variation in differing physiological niches. In many instances, changes in the structure of an enzyme on ligand binding germinate electrostatic perturbations that form the basis of its changed catalytic or transcriptional efficiency. Computational methods that seek to gain insights into the electrostatic changes in enzymes require expertise to setup and computing prowess. In the current work, we present a fast, easy and reliable methodology to compute electrostatic perturbations induced by ligand binding (MEPP). The theoretical foundation of MEPP is the conserved electrostatic potential difference (EPD) in cognate pairs of active site residues in proteins with the same functionality. Previously, this invariance has been used to unravel promiscuous serine protease and metallo-β-lactamase scaffolds in alkaline phosphatases. Given that a similarity in EPD is significant, we expect differences in the EPD to be significant too. MEPP identifies residues or domains that undergo significant electrostatic perturbations, and also enumerates residue pairs that undergo significant polarity change. The gain in a certain polarity of a residue with respect to neighboring residues, or the reversal of polarity between two residues might indicate a change in the preferred ligand. The methodology of MEPP has been demonstrated on several enzymes that employ varying mechanisms to perform their roles. For example, we have attributed the change in polarity in residue pairs to be responsible for the loss of metal ion binding in fructose 1,6-bisphosphatases, and corroborated the pre-organized state of the active site of the enzyme with respect to functionally relevant changes in electric fields in ketosteroid isomerases.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
70
|
Structural insight into potent broad-spectrum inhibition with reversible recyclization mechanism: avibactam in complex with CTX-M-15 and Pseudomonas aeruginosa AmpC β-lactamases. Antimicrob Agents Chemother 2013; 57:2496-505. [PMID: 23439634 DOI: 10.1128/aac.02247-12] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Although β-lactams have been the most effective class of antibacterial agents used in clinical practice for the past half century, their effectiveness on Gram-negative bacteria has been eroded due to the emergence and spread of β-lactamase enzymes that are not affected by currently marketed β-lactam/β-lactamase inhibitor combinations. Avibactam is a novel, covalent, non-β-lactam β-lactamase inhibitor presently in clinical development in combination with either ceftaroline or ceftazidime. In vitro studies show that avibactam may restore the broad-spectrum activity of cephalosporins against class A, class C, and some class D β-lactamases. Here we describe the structures of two clinically important β-lactamase enzymes bound to avibactam, the class A CTX-M-15 extended-spectrum β-lactamase and the class C Pseudomonas aeruginosa AmpC β-lactamase, which together provide insight into the binding modes for the respective enzyme classes. The structures reveal similar binding modes in both enzymes and thus provide a rationale for the broad-spectrum inhibitory activity of avibactam. Identification of the key residues surrounding the binding pocket allows for a better understanding of the potency of this scaffold. Finally, avibactam has recently been shown to be a reversible inhibitor, and the structures provide insights into the mechanism of avibactam recyclization. Analysis of the ultra-high-resolution CTX-M-15 structure suggests how the deacylation mechanism favors recyclization over hydrolysis.
Collapse
|
71
|
Tomanicek SJ, Standaert RF, Weiss KL, Ostermann A, Schrader TE, Ng JD, Coates L. Neutron and X-ray crystal structures of a perdeuterated enzyme inhibitor complex reveal the catalytic proton network of the Toho-1 β-lactamase for the acylation reaction. J Biol Chem 2012; 288:4715-22. [PMID: 23255594 DOI: 10.1074/jbc.m112.436238] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism by which class A β-lactamases hydrolyze β-lactam antibiotics has been the subject of intensive investigation using many different experimental techniques. Here, we report on the novel use of both neutron and high resolution x-ray diffraction to help elucidate the identity of the catalytic base in the acylation part of the catalytic cycle, wherein the β-lactam ring is opened and an acyl-enzyme intermediate forms. To generate protein crystals optimized for neutron diffraction, we produced a perdeuterated form of the Toho-1 β-lactamase R274N/R276N mutant. Protein perdeuteration, which involves replacing all of the hydrogen atoms in a protein with deuterium, gives a much stronger signal in neutron diffraction and enables the positions of individual deuterium atoms to be located. We also synthesized a perdeuterated acylation transition state analog, benzothiophene-2-boronic acid, which was also isotopically enriched with (11)B, as (10)B is a known neutron absorber. Using the neutron diffraction data from the perdeuterated enzyme-inhibitor complex, we were able to determine the positions of deuterium atoms in the active site directly rather than by inference. The neutron diffraction results, along with supporting bond-length analysis from high resolution x-ray diffraction, strongly suggest that Glu-166 acts as the general base during the acylation reaction.
Collapse
|
72
|
Speck J, Räuber C, Kükenshöner T, Niemöller C, Mueller KJ, Schleberger P, Dondapati P, Hecky J, Arndt KM, Müller KM. TAT hitchhiker selection expanded to folding helpers, multimeric interactions and combinations with protein fragment complementation. Protein Eng Des Sel 2012; 26:225-42. [PMID: 23223941 DOI: 10.1093/protein/gzs098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Janina Speck
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Fisette O, Gagné S, Lagüe P. Molecular dynamics of class A β-lactamases-effects of substrate binding. Biophys J 2012; 103:1790-801. [PMID: 23083723 DOI: 10.1016/j.bpj.2012.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 09/07/2012] [Accepted: 09/11/2012] [Indexed: 11/18/2022] Open
Abstract
The effects of substrate binding on class A β-lactamase dynamics were studied using molecular dynamics simulations of two model enzymes; 40 100-ns trajectories of the free and substrate-bound forms of TEM-1 (with benzylpenicillin) and PSE-4 (with carbenicillin) were recorded (totaling 4.0 μs). Substrates were parameterized with the CHARMM General Force Field. In both enzymes, the Ω loop exhibits a marked flexibility increase upon substrate binding, supporting the hypothesis of substrate gating. However, specific interactions that are formed or broken in the Ω loop upon binding differ between the two enzymes: dynamics are conserved, but not specific interactions. Substrate binding also has a global structuring effect on TEM-1, but not on PSE-4. Changes in TEM-1's normal modes show long-range effects of substrate binding on enzyme dynamics. Hydrogen bonds observed in the active site are mostly preserved upon substrate binding, and new, transient interactions are also formed. Agreement between NMR relaxation parameters and our theoretical results highlights the dynamic duality of class A β-lactamases: enzymes that are highly structured on the ps-ns timescale, with important flexibility on the μs-ms timescale in regions such as the Ω loop.
