51
|
Li L, Möbitz S, Winter R. Characterization of the Spatial Organization of Raf Isoforms Interacting with K-Ras4B in the Lipid Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5944-5953. [PMID: 32390436 DOI: 10.1021/acs.langmuir.0c00770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Activation of Raf kinases by the membrane-anchored protein K-Ras4B is a key step of cellular signal regulation. As a predominant variant of the Ras family, K-Ras4B has been considered to be a major drug target in cancer therapy. Therefore, an integrated study of Raf interaction with membrane-associated K-Ras4B is essential. While the Ras-binding domain (RBD) of Raf contains the main binding interface to K-Ras4B, its cysteine-rich domain (CRD) is thought to be responsible for its association with the membrane interface. We applied time-lapse tapping-mode atomic force microscopy to visualize and characterize the interaction of these binding motifs of A-, B-, and C-Raf isoforms with K-Ras4B in a raft-like anionic model biomembrane. However, we found that the RBDs of the Raf isomers are readily recruited to K-Ras4B nanoclusters in the lipid membrane, with different efficiencies. Unexpectedly and different from A-Raf-RBD, B- and C-Raf-RBD are able to bind markedly also directly to the lipid membrane. We also found that Raf-RBD-CRD is readily recruited to the K-Ras4B forming nanoclusters in the fluid membrane phase, with the CRD domains binding to the lipid interface. The K-Ras4B-nanoclusters are likely to enhance Raf binding and activate signaling by enriching the Raf proteins and facilitating formation of Raf dimers. Interestingly, A-, B-, and C-Raf-RBD-CRD are also able to bind directly to the heterogeneous membrane surrounding the K-Ras4B nanoclusters, which could potentially enhance the overall affinity to K-Ras4B in a Raf-isoform-dependent manner. Overall, these results provide new insights into the spatial organization of the membrane-associated Raf-Ras signaling module for the various Raf isoforms, which is important for understanding the activation of Raf kinases and required for the development of drugs against cancers through targeting Raf-Ras interactions.
Collapse
Affiliation(s)
- Lei Li
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I-Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Simone Möbitz
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I-Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I-Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Str. 4a, D-44227 Dortmund, Germany
| |
Collapse
|
52
|
Bornemann S, Herzog M, Roling L, Paulisch TO, Brandis D, Kriegler S, Galla HJ, Glorius F, Winter R. Interaction of imidazolium-based lipids with phospholipid bilayer membranes of different complexity. Phys Chem Chem Phys 2020; 22:9775-9788. [PMID: 32337521 DOI: 10.1039/d0cp00801j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, alkylated imidazolium salts have been shown to affect lipid membranes and exhibit general cytotoxicity as well as significant anti-tumor activity. Here, we examined the interactions of a sterically demanding, biophysically unexplored imidazolium salt, 1,3-bis(2,6-diisopropylphenyl)-4,5-diundecylimidazolium bromide (C11IPr), on the physico-chemical properties of various model biomembrane systems. The results are compared with those for the smaller headgroup variant 1,3-dimethyl-4,5-diundecylimidazolium iodide (C11IMe). We studied the influence of these two lipid-based imidazolium salts at concentrations from 1 to about 10 mol% on model biomembrane systems of different complexity, including anionic heterogeneous raft membranes which are closer to natural membranes. Fluorescence spectroscopic, DSC, surface potential and FTIR measurements were carried out to reveal changes in membrane thermotropic phase behavior, lipid conformational order, fluidity and headgroup charge. Complementary AFM and confocal fluorescence microscopy measurements allowed us to detect changes in the lateral organization and membrane morphology. Both lipidated imidazolium salts increase the membrane fluidity and lead to a deterioration of the lateral domain structure of the membrane, in particular for C11IPr owing to its bulkier headgroup. Moreover, partitioning of the lipidated imidazolium salts into the lipid vesicles leads to marked changes in lateral organization, curvature and morphology of the lipid vesicles at high concentrations, with C11IPr having a more pronounced effect than C11IMe. Hence, these compounds seem to be vastly suitable for biochemical and biotechnological engineering, with high potentials for antimicrobial activity, drug delivery and gene transfer.
Collapse
Affiliation(s)
- Steffen Bornemann
- TU Dortmund University, Faculty of Chemistry and Chemical Biology, Physical Chemistry I - Biophysical Chemistry, Otto Hahn Str. 4a, D-44221 Dortmund, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Dadhich R, Mishra M, Ning S, Jana S, Sarpe VA, Mahato J, Duan M, Kulkarni SS, Kapoor S. A Virulence-Associated Glycolipid with Distinct Conformational Attributes: Impact on Lateral Organization of Host Plasma Membrane, Autophagy, and Signaling. ACS Chem Biol 2020; 15:740-750. [PMID: 32078292 DOI: 10.1021/acschembio.9b00991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mycobacterium tuberculosis (Mtb) serves as the epitome of how lipids-next to proteins-are utilized as central effectors in pathogenesis. It synthesizes an arsenal of structurally atypical lipids (C60-C90) to impact various membrane-dependent steps involved in host interactions. There is a growing precedent to support insertion of these exposed lipids into the host membrane as part of their mode of action. However, the vital role of specific virulence-associated lipids in modulating cellular functions by altering the host membrane organization and associated signaling pathways remain unanswered questions. Here, we combined chemical synthesis, biophysics, cell biology, and molecular dynamics simulations to elucidate host membrane structure modifications and modulation of membrane-associated signaling using synthetic Mycobacterium tuberculosis sulfoglycolipids (Mtb SL). We reveal that Mtb SL reorganizes the host cell plasma membrane domains while showing higher preference for fluid membrane regions. This rearrangement is governed by the distinct conformational states sampled by SL acyl chains. Physicochemical assays with SL analogues reveal insights into their structure-function relationships, highlighting specific roles of lipid acyl chains and headgroup, along with effects on autophagy and cytokine profiles. Our findings uncover a mechanism whereby Mtb uses specific chemical moieties on its lipids to fine-tune host lipid interactions and confer control of the downstream functions by modifying the cell membrane structure and function. These findings will inspire development of chemotherapeutics against Mtb by counteracting their effects on the host-cell membrane.
Collapse
Affiliation(s)
- Ruchika Dadhich
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Manjari Mishra
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shangbo Ning
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Santanu Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Vikram A. Sarpe
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Jaladhar Mahato
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Mojie Duan
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Suvarn S. Kulkarni
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
54
|
Li Z, Buck M. Computational Design of Myristoylated Cell-Penetrating Peptides Targeting Oncogenic K-Ras.G12D at the Effector-Binding Membrane Interface. J Chem Inf Model 2019; 60:306-315. [DOI: 10.1021/acs.jcim.9b00690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
55
|
Li FY, Zhang ZF, Voss S, Wu YW, Zhao YF, Li YM, Chen YX. Inhibition of K-Ras4B-plasma membrane association with a membrane microdomain-targeting peptide. Chem Sci 2019; 11:826-832. [PMID: 34123058 PMCID: PMC8145430 DOI: 10.1039/c9sc04726c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The association of K-Ras4B protein with plasma membrane (PM) is required for its signaling activity. Thus, direct inhibition of K-Ras4B–PM interaction could be a potential anti-Ras therapeutic strategy. However, it remains challenging to modulate such protein–PM interaction. Based on Ras isoform-specific PM microdomain localization patterns, we have developed a potent and isoform-selective peptide inhibitor, Memrasin, for detachment of K-Ras4B from the PM. Memrasin is one of the first direct inhibitors of K-Ras4B–PM interaction, and consists of a membrane ld region-binding sequence derived from the C-terminal region of K-Ras4B and an endosome-escape enhancing motif that can aggregate on membrane. It forms peptide-enriched domains in the ld region, abrogates the tethering of K-Ras4B to the PM and accordingly impairs Ras signaling activity, thereby efficiently decreasing the viability of several human lung cancer cells in a dose-responsive and K-Ras dependent manner. Memrasin provides a useful tool for exploring the biological function of K-Ras4B on or off the PM and a potential starting point for further development into anti-Ras therapeutics. A membrane ld microdomain-targeting hybrid peptide displays potent inhibition effect toward K-Ras4B-plasma membrane interaction and impairs Ras signaling output.![]()
Collapse
Affiliation(s)
- Fang-Yi Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Zhen-Feng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences No. 1 West Beichen Road, Chaoyang District Beijing 100101 China
| | - Stephanie Voss
- Chemical Genomics Centre of the Max Planck Society Otto-Hahn-Str. 15 44227 Dortmund Germany.,Max-Planck-Institute of Molecular Physiology Otto-Hahn-Str. 11 44227 Dortmund Germany
| | - Yao-Wen Wu
- Chemical Genomics Centre of the Max Planck Society Otto-Hahn-Str. 15 44227 Dortmund Germany.,Max-Planck-Institute of Molecular Physiology Otto-Hahn-Str. 11 44227 Dortmund Germany.,Department of Chemistry, Umeå University 90187 Umeå Sweden
| | - Yu-Fen Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
56
|
Zhang C, Gao F, Wu W, Qiu WX, Zhang L, Li R, Zhuang ZN, Yu W, Cheng H, Zhang XZ. Enzyme-Driven Membrane-Targeted Chimeric Peptide for Enhanced Tumor Photodynamic Immunotherapy. ACS NANO 2019; 13:11249-11262. [PMID: 31566945 DOI: 10.1021/acsnano.9b04315] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Here, a protein farnesyltransferase (PFTase)-driven plasma membrane (PM)-targeted chimeric peptide, PpIX-C6-PEG8-KKKKKKSKTKC-OMe (PCPK), was designed for PM-targeted photodynamic therapy (PM-PDT) and enhanced immunotherapy via tumor cell PM damage and fast release of damage-associated molecular patterns (DAMPs). The PM targeting ability of PCPK originates from the cellular K-Ras signaling, which occurs exclusively to drive the corresponding proteins to PM by PFTase. With the conjugation of the photosensitizer protoporphyrin IX (PpIX), PCPK could generate cytotoxic reactive oxygen species to deactivate membrane-associated proteins, initiate lipid peroxidation, and destroy PM with an extremely low concentration (1 μM) under light irradiation. The specific PM damage further induced the fast release of DAMPs (high-mobility group box 1 and ATP), resulting in antitumor immune responses stronger than those of conventional cytoplasm-localized PDT. This immune-stimulating PM-PDT strategy also exhibited the inhibition effect for distant metastatic tumors when combined with programmed cell death receptor 1 blockade therapy.
