51
|
Mochizuki K, Sumi T, Koga K. Driving forces for the pressure-induced aggregation of poly(N-isopropylacrylamide) in water. Phys Chem Chem Phys 2016; 18:4697-703. [DOI: 10.1039/c5cp07674a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Driving forces for the pressure-induced aggregation of poly(N-isopropylacrylamide) in water are discussed.
Collapse
Affiliation(s)
- Kenji Mochizuki
- Department of Chemistry
- Faculty of Science
- Okayama University
- Okayama 700-8530
- Japan
| | - Tomonari Sumi
- Department of Chemistry
- Faculty of Science
- Okayama University
- Okayama 700-8530
- Japan
| | - Kenichiro Koga
- Department of Chemistry
- Faculty of Science
- Okayama University
- Okayama 700-8530
- Japan
| |
Collapse
|
52
|
Li AB, Kluge JA, Guziewicz NA, Omenetto FG, Kaplan DL. Silk-based stabilization of biomacromolecules. J Control Release 2015; 219:416-430. [PMID: 26403801 PMCID: PMC4656123 DOI: 10.1016/j.jconrel.2015.09.037] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/19/2015] [Indexed: 11/26/2022]
Abstract
Silk fibroin is a high molecular weight amphiphilic protein that self-assembles into robust biomaterials with remarkable properties including stabilization of biologicals and tunable release kinetics correlated to processing conditions. Cells, antibiotics,monoclonal antibodies and peptides, among other biologics, have been encapsulated in silk using various processing approaches and material formats. The mechanistic basis for the entrapment and stabilization features, along with insights into the modulation of release of the entrained compounds from silks will be reviewed with a focus on stabilization of bioactive molecules.
Collapse
Affiliation(s)
- Adrian B Li
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Jonathan A Kluge
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Nicholas A Guziewicz
- Drug Product Technologies, Amgen, 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Fiorenzo G Omenetto
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Chemical and Biological Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA; Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| |
Collapse
|
53
|
Wang H, Wang K, Xiao G, Ma J, Wang B, Shen S, Fu X, Zou G, Zou B. Molecular Mechanisms for High Hydrostatic Pressure-Induced Wing Mutagenesis in Drosophila melanogaster. Sci Rep 2015; 5:14965. [PMID: 26446369 PMCID: PMC4597337 DOI: 10.1038/srep14965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/14/2015] [Indexed: 11/09/2022] Open
Abstract
Although High hydrostatic pressure (HHP) as an important physical and chemical tool has been increasingly applied to research of organism, the response mechanisms of organism to HHP have not been elucidated clearly thus far. To identify mutagenic mechanisms of HHP on organisms, here, we treated Drosophila melanogaster (D. melanogaster) eggs with HHP. Approximately 75% of the surviving flies showed significant morphological abnormalities from the egg to the adult stages compared with control flies (p < 0.05). Some eggs displayed abnormal chorionic appendages, some larvae were large and red, and some adult flies showed wing abnormalities. Abnormal wing phenotypes of D. melanogaster induced by HHP were used to investigate the mutagenic mechanisms of HHP on organism. Thus 285 differentially expressed genes associated with wing mutations were identified using Affymetrix Drosophila Genome Array 2.0 and verified with RT-PCR. We also compared wing development-related central genes in the mutant flies with control flies using DNA sequencing to show two point mutations in the vestigial (vg) gene. This study revealed the mutagenic mechanisms of HHP-induced mutagenesis in D. melanogaster and provided a new model for the study of evolution on organisms.
Collapse
Affiliation(s)
- Hua Wang
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, P. R. China.,College of Life Science, Jilin University, Changchun, 130012, P. R. China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, P. R. China
| | - Guanjun Xiao
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, P. R. China
| | - Junfeng Ma
- College of Life Science, Jilin University, Changchun, 130012, P. R. China
| | - Bingying Wang
- College of Life Science, Jilin University, Changchun, 130012, P. R. China
| | - Sile Shen
- College of Life Science, Jilin University, Changchun, 130012, P. R. China
| | - Xueqi Fu
- College of Life Science, Jilin University, Changchun, 130012, P. R. China
| | - Guangtian Zou
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, P. R. China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
54
|
On the effect of hydrostatic pressure on the conformational stability of globular proteins. Biopolymers 2015; 103:711-8. [DOI: 10.1002/bip.22736] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/20/2015] [Accepted: 08/17/2015] [Indexed: 11/07/2022]
|
55
|
Tugarinov V, Libich DS, Meyer V, Roche J, Clore GM. The Energetics of a Three-State Protein Folding System Probed by High-Pressure Relaxation Dispersion NMR Spectroscopy. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201505416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
56
|
Dellarole M, Caro JA, Roche J, Fossat M, Barthe P, García-Moreno E B, Royer CA, Roumestand C. Evolutionarily Conserved Pattern of Interactions in a Protein Revealed by Local Thermal Expansion Properties. J Am Chem Soc 2015; 137:9354-62. [PMID: 26135981 DOI: 10.1021/jacs.5b04320] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The way in which the network of intramolecular interactions determines the cooperative folding and conformational dynamics of a protein remains poorly understood. High-pressure NMR spectroscopy is uniquely suited to examine this problem because it combines the site-specific resolution of the NMR experiments with the local character of pressure perturbations. Here we report on the temperature dependence of the site-specific volumetric properties of various forms of staphylococcal nuclease (SNase), including three variants with engineered internal cavities, as measured with high-pressure NMR spectroscopy. The strong temperature dependence of pressure-induced unfolding arises from poorly understood differences in thermal expansion between the folded and unfolded states. A significant inverse correlation was observed between the global thermal expansion of the folded proteins and the number of strong intramolecular hydrogen bonds, as determined by the temperature coefficient of the backbone amide chemical shifts. Comparison of the identity of these strong H-bonds with the co-evolution of pairs of residues in the SNase protein family suggests that the architecture of the interactions detected in the NMR experiments could be linked to a functional aspect of the protein. Moreover, the temperature dependence of the residue-specific volume changes of unfolding yielded residue-specific differences in expansivity and revealed how mutations impact intramolecular interaction patterns. These results show that intramolecular interactions in the folded states of proteins impose constraints against thermal expansion and that, hence, knowledge of site-specific thermal expansivity offers insight into the patterns of strong intramolecular interactions and other local determinants of protein stability, cooperativity, and potentially also of function.