Collapse
Affiliation(s)
- Olivier Fisette
- Département de Biochimie et de Mcrobiologie, Université Laval and PROTEO and IBIS, Québec (QC), Canada
| | | | | |
Collapse
|
74
|
Rodkey EA, Drawz SM, Sampson JM, Bethel CR, Bonomo RA, van den Akker F. Crystal structure of a preacylation complex of the β-lactamase inhibitor sulbactam bound to a sulfenamide bond-containing thiol-β-lactamase. J Am Chem Soc 2012; 134:16798-804. [PMID: 22974281 DOI: 10.1021/ja3073676] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rise of inhibitor-resistant and other β-lactamase variants is generating an interest in developing new β-lactamase inhibitors to complement currently available antibiotics. To gain insight into the chemistry of inhibitor recognition, we determined the crystal structure of the inhibitor preacylation complex of sulbactam, a clinical β-lactamase inhibitor, bound in the active site of the S70C variant of SHV-1 β-lactamase, a resistance enzyme that is normally present in Klebsiella pneumoniae. The S70C mutation was designed to affect the reactivity of that catalytic residue to allow for capture of the preacylation complex. Unexpectedly, the 1.45 Å resolution inhibitor complex structure revealed that residue C70 is involved in a sulfenamide bond with K73. Such a covalent bond is not present in the wild-type SHV-1 or in an apo S70C structure also determined in this study. This bond likely contributed significantly to obtaining the preacylation complex with sulbactam due to further decreased reactivity toward substrates. The intact sulbactam is positioned in the active site such that its carboxyl moiety interacts with R244, S130, and T235 and its carbonyl moiety is situated in the oxyanion hole. To our knowledge, in addition to being the first preacylation inhibitor β-lactamase complex, this is also the first observation of a sulfenamide bond between a cysteine and lysine in an active site. Not only could our results aid, therefore, structure-based inhibitor design efforts in class A β-lactamases, but the sulfenamide-bond forming approach to yield preacylation complexes could also be applied to other classes of β-lactamases and penicillin-binding proteins with the SXXK motif.
Collapse
Affiliation(s)
- Elizabeth A Rodkey
- Department of Biochemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
75
|
Rapid point-of-care detection of the tuberculosis pathogen using a BlaC-specific fluorogenic probe. Nat Chem 2012; 4:802-9. [PMID: 23000993 DOI: 10.1038/nchem.1435] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/13/2012] [Indexed: 11/08/2022]
Abstract
Early diagnosis of tuberculosis can dramatically reduce both its transmission and the associated death rate. The extremely slow growth rate of the causative pathogen, Mycobacterium tuberculosis (Mtb), however, makes this challenging at the point of care, particularly in resource-limited settings. Here we report the use of BlaC (an enzyme naturally expressed/secreted by tubercle bacilli) as a marker and the design of BlaC-specific fluorogenic substrates as probes for Mtb detection. These probes showed an enhancement by 100-200 times in fluorescence emission on BlaC activation and a greater than 1,000-fold selectivity for BlaC over TEM-1 β-lactamase, an important factor in reducing false-positive diagnoses. Insight into the BlaC specificity was revealed by successful co-crystallization of the probe/enzyme mutant complex. A refined green fluorescent probe (CDG-OMe) enabled the successful detection of live pathogen in less than ten minutes, even in unprocessed human sputum. This system offers the opportunity for the rapid, accurate detection of very low numbers of Mtb for the clinical diagnosis of tuberculosis in sputum and other specimens.
Collapse
|
76
|
Bell JA, Ho KL, Farid R. Significant reduction in errors associated with nonbonded contacts in protein crystal structures: automated all-atom refinement with PrimeX. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:935-52. [PMID: 22868759 PMCID: PMC3413210 DOI: 10.1107/s0907444912017453] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/19/2012] [Indexed: 11/12/2022]
Abstract
All-atom models are essential for many applications in molecular modeling and computational chemistry. Nonbonded atomic contacts much closer than the sum of the van der Waals radii of the two atoms (clashes) are commonly observed in such models derived from protein crystal structures. A set of 94 recently deposited protein structures in the resolution range 1.5-2.8 Å were analyzed for clashes by the addition of all H atoms to the models followed by optimization and energy minimization of the positions of just these H atoms. The results were compared with the same set of structures after automated all-atom refinement with PrimeX and with nonbonded contacts in protein crystal structures at a resolution equal to or better than 0.9 Å. The additional PrimeX refinement produced structures with reasonable summary geometric statistics and similar R(free) values to the original structures. The frequency of clashes at less than 0.8 times the sum of van der Waals radii was reduced over fourfold compared with that found in the original structures, to a level approaching that found in the ultrahigh-resolution structures. Moreover, severe clashes at less than or equal to 0.7 times the sum of atomic radii were reduced 15-fold. All-atom refinement with PrimeX produced improved crystal structure models with respect to nonbonded contacts and yielded changes in structural details that dramatically impacted on the interpretation of some protein-ligand interactions.