Collapse
Affiliation(s)
- Chi Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry and the Institute for Advanced Studies , Wuhan University , Wuhan 430072 , P.R. China
| | - Fan Gao
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry and the Institute for Advanced Studies , Wuhan University , Wuhan 430072 , P.R. China
| | - Wei Wu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry and the Institute for Advanced Studies , Wuhan University , Wuhan 430072 , P.R. China
| | - Wen-Xiu Qiu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry and the Institute for Advanced Studies , Wuhan University , Wuhan 430072 , P.R. China
| | - Lu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry and the Institute for Advanced Studies , Wuhan University , Wuhan 430072 , P.R. China
| | - Runqing Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry and the Institute for Advanced Studies , Wuhan University , Wuhan 430072 , P.R. China
| | - Ze-Nan Zhuang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry and the Institute for Advanced Studies , Wuhan University , Wuhan 430072 , P.R. China
| | - Wuyang Yu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry and the Institute for Advanced Studies , Wuhan University , Wuhan 430072 , P.R. China
| | - Han Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry and the Institute for Advanced Studies , Wuhan University , Wuhan 430072 , P.R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry and the Institute for Advanced Studies , Wuhan University , Wuhan 430072 , P.R. China
| |
Collapse
|
57
|
Schulte-Zweckel J, Dwivedi M, Brockmeyer A, Janning P, Winter R, Triola G. A hydroxylamine probe for profiling S-acylated fatty acids on proteins. Chem Commun (Camb) 2019; 55:11183-11186. [PMID: 31465055 DOI: 10.1039/c9cc05989j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Reversible S-palmitoylation is a key regulatory mechanism of protein function and localization. There is increasing evidence that S-acylation is not restricted to palmitate but it includes shorter, longer, and unsaturated fatty acids. However, the diversity of this protein modification has not been fully explored. Herein, we report a chemical probe that combined with MS-based analysis allows the rapid detection and quantification of fatty acids linked to proteins. We have used this approach to profile the S-acylome and to show that the oncogene N-Ras is heterogeneously acylated with palmitate and palmitoleate. Studies on protein distribution in membrane subdomains with semisynthetic proteins revealed that unsaturated N-Ras presents an increased tendency toward clustering and higher insertion kinetic rate constants.
Collapse
Affiliation(s)
- Janine Schulte-Zweckel
- Department of Chemical Biology, Max-Planck-Institute of molecular Physiology, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
58
|
Cinar H, Fetahaj Z, Cinar S, Vernon RM, Chan HS, Winter RHA. Temperature, Hydrostatic Pressure, and Osmolyte Effects on Liquid-Liquid Phase Separation in Protein Condensates: Physical Chemistry and Biological Implications. Chemistry 2019; 25:13049-13069. [PMID: 31237369 DOI: 10.1002/chem.201902210] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/23/2019] [Indexed: 01/04/2023]
Abstract
Liquid-liquid phase separation (LLPS) of proteins and other biomolecules play a critical role in the organization of extracellular materials and membrane-less compartmentalization of intra-organismal spaces through the formation of condensates. Structural properties of such mesoscopic droplet-like states were studied by spectroscopy, microscopy, and other biophysical techniques. The temperature dependence of biomolecular LLPS has been studied extensively, indicating that phase-separated condensed states of proteins can be stabilized or destabilized by increasing temperature. In contrast, the physical and biological significance of hydrostatic pressure on LLPS is less appreciated. Summarized here are recent investigations of protein LLPS under pressures up to the kbar-regime. Strikingly, for the cases studied thus far, LLPSs of both globular proteins and intrinsically disordered proteins/regions are typically more sensitive to pressure than the folding of proteins, suggesting that organisms inhabiting the deep sea and sub-seafloor sediments, under pressures up to 1 kbar and beyond, have to mitigate this pressure-sensitivity to avoid unwanted destabilization of their functional biomolecular condensates. Interestingly, we found that trimethylamine-N-oxide (TMAO), an osmolyte upregulated in deep-sea fish, can significantly stabilize protein droplets under pressure, pointing to another adaptive advantage for increased TMAO concentrations in deep-sea organisms besides the osmolyte's stabilizing effect against protein unfolding. As life on Earth might have originated in the deep sea, pressure-dependent LLPS is pertinent to questions regarding prebiotic proto-cells. Herein, we offer a conceptual framework for rationalizing the recent experimental findings and present an outline of the basic thermodynamics of temperature-, pressure-, and osmolyte-dependent LLPS as well as a molecular-level statistical mechanics picture in terms of solvent-mediated interactions and void volumes.
Collapse
Affiliation(s)
- Hasan Cinar
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| | - Zamira Fetahaj
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| | - Süleyman Cinar
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| | - Robert M Vernon
- Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
| | - Hue Sun Chan
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Ontario, M5S 1A8, Canada.,Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Ontario, M5S 1A8, Canada
| | - Roland H A Winter
- Physical Chemistry I-Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
59
|
Membrane Dynamics in Health and Disease: Impact on Cellular Signalling. J Membr Biol 2019; 252:213-226. [PMID: 31435696 DOI: 10.1007/s00232-019-00087-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/07/2019] [Indexed: 12/16/2022]
Abstract
Biological membranes display a staggering complexity of lipids and proteins orchestrating cellular functions. Superior analytical tools coupled with numerous functional cellular screens have enabled us to query their role in cellular signalling, trafficking, guiding protein structure and function-all of which rely on the dynamic membrane lipid properties indispensable for proper cellular functions. Alteration of these has led to emergence of various pathological conditions, thus opening an area of lipid-centric therapeutic approaches. This perspective is a short summary of the dynamic properties of membranes essential for proper cellular functions, dictating both protein and lipid functions, and mis-regulated in diseases. Towards the end, we focus on some challenges lying ahead and potential means to tackle the same, mainly underscored by multi-disciplinary approaches.
Collapse
|
60
|
Liang H, Mu H, Jean-Francois F, Lakshman B, Sarkar-Banerjee S, Zhuang Y, Zeng Y, Gao W, Zaske AM, Nissley DV, Gorfe AA, Zhao W, Zhou Y. Membrane curvature sensing of the lipid-anchored K-Ras small GTPase. Life Sci Alliance 2019; 2:e201900343. [PMID: 31296567 PMCID: PMC6625090 DOI: 10.26508/lsa.201900343] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/26/2022] Open
Abstract
Plasma membrane (PM) curvature defines cell shape and intracellular organelle morphologies and is a fundamental cell property. Growth/proliferation is more stimulated in flatter cells than the same cells in elongated shapes. PM-anchored K-Ras small GTPase regulates cell growth/proliferation and plays key roles in cancer. The lipid-anchored K-Ras form nanoclusters selectively enriched with specific phospholipids, such as phosphatidylserine (PS), for efficient effector recruitment and activation. K-Ras function may, thus, be sensitive to changing lipid distribution at membranes with different curvatures. Here, we used complementary methods to manipulate membrane curvature of intact/live cells, native PM blebs, and synthetic liposomes. We show that the spatiotemporal organization and signaling of an oncogenic mutant K-Ras G12V favor flatter membranes with low curvature. Our findings are consistent with the more stimulated growth/proliferation in flatter cells. Depletion of endogenous PS abolishes K-Ras G12V PM curvature sensing. In cells and synthetic bilayers, only mixed-chain PS species, but not other PS species tested, mediate K-Ras G12V membrane curvature sensing. Thus, K-Ras nanoclusters act as relay stations to convert mechanical perturbations to mitogenic signaling.
Collapse
Affiliation(s)
- Hong Liang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Huanwen Mu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Frantz Jean-Francois
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bindu Lakshman
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Yinyin Zhuang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Yongpeng Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Weibo Gao
- School of Physics and Mathematical Science, Nanyang Technological University, Singapore
| | - Ana Maria Zaske
- Internal Medicine, Cardiology Division, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dwight V Nissley
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
61
|
Belessiotis-Richards A, Higgins SG, Butterworth B, Stevens MM, Alexander-Katz A. Single-Nanometer Changes in Nanopore Geometry Influence Curvature, Local Properties, and Protein Localization in Membrane Simulations. NANO LETTERS 2019; 19:4770-4778. [PMID: 31241342 DOI: 10.1021/acs.nanolett.9b01990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoporous surfaces are used in many applications in intracellular sensing and drug delivery. However, the effects of such nanostructures on cell membrane properties are still far from understood. Here, we use coarse-grained molecular dynamics simulations to show that nanoporous substrates can stimulate membrane-curvature effects and that this curvature-sensing effect is much more sensitive than previously thought. We define a series of design parameters for inducing a nanoscale membrane curvature and show that nanopore taper plays a key role in membrane deformation, elucidating a previously unexplored fabrication parameter applicable to many nanostructured biomaterials. We report significant changes in the membrane area per lipid and thickness at regions of curvature. Finally, we demonstrate that regions of the nanopore-induced membrane curvature act as local hotspots for an increased bioactivity. We show spontaneous binding and localization of the epsin N-terminal homology (ENTH) domain to the regions of curvature. Understanding this interplay between the membrane curvature and nanoporosity at the biointerface helps both explain recent biological results and suggests a pathway for developing the next generation of cell-active substrates.