Collapse
Affiliation(s)
- Mariano Dellarole
- †Centre de Biochimie Structurale, CNRS UMR5048, INSERM U554, Université Montpellier 1, 29 rue de Navacelles, Montpellier, France 34090
| | - Jose A Caro
- ‡T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St.. Baltimore, Maryland 21218, United States
| | - Julien Roche
- †Centre de Biochimie Structurale, CNRS UMR5048, INSERM U554, Université Montpellier 1, 29 rue de Navacelles, Montpellier, France 34090
| | - Martin Fossat
- †Centre de Biochimie Structurale, CNRS UMR5048, INSERM U554, Université Montpellier 1, 29 rue de Navacelles, Montpellier, France 34090
| | - Philippe Barthe
- †Centre de Biochimie Structurale, CNRS UMR5048, INSERM U554, Université Montpellier 1, 29 rue de Navacelles, Montpellier, France 34090
| | - Bertrand García-Moreno E
- ‡T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St.. Baltimore, Maryland 21218, United States
| | - Catherine A Royer
- †Centre de Biochimie Structurale, CNRS UMR5048, INSERM U554, Université Montpellier 1, 29 rue de Navacelles, Montpellier, France 34090
| | - Christian Roumestand
- †Centre de Biochimie Structurale, CNRS UMR5048, INSERM U554, Université Montpellier 1, 29 rue de Navacelles, Montpellier, France 34090
| |
Collapse
|
57
|
Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles 2015; 19:721-40. [DOI: 10.1007/s00792-015-0760-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/26/2015] [Indexed: 12/15/2022]
|
58
|
Structure-relaxation mechanism for the response of T4 lysozyme cavity mutants to hydrostatic pressure. Proc Natl Acad Sci U S A 2015; 112:E2437-46. [PMID: 25918400 DOI: 10.1073/pnas.1506505112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Application of hydrostatic pressure shifts protein conformational equilibria in a direction to reduce the volume of the system. A current view is that the volume reduction is dominated by elimination of voids or cavities in the protein interior via cavity hydration, although an alternative mechanism wherein cavities are filled with protein side chains resulting from a structure relaxation has been suggested [López CJ, Yang Z, Altenbach C, Hubbell WL (2013) Proc Natl Acad Sci USA 110(46):E4306-E4315]. In the present study, mechanisms for elimination of cavities under high pressure are investigated in the L99A cavity mutant of T4 lysozyme and derivatives thereof using site-directed spin labeling, pressure-resolved double electron-electron resonance, and high-pressure circular dichroism spectroscopy. In the L99A mutant, the ground state is in equilibrium with an excited state of only ∼ 3% of the population in which the cavity is filled by a protein side chain [Bouvignies et al. (2011) Nature 477(7362):111-114]. The results of the present study show that in L99A the native ground state is the dominant conformation to pressures of 3 kbar, with cavity hydration apparently taking place in the range of 2-3 kbar. However, in the presence of additional mutations that lower the free energy of the excited state, pressure strongly populates the excited state, thereby eliminating the cavity with a native side chain rather than solvent. Thus, both cavity hydration and structure relaxation are mechanisms for cavity elimination under pressure, and which is dominant is determined by details of the energy landscape.