Collapse
Affiliation(s)
- Jeffrey A. Bell
- Schrödinger, 120 West 45th Street, 17th Floor, New York, NY 10036, USA
| | - Kenneth L. Ho
- Schrödinger, 120 West 45th Street, 17th Floor, New York, NY 10036, USA
| | - Ramy Farid
- Schrödinger, 120 West 45th Street, 17th Floor, New York, NY 10036, USA
| |
Collapse
|
77
|
Chakraborty S. Enumerating pathways of proton abstraction based on a spatial and electrostatic analysis of residues in the catalytic site. PLoS One 2012; 7:e39577. [PMID: 22745790 PMCID: PMC3379984 DOI: 10.1371/journal.pone.0039577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/28/2012] [Indexed: 11/19/2022] Open
Abstract
The pathways of proton abstraction (PA), a key aspect of most catalytic reactions, is often controversial and highly debated. Ultrahigh-resolution diffraction studies, molecular dynamics, quantum mechanics and molecular mechanic simulations are often adopted to gain insights in the PA mechanisms in enzymes. These methods require expertise and effort to setup and can be computationally intensive. We present a push button methodology--Proton abstraction Simulation (PRISM)--to enumerate the possible pathways of PA in a protein with known 3D structure based on the spatial and electrostatic properties of residues in the proximity of a given nucleophilic residue. Proton movements are evaluated in the vicinity of this nucleophilic residue based on distances, potential differences, spatial channels and characteristics of the individual residues (polarity, acidic, basic, etc). Modulating these parameters eliminates their empirical nature and also might reveal pathways that originate from conformational changes. We have validated our method using serine proteases and concurred with the dichotomy in PA in Class A β-lactamases, both of which are hydrolases. The PA mechanism in a transferase has also been corroborated. The source code is made available at www.sanchak.com/prism.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
78
|
Speck J, Hecky J, Tam HK, Arndt KM, Einsle O, Müller KM. Exploring the molecular linkage of protein stability traits for enzyme optimization by iterative truncation and evolution. Biochemistry 2012; 51:4850-67. [PMID: 22545913 DOI: 10.1021/bi2018738] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The stability of proteins is paramount for their therapeutic and industrial use and, thus, is a major task for protein engineering. Several types of chemical and physical stabilities are desired, and discussion revolves around whether each stability trait needs to be addressed separately and how specific and compatible stabilizing mutations act. We demonstrate a stepwise perturbation-compensation strategy, which identifies mutations rescuing the activity of a truncated TEM β-lactamase. Analyses relating structural stress with the external stresses of heat, denaturants, and proteases reveal our second-site suppressors as general stability centers that also improve the full-length enzyme. A library of lactamase variants truncated by 15 N-terminal and three C-terminal residues (Bla-NΔ15CΔ3) was subjected to activity selection and DNA shuffling. The resulting clone with the best in vivo performance harbored eight mutations, surpassed the full-length wild-type protein by 5.3 °C in T(m), displayed significantly higher catalytic activity at elevated temperatures, and showed delayed guanidine-induced denaturation. The crystal structure of this mutant was determined and provided insights into its stability determinants. Stepwise reconstitution of the N- and C-termini increased its thermal, denaturant, and proteolytic resistance successively, leading to a full-length enzyme with a T(m) increased by 15.3 °C and a half-denaturation concentration shifted from 0.53 to 1.75 M guanidinium relative to that of the wild type. These improvements demonstrate that iterative truncation-optimization cycles can exploit stability-trait linkages in proteins and are exceptionally suited for the creation of progressively stabilized variants and/or downsized proteins without the need for detailed structural or mechanistic information.
Collapse
Affiliation(s)
- Janina Speck
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
79
|
Guntas G, Kanwar M, Ostermeier M. Circular permutation in the Ω-loop of TEM-1 β-lactamase results in improved activity and altered substrate specificity. PLoS One 2012; 7:e35998. [PMID: 22536452 PMCID: PMC3334891 DOI: 10.1371/journal.pone.0035998] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 03/27/2012] [Indexed: 11/28/2022] Open
Abstract
Generating diverse protein libraries that contain improved variants at a sufficiently high frequency is critical for improving the properties of proteins using directed evolution. Many studies have illustrated how random mutagenesis, cassette mutagenesis, DNA shuffling and similar approaches are effective diversity generating methods for directed evolution. Very few studies have explored random circular permutation, the intramolecular relocation of the N- and C-termini of a protein, as a diversity-generating step for directed evolution. We subjected a library of random circular permutations of TEM-1 β-lactamase to selections on increasing concentrations of a variety of β-lactam antibiotics including cefotaxime. We identified two circularly permuted variants that conferred elevated resistance to cefotaxime but decreased resistance to other antibiotics. These variants were circularly permuted in the Ω-loop proximal to the active site. Remarkably, one variant was circularly permuted such that the key catalytic residue Glu166 was located at the N-terminus of the mature protein.
Collapse
Affiliation(s)
| | | | - Marc Ostermeier
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
80
|
Nichols DA, Jaishankar P, Larson W, Smith E, Liu G, Beyrouthy R, Bonnet R, Renslo AR, Chen Y. Structure-based design of potent and ligand-efficient inhibitors of CTX-M class A β-lactamase. J Med Chem 2012; 55:2163-72. [PMID: 22296601 DOI: 10.1021/jm2014138] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The emergence of CTX-M class A extended-spectrum β-lactamases poses a serious health threat to the public. We have applied structure-based design to improve the potency of a novel noncovalent tetrazole-containing CTX-M inhibitor (K(i) = 21 μM) more than 200-fold via structural modifications targeting two binding hot spots, a hydrophobic shelf formed by Pro167 and a polar site anchored by Asp240. Functional groups contacting each binding hot spot independently in initial designs were later combined to produce analogues with submicromolar potencies, including 6-trifluoromethyl-3H-benzoimidazole-4-carboxylic acid [3-(1H-tetrazol-5-yl)-phenyl]-amide, which had a K(i) value of 89 nM and reduced the MIC of cefotaxime by 64-fold in CTX-M-9 expressing Escherichia coli . The in vitro potency gains were accompanied by improvements in ligand efficiency (from 0.30 to 0.39) and LipE (from 1.37 to 3.86). These new analogues represent the first nM-affinity noncovalent inhibitors of a class A β-lactamase. Their complex crystal structures provide valuable information about ligand binding for future inhibitor design.