Collapse
Affiliation(s)
- Alexis Belessiotis-Richards
- Department of Materials , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
- Department of Bioengineering , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
- Institute of Biomedical Engineering , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
| | - Stuart G Higgins
- Department of Materials , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
- Department of Bioengineering , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
- Institute of Biomedical Engineering , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
| | - Ben Butterworth
- Department of Materials , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
| | - Molly M Stevens
- Department of Materials , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
- Department of Bioengineering , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
- Institute of Biomedical Engineering , Imperial College London , Exhibition Road , London SW7 2AZ , United Kingdom
| | - Alfredo Alexander-Katz
- Department of Materials Science & Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
62
|
Li L, Erwin N, Möbitz S, Niemeyer F, Schrader T, Winter RHA. Dissociation of the Signaling Protein K‐Ras4B from Lipid Membranes Induced by a Molecular Tweezer. Chemistry 2019; 25:9827-9833. [DOI: 10.1002/chem.201901861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/29/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Lei Li
- Faculty of Chemistry and Chemical Biology, Physical Chemistry ITechnical University of Dortmund Otto-Hahn-Str. 4a 44227 Dortmund Germany
- International Max Planck Research School (IMPRS) in Chemical, and Molecular Biology. Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Nelli Erwin
- Faculty of Chemistry and Chemical Biology, Physical Chemistry ITechnical University of Dortmund Otto-Hahn-Str. 4a 44227 Dortmund Germany
- International Max Planck Research School (IMPRS) in Chemical, and Molecular Biology. Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Simone Möbitz
- Faculty of Chemistry and Chemical Biology, Physical Chemistry ITechnical University of Dortmund Otto-Hahn-Str. 4a 44227 Dortmund Germany
| | - Felix Niemeyer
- Faculty of Chemistry, Organic ChemistryUniversity of Duisburg-Essen Universitätsstrasse 2-5 45144 Essen Germany
| | - Thomas Schrader
- Faculty of Chemistry, Organic ChemistryUniversity of Duisburg-Essen Universitätsstrasse 2-5 45144 Essen Germany
| | - Roland Hermann Alfons Winter
- Faculty of Chemistry and Chemical Biology, Physical Chemistry ITechnical University of Dortmund Otto-Hahn-Str. 4a 44227 Dortmund Germany
| |
Collapse
|
63
|
Bandara A, Panahi A, Pantelopulos GA, Nagai T, Straub JE. Exploring the impact of proteins on the line tension of a phase-separating ternary lipid mixture. J Chem Phys 2019; 150:204702. [PMID: 31153187 DOI: 10.1063/1.5091450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The separation of lipid mixtures into thermodynamically stable phase-separated domains is dependent on lipid composition, temperature, and system size. Using molecular dynamics simulations, the line tension between thermodynamically stable lipid domains formed from ternary mixtures of di-C16:0 PC:di-C18:2 PC:cholesterol at 40:40:20 mol. % ratio was investigated via two theoretical approaches. The line tension was found to be 3.1 ± 0.2 pN by capillary wave theory and 4.7 ± 3.7 pN by pressure tensor anisotropy approaches for coarse-grained models based on the Martini force field. Using an all-atom model of the lipid membrane based on the CHARMM36 force field, the line tension was found to be 3.6 ± 0.9 pN using capillary wave theory and 1.8 ± 2.2 pN using pressure anisotropy approaches. The discrepancy between estimates of the line tension based on capillary wave theory and pressure tensor anisotropy methods is discussed. Inclusion of protein in Martini membrane lipid mixtures was found to reduce the line tension by 25%-35% as calculated by the capillary wave theory approach. To further understand and predict the behavior of proteins in phase-separated membranes, we have formulated an analytical Flory-Huggins model and parameterized it against the simulation results. Taken together these results suggest a general role for proteins in reducing the thermodynamic cost associated with domain formation in lipid mixtures and quantifies the thermodynamic driving force promoting the association of proteins to domain interfaces.
Collapse
Affiliation(s)
- Asanga Bandara
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - Afra Panahi
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - George A Pantelopulos
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| | - Tetsuro Nagai
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, USA
| |
Collapse
|
64
|
Biophysical characterization of mycobacterial model membranes and their interaction with rifabutin: Towards lipid-guided drug screening in tuberculosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1213-1227. [PMID: 31002767 DOI: 10.1016/j.bbamem.2019.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/12/2019] [Accepted: 04/08/2019] [Indexed: 01/31/2023]
Abstract
Lipid structure critically dictates the molecular interactions of drugs with membranes influencing passive diffusion, drug partitioning and accumulation, thereby underpinning a lipid-composition specific interplay. Spurring selective passive drug diffusion and uptake through membranes is an obvious solution to combat growing antibiotic resistance with minimized toxicities. However, the spectrum of complex mycobacterial lipids and lack thereof of suitable membrane platforms limits the understanding of mechanisms underlying drug-membrane interactions in tuberculosis. Herein, we developed membrane scaffolds specific to mycobacterial outer membrane and demonstrate them as improvised research platforms for investigating anti-tubercular drug interactions. Combined spectroscopy and microscopy results reveal an enhanced partitioning of model drug Rifabutin in trehalose dimycolate-containing mycobacterial membrane systems. These effects are apportioned to specific changes in membrane structure, order and fluidity leading to enhanced drug interaction. These findings on the membrane biophysical consequences of drug interactions will offer valuable insights for guiding the design of more effective antibiotic drugs coupled with tuned toxicity profiles.
Collapse
|
65
|
Li L, Dwivedi M, Patra S, Erwin N, Möbitz S, Winter R. Probing Colocalization of N-Ras and K-Ras4B Lipoproteins in Model Biomembranes. Chembiochem 2019; 20:1190-1195. [PMID: 30604476 DOI: 10.1002/cbic.201800776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Indexed: 12/28/2022]
Abstract
Signaling of N-Ras and K-Ras4B proteins depends strongly on their correct localization in the cell membrane. In vivo studies suggest that intermolecular interactions foster the self-association of both N-Ras and K-Ras4B and the formation of nanoclusters in the cell membrane. As sites for effector binding, nanocluster formation is thought to be essential for effective signal transmission of both N-Ras and K-Ras4B. To shed more light on the spatial arrangement and mechanism underlying the proposed cross-talk between spatially segregated Ras proteins, the simultaneous localization of N-Ras and K-Ras4B and their effect on the lateral organization of a heterogeneous model biomembrane has been studied by using AFM and FRET methodology. It is shown that, owing to the different natures of their membrane anchor systems, N-Ras and K-Ras4B not only avoid assembly in bulk solution and do not colocalize, but rather form individual nanoclusters that diffuse independently in the fluid membrane plane.
Collapse
Affiliation(s)
- Lei Li
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I, Technical University of Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany.,International Max Planck Research School (IMPRS), in Chemical and Molecular Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Mridula Dwivedi
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I, Technical University of Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Satyajit Patra
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I, Technical University of Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Nelli Erwin
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I, Technical University of Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany.,International Max Planck Research School (IMPRS), in Chemical and Molecular Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Simone Möbitz
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I, Technical University of Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I, Technical University of Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
66
|
Lakshman B, Messing S, Schmid EM, Clogston JD, Gillette WK, Esposito D, Kessing B, Fletcher DA, Nissley DV, McCormick F, Stephen AG, Jean-Francois FL. Quantitative biophysical analysis defines key components modulating recruitment of the GTPase KRAS to the plasma membrane. J Biol Chem 2019; 294:2193-2207. [PMID: 30559287 PMCID: PMC6369290 DOI: 10.1074/jbc.ra118.005669] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/28/2018] [Indexed: 11/06/2022] Open
Abstract
The gene encoding the GTPase KRAS is frequently mutated in pancreatic, lung, and colorectal cancers. The KRAS fraction in the plasma membrane (PM) correlates with activation of the mitogen-activated protein kinase (MAPK) pathway and subsequent cellular proliferation. Understanding KRAS's interaction with the PM is challenging given the complexity of the cellular environment. To gain insight into key components necessary for KRAS signal transduction at the PM, we used synthetic membranes such as liposomes and giant unilamellar vesicles. Using surface plasmon resonance (SPR) spectroscopy, we demonstrated that KRAS and Raf-1 proto-oncogene Ser/Thr kinase (RAF1) domains interact with these membranes primarily through electrostatic interactions with negatively charged lipids reinforced by additional interactions involving phosphatidyl ethanolamine and cholesterol. We found that the RAF1 region spanning RBD through CRD (RBDCRD) interacts with the membrane significantly more strongly than the isolated RBD or CRD domains and synergizes KRAS partitioning to the membrane. We also found that calmodulin and phosphodiesterase 6 delta (PDE6δ), but not galectin3 previously proposed to directly interact with KRAS, passively sequester KRAS and prevent it from partitioning into the PM. RAF1 RBDCRD interacted with membranes preferentially at nonraft lipid domains. Moreover, a C-terminal O-methylation was crucial for KRAS membrane localization. These results contribute to a better understanding of how the KRAS-membrane interaction is tuned by multiple factors whose identification could inform drug discovery efforts to disrupt this critical interaction in diseases such as cancer.