Collapse
|
59
|
The effects of heat activation on Bacillus spore germination, with nutrients or under high pressure, with or without various germination proteins. Appl Environ Microbiol 2015; 81:2927-38. [PMID: 25681191 DOI: 10.1128/aem.00193-15] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nutrient germination of spores of Bacillus species occurs through germinant receptors (GRs) in spores' inner membrane (IM) in a process stimulated by sublethal heat activation. Bacillus subtilis spores maximum germination rates via different GRs required different 75 °C heat activation times: 15 min for l-valine germination via the GerA GR and 4 h for germination with the L-asparagine-glucose-fructose-K(+) mixture via the GerB and GerK GRs, with GerK requiring the most heat activation. In some cases, optimal heat activation decreased nutrient concentrations for half-maximal germination rates. Germination of spores via various GRs by high pressure (HP) of 150 MPa exhibited heat activation requirements similar to those of nutrient germination, and the loss of the GerD protein, required for optimal GR function, did not eliminate heat activation requirements for maximal germination rates. These results are consistent with heat activation acting primarily on GRs. However, (i) heat activation had no effects on GR or GerD protein conformation, as probed by biotinylation by an external reagent; (ii) spores prepared at low and high temperatures that affect spores' IM properties exhibited large differences in heat activation requirements for nutrient germination; and (iii) spore germination by 550 MPa of HP was also affected by heat activation, but the effects were relatively GR independent. The last results are consistent with heat activation affecting spores' IM and only indirectly affecting GRs. The 150- and 550-MPa HP germinations of Bacillus amyloliquefaciens spores, a potential surrogate for Clostridium botulinum spores in HP treatments of foods, were also stimulated by heat activation.
Collapse
|
60
|
Roche J, Dellarole M, Royer CA, Roumestand C. Exploring the Protein Folding Pathway with High-Pressure NMR: Steady-State and Kinetics Studies. Subcell Biochem 2015; 72:261-278. [PMID: 26174386 DOI: 10.1007/978-94-017-9918-8_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Defining the physical-chemical determinants of protein folding and stability, under normal and pathological conditions has constituted a major subfield in biophysical chemistry for over 50 years. Although a great deal of progress has been made in recent years towards this goal, a number of important questions remain. These include characterizing the structural, thermodynamic and dynamic properties of the barriers between conformational states on the protein energy landscape, understanding the sequence dependence of folding cooperativity, defining more clearly the role of solvation in controlling protein stability and dynamics and probing the high energy thermodynamic states in the native state basin and their role in misfolding and aggregation. Fundamental to the elucidation of these questions is a complete thermodynamic parameterization of protein folding determinants. In this chapter, we describe the use of high-pressure coupled to Nuclear Magnetic Resonance (NMR) spectroscopy to reveal unprecedented details on the folding energy landscape of proteins.
Collapse
Affiliation(s)
- Julien Roche
- Centre de Biochimie Structurale, UMR UM1&UM2/5048 CNRS/1054 INSERM, 29 rue de Navacelles, 34090, Montpellier, France
| | | | | | | |
Collapse
|
61
|
Abstract
This year, 2014, marks the 100th anniversary of the first publication reporting the denaturation of proteins by high hydrostatic pressure (Bridgman 1914). Since that time a large and recently increasing number of studies of pressure effects on protein stability have been published, yet the mechanism for the action of pressure on proteins remains subject to considerable debate. This review will present an overview from this author's perspective of where this debate stands today.
Collapse
Affiliation(s)
- Catherine A Royer
- Department of Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,
| |
Collapse
|
62
|
Meersman F, McMillan PF. High hydrostatic pressure: a probing tool and a necessary parameter in biophysical chemistry. Chem Commun (Camb) 2014; 50:766-75. [PMID: 24286104 DOI: 10.1039/c3cc45844j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High pressures extending up to several thousands of atmospheres provide extreme conditions for biological organisms to survive. Recent studies are investigating the survival mechanisms and biological function of microorganisms under natural and laboratory conditions extending into the GigaPascal range, with applications to understanding the Earth's deep biosphere and food technology. High pressure has also emerged as a useful tool and physical parameter for probing changes in the structure and functional properties of biologically important macromolecules and polymers encountered in soft matter science. Here we highlight some areas of current interest in high pressure biophysics and physical chemistry that are emerging at the frontier of this cross-disciplinary field.
Collapse
Affiliation(s)
- Filip Meersman
- Department of Chemistry, University College London, 20 Gordon St., London WC1H 0AJ, UK.
| | | |
Collapse
|
63
|
Role of cavities and hydration in the pressure unfolding of T4 lysozyme. Proc Natl Acad Sci U S A 2014; 111:13846-51. [PMID: 25201963 DOI: 10.1073/pnas.1410655111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is well known that high hydrostatic pressures can induce the unfolding of proteins. The physical underpinnings of this phenomenon have been investigated extensively but remain controversial. Changes in solvation energetics have been commonly proposed as a driving force for pressure-induced unfolding. Recently, the elimination of void volumes in the native folded state has been argued to be the principal determinant. Here we use the cavity-containing L99A mutant of T4 lysozyme to examine the pressure-induced destabilization of this multidomain protein by using solution NMR spectroscopy. The cavity-containing C-terminal domain completely unfolds at moderate pressures, whereas the N-terminal domain remains largely structured to pressures as high as 2.5 kbar. The sensitivity to pressure is suppressed by the binding of benzene to the hydrophobic cavity. These results contrast to the pseudo-WT protein, which has a residual cavity volume very similar to that of the L99A-benzene complex but shows extensive subglobal reorganizations with pressure. Encapsulation of the L99A mutant in the aqueous nanoscale core of a reverse micelle is used to examine the hydration of the hydrophobic cavity. The confined space effect of encapsulation suppresses the pressure-induced unfolding transition and allows observation of the filling of the cavity with water at elevated pressures. This indicates that hydration of the hydrophobic cavity is more energetically unfavorable than global unfolding. Overall, these observations point to a range of cooperativity and energetics within the T4 lysozyme molecule and illuminate the fact that small changes in physical parameters can significantly alter the pressure sensitivity of proteins.