Collapse
Affiliation(s)
- Derek A Nichols
- University of South Florida College of Medicine, Department of Molecular Medicine, 12901 Bruce B. Downs Boulevard, MDC 3522, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Chakraborty S, Minda R, Salaye L, Bhattacharjee SK, Rao BJ. Active site detection by spatial conformity and electrostatic analysis--unravelling a proteolytic function in shrimp alkaline phosphatase. PLoS One 2011; 6:e28470. [PMID: 22174814 PMCID: PMC3234256 DOI: 10.1371/journal.pone.0028470] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/08/2011] [Indexed: 11/30/2022] Open
Abstract
Computational methods are increasingly gaining importance as an aid in identifying active sites. Mostly these methods tend to have structural information that supplement sequence conservation based analyses. Development of tools that compute electrostatic potentials has further improved our ability to better characterize the active site residues in proteins. We have described a computational methodology for detecting active sites based on structural and electrostatic conformity - CataLytic Active Site Prediction (CLASP). In our pipelined model, physical 3D signature of any particular enzymatic function as defined by its active sites is used to obtain spatially congruent matches. While previous work has revealed that catalytic residues have large pKa deviations from standard values, we show that for a given enzymatic activity, electrostatic potential difference (PD) between analogous residue pairs in an active site taken from different proteins of the same family are similar. False positives in spatially congruent matches are further pruned by PD analysis where cognate pairs with large deviations are rejected. We first present the results of active site prediction by CLASP for two enzymatic activities - β-lactamases and serine proteases, two of the most extensively investigated enzymes. The results of CLASP analysis on motifs extracted from Catalytic Site Atlas (CSA) are also presented in order to demonstrate its ability to accurately classify any protein, putative or otherwise, with known structure. The source code and database is made available at www.sanchak.com/clasp/. Subsequently, we probed alkaline phosphatases (AP), one of the well known promiscuous enzymes, for additional activities. Such a search has led us to predict a hitherto unknown function of shrimp alkaline phosphatase (SAP), where the protein acts as a protease. Finally, we present experimental evidence of the prediction by CLASP by showing that SAP indeed has protease activity in vitro.
Collapse
Affiliation(s)
- Sandeep Chakraborty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | | | | | | | | |
Collapse
|
82
|
Yang YH, Aloysius H, Inoyama D, Chen Y, Hu LQ. Enzyme-mediated hydrolytic activation of prodrugs. Acta Pharm Sin B 2011. [DOI: 10.1016/j.apsb.2011.08.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
83
|
Li R, Liao JM, Gu CR, Wang YT, Chen CL. Theoretical investigation on reaction of sulbactam with wild-type SHV-1 β-lactamase: acylation, tautomerization, and deacylation. J Phys Chem B 2011; 115:10298-310. [PMID: 21797222 DOI: 10.1021/jp111572v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular dynamics (MD) simulation and quantum mechanical (QM) calculations were used to investigate the reaction mechanism of sulbactam with class A wild-type SHV-1 β-lactamase including acylation, tautomerization, and deacylation. Five different sulbactam-enzyme configurations were investigated by MD simulations. In the acylation step, we found that Glu166 cannot activate Ser70 directly for attacking on the carbonyl carbon, and Lys73 would participate in the reaction acting as a relay. Additionally, we found that sulbactam carboxyl can also act as a general base. QM calculations were performed on the formation mechanism of linear intermediates. We suggest that both imine and trans-enamine intermediates can be obtained in the opening of a five-membered thiazolidine ring. By MD simulation, we found that imine intermediate can exist in two conformations, which can generate subsequent trans- and cis-enamine intermediates, respectively. The QM calculations revealed that trans-enamine intermediate is much more stable than other intermediates. The deacylation mechanism of three linear intermediates (imine, trans-enamine, cis-enamine) was investigated separately. It is remarkably noted that, in cis-enamine intermediate, Glu166 cannot activate water for attacking on the carbonyl carbon directly. This leads to a decreasing of the deacylation rate of cis-enamine. These findings will be potentially useful in the development of new inhibitors.
Collapse
Affiliation(s)
- Rui Li
- The Department of Chemistry, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | | | | | | | | |
Collapse
|
84
|
Antunes NT, Frase H, Toth M, Mobashery S, Vakulenko SB. Resistance to the third-generation cephalosporin ceftazidime by a deacylation-deficient mutant of the TEM β-lactamase by the uncommon covalent-trapping mechanism. Biochemistry 2011; 50:6387-95. [PMID: 21696166 DOI: 10.1021/bi200403e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Glu166Arg/Met182Thr mutant of Escherichia coli TEM(pTZ19-3) β-lactamase produces a 128-fold increase in the level of resistance to the antibiotic ceftazidime in comparison to that of the parental wild-type enzyme. The single Glu166Arg mutation resulted in a dramatic decrease in both the level of enzyme expression in bacteria and the resistance to penicillins, with a concomitant 4-fold increase in the resistance to ceftazidime, a third-generation cephalosporin. Introduction of the second amino acid substitution, Met182Thr, restored enzyme expression to a level comparable to that of the wild-type enzyme and resulted in an additional 32-fold increase in the minimal inhibitory concentration of ceftazidime to 64 μg/mL. The double mutant formed a stable covalent complex with ceftazidime that remained intact for the entire duration of the monitoring, which exceeded a time period of 40 bacterial generations. Compared to those of the wild-type enzyme, the affinity of the TEM(pTZ19-3) Glu166Arg/Met182Thr mutant for ceftazidime increased by at least 110-fold and the acylation rate constant was augmented by at least 16-fold. The collective experimental data and computer modeling indicate that the deacylation-deficient Glu166Arg/Met182Thr mutant of TEM(pTZ19-3) produces resistance to the third-generation cephalosporin ceftazidime by an uncommon covalent-trapping mechanism. This is the first documentation of such a mechanism by a class A β-lactamase in a manifestation of resistance.