Collapse
Affiliation(s)
- Bindu Lakshman
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Simon Messing
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Eva M Schmid
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720
| | - Jeffrey D Clogston
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702
| | - William K Gillette
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Dominic Esposito
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Bailey Kessing
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Daniel A Fletcher
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Chan Zuckerberg Biohub, San Francisco, California 94158
| | - Dwight V Nissley
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Frank McCormick
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94158
| | - Andrew G Stephen
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Frantz L Jean-Francois
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702,
| |
Collapse
|
67
|
Small GTPase peripheral binding to membranes: molecular determinants and supramolecular organization. Biochem Soc Trans 2018; 47:13-22. [PMID: 30559268 DOI: 10.1042/bst20170525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/23/2018] [Accepted: 11/27/2018] [Indexed: 01/26/2023]
Abstract
Small GTPases regulate many aspects of cell logistics by alternating between an inactive, GDP-bound form and an active, GTP-bound form. This nucleotide switch is coupled to a cytosol/membrane cycle, such that GTP-bound small GTPases carry out their functions at the periphery of endomembranes. A global understanding of the molecular determinants of the interaction of small GTPases with membranes and of the resulting supramolecular organization is beginning to emerge from studies of model systems. Recent studies highlighted that small GTPases establish multiple interactions with membranes involving their lipid anchor, their lipididated hypervariable region and elements in their GTPase domain, which combine to determine the strength, specificity and orientation of their association with lipids. Thereby, membrane association potentiates small GTPase interactions with GEFs, GAPs and effectors through colocalization and positional matching. Furthermore, it leads to small GTPase nanoclustering and to lipid demixing, which drives the assembly of molecular platforms in which proteins and lipids co-operate in producing high-fidelity signals through feedback and feedforward loops. Although still fragmentary, these observations point to an integrated model of signaling by membrane-attached small GTPases that involves a diversity of direct and indirect interactions, which can inspire new therapeutic strategies to block their activities in diseases.
Collapse
|
68
|
Neale C, García AE. Methionine 170 is an Environmentally Sensitive Membrane Anchor in the Disordered HVR of K-Ras4B. J Phys Chem B 2018; 122:10086-10096. [PMID: 30351122 DOI: 10.1021/acs.jpcb.8b07919] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ras protein colocalization at the plasma membrane is implicated in the activation of signaling cascades that promote cell growth, survival, and motility. However, the mechanisms that underpin Ras self-association remain unclear. We use molecular dynamics simulations to show how basic and hydrophobic components of the disordered C-terminal membrane tether of K-Ras4B combine to regulate its membrane interactions. Specifically, anionic lipids attract lysine residues to the membrane surface, thereby splitting the peptide population into two states that exchange on the microsecond time scale. These states differ in the membrane insertion of a methionine residue, which is influenced by local membrane composition. As a result, these states may impose context-dependent biases on the disposition of Ras' signaling domain, with possible implications for the accessibility of its effector binding surfaces. We investigate Ras' ability to nanocluster by fly-casting for patches of anionic lipids and find that while anionic lipids promote the intermolecular association of K-Ras4B membrane tethers, at short range this appears to be a passive process in which anionic lipids electrostatically screen these cationic peptides to mitigate their natural repulsion. Together with the sub-microsecond stability of interpeptide contacts, this result suggests that experimentally observed K-Ras4B nanoclustering is not driven by direct intermolecular contact of its membrane tethers.
Collapse
|
69
|
Zhou Y, Prakash P, Gorfe AA, Hancock JF. Ras and the Plasma Membrane: A Complicated Relationship. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031831. [PMID: 29229665 DOI: 10.1101/cshperspect.a031831] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The primary site of Ras signal transduction is the plasma membrane (PM). On the PM, the ubiquitously expressed Ras isoforms, H-, N-, and K-Ras, spatially segregate to nonoverlapping nanometer-sized domains, called nanoclusters, with further lateral segregation into nonoverlapping guanosine triphosphate (GTP)-bound and guanosine diphosphate (GDP)-bound nanoclusters. Effector binding and activation is restricted to GTP nanoclusters, rendering the underlying assembly mechanism essential to Ras signaling. Ras nanoclusters have distinct lipid compositions as a result of lipid-sorting specificity encoded in each Ras carboxy-terminal membrane anchor. The role of the G-domain in regulating anchor-membrane interactions is becoming clearer. Ras G-domains undergo significant conformational orientation changes on guanine nucleotide switch, leading to differential direct contacts between the G-domain and reorganization of the membrane anchor. Ras G-domains also contain weak dimer interfaces, resulting in homodimerization, which is an obligate step of nanoclustering. Modulating the formation of Ras dimers, the lipid composition of the PM or lateral dynamics of key PM phospholipids represent novel mechanisms whereby the extent of Ras nanoclustering can be regulated to tune the gain in Ras signaling circuits.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Priyanka Prakash
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| |
Collapse
|
70
|
Autoinhibition in Ras effectors Raf, PI3Kα, and RASSF5: a comprehensive review underscoring the challenges in pharmacological intervention. Biophys Rev 2018; 10:1263-1282. [PMID: 30269291 PMCID: PMC6233353 DOI: 10.1007/s12551-018-0461-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023] Open
Abstract
Autoinhibition is an effective mechanism that guards proteins against spurious activation. Despite its ubiquity, the distinct organizations of the autoinhibited states and their release mechanisms differ. Signaling is most responsive to the cell environment only if a small shift in the equilibrium is required to switch the system from an inactive (occluded) to an active (exposed) state. Ras signaling follows this paradigm. This underscores the challenge in pharmacological intervention to exploit and enhance autoinhibited states. Here, we review autoinhibition and release mechanisms at the membrane focusing on three representative Ras effectors, Raf protein kinase, PI3Kα lipid kinase, and NORE1A (RASSF5) tumor suppressor, and point to the ramifications to drug discovery. We further touch on Ras upstream and downstream signaling, Ras activation, and the Ras superfamily in this light, altogether providing a broad outlook of the principles and complexities of autoinhibition.
Collapse
|
71
|
Small-Molecule Modulation of Lipid-Dependent Cellular Processes against Cancer: Fats on the Gunpoint. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6437371. [PMID: 30186863 PMCID: PMC6114229 DOI: 10.1155/2018/6437371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/22/2018] [Indexed: 12/27/2022]
Abstract
Lipid cell membrane composed of various distinct lipids and proteins act as a platform to assemble various signaling complexes regulating innumerous cellular processes which are strongly downregulated or altered in cancer cells emphasizing the still-underestimated critical function of lipid biomolecules in cancer initiation and progression. In this review, we outline the current understanding of how membrane lipids act as signaling hot spots by generating distinct membrane microdomains called rafts to initiate various cellular processes and their modulation in cancer phenotypes. We elucidate tangible drug targets and pathways all amenable to small-molecule perturbation. Ranging from targeting membrane rafts organization/reorganization to rewiring lipid metabolism and lipid sorting in cancer, the work summarized here represents critical intervention points being attempted for lipid-based anticancer therapy and future directions.
Collapse
|
72
|
Erwin N, Dwivedi M, Mejuch T, Waldmann H, Winter R. UNC119A Decreases the Membrane Binding of Myristoylated c-Src. Chembiochem 2018; 19:1482-1487. [PMID: 29700916 DOI: 10.1002/cbic.201800158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Indexed: 12/26/2022]
Abstract
Plasma membrane localization of myristoylated c-Src, a proto-oncogene protein-tyrosine kinase, is required for its signaling activity. Recent studies proposed that UNC119 protein functions as a solubilizing factor for myristoylated proteins, thereby regulating their subcellular distribution and signaling. The underlying molecular mechanism by which UNC119 regulates the membrane binding of c-Src has remained elusive. By combining different biophysical techniques, we have found that binding of a myristoylated c-Src-derived N-terminal peptide (Myr-Src) by UNC119A results in a reduced membrane binding affinity of the peptide, due to the competition of binding to membranes. The dissociation of Myr-Src from membranes is facilitated in the presence of UNC119A, as a consequence of which the clustering propensity of this peptide on the membrane is partially impaired. By these means, UNC119A is able to regulate c-Src spatially in the cytoplasm and on cellular membranes, and this has important implications for its cellular signaling.