Collapse
|
64
|
Suladze S, Kahse M, Erwin N, Tomazic D, Winter R. Probing volumetric properties of biomolecular systems by pressure perturbation calorimetry (PPC)--the effects of hydration, cosolvents and crowding. Methods 2014; 76:67-77. [PMID: 25168090 DOI: 10.1016/j.ymeth.2014.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/09/2014] [Accepted: 08/11/2014] [Indexed: 11/16/2022] Open
Abstract
Pressure perturbation calorimetry (PPC) is an efficient technique to study the volumetric properties of biomolecules in solution. In PPC, the coefficient of thermal expansion of the partial volume of the biomolecule is deduced from the heat consumed or produced after small isothermal pressure-jumps. The expansion coefficient strongly depends on the interaction of the biomolecule with the solvent or cosolvent as well as on its packing and internal dynamic properties. This technique, complemented with molecular acoustics and densimetry, provides valuable insights into the basic thermodynamic properties of solvation and volume effects accompanying interactions, reactions and phase transitions of biomolecular systems. After outlining the principles of the technique, we present representative examples on protein folding, including effects of cosolvents and crowding, together with a discussion of the interpretation, and further applications.
Collapse
Affiliation(s)
- Saba Suladze
- TU Dortmund University, Department of Chemistry and Chemical Biology, Physical Chemistry - Biophysical Chemistry, Otto-Hahn Str. 6, D-44227 Dortmund, Germany
| | - Marie Kahse
- TU Dortmund University, Department of Chemistry and Chemical Biology, Physical Chemistry - Biophysical Chemistry, Otto-Hahn Str. 6, D-44227 Dortmund, Germany
| | - Nelli Erwin
- TU Dortmund University, Department of Chemistry and Chemical Biology, Physical Chemistry - Biophysical Chemistry, Otto-Hahn Str. 6, D-44227 Dortmund, Germany
| | - Daniel Tomazic
- TU Dortmund University, Department of Chemistry and Chemical Biology, Physical Chemistry - Biophysical Chemistry, Otto-Hahn Str. 6, D-44227 Dortmund, Germany
| | - Roland Winter
- TU Dortmund University, Department of Chemistry and Chemical Biology, Physical Chemistry - Biophysical Chemistry, Otto-Hahn Str. 6, D-44227 Dortmund, Germany.
| |
Collapse
|
65
|
Mori Y, Okumura H. Molecular dynamics simulation study on the high-pressure behaviour of an AK16 peptide. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.938071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
66
|
Mori Y, Okumura H. Molecular dynamics of the structural changes of helical peptides induced by pressure. Proteins 2014; 82:2970-81. [DOI: 10.1002/prot.24654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/24/2014] [Accepted: 07/15/2014] [Indexed: 11/05/2022]
Affiliation(s)
- Yoshiharu Mori
- Department of Theoretical and Computational Molecular Science; Institute for Molecular Science; Okazaki Aichi 444-8585 Japan
| | - Hisashi Okumura
- Department of Theoretical and Computational Molecular Science; Institute for Molecular Science; Okazaki Aichi 444-8585 Japan
- Research Center for Computational Science; Institute for Molecular Science; Okazaki Aichi 444-8585 Japan
- Department of Structural Molecular Science; The Graduate University for Advanced Studies; Okazaki Aichi 444-8585 Japan
| |
Collapse
|
67
|
Dias CL, Chan HS. Pressure-Dependent Properties of Elementary Hydrophobic Interactions: Ramifications for Activation Properties of Protein Folding. J Phys Chem B 2014; 118:7488-7509. [DOI: 10.1021/jp501935f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Cristiano L. Dias
- Department
of Physics, New Jersey Institute of Technology, University Heights, Tiernan Hall, Room 463, Newark, New Jersey 07102, United States
- Departments
of Biochemistry, Molecular Genetics, and Physics, University of Toronto, 1 King’s College Circle, Toronto, Ontario Canada M5S 1A8
| | - Hue Sun Chan
- Departments
of Biochemistry, Molecular Genetics, and Physics, University of Toronto, 1 King’s College Circle, Toronto, Ontario Canada M5S 1A8
| |
Collapse
|
68
|
Abstract
Fluorescence is the most widely used technique to study the effect of pressure on biochemical systems. The use of pressure as a physical variable sheds light into volumetric characteristics of reactions. Here we focus on the effect of pressure on protein solutions using a simple unfolding example in order to illustrate the applications of the methodology. Topics covered in this review include the relationships between practical aspects and technical limitations; the effect of pressure and the study of protein cavities; the interpretation of thermodynamic and relaxation kinetics; and the study of relaxation amplitudes. Finally, we discuss the insights available from the combination of fluorescence and other methods adapted to high pressure, such as SAXS or NMR. Because of the simplicity and accessibility of high-pressure fluorescence, the technique is a starting point that complements appropriately multi-methodological approaches related to understanding protein function, disfunction, and folding from the volumetric point of view.