Collapse
Affiliation(s)
- Nuno T Antunes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | |
Collapse
|
85
|
Schmid FX. Lessons about Protein Stability from in vitro Selections. Chembiochem 2011; 12:1501-7. [DOI: 10.1002/cbic.201100018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Indexed: 11/07/2022]
|
86
|
Ruvinsky AM, Kirys T, Tuzikov AV, Vakser IA. Side-chain conformational changes upon Protein-Protein Association. J Mol Biol 2011; 408:356-65. [PMID: 21354429 DOI: 10.1016/j.jmb.2011.02.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/31/2011] [Accepted: 02/11/2011] [Indexed: 10/18/2022]
Abstract
Conformational changes upon protein-protein association are the key element of the binding mechanism. The study presents a systematic large-scale analysis of such conformational changes in the side chains. The results indicate that short and long side chains have different propensities for the conformational changes. Long side chains with three or more dihedral angles are often subject to large conformational transition. Shorter residues with one or two dihedral angles typically undergo local conformational changes not leading to a conformational transition. A relationship between the local readjustments and the equilibrium fluctuations of a side chain around its unbound conformation is suggested. Most of the side chains undergo larger changes in the dihedral angle most distant from the backbone. The frequencies of the core-to-surface interface transitions of six nonpolar residues and Tyr are larger than the frequencies of the opposite surface-to-core transitions. The binding increases both polar and nonpolar interface areas. However, the increase of the nonpolar area is larger for all considered classes of protein complexes, suggesting that the protein association perturbs the unbound interfaces to increase the hydrophobic contribution to the binding free energy. To test modeling approaches to side-chain flexibility in protein docking, conformational changes in the X-ray set were compared with those in the docking decoy sets. The results lead to a better understanding of the conformational changes in proteins and suggest directions for efficient conformational sampling in docking protocols.
Collapse
Affiliation(s)
- Anatoly M Ruvinsky
- Center for Bioinformatics, The University of Kansas, Lawrence, KS 66047, USA
| | | | | | | |
Collapse
|
87
|
Salverda MLM, De Visser JAGM, Barlow M. Natural evolution of TEM-1 β-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol Rev 2011; 34:1015-36. [PMID: 20412308 DOI: 10.1111/j.1574-6976.2010.00222.x] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
TEM-1 β-lactamase is one of the most well-known antibiotic resistance determinants around. It confers resistance to penicillins and early cephalosporins and has shown an astonishing functional plasticity in response to the introduction of novel drugs derived from these antibiotics. Since its discovery in the 1960s, over 170 variants of TEM-1 - with different amino acid sequences and often resistance phenotypes - have been isolated in hospitals and clinics worldwide. Next to this well-documented 'natural' evolution, the in vitro evolution of TEM-1 has been the focus of attention of many experimental studies. In this review, we compare the natural and laboratory evolution of TEM-1 in order to address the question to what extent the evolution of antibiotic resistance can be repeated, and hence might have been predicted, under laboratory conditions. We also use the comparison to gain an insight into the adaptive relevance of hitherto uncharacterized substitutions present in clinical isolates and to predict substitutions not yet observed in nature. Based on new structural insights, we review what is known about substitutions in TEM-1 that contribute to the extension of its resistance phenotype. Finally, we address the clinical relevance of TEM alleles during the past decade, which has been dominated by the emergence of another β-lactamase, CTX-M.
Collapse
|
88
|
Jiang J, Zhang J, Li S. Detecting protein interactions in live cellsvia complementation of a hydrolysis-deficient β-lactamase. Chem Commun (Camb) 2011; 47:182-4. [DOI: 10.1039/c0cc01998d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
89
|
Tomanicek SJ, Wang KK, Weiss KL, Blakeley MP, Cooper J, Chen Y, Coates L. The active site protonation states of perdeuterated Toho-1 β-lactamase determined by neutron diffraction support a role for Glu166 as the general base in acylation. FEBS Lett 2010; 585:364-8. [PMID: 21168411 DOI: 10.1016/j.febslet.2010.12.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 12/11/2010] [Accepted: 12/13/2010] [Indexed: 11/28/2022]
Affiliation(s)
- Stephen J Tomanicek
- Oak Ridge National Laboratory, Neutron Scattering Science Division, Oak Ridge, TN 37831, USA
| | | | | | | | | | | | | |
Collapse
|
90
|
Novel insights into the mode of inhibition of class A SHV-1 beta-lactamases revealed by boronic acid transition state inhibitors. Antimicrob Agents Chemother 2010; 55:174-83. [PMID: 21041505 DOI: 10.1128/aac.00930-10] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Boronic acid transition state inhibitors (BATSIs) are potent class A and C β-lactamase inactivators and are of particular interest due to their reversible nature mimicking the transition state. Here, we present structural and kinetic data describing the inhibition of the SHV-1 β-lactamase, a clinically important enzyme found in Klebsiella pneumoniae, by BATSI compounds possessing the R1 side chains of ceftazidime and cefoperazone and designed variants of the latter, compounds 1 and 2. The ceftazidime and cefoperazone BATSI compounds inhibit the SHV-1 β-lactamase with micromolar affinity that is considerably weaker than their inhibition of other β-lactamases. The solved crystal structures of these two BATSIs in complex with SHV-1 reveal a possible reason for SHV-1's relative resistance to inhibition, as the BATSIs adopt a deacylation transition state conformation compared to the usual acylation transition state conformation when complexed to other β-lactamases. Active-site comparison suggests that these conformational differences might be attributed to a subtle shift of residue A237 in SHV-1. The ceftazidime BATSI structure revealed that the carboxyl-dimethyl moiety is positioned in SHV-1's carboxyl binding pocket. In contrast, the cefoperazone BATSI has its R1 group pointing away from the active site such that its phenol moiety moves residue Y105 from the active site via end-on stacking interactions. To work toward improving the affinity of the cefoperazone BATSI, we synthesized two variants in which either one or two extra carbons were added to the phenol linker. Both variants yielded improved affinity against SHV-1, possibly as a consequence of releasing the strain of its interaction with the unusual Y105 conformation.