Collapse
Affiliation(s)
- Nelli Erwin
- Physical Chemistry I, Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Mridula Dwivedi
- Physical Chemistry I, Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Tom Mejuch
- Department of Chemical Biology, Max-Plank-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max-Plank-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I, Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
73
|
|
74
|
Zhou Y, Hancock JF. Deciphering lipid codes: K-Ras as a paradigm. Traffic 2018; 19:157-165. [PMID: 29120102 PMCID: PMC5927616 DOI: 10.1111/tra.12541] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 01/02/2023]
Abstract
The cell plasma membrane (PM) is a highly dynamic and heterogeneous lipid environment, driven by complex hydrophobic and electrostatic interactions among the hundreds of types of lipid species. Although the biophysical processes governing lipid lateral segregation in the cell PM have been established in vitro, biological implications of lipid heterogeneity are poorly understood. Of particular interest is how membrane proteins potentially utilize transient spatial clustering of PM lipids to regulate function. This review focuses on a lipid-anchored small GTPase K-Ras as an example to explore how its C-terminal membrane-anchoring domain, consisting of a contiguous hexa-lysine polybasic domain and an adjacent farnesyl anchor, possesses a complex coding mechanism for highly selective lipid sorting on the PM. How this lipid specificity modulates K-Ras signal transmission will also be discussed.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431, Fannin Street, Houston, TX
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431, Fannin Street, Houston, TX
| |
Collapse
|
75
|
Li ZL, Prakash P, Buck M. A "Tug of War" Maintains a Dynamic Protein-Membrane Complex: Molecular Dynamics Simulations of C-Raf RBD-CRD Bound to K-Ras4B at an Anionic Membrane. ACS CENTRAL SCIENCE 2018; 4:298-305. [PMID: 29532030 PMCID: PMC5832993 DOI: 10.1021/acscentsci.7b00593] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Indexed: 06/11/2023]
Abstract
Association of Raf kinase with activated Ras triggers downstream signaling cascades toward regulating transcription in the cells' nucleus. Dysregulation of Ras-Raf signaling stimulates cancers. We investigate the C-Raf RBD and CRD regions when bound to oncogenic K-Ras4B at the membrane. All-atom molecular dynamics simulations suggest that the membrane plays an integral role in regulating the configurational ensemble of the complex. Remarkably, the complex samples a few states dynamically, reflecting a competition between C-Raf CRD- and K-Ras4B- membrane interactions. This competition arises because the interaction between the RBD and K-Ras is strong while the linker between the RBD and CRD is short. Such a mechanism maintains a modest binding for the overall complex at the membrane and is expected to facilitate fast signaling processes. Competition of protein-membrane contacts is likely a common mechanism for other multiprotein complexes, if not multidomain proteins at membranes.
Collapse
Affiliation(s)
- Zhen-Lu Li
- Department of Physiology and Biophysics, Department of Neurosciences, Department of Pharmacology, Case Comprehensive
Cancer Center and Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Priyanka Prakash
- Department
of Integrative Biology and Pharmacology, University of Texas Health Science at Houston, Houston, Texas 77225, United States
| | - Matthias Buck
- Department of Physiology and Biophysics, Department of Neurosciences, Department of Pharmacology, Case Comprehensive
Cancer Center and Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
76
|
Li L, Dwivedi M, Erwin N, Möbitz S, Nussbaumer P, Winter R. Interaction of KRas4B protein with C6-ceramide containing lipid model membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1008-1014. [PMID: 29357287 DOI: 10.1016/j.bbamem.2018.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 01/02/2023]
Abstract
Ras proteins are oncoproteins which play a pivotal role in cellular signaling pathways. All Ras proteins' signaling strongly depends on their correct localization in the cell membrane. Over 30% of cancers are driven by mutant Ras proteins, and KRas4B is the Ras isoform most frequently mutated. C6-ceramide has been shown to inhibit the growth activity of KRas4B mutated cells. However, the mechanism underlying this inhibition remains elusive. Here, we established a heterogeneous model biomembrane containing C6-ceramide. C6-ceramide incorporation does not disrupt the lipid membrane. Addition of KRas4B leads to drastic changes in the lateral membrane organization of the membrane, however. In contrast to the partitioning behavior in other membranes, KRas4B forms small, monodisperse nanoclusters dispersed in a fluid-like environment, in all likelihood induced by some kind of lipid sorting mechanism. Fluorescence cross-correlation data indicate no direct interaction between C6-ceramide and KRas4B, suggesting that KRas4B essentially recruits other lipids. A FRET-based binding assay reveals that the stability of KRas4B proteins inserted into the membrane containing C6-ceramide is reduced. Based on the combined results obtained, we postulate a molecular mechanism for the inhibition of KRas4B mutated cells' activity through C6-ceramide.
Collapse
Affiliation(s)
- Lei Li
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I, Technical University of Dortmund, Otto-Hahn-Strasse 4a, 44221 Dortmund, Germany; International Max Planck Research School (IMPRS) in Chemical and Molecular Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Mridula Dwivedi
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I, Technical University of Dortmund, Otto-Hahn-Strasse 4a, 44221 Dortmund, Germany
| | - Nelli Erwin
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I, Technical University of Dortmund, Otto-Hahn-Strasse 4a, 44221 Dortmund, Germany; International Max Planck Research School (IMPRS) in Chemical and Molecular Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Simone Möbitz
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I, Technical University of Dortmund, Otto-Hahn-Strasse 4a, 44221 Dortmund, Germany
| | - Peter Nussbaumer
- Lead Discovery Center GmbH, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I, Technical University of Dortmund, Otto-Hahn-Strasse 4a, 44221 Dortmund, Germany.
| |
Collapse
|
77
|
Ray A, Jatana N, Thukral L. Lipidated proteins: Spotlight on protein-membrane binding interfaces. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 128:74-84. [DOI: 10.1016/j.pbiomolbio.2017.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 12/29/2016] [Accepted: 01/05/2017] [Indexed: 01/21/2023]
|
78
|
Sun F, Chen L, Ding X, Xu L, Zhou X, Wei P, Liang JF, Luo SZ. High-Resolution Insights into the Stepwise Self-Assembly of Nanofiber from Bioactive Peptides. J Phys Chem B 2017; 121:7421-7430. [PMID: 28719744 DOI: 10.1021/acs.jpcb.7b03626] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptide self-assembly has a profound biological significance since self-assembled bioactive peptides are gifted with improved bioactivity as well as life-span. In this study, peptide self-assembly was investigated using a therapeutic peptide, PTP-7S (EENFLGALFKALSKLL). Combining experiments of atomic force microscopy (AFM), circular dichroism (CD), and 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence spectra, PTP-7S showed the α-helical structure and was found self-assembling into nanofibers in solution. Relying on the coarse-grained (CG) dynamic simulations, the self-assembling of PTP-7S was revealed as a stepwise process that peptide monomers first clustered into peptide-assembling units (PUs) with charged surface, and then the PUs integrated together to construct nanofibril aggregates. Different roles of the nonbonded driving forces did play in the two phases: the hydrophobic force and electrostatic interaction acted as the predominant motivations in the formation of PUs and nanofiber, respectively. Moreover, the electrostatic interaction helped to guide the longitudinal growth of peptide nanofibers. A sequence principle is proposed for peptide self-assembling in aqueous solution: a balance of the counter charges and sufficient hydrophobicity degree. The self-assembled PTP-7S displayed good anticancer activity, proteases resistance, and sustained drug-release, showing a great potential for clinical application. This study reveals the molecular mechanism in explaining PTP-7S self-assembly and it is beneficial for future innovation of the self-assembled bioactive peptides.
Collapse
Affiliation(s)
- Fude Sun
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| | - Long Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| | - Xiufang Ding
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| | - Lida Xu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| | - Xirui Zhou
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| | - Peng Wei
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China.,School of Basic Medical Science, Beijing University of Chinese Medicine , Beijing 100029, China
| | - Jun F Liang
- Department of Biomedical Engineering, Chemistry, and Biology, Stevens Institute of Technology , Castle Point on Hudson, Hoboken, New Jersey 07030, United States
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| |
Collapse
|
79
|
Dwivedi M, Mejuch T, Waldmann H, Winter R. Lateral Organization of Host Heterogeneous Raft-like Membranes Altered by the Myristoyl Modification of Tyrosine Kinase c-Src. Angew Chem Int Ed Engl 2017; 56:10511-10515. [DOI: 10.1002/anie.201706233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Mridula Dwivedi
- Department of Chemistry and Chemical Biology, Physical Chemistry; Technical University of Dortmund; Otto-Hahn-Str.4a 44221 Dortmund Germany
| | - Tom Mejuch
- Department of Chemistry and Chemical Biology; Max-Planck-Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Herbert Waldmann
- Department of Chemistry and Chemical Biology; Max-Planck-Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Physical Chemistry; Technical University of Dortmund; Otto-Hahn-Str.4a 44221 Dortmund Germany
| |
Collapse
|
80
|
Dwivedi M, Mejuch T, Waldmann H, Winter R. Lateral Organization of Host Heterogeneous Raft-like Membranes Altered by the Myristoyl Modification of Tyrosine Kinase c-Src. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Mridula Dwivedi
- Department of Chemistry and Chemical Biology, Physical Chemistry; Technical University of Dortmund; Otto-Hahn-Str.4a 44221 Dortmund Germany
| | - Tom Mejuch
- Department of Chemistry and Chemical Biology; Max-Planck-Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Herbert Waldmann
- Department of Chemistry and Chemical Biology; Max-Planck-Institute of Molecular Physiology; Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Physical Chemistry; Technical University of Dortmund; Otto-Hahn-Str.4a 44221 Dortmund Germany
| |
Collapse
|
81
|
Erwin N, Patra S, Dwivedi M, Weise K, Winter R. Influence of isoform-specific Ras lipidation motifs on protein partitioning and dynamics in model membrane systems of various complexity. Biol Chem 2017; 398:547-563. [PMID: 27977396 DOI: 10.1515/hsz-2016-0289] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/07/2016] [Indexed: 12/17/2022]
Abstract
The partitioning of the lipidated signaling proteins N-Ras and K-Ras4B into various membrane systems, ranging from single-component fluid bilayers, binary fluid mixtures, heterogeneous raft model membranes up to complex native-like lipid mixtures (GPMVs) in the absence and presence of integral membrane proteins have been explored in the last decade in a combined chemical-biological and biophysical approach. These studies have revealed pronounced isoform-specific differences regarding the lateral distribution in membranes and formation of protein-rich membrane domains. In this context, we will also discuss the effects of lipid head group structure and charge density on the partitioning behavior of the lipoproteins. Moreover, the dynamic properties of N-Ras and K-Ras4B have been studied in different model membrane systems and native-like crowded milieus. Addition of crowding agents such as Ficoll and its monomeric unit, sucrose, gradually favors clustering of Ras proteins in forming small oligomers in the bulk; only at very high crowder concentrations association is disfavored.