Collapse
|
69
|
Okuno D, Nishiyama M, Noji H. Single-molecule analysis of the rotation of F₁-ATPase under high hydrostatic pressure. Biophys J 2014; 105:1635-42. [PMID: 24094404 DOI: 10.1016/j.bpj.2013.08.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/29/2013] [Accepted: 08/20/2013] [Indexed: 02/06/2023] Open
Abstract
F1-ATPase is the water-soluble part of ATP synthase and is an ATP-driven rotary molecular motor that rotates the rotary shaft against the surrounding stator ring, hydrolyzing ATP. Although the mechanochemical coupling mechanism of F1-ATPase has been well studied, the molecular details of individual reaction steps remain unclear. In this study, we conducted a single-molecule rotation assay of F1 from thermophilic bacteria under various pressures from 0.1 to 140 MPa. Even at 140 MPa, F1 actively rotated with regular 120° steps in a counterclockwise direction, showing high conformational stability and retention of native properties. Rotational torque was also not affected. However, high hydrostatic pressure induced a distinct intervening pause at the ATP-binding angles during continuous rotation. The pause was observed under both ATP-limiting and ATP-saturating conditions, suggesting that F1 has two pressure-sensitive reactions, one of which is evidently ATP binding. The rotation assay using a mutant F1(βE190D) suggested that the other pressure-sensitive reaction occurs at the same angle at which ATP binding occurs. The activation volumes were determined from the pressure dependence of the rate constants to be +100 Å(3) and +88 Å(3) for ATP binding and the other pressure-sensitive reaction, respectively. These results are discussed in relation to recent single-molecule studies of F1 and pressure-induced protein unfolding.
Collapse
Affiliation(s)
- Daichi Okuno
- Laboratory for Cell Dynamics Observation, Quantitative Biology Center, Riken, Furuedai, Suita, Osaka, Japan
| | | | | |
Collapse
|
70
|
Redefining the dry molten globule state of proteins. J Mol Biol 2014; 426:2520-8. [PMID: 24792909 DOI: 10.1016/j.jmb.2014.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/23/2014] [Accepted: 04/25/2014] [Indexed: 11/22/2022]
Abstract
Dynamics and function of proteins are governed by the structural and energetic properties of the different states they adopt and the barriers separating them. In earlier work, native-state triplet-triplet energy transfer (TTET) on the villin headpiece subdomain (HP35) revealed an equilibrium between a locked native state and an unlocked native state, which are structurally similar but have different dynamic properties. The locked state is restricted to low amplitude motions, whereas the unlocked state shows increased conformational flexibility and undergoes local unfolding reactions. This classified the unlocked state as a dry molten globule (DMG), which was proposed to represent an expanded native state with loosened side-chain interactions and a solvent-shielded core. To test whether the unlocked state of HP35 is actually expanded compared to the locked state, we performed high-pressure TTET measurements. Increasing pressure shifts the equilibrium from the locked toward the unlocked state, with a small negative reaction volume for unlocking (ΔV(0)=-1.6±0.5cm(3)/mol). Therefore, rather than being expanded, the unlocked state represents an alternatively packed, compact state, demonstrating that native proteins can exist in several compact folded states, an observation with implications for protein function. The transition state for unlocking/locking, in contrast, has a largely increased volume relative to the locked and unlocked state, with respective activation volumes of 7.1±0.4cm(3)/mol and 8.7±0.9cm(3)/mol, indicating an expansion of the protein during the locking/unlocking transition. The presented results demonstrate the existence of both compact, low-energy and expanded, high-energy DMGs, prompting a broader definition of this state.
Collapse
|
71
|
Ferrara CG, Grigera JR. Free energy of solubility of non-polar particles in water: The role of pressure. Chem Phys 2014. [DOI: 10.1016/j.chemphys.2014.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
72
|
Wiebe H, Weinberg N. Theoretical volume profiles as a tool for probing transition states: folding kinetics. J Chem Phys 2014; 140:124105. [PMID: 24697422 DOI: 10.1063/1.4868549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The mechanism by which conformational changes, particularly folding and unfolding, occur in proteins and other biopolymers has been widely discussed in the literature. Molecular dynamics (MD) simulations of protein folding present a formidable challenge since these conformational changes occur on a time scale much longer than what can be afforded at the current level of computational technology. Transition state (TS) theory offers a more economic description of kinetic properties of a reaction system by relating them to the properties of the TS, or for flexible systems, the TS ensemble (TSE). The application of TS theory to protein folding is limited by ambiguity in the definition of the TSE for this process. We propose to identify the TSE for conformational changes in flexible systems by comparison of its experimentally determined volumetric property, known as the volume of activation, to the structure-specific volume profile of the process calculated using MD. We illustrate this approach by its successful application to unfolding of a model chain system.