Collapse
|
91
|
Dzhekieva L, Rocaboy M, Kerff F, Charlier P, Sauvage E, Pratt RF. Crystal Structure of a Complex between the Actinomadura R39 dd-Peptidase and a Peptidoglycan-mimetic Boronate Inhibitor: Interpretation of a Transition State Analogue in Terms of Catalytic Mechanism. Biochemistry 2010; 49:6411-9. [DOI: 10.1021/bi100757c] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liudmila Dzhekieva
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459
| | - Mathieu Rocaboy
- Centre d’Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Frédéric Kerff
- Centre d’Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Paulette Charlier
- Centre d’Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - Eric Sauvage
- Centre d’Ingéniere des Proteines, Université de Liège, B-4000 Sart Tilman, Liège, Belgium
| | - R. F. Pratt
- Department of Chemistry, Wesleyan University, Lawn Avenue, Middletown, Connecticut 06459
| |
Collapse
|
92
|
Fisette O, Morin S, Savard PY, Lagüe P, Gagné SM. TEM-1 backbone dynamics-insights from combined molecular dynamics and nuclear magnetic resonance. Biophys J 2010; 98:637-45. [PMID: 20159160 DOI: 10.1016/j.bpj.2009.08.061] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 08/24/2009] [Accepted: 08/25/2009] [Indexed: 11/28/2022] Open
Abstract
Dynamic properties of class A beta-lactamase TEM-1 are investigated from molecular dynamics (MD) simulations. Comparison of MD-derived order parameters with those obtained from model-free analysis of nuclear magnetic resonance (NMR) relaxation data shows high agreement for N-H moieties within alpha- and beta-secondary structures, but significant deviation for those in loops. This was expected, because motions slower than the protein global tumbling often take place in loop regions. As previously shown using NMR, TEM-1 is a highly ordered protein. Motions are observed within the Omega loop that could, upon substrate binding, stabilize E166 in a catalytically efficient position as the cavity between the protein core and the Omega loop is partially filled. The rigidity of active site residues is consistent with the enzyme high turnover number. MD data are also shown to be useful during the model selection step of model-free analysis: local N-H motions observed over the course of the trajectories help assess whether a peptide plan undergoes low or high amplitude motions on one or more timescales. This joint use of MD and NMR provides a better description of protein dynamics than would be possible using either technique alone.
Collapse
Affiliation(s)
- Olivier Fisette
- Département de Biochimie et de Microbiologie, Université Laval and PROTEO, Québec, Canada
| | | | | | | | | |
Collapse
|
93
|
Delmas J, Leyssene D, Dubois D, Birck C, Vazeille E, Robin F, Bonnet R. Structural insights into substrate recognition and product expulsion in CTX-M enzymes. J Mol Biol 2010; 400:108-20. [PMID: 20452359 DOI: 10.1016/j.jmb.2010.04.062] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 11/25/2022]
Abstract
beta-Lactamase-mediated resistance to beta-lactam antibiotics poses a major threat to our antibiotic armamentarium. Among beta-lactamases, a significant threat comes from enzymes that hydrolyze extended-spectrum cephalosporins such as cefotaxime. Among the enzymes that exhibit this phenotype, the CTX-M family is found worldwide. These enzymes have a small active site, which makes it difficult to explain how they hydrolyze the bulky extended-spectrum cephalosporins into the binding site. We investigated noncovalent substrate recognition and product release in CTX-M enzymes using steered molecular dynamics simulation and X-ray diffraction. An arginine residue located far from the binding site favors the capture and tracking of substrates during entrance into the catalytic pocket. We show that the accommodation of extended-spectrum cephalosporins by CTX-M enzymes induced subtle changes in the active site and established a high density of electrostatic interactions. Interestingly, the product of the catalytic reaction initiates its own release because of steric hindrances and electrostatic repulsions. This suggests that there exists a general mechanism for product release for all members of the beta-lactamase family and probably for most carboxypeptidases.
Collapse
Affiliation(s)
- Julien Delmas
- CHU Clermont-Ferrand, Laboratoire de Bactériologie, Clermont-Ferrand F-63003, France
| | | | | | | | | | | | | |
Collapse
|
94
|
Gardberg AS, Del Castillo AR, Weiss KL, Meilleur F, Blakeley MP, Myles DAA. Unambiguous determination of H-atom positions: comparing results from neutron and high-resolution X-ray crystallography. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:558-67. [PMID: 20445231 DOI: 10.1107/s0907444910005494] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 02/09/2010] [Indexed: 11/10/2022]
Abstract
The locations of H atoms in biological structures can be difficult to determine using X-ray diffraction methods. Neutron diffraction offers a relatively greater scattering magnitude from H and D atoms. Here, 1.65 A resolution neutron diffraction studies of fully perdeuterated and selectively CH(3)-protonated perdeuterated crystals of Pyrococcus furiosus rubredoxin (D-rubredoxin and HD-rubredoxin, respectively) at room temperature (RT) are described, as well as 1.1 A resolution X-ray diffraction studies of the same protein at both RT and 100 K. The two techniques are quantitatively compared in terms of their power to directly provide atomic positions for D atoms and analyze the role played by atomic thermal motion by computing the sigma level at the D-atom coordinate in simulated-annealing composite D-OMIT maps. It is shown that 1.65 A resolution RT neutron data for perdeuterated rubredoxin are approximately 8 times more likely overall to provide high-confidence positions for D atoms than 1.1 A resolution X-ray data at 100 K or RT. At or above the 1.0sigma level, the joint X-ray/neutron (XN) structures define 342/378 (90%) and 291/365 (80%) of the D-atom positions for D-rubredoxin and HD-rubredoxin, respectively. The X-ray-only 1.1 A resolution 100 K structures determine only 19/388 (5%) and 8/388 (2%) of the D-atom positions above the 1.0sigma level for D-rubredoxin and HD-rubredoxin, respectively. Furthermore, the improved model obtained from joint XN refinement yielded improved electron-density maps, permitting the location of more D atoms than electron-density maps from models refined against X-ray data only.