Collapse
Affiliation(s)
- Nelli Erwin
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Dortmund Technical University, Otto-Hahn-Strasse 4a, D-44227 Dortmund
| | - Satyajit Patra
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Dortmund Technical University, Otto-Hahn-Strasse 4a, D-44227 Dortmund
| | - Mridula Dwivedi
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Dortmund Technical University, Otto-Hahn-Strasse 4a, D-44227 Dortmund
| | - Katrin Weise
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Dortmund Technical University, Otto-Hahn-Strasse 4a, D-44227 Dortmund
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, Dortmund Technical University, Otto-Hahn-Strasse 4a, D-44227 Dortmund
| |
Collapse
|
82
|
Simanshu DK, Nissley DV, McCormick F. RAS Proteins and Their Regulators in Human Disease. Cell 2017; 170:17-33. [PMID: 28666118 PMCID: PMC5555610 DOI: 10.1016/j.cell.2017.06.009] [Citation(s) in RCA: 1160] [Impact Index Per Article: 165.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/22/2017] [Accepted: 06/07/2017] [Indexed: 02/07/2023]
Abstract
RAS proteins are binary switches, cycling between ON and OFF states during signal transduction. These switches are normally tightly controlled, but in RAS-related diseases, such as cancer, RASopathies, and many psychiatric disorders, mutations in the RAS genes or their regulators render RAS proteins persistently active. The structural basis of the switch and many of the pathways that RAS controls are well known, but the precise mechanisms by which RAS proteins function are less clear. All RAS biology occurs in membranes: a precise understanding of RAS' interaction with membranes is essential to understand RAS action and to intervene in RAS-driven diseases.
Collapse
Affiliation(s)
- Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21701, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21701, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD 21701, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3(rd) Street, San Francisco, CA 94158, USA.
| |
Collapse
|
83
|
Dwivedi M, Winter R. Binding of Vinculin to Lipid Membranes in Its Inhibited and Activated States. Biophys J 2017; 111:1444-1453. [PMID: 27705767 DOI: 10.1016/j.bpj.2016.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 10/20/2022] Open
Abstract
Phosphoinositols are an important class of phospholipids that are involved in a myriad of cellular processes, from cell signaling to motility and adhesion. Vinculin (Vn) is a major adaptor protein that regulates focal adhesions in conjunction with PIP2 in lipid membranes and other cytoskeletal components. The binding and unbinding transitions of Vn at the membrane interface are an important link to understanding the coordination of cell signaling and motility. Using different biophysical tools, including atomic force microscopy combined with confocal fluorescence microscopy and Fourier transform infrared spectroscopy, we studied the nanoscopic interactions of activated and autoinhibited states of Vn with lipid membranes. We hypothesize that a weak interaction occurs between Vn and lipid membranes, which leads to binding of autoinhibited Vn to supported lipid bilayers, and to unbinding in freestanding lipid vesicles. Likely driving forces may include tethering of the C-terminus to the lipid membrane, as well as hydrophobic helix-membrane interactions. Conversely, activated Vn binds strongly to membranes through specific interactions with clusters of PIP2 embedded in lipid membranes. Activated Vn harbored on PIP2 clusters may form small oligomeric interaction platforms for further interaction partners, which is necessary for the proper function of focal adhesion points.
Collapse
Affiliation(s)
- Mridula Dwivedi
- Physical Chemistry I, Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.
| | - Roland Winter
- Physical Chemistry I, Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
84
|
Zhang SY, Sperlich B, Li FY, Al-Ayoubi S, Chen HX, Zhao YF, Li YM, Weise K, Winter R, Chen YX. Phosphorylation Weakens but Does Not Inhibit Membrane Binding and Clustering of K-Ras4B. ACS Chem Biol 2017; 12:1703-1710. [PMID: 28448716 DOI: 10.1021/acschembio.7b00165] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
K-Ras4B is one of the most frequently mutated Ras isoforms in cancer. The signaling activity of K-Ras4B depends on its localization to the plasma membrane (PM), which is mainly mediated by its polybasic farnesylated C-terminus. On top of the constitutive cycles that maintain the PM enrichment of K-Ras4B, conditional phosphorylation at Ser181 located within this motif has been found to be involved in regulating K-Ras4B's cell distribution and signaling activity. However, discordant observations have undermined our understanding of the role this phosphorylation plays. Here, we report an efficient strategy for producing K-Ras4B simultaneously bearing phosphate, farnesyl, and methyl modifications on a preparative scale, a very useful in vitro system when used in concert with model biomembranes. By using this system, we determined that phosphorylation at Ser181 does not fully inhibit membrane binding and clustering of K-Ras4B but reduces its membrane binding affinity, depending on membrane fluidity. In addition, phosphorylated K-Ras4B maintains tight association with its cytosolic shuttle protein PDEδ. After delivering K-Ras4B containing nonhydrolyzable phosphoserine mimetic into cells, the protein displayed a decreasing PM distribution compared with nonphosphorylable K-Ras4B, implying that phosphorylation might facilitate the dissociation of K-Ras4B from the PM. In addition, phosphorylation does not alter the localization of K-Ras4B in the liquid-disordered lipid subdomains of the membrane but slightly alters the thermotropic properties of K-Ras4B-incorporated membranes probably due to minor differences in membrane partitioning and dynamics. These results provide novel mechanistic insights into the role that phosphorylation at Ser181 plays in regulating K-Ras4B's distribution and activity.
Collapse
Affiliation(s)
- Si-Yu Zhang
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Benjamin Sperlich
- Physical
Chemistry I − Biophysical Chemistry, Faculty of Chemistry and
Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, D-44227 Dortmund, Germany
| | - Fang-Yi Li
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Samy Al-Ayoubi
- Physical
Chemistry I − Biophysical Chemistry, Faculty of Chemistry and
Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, D-44227 Dortmund, Germany
| | - Hong-Xue Chen
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu-Fen Zhao
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yan-Mei Li
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Katrin Weise
- Physical
Chemistry I − Biophysical Chemistry, Faculty of Chemistry and
Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, D-44227 Dortmund, Germany
| | - Roland Winter
- Physical
Chemistry I − Biophysical Chemistry, Faculty of Chemistry and
Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, D-44227 Dortmund, Germany
| | - Yong-Xiang Chen
- Key
Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology
(Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
85
|
Sun F, Chen L, Wei P, Chai M, Ding X, Xu L, Luo SZ. Dimerization and Structural Stability of Amyloid Precursor Proteins Affected by the Membrane Microenvironments. J Chem Inf Model 2017; 57:1375-1387. [DOI: 10.1021/acs.jcim.7b00196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fude Sun
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Long Chen
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Wei
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengya Chai
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiufang Ding
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lida Xu
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of
Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
86
|
Sperlich B, Kapoor S, Waldmann H, Winter R, Weise K. Regulation of K-Ras4B Membrane Binding by Calmodulin. Biophys J 2017; 111:113-22. [PMID: 27410739 DOI: 10.1016/j.bpj.2016.05.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/03/2016] [Accepted: 05/24/2016] [Indexed: 12/28/2022] Open
Abstract
K-Ras4B is a membrane-bound small GTPase with a prominent role in cancer development. It contains a polybasic farnesylated C-terminus that is required for the correct localization and clustering of K-Ras4B in distinct membrane domains. PDEδ and the Ca(2+)-binding protein calmodulin (CaM) are known to function as potential binding partners for farnesylated Ras proteins. However, they differ in the number of interaction sites with K-Ras4B, leading to different modes of interaction, and thus affect the subcellular distribution of K-Ras4B in different ways. Although it is clear that Ca(2+)-bound CaM can play a role in the dynamic spatial cycle of K-Ras4B in the cell, the exact molecular mechanism is only partially understood. In this biophysical study, we investigated the effect of Ca(2+)/CaM on the interaction of GDP- and GTP-loaded K-Ras4B with heterogeneous model biomembranes by using a combination of different spectroscopic and imaging techniques. The results show that Ca(2+)/CaM is able to extract K-Ras4B from negatively charged membranes in a nucleotide-independent manner. Moreover, the data demonstrate that the complex of Ca(2+)/CaM and K-Ras4B is stable in the presence of anionic membranes and shows no membrane binding. Finally, the influence of Ca(2+)/CaM on the interaction of K-Ras4B with membranes is compared with that of PDEδ, which was investigated in a previous study. Although both CaM and PDEδ exhibit a hydrophobic binding pocket for farnesyl, they have different effects on membrane binding of K-Ras4B and hence should be capable of regulating K-Ras4B plasma membrane localization in the cell.