Collapse
Affiliation(s)
- H Wiebe
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - N Weinberg
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
73
|
Temperature and pressure effects on C112S azurin: Volume, expansivity, and flexibility changes. Proteins 2014; 82:1787-98. [DOI: 10.1002/prot.24532] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/10/2014] [Accepted: 01/28/2014] [Indexed: 11/07/2022]
|
74
|
Liu Y, Prigozhin M, Schulten K, Gruebele M. Observation of complete pressure-jump protein refolding in molecular dynamics simulation and experiment. J Am Chem Soc 2014; 136:4265-72. [PMID: 24437525 PMCID: PMC3985862 DOI: 10.1021/ja412639u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Indexed: 11/29/2022]
Abstract
Density is an easily adjusted variable in molecular dynamics (MD) simulations. Thus, pressure-jump (P-jump)-induced protein refolding, if it could be made fast enough, would be ideally suited for comparison with MD. Although pressure denaturation perturbs secondary structure less than temperature denaturation, protein refolding after a fast P-jump is not necessarily faster than that after a temperature jump. Recent P-jump refolding experiments on the helix bundle λ-repressor have shown evidence of a <3 μs burst phase, but also of a ~1.5 ms "slow" phase of refolding, attributed to non-native helical structure frustrating microsecond refolding. Here we show that a λ-repressor mutant is nonetheless capable of refolding in a single explicit solvent MD trajectory in about 19 μs, indicating that the burst phase observed in experiments on the same mutant could produce native protein. The simulation reveals that after about 18.5 μs of conformational sampling, the productive structural rearrangement to the native state does not occur in a single swift step but is spread out over a brief series of helix and loop rearrangements that take about 0.9 μs. Our results support the molecular time scale inferred for λ-repressor from near-downhill folding experiments, where transition-state population can be seen experimentally, and also agrees with the transition-state transit time observed in slower folding proteins by single-molecule spectroscopy.
Collapse
Affiliation(s)
- Yanxin Liu
- Department of Physics,
Beckman Institute, Department of Chemistry, and Center for Biophysics
and Computational Biology, University of
Illinois, Urbana, Illinois 61801, United
States
| | - Maxim
B. Prigozhin
- Department of Physics,
Beckman Institute, Department of Chemistry, and Center for Biophysics
and Computational Biology, University of
Illinois, Urbana, Illinois 61801, United
States
| | - Klaus Schulten
- Department of Physics,
Beckman Institute, Department of Chemistry, and Center for Biophysics
and Computational Biology, University of
Illinois, Urbana, Illinois 61801, United
States
| | - Martin Gruebele
- Department of Physics,
Beckman Institute, Department of Chemistry, and Center for Biophysics
and Computational Biology, University of
Illinois, Urbana, Illinois 61801, United
States
| |
Collapse
|
75
|
Sibille N, Dellarole M, Royer C, Roumestand C. Measuring residual dipolar couplings at high hydrostatic pressure: robustness of alignment media to high pressure. JOURNAL OF BIOMOLECULAR NMR 2014; 58:9-16. [PMID: 24292655 DOI: 10.1007/s10858-013-9798-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/18/2013] [Indexed: 06/02/2023]
Abstract
Among other perturbations, high hydrostatic pressure has proven to be a mild yet efficient way to unfold proteins. Combining pressure perturbation with NMR spectroscopy allows for a residue-per-residue description of folding reactions. Accessing the full power of NMR spectroscopy under pressure involves the investigation of conformational sampling using orientational restraints such as residual dipolar couplings (RDCs) under conditions of partial alignment. The aim of this study was to identify and characterize stable and pressure resistant alignment media for measurement of RDCs at high pressure. Four alignment media were tested. A C12E5/n-hexanol alcohol mixture remains stable from 1 to 2,500 bar, whereas Pf1 phage and DNA nanotubes undergo a reversible transition between 300 and 900 bar. Phospholipid bicelles are stable only until 300 bar at ambient temperature. Hence, RDCs can be measured at high pressure, and their interpretation will provide atomic details of the structural and dynamic perturbations on unfolded or partially folded states of proteins under pressure.