Collapse
|
95
|
Bös F, Pleiss J. Multiple molecular dynamics simulations of TEM beta-lactamase: dynamics and water binding of the omega-loop. Biophys J 2010; 97:2550-8. [PMID: 19883598 DOI: 10.1016/j.bpj.2009.08.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 08/07/2009] [Accepted: 08/10/2009] [Indexed: 10/20/2022] Open
Abstract
The Omega-loop of TEM beta-lactamase is involved in substrate recognition and catalysis. Its dynamical properties and interaction with water molecules were investigated by performing multiple molecular dynamics simulations of up to 50 ns. Protein flexibility was assessed by calculating the root mean-square fluctuations and the generalized order parameter, S(2). The residues in secondary structure elements are highly ordered, whereas loop regions are more flexible, which is in agreement with previous experimental observations. Interestingly, the Omega-loop (residues 161-179) is rigid with order parameters similar to secondary structure elements, with the exception of the tip of the loop (residues 173-177) that has a considerably higher flexibility and performs an opening and closing motion on the 50-ns timescale. The rigidity of the main part of the Omega-loop is mediated by stabilizing and highly conserved water bridges inside a cavity lined by the Omega-loop and residues 65-69 of the protein core. In contrast, the flexible tip of the Omega-loop lacks these interactions. Hydration of the cavity and exchange of the water molecules with the bulk solvent occurs via two pathways: the flexible tip that serves as a door to the cavity, and a temporary water channel involving the side chain of Arg(164).
Collapse
Affiliation(s)
- Fabian Bös
- Institute of Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | | |
Collapse
|
96
|
Abstract
Since the introduction of penicillin, beta-lactam antibiotics have been the antimicrobial agents of choice. Unfortunately, the efficacy of these life-saving antibiotics is significantly threatened by bacterial beta-lactamases. beta-Lactamases are now responsible for resistance to penicillins, extended-spectrum cephalosporins, monobactams, and carbapenems. In order to overcome beta-lactamase-mediated resistance, beta-lactamase inhibitors (clavulanate, sulbactam, and tazobactam) were introduced into clinical practice. These inhibitors greatly enhance the efficacy of their partner beta-lactams (amoxicillin, ampicillin, piperacillin, and ticarcillin) in the treatment of serious Enterobacteriaceae and penicillin-resistant staphylococcal infections. However, selective pressure from excess antibiotic use accelerated the emergence of resistance to beta-lactam-beta-lactamase inhibitor combinations. Furthermore, the prevalence of clinically relevant beta-lactamases from other classes that are resistant to inhibition is rapidly increasing. There is an urgent need for effective inhibitors that can restore the activity of beta-lactams. Here, we review the catalytic mechanisms of each beta-lactamase class. We then discuss approaches for circumventing beta-lactamase-mediated resistance, including properties and characteristics of mechanism-based inactivators. We next highlight the mechanisms of action and salient clinical and microbiological features of beta-lactamase inhibitors. We also emphasize their therapeutic applications. We close by focusing on novel compounds and the chemical features of these agents that may contribute to a "second generation" of inhibitors. The goal for the next 3 decades will be to design inhibitors that will be effective for more than a single class of beta-lactamases.
Collapse
Affiliation(s)
- Sarah M. Drawz
- Departments of Pathology, Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| | - Robert A. Bonomo
- Departments of Pathology, Medicine, Pharmacology, Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio, Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| |
Collapse
|
97
|
Neutron diffraction studies of a class A beta-lactamase Toho-1 E166A/R274N/R276N triple mutant. J Mol Biol 2009; 396:1070-80. [PMID: 20036259 DOI: 10.1016/j.jmb.2009.12.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 12/17/2009] [Accepted: 12/18/2009] [Indexed: 11/22/2022]
Abstract
beta-Lactam antibiotics have been used effectively over several decades against many types of bacterial infectious diseases. However, the most common cause of resistance to the beta-lactam antibiotics is the production of beta-lactamase enzymes that inactivate beta-lactams by rapidly hydrolyzing the amide group of the beta-lactam ring. Specifically, the class A extended-spectrum beta-lactamases (ESBLs) and inhibitor-resistant enzymes arose that were capable of hydrolyzing penicillins and the expanded-spectrum cephalosporins and monobactams in resistant bacteria, which lead to treatment problems in many clinical settings. A more complete understanding of the mechanism of catalysis of these ESBL enzymes will impact current antibiotic drug discovery efforts. Here, we describe the neutron structure of the class A, CTX-M-type ESBL Toho-1 E166A/R274N/R276N triple mutant in its apo form, which is the first reported neutron structure of a beta-lactamase enzyme. This neutron structure clearly reveals the active-site protonation states and hydrogen-bonding network of the apo Toho-1 ESBL prior to substrate binding and subsequent acylation. The protonation states of the active-site residues Ser70, Lys73, Ser130, and Lys234 in this neutron structure are consistent with the prediction of a proton transfer pathway from Lys73 to Ser130 that is likely dependent on the conformation of Lys73, which has been hypothesized to be coupled to the protonation state of Glu166 during the acylation reaction. Thus, this neutron structure is in agreement with a proposed mechanism for acylation that identifies Glu166 as the general base for catalysis.