Collapse
Affiliation(s)
- Benjamin Sperlich
- Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Dortmund, Germany
| | - Shobhna Kapoor
- Chemical Biology, TU Dortmund University, Dortmund, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Herbert Waldmann
- Chemical Biology, TU Dortmund University, Dortmund, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Dortmund, Germany.
| | - Katrin Weise
- Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
87
|
Yang ST, Kreutzberger AJB, Kiessling V, Ganser-Pornillos BK, White JM, Tamm LK. HIV virions sense plasma membrane heterogeneity for cell entry. SCIENCE ADVANCES 2017; 3:e1700338. [PMID: 28782011 PMCID: PMC5489272 DOI: 10.1126/sciadv.1700338] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/12/2017] [Indexed: 05/20/2023]
Abstract
It has been proposed that cholesterol in host cell membranes plays a pivotal role for cell entry of HIV. However, it remains largely unknown why virions prefer cholesterol-rich heterogeneous membranes to uniformly fluid membranes for membrane fusion. Using giant plasma membrane vesicles containing cholesterol-rich ordered and cholesterol-poor fluid lipid domains, we demonstrate that the HIV receptor CD4 is substantially sequestered into ordered domains, whereas the co-receptor CCR5 localizes preferentially at ordered/disordered domain boundaries. We also show that HIV does not fuse from within ordered regions of the plasma membrane but rather at their boundaries. Ordered/disordered lipid domain coexistence is not required for HIV attachment but is a prerequisite for successful fusion. We propose that HIV virions sense and exploit membrane discontinuities to gain entry into cells. This study provides surprising answers to the long-standing question about the roles of cholesterol and ordered lipid domains in cell entry of HIV and perhaps other enveloped viruses.
Collapse
Affiliation(s)
- Sung-Tae Yang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Alex J. B. Kreutzberger
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Volker Kiessling
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Barbie K. Ganser-Pornillos
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
| | - Judith M. White
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Lukas K. Tamm
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
- Corresponding author.
| |
Collapse
|
88
|
Computational Modeling Reveals that Signaling Lipids Modulate the Orientation of K-Ras4A at the Membrane Reflecting Protein Topology. Structure 2017; 25:679-689.e2. [PMID: 28286004 DOI: 10.1016/j.str.2017.02.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/18/2017] [Accepted: 02/16/2017] [Indexed: 12/17/2022]
Abstract
The structural, dynamical, and functional characterization of the small GTPase K-Ras has become a research area of intense focus due to its high occurrence in human cancers. Ras proteins are only fully functional when they interact with the plasma membrane. Here we present all-atom molecular dynamics simulations (totaling 5.8 μs) to investigate the K-Ras4A protein at membranes that contain anionic lipids (phosphatidyl serine or phosphatidylinositol bisphosphate). We find that similarly to the homologous and highly studied K-Ras4B, K-Ras4A prefers a few distinct orientations at the membrane. Remarkably, the protein surface charge and certain lipids can strongly modulate the orientation preference. In a novel analysis, we reveal that the electrostatic interaction (attraction but also repulsion) between the protein's charged residues and anionic lipids determines the K-Ras4A orientation, but that this is also influenced by the topology of the protein, reflecting the geometry of its surfaces.
Collapse
|
89
|
Erwin N, Sperlich B, Garivet G, Waldmann H, Weise K, Winter R. Lipoprotein insertion into membranes of various complexity: lipid sorting, interfacial adsorption and protein clustering. Phys Chem Chem Phys 2017; 18:8954-62. [PMID: 26960984 DOI: 10.1039/c6cp00563b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In a combined chemical-biological and biophysical approach we explored the membrane partitioning of the lipidated signaling proteins N-Ras and K-Ras4B into membrane systems of different complexity, ranging from one-component lipid bilayers and anionic binary and ternary heterogeneous membrane systems even up to partitioning studies on protein-free and protein-containing giant plasma membrane vesicles (GPMVs). To yield a pictorial view of the localization process, imaging using confocal laser scanning and atomic force microscopy was performed. The results reveal pronounced isoform-specific differences regarding the lateral distribution and formation of protein-rich membrane domains. Line tension is one of the key parameters controlling not only the size and dynamic properties of segregated lipid domains but also the partitioning process of N-Ras that acts as a lineactant. The formation of N-Ras protein clusters is even recorded for almost vanishing hydrophobic mismatch. Conversely, for K-Ras4B, selective localization and clustering are electrostatically mediated by its polybasic farnesylated C-terminus. The formation of K-Ras4B clusters is also observed for the multi-component GPMV membrane, i.e., it seems to be a general phenomenon, largely independent of the details of the membrane composition, including the anionic charge density of lipid headgroups. Our data indicate that unspecific and entropy-driven membrane-mediated interactions play a major role in the partitioning behavior, thus relaxing the need for a multitude of fine-tuned interactions. Such a scenario seems also to be reasonable recalling the high dynamic nature of cellular membranes. Finally, we note that even relatively simple models of heterogeneous membranes are able to reproduce many of the properties of much more complex biological membranes.
Collapse
Affiliation(s)
- Nelli Erwin
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, D-44221 Dortmund, Germany.
| | - Benjamin Sperlich
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, D-44221 Dortmund, Germany.
| | - Guillaume Garivet
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, D-44227 Dortmund, Germany and Faculty of Chemistry and Chemical Biology, Department of Chemical Biology, TU Dortmund University, D-44221 Dortmund, Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, D-44227 Dortmund, Germany and Faculty of Chemistry and Chemical Biology, Department of Chemical Biology, TU Dortmund University, D-44221 Dortmund, Germany
| | - Katrin Weise
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, D-44221 Dortmund, Germany.
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, D-44221 Dortmund, Germany.
| |
Collapse
|
90
|
Combining NMR Spectroscopy and Molecular Dynamics Simulation to Investigate the Structure and Dynamics of Membrane-Associated Proteins. SPRINGER SERIES IN BIOPHYSICS 2017. [DOI: 10.1007/978-3-319-66601-3_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
91
|
Ras Proteolipid Nanoassemblies on the Plasma Membrane Sort Lipids With High Selectivity. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/bs.abl.2017.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
92
|
Lipid-Sorting Specificity Encoded in K-Ras Membrane Anchor Regulates Signal Output. Cell 2016; 168:239-251.e16. [PMID: 28041850 DOI: 10.1016/j.cell.2016.11.059] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/12/2016] [Accepted: 11/29/2016] [Indexed: 11/22/2022]
Abstract
K-Ras is targeted to the plasma membrane by a C-terminal membrane anchor that comprises a farnesyl-cysteine-methyl-ester and a polybasic domain. We used quantitative spatial imaging and atomistic molecular dynamics simulations to examine molecular details of K-Ras plasma membrane binding. We found that the K-Ras anchor binds selected plasma membrane anionic lipids with defined head groups and lipid side chains. The precise amino acid sequence and prenyl group define a combinatorial code for lipid binding that extends beyond simple electrostatics; within this code lysine and arginine residues are non-equivalent and prenyl chain length modifies nascent polybasic domain lipid preferences. The code is realized by distinct dynamic tertiary structures of the anchor on the plasma membrane that govern amino acid side-chain-lipid interactions. An important consequence of this specificity is the ability of such anchors when aggregated to sort subsets of phospholipids into nanoclusters with defined lipid compositions that determine K-Ras signaling output.
Collapse
|
93
|
Lin X, Li Z, Gorfe AA. Reversible Effects of Peptide Concentration and Lipid Composition on H-Ras Lipid Anchor Clustering. Biophys J 2016; 109:2467-2470. [PMID: 26682805 DOI: 10.1016/j.bpj.2015.11.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/15/2015] [Accepted: 11/06/2015] [Indexed: 11/28/2022] Open
Abstract
Dynamic clusters of lipid-anchored Ras proteins are important for high-fidelity signal transduction in cells. The average size of Ras nanoclusters was reported to be independent of protein expression levels, and cholesterol depletion is commonly used to test the raft-preference of nanoclusters. However, whether protein concentration and membrane domain stability affect Ras clustering in a reversible manner is not well understood. We used coarse-grained molecular dynamics simulations to examine the reversibility of the effects of peptide and cholesterol concentrations as well as a lipid domain-perturbing nanoparticle (C60) on the dynamics and stability of H-Ras lipid-anchor nanoclusters. By comparing results from these simulations with previous observations from the literature, we show that effects of peptide/cholesterol concentrations on the dynamics and stability of H-Ras peptide nanoclusters are reversible. Our results also suggest a correlation between the stabilities of lipid domains and Ras nanoclusters, which is supported by our finding that C60 penetrates into the liquid-disordered domain of the bilayer, destabilizing lipid domains and thereby the stability of the nanoclusters.