Collapse
Affiliation(s)
- Nathalie Sibille
- Centre de Biochimie Structurale (CBS), CNRS, UMR 5048, 29 rue de Navacelles, 34090, Montpellier Cedex, France,
| | | | | | | |
Collapse
|
76
|
Transition state and ground state properties of the helix-coil transition in peptides deduced from high-pressure studies. Proc Natl Acad Sci U S A 2013; 110:20988-93. [PMID: 24324160 DOI: 10.1073/pnas.1317973110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Volume changes associated with protein folding reactions contain valuable information about the folding mechanism and the nature of the transition state. However, meaningful interpretation of such data requires that overall volume changes be deconvoluted into individual contributions from different structural components. Here we focus on one type of structural element, the α-helix, and measure triplet-triplet energy transfer at high pressure to determine volume changes associated with the helix-coil transition. Our results reveal that the volume of a 21-amino-acid alanine-based peptide shrinks upon helix formation. Thus, helices, in contrast with native proteins, become more stable with increasing pressure, explaining the frequently observed helical structures in pressure-unfolded proteins. Both helix folding and unfolding become slower with increasing pressure. The volume changes associated with the addition of a single helical residue to a preexisting helix were obtained by comparing the experimental results with Monte Carlo simulations based on a kinetic linear Ising model. The reaction volume for adding a single residue to a helix is small and negative (-0.23 cm(3) per mol = -0.38 Å(3) per molecule) implying that intrahelical hydrogen bonds have a smaller volume than peptide-water hydrogen bonds. In contrast, the transition state has a larger volume than either the helical or the coil state, with activation volumes of 2.2 cm(3)/mol (3.7 Å(3) per molecule) for adding and 2.4 cm(3)/mol (4.0 Å(3) per molecule) for removing one residue. Thus, addition or removal of a helical residue proceeds through a transitory high-energy state with a large volume, possibly due to the presence of unsatisfied hydrogen bonds, although steric effects may also contribute.
Collapse
|
77
|
Roche J, Dellarole M, Caro JA, Norberto DR, Garcia AE, Garcia-Moreno B, Roumestand C, Royer CA. Effect of Internal Cavities on Folding Rates and Routes Revealed by Real-Time Pressure-Jump NMR Spectroscopy. J Am Chem Soc 2013; 135:14610-8. [DOI: 10.1021/ja406682e] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Julien Roche
- Centre de Biochimie
Structurale, INSERM U554, CNRS UMR 5048, Universités de Montpellier, France
| | - Mariano Dellarole
- Centre de Biochimie
Structurale, INSERM U554, CNRS UMR 5048, Universités de Montpellier, France
| | - José A. Caro
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Douglas R. Norberto
- Department
of Biochemistry, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Angel E. Garcia
- Department
of Physics and Applied Physics and Center for Biotechnology and Interdisciplinary
Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Bertrand Garcia-Moreno
- Department
of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Christian Roumestand
- Centre de Biochimie
Structurale, INSERM U554, CNRS UMR 5048, Universités de Montpellier, France
| | - Catherine A. Royer
- Centre de Biochimie
Structurale, INSERM U554, CNRS UMR 5048, Universités de Montpellier, France
| |
Collapse
|
78
|
Tognotti D, Gabellieri E, Morelli E, Cioni P. Temperature and pressure dependence of azurin stability as monitored by tryptophan fluorescence and phosphorescence. The case of F29A mutant. Biophys Chem 2013; 182:44-50. [PMID: 23816248 DOI: 10.1016/j.bpc.2013.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/07/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
Abstract
The effects of a single-point, F29A, cavity-forming mutation on the unfolding thermodynamic parameters of azurin from Pseudomonas aeruginosa and on the internal dynamics of the protein fold under pressure were probed by the fluorescence and phosphorescence emission of Trp48, deeply buried in the compact hydrophobic core of the macromolecule. Pressure-induced unfolding, monitored by the shift in the fluorescence spectrum, led to a volume change of 70-90mlmol(-1). The difference in the unfolding volume between F29A and wild type azurin was smaller than the volume of the space theoretically created in the mutant, indicating that the cavity is, at least partially, filled with water molecules. The complex temperature dependence of the unfolding volume, for temperatures up to 20°C, suggests the formation of an expanded form of the protein and highlights how the packing efficiency of azurin appears to contribute to the magnitude of internal void volume at any given temperature. Changes in flexibility of the protein matrix around the chromophore were monitored by the intrinsic phosphorescence lifetime. At 40°C the application of pressure in the predenaturation range initially decreases the internal flexibility of azurin, the trend eventually reverting on approaching unfolding. The main difference between wild type and the cavity mutant is the inversion point which happens at 300MPa for wild type and at 150MPa for F29A. This suggests that, for the cavity mutant, pressure-induced internal hydration is more dominant than any compaction of the globular fold at relatively low pressures.