Collapse
|
98
|
Baurin S, Vercheval L, Bouillenne F, Falzone C, Brans A, Jacquamet L, Ferrer JL, Sauvage E, Dehareng D, Frère JM, Charlier P, Galleni M, Kerff F. Critical role of tryptophan 154 for the activity and stability of class D beta-lactamases. Biochemistry 2009; 48:11252-63. [PMID: 19860471 DOI: 10.1021/bi901548c] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The catalytic efficiency of the class D beta-lactamase OXA-10 depends critically on an unusual carboxylated lysine as the general base residue for both the enzyme acylation and deacylation steps of catalysis. Evidence is presented that the interaction between the indole group of Trp154 and the carboxylated lysine is essential for the stability of the posttranslationally modified Lys70. Substitution of Trp154 by Gly, Ala, or Phe yielded noncarboxylated enzymes which displayed poor catalytic efficiencies and reduced stability when compared to the wild-type OXA-10. The W154H mutant was partially carboxylated. In addition, the maximum values of k(cat) and k(cat)/K(M) were shifted toward pH 7, indicating that the carboxylation state of Lys70 is dependent on the protonation level of the histidine. A comparison of the three-dimensional structures of the different proteins also indicated that the Trp154 mutations did not modify the overall structures of OXA-10 but induced an increased flexibility of the Omega-loop in the active site. Finally, the deacylation-impaired W154A mutant was used to determine the structure of the acyl-enzyme complex with benzylpenicillin. These results indicate a role of the Lys70 carboxylation during the deacylation step and emphasize the importance of Trp154 for the ideal positioning of active site residues leading to an optimum activity.
Collapse
Affiliation(s)
- Stéphane Baurin
- Laboratory of Biological Macromolecules, Center for Protein Engineering, University of Liège, Institut de Chimie B6a, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Yasuhira K, Shibata N, Mongami G, Uedo Y, Atsumi Y, Kawashima Y, Hibino A, Tanaka Y, Lee YH, Kato DI, Takeo M, Higuchi Y, Negoro S. X-ray crystallographic analysis of the 6-aminohexanoate cyclic dimer hydrolase: catalytic mechanism and evolution of an enzyme responsible for nylon-6 byproduct degradation. J Biol Chem 2009; 285:1239-48. [PMID: 19889645 DOI: 10.1074/jbc.m109.041285] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We performed x-ray crystallographic analyses of the 6-aminohexanoate cyclic dimer (Acd) hydrolase (NylA) from Arthrobacter sp., an enzyme responsible for the degradation of the nylon-6 industry byproduct. The fold adopted by the 472-amino acid polypeptide generated a compact mixed alpha/beta fold, typically found in the amidase signature superfamily; this fold was especially similar to the fold of glutamyl-tRNA(Gln) amidotransferase subunit A (z score, 49.4) and malonamidase E2 (z score, 44.8). Irrespective of the high degree of structural similarity to the typical amidase signature superfamily enzymes, the specific activity of NylA for glutamine, malonamide, and indoleacetamide was found to be lower than 0.5% of that for Acd. However, NylA possessed carboxylesterase activity nearly equivalent to the Acd hydrolytic activity. Structural analysis of the inactive complex between the activity-deficient S174A mutant of NylA and Acd, performed at 1.8 A resolution, suggested the following enzyme/substrate interactions: a Ser(174)-cis-Ser(150)-Lys(72) triad constitutes the catalytic center; the backbone N in Ala(171) and Ala(172) are involved in oxyanion stabilization; Cys(316)-S(gamma) forms a hydrogen bond with nitrogen (Acd-N(7)) at the uncleaved amide bond in two equivalent amide bonds of Acd. A single S174A, S150A, or K72A substitution in NylA by site-directed mutagenesis decreased the Acd hydrolytic and esterolytic activities to undetectable levels, indicating that Ser(174)-cis-Ser(150)-Lys(72) is essential for catalysis. In contrast, substitutions at position 316 specifically affected Acd hydrolytic activity, suggesting that Cys(316) is responsible for Acd binding. On the basis of the structure and functional analysis, we discussed the catalytic mechanisms and evolution of NylA in comparison with other Ser-reactive hydrolases.
Collapse
Affiliation(s)
- Kengo Yasuhira
- Department of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, Hyogo 671-2201, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Chen Y, Zhang W, Shi Q, Hesek D, Lee M, Mobashery S, Shoichet BK. Crystal structures of penicillin-binding protein 6 from Escherichia coli. J Am Chem Soc 2009; 131:14345-54. [PMID: 19807181 PMCID: PMC3697005 DOI: 10.1021/ja903773f] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Penicillin-binding protein 6 (PBP6) is one of the two main DD-carboxypeptidases in Escherichia coli, which are implicated in maturation of bacterial cell wall and formation of cell shape. Here, we report the first X-ray crystal structures of PBP6, capturing its apo state (2.1 A), an acyl-enzyme intermediate with the antibiotic ampicillin (1.8 A), and for the first time for a PBP, a preacylation complex (a "Michaelis complex", determined at 1.8 A) with a peptidoglycan substrate fragment containing the full pentapeptide, NAM-(L-Ala-D-isoGlu-L-Lys-D-Ala-D-Ala). These structures illuminate the molecular interactions essential for ligand recognition and catalysis by DD-carboxypeptidases, and suggest a coupling of conformational flexibility of active site loops to the reaction coordinate. The substrate fragment complex structure, in particular, provides templates for models of cell wall recognition by PBPs, as well as substantiating evidence for the molecular mimicry by beta-lactam antibiotics of the peptidoglycan acyl-D-Ala-D-Ala moiety.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pharmaceutical Chemistry, University of California San Francisco, Byers Hall, Room 508D, 1700 Fourth Street, San Francisco, California 94158-2550
| | - Weilie Zhang
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Center, UniVersity of Notre Dame, Notre Dame, Indiana 46556
| | - Qicun Shi
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Center, UniVersity of Notre Dame, Notre Dame, Indiana 46556
| | - Dusan Hesek
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Center, UniVersity of Notre Dame, Notre Dame, Indiana 46556
| | - Mijoon Lee
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Center, UniVersity of Notre Dame, Notre Dame, Indiana 46556
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, 423 Nieuwland Science Center, UniVersity of Notre Dame, Notre Dame, Indiana 46556
| | - Brian K. Shoichet
- Department of Pharmaceutical Chemistry, University of California San Francisco, Byers Hall, Room 508D, 1700 Fourth Street, San Francisco, California 94158-2550
| |
Collapse
|