Collapse
Affiliation(s)
- Xubo Lin
- Department of Integrative Biology and Pharmacology, Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Zhenlong Li
- Department of Integrative Biology and Pharmacology, Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, Medical School, The University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
94
|
Lu S, Jang H, Gu S, Zhang J, Nussinov R. Drugging Ras GTPase: a comprehensive mechanistic and signaling structural view. Chem Soc Rev 2016; 45:4929-52. [PMID: 27396271 PMCID: PMC5021603 DOI: 10.1039/c5cs00911a] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ras proteins are small GTPases, cycling between inactive GDP-bound and active GTP-bound states. Through these switches they regulate signaling that controls cell growth and proliferation. Activating Ras mutations are associated with approximately 30% of human cancers, which are frequently resistant to standard therapies. Over the past few years, structural biology and in silico drug design, coupled with improved screening technology, led to a handful of promising inhibitors, raising the possibility of drugging Ras proteins. At the same time, the invariable emergence of drug resistance argues for the critical importance of additionally honing in on signaling pathways which are likely to be involved. Here we overview current advances in Ras structural knowledge, including the conformational dynamic of full-length Ras in solution and at the membrane, therapeutic inhibition of Ras activity by targeting its active site, allosteric sites, and Ras-effector protein-protein interfaces, Ras dimers, the K-Ras4B/calmodulin/PI3Kα trimer, and targeting Ras with siRNA. To mitigate drug resistance, we propose signaling pathways that can be co-targeted along with Ras and explain why. These include pathways leading to the expression (or activation) of YAP1 and c-Myc. We postulate that these and Ras signaling pathways, MAPK/ERK and PI3K/Akt/mTOR, act independently and in corresponding ways in cell cycle control. The structural data are instrumental in the discovery and development of Ras inhibitors for treating RAS-driven cancers. Together with the signaling blueprints through which drug resistance can evolve, this review provides a comprehensive and innovative master plan for tackling mutant Ras proteins.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Shuo Gu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Children’s Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200127, China
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
95
|
Thukral L, Sengupta D, Ramkumar A, Murthy D, Agrawal N, Gokhale RS. The Molecular Mechanism Underlying Recruitment and Insertion of Lipid-Anchored LC3 Protein into Membranes. Biophys J 2016; 109:2067-78. [PMID: 26588566 DOI: 10.1016/j.bpj.2015.09.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/03/2015] [Accepted: 09/18/2015] [Indexed: 11/16/2022] Open
Abstract
Lipid modification of cytoplasmic proteins initiates membrane engagement that triggers diverse cellular processes. Despite the abundance of lipidated proteins in the human proteome, the key determinants underlying membrane recognition and insertion are poorly understood. Here, we define the course of spontaneous membrane insertion of LC3 protein modified with phosphatidylethanolamine using multiple coarse-grain simulations. The partitioning of the lipid anchor chains proceeds through a concerted process, with its two acyl chains inserting one after the other. Concurrently, a conformational rearrangement involving the α-helix III of LC3, especially in the three basic residues Lys65, Arg68, and Arg69, ensures stable insertion of the phosphatidylethanolamine anchor into membranes. Mutational studies validate the crucial role of these residues, and further live-cell imaging analysis shows a substantial reduction in the formation of autophagic vesicles for the mutant proteins. Our study captures the process of water-favored LC3 protein recruitment to the membrane and thus opens, to our knowledge, new avenues to explore the cellular dynamics underlying vesicular trafficking.
Collapse
Affiliation(s)
- Lipi Thukral
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India.
| | | | - Amrita Ramkumar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Divya Murthy
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Nikhil Agrawal
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Rajesh S Gokhale
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi, India.
| |
Collapse
|
96
|
Abstract
Lipid-modified GTPases in the Ras superfamily that mediate a variety of cell signaling processes were thought to be passively anchored to membranes. However, an increasing number of recent studies are finding that membrane binding of these proteins is hardly a passive process, and it involves the soluble catalytic domain as well as the lipid anchor. The catalytic domain adopts multiple orientations on the membrane surface due to internal fluctuations that are modulated by activation status and mutations. Distinct orientation preferences among small GTPases likely lead to differential signaling outcomes, as downstream effectors can sense different orientations. We review recent studies behind this important conclusion.
Collapse
Affiliation(s)
- Priyanka Prakash
- a Department of Integrative Biology and Pharmacology , University of Texas Health Science Center at Houston , Houston , TX , USA
| | - Alemayehu A Gorfe
- a Department of Integrative Biology and Pharmacology , University of Texas Health Science Center at Houston , Houston , TX , USA
| |
Collapse
|
97
|
Affiliation(s)
- Tom Mejuch
- Department
of Chemical Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Herbert Waldmann
- Department
of Chemical Biology, Max-Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
- Department
of Chemistry and Chemical Biology, Technical University of Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| |
Collapse
|
98
|
Patra S, Erwin N, Winter R. Translational Dynamics of Lipidated Ras Proteins in the Presence of Crowding Agents and Compatible Osmolytes. Chemphyschem 2016; 17:2164-9. [PMID: 27028423 DOI: 10.1002/cphc.201600179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Indexed: 11/07/2022]
Abstract
Ras proteins are small GTPases and are involved in transmitting signals that control cell growth, differentiation, and proliferation. Since the cell cytoplasm is crowded with different macromolecules, understanding the translational dynamics of Ras proteins in crowded environments is crucial to yielding deeper insight into their reactivity and function. Herein, the translational dynamics of lipidated N-Ras and K-Ras4B is studied in the bulk and in the presence of a macromolecular crowder (Ficoll) and the compatible osmolyte and microcrowder sucrose by fluorescence correlation spectroscopy. The results reveal that N-Ras forms dimers due to the presence of its lipid moiety in the hypervariable region, whereas K-Ras4B remains in its monomeric form in the bulk. Addition of a macromolecular crowding agent gradually favors clustering of the Ras proteins. In 20 wt % Ficoll N-Ras forms trimers and K-Ras4B dimers. Concentrations of sucrose up to 10 wt % foster formation of N-Ras trimers and K-Ras dimers as well. The results can be rationalized in terms of the excluded-volume effect, which enhances the association of the proteins, and, for the higher concentrations, by limited-hydration conditions. The results of this study shed new light on the association state of these proteins in a crowded environment. This is of particular interest for the Ras proteins, because their solution state-monomeric or clustered-influences their membrane-partitioning behavior and their interplay with cytosolic interaction partners.
Collapse
Affiliation(s)
- Satyajit Patra
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Nelli Erwin
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany
| | - Roland Winter
- Department of Chemistry and Chemical Biology, Biophysical Chemistry, TU Dortmund University, Otto-Hahn-Strasse 4a, 44227, Dortmund, Germany.
| |
Collapse
|
99
|
Lu S, Jang H, Muratcioglu S, Gursoy A, Keskin O, Nussinov R, Zhang J. Ras Conformational Ensembles, Allostery, and Signaling. Chem Rev 2016; 116:6607-65. [PMID: 26815308 DOI: 10.1021/acs.chemrev.5b00542] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ras proteins are classical members of small GTPases that function as molecular switches by alternating between inactive GDP-bound and active GTP-bound states. Ras activation is regulated by guanine nucleotide exchange factors that catalyze the exchange of GDP by GTP, and inactivation is terminated by GTPase-activating proteins that accelerate the intrinsic GTP hydrolysis rate by orders of magnitude. In this review, we focus on data that have accumulated over the past few years pertaining to the conformational ensembles and the allosteric regulation of Ras proteins and their interpretation from our conformational landscape standpoint. The Ras ensemble embodies all states, including the ligand-bound conformations, the activated (or inactivated) allosteric modulated states, post-translationally modified states, mutational states, transition states, and nonfunctional states serving as a reservoir for emerging functions. The ensemble is shifted by distinct mutational events, cofactors, post-translational modifications, and different membrane compositions. A better understanding of Ras biology can contribute to therapeutic strategies.
Collapse
Affiliation(s)
- Shaoyong Lu
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine , Shanghai, 200025, China.,Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | | | | | | | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States.,Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Sackler Institute of Molecular Medicine, Tel Aviv University , Tel Aviv 69978, Israel
| | - Jian Zhang
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine , Shanghai, 200025, China
| |
Collapse
|
100
|
Kapoor S, Fansa EK, Möbitz S, Ismail SA, Winter R, Wittinghofer A, Weise K. Effect of the N-Terminal Helix and Nucleotide Loading on the Membrane and Effector Binding of Arl2/3. Biophys J 2015; 109:1619-29. [PMID: 26488653 PMCID: PMC4624342 DOI: 10.1016/j.bpj.2015.08.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/05/2015] [Accepted: 08/10/2015] [Indexed: 01/02/2023] Open
Abstract
The small GTP-binding proteins Arl2 and Arl3, which are close homologs, share a number of interacting partners and act as displacement factors for prenylated and myristoylated cargo. Nevertheless, both proteins have distinct biological functions. Whereas Arl3 is considered a ciliary protein, Arl2 has been reported to be involved in tubulin folding, mitochondrial function, and Ras signaling. How these different roles are attained by the two homolog proteins is not fully understood. Recently, we showed that the N-terminal amphipathic helix of Arl3, but not that of Arl2, regulates the release of myristoylated ciliary proteins from the GDI-like solubilizing factor UNC119a/b. In the biophysical study presented here, both proteins are shown to exhibit a preferential localization and clustering in liquid-disordered domains of phase-separated membranes. However, the membrane interaction behavior differs significantly between both proteins with regard to their nucleotide loading. Whereas Arl3 and other Arf proteins with an N-terminal amphipathic helix require GTP loading for the interaction with membranes, Arl2 binds to membranes in a nucleotide-independent manner. In contrast to Arl2, the N-terminal helix of Arl3 increases the binding affinity to UNC119a. Furthermore, UNC119a impedes membrane binding of Arl3, but not of Arl2. Taken together, these results suggest an interplay among the nucleotide status of Arl3, the location of the N-terminal helix, membrane fluidity and binding, and the release of lipid modified cargos from carriers such as UNC119a. Since a specific Arl3-GEF is postulated to reside inside cilia, the N-terminal helix of Arl3•GTP would be available for allosteric regulation of UNC119a cargo release only inside cilia.
Collapse
Affiliation(s)
- Shobhna Kapoor
- Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Dortmund, Germany; Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Eyad K Fansa
- Structural Biology Group, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Simone Möbitz
- Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Dortmund, Germany
| | - Shehab A Ismail
- Structural Biology Group, Max Planck Institute of Molecular Physiology, Dortmund, Germany; Structural Biology of Cilia, CR-UK Beatson Institute, Glasgow, United Kingdom
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Dortmund, Germany
| | - Alfred Wittinghofer
- Structural Biology Group, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
| | - Katrin Weise
- Physical Chemistry I - Biophysical Chemistry, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|