Collapse
Affiliation(s)
- Danika Tognotti
- Istituto di Biofisica, CNR, via G. Moruzzi 1, 56124 Pisa, Italy.
| | | | | | | |
Collapse
|
79
|
Chinchalikar AJ, Aswal VK, Kohlbrecher J, Wagh AG. Small-angle neutron scattering study of structure and interaction during salt-induced liquid-liquid phase transition in protein solutions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:062708. [PMID: 23848716 DOI: 10.1103/physreve.87.062708] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Indexed: 06/02/2023]
Abstract
The liquid-liquid phase transition (LLPT) in aqueous salt solutions of lysozyme protein has been studied by small-angle neutron scattering. Measurements have been carried out on fixed protein concentration with varying salt concentration approaching LLPT. The data are fitted considering protein interaction by the two Yukawa (2Y) potential which combines short-range attraction and long-range repulsion. We show that LLPT arises because of enhancement of non-DLVO (Derjaguin-Landau-Verwey-Overbeek) short-range attraction without any conformational structural change of the protein. The salt concentration required for LLPT as well as corresponding short-range attraction decreases significantly with increase in protein concentration.
Collapse
Affiliation(s)
- A J Chinchalikar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai-400085, India
| | | | | | | |
Collapse
|
80
|
Dellarole M, Kobayashi K, Rouget JB, Caro JA, Roche J, Islam MM, Garcia-Moreno E B, Kuroda Y, Royer CA. Probing the physical determinants of thermal expansion of folded proteins. J Phys Chem B 2013; 117:12742-9. [PMID: 23646824 DOI: 10.1021/jp401113p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The magnitude and sign of the volume change upon protein unfolding are strongly dependent on temperature. This temperature dependence reflects differences in the thermal expansivity of the folded and unfolded states. The factors that determine protein molar expansivities and the large differences in thermal expansivity for proteins of similar molar volume are not well understood. Model compound studies have suggested that a major contribution is made by differences in the molar volume of water molecules as they transfer from the protein surface to the bulk upon heating. The expansion of internal solvent-excluded voids upon heating is another possible contributing factor. Here, the contribution from hydration density to the molar thermal expansivity of a protein was examined by comparing bovine pancreatic trypsin inhibitor and variants with alanine substitutions at or near the protein-water interface. Variants of two of these proteins with an additional mutation that unfolded them under native conditions were also examined. A modest decrease in thermal expansivity was observed in both the folded and unfolded states for the alanine variants compared with the parent protein, revealing that large changes can be made to the external polarity of a protein without causing large ensuing changes in thermal expansivity. This modest effect is not surprising, given the small molar volume of the alanine residue. Contributions of the expansion of the internal void volume were probed by measuring the thermal expansion for cavity-containing variants of a highly stable form of staphylococcal nuclease. Significantly larger (2-3-fold) molar expansivities were found for these cavity-containing proteins relative to the reference protein. Taken together, these results suggest that a key determinant of the thermal expansivities of folded proteins lies in the expansion of internal solvent-excluded voids.
Collapse
Affiliation(s)
- Mariano Dellarole
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR5048, Université Montpellier 1 & 2 , 29 rue de Navacelles, 34090 Montpellier Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Roche J, Caro JA, Dellarole M, Guca E, Royer CA, García-Moreno BE, Garcia AE, Roumestand C. Structural, energetic, and dynamic responses of the native state ensemble of staphylococcal nuclease to cavity-creating mutations. Proteins 2013; 81:1069-80. [PMID: 23239146 DOI: 10.1002/prot.24231] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/19/2012] [Accepted: 11/21/2012] [Indexed: 12/21/2022]
Abstract
The effects of cavity-creating mutations on the structural flexibility, local and global stability, and dynamics of the folded state of staphylococcal nuclease (SNase) were examined with NMR spectroscopy, MD simulations, H/D exchange, and pressure perturbation. Effects on global thermodynamic stability correlated well with the number of heavy atoms in the vicinity of the mutated residue. Variants with substitutions in the C-terminal domain and the interface between α and β subdomains showed large amide chemical shift variations relative to the parent protein, moderate, widespread, and compensatory perturbations of the H/D protection factors and increased local dynamics on a nanosecond time scale. The pressure sensitivity of the folded states of these variants was similar to that of the parent protein. Such observations point to the capacity of the folded proteins to adjust to packing defects in these regions. In contrast, cavity creation in the β-barrel subdomain led to minimal perturbation of the structure of the folded state, However, significant pressure dependence of the native state amide resonances, along with strong effects on native state H/D exchange are consistent with increased probability of population of excited state(s) for these variants. Such contrasted responses to the creation of cavities could not be anticipated from global thermodynamic stability or crystal structures; they depend on the local structural and energetic context of the substitutions.
Collapse
Affiliation(s)
- Julien Roche
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Universités de Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
Using a newly developed microsecond pressure-jump apparatus, we monitor the refolding kinetics of the helix-stabilized five-helix bundle protein λ*YA, the Y22W/Q33Y/G46,48A mutant of λ-repressor fragment 6-85, from 3 μs to 5 ms after a 1,200-bar P-drop. In addition to a microsecond phase, we observe a slower 1.4-ms phase during refolding to the native state. Unlike temperature denaturation, pressure denaturation produces a highly reversible helix-coil-rich state. This difference highlights the importance of the denatured initial condition in folding experiments and leads us to assign a compact nonnative helical trap as the reason for slower P-jump-induced refolding. To complement the experiments, we performed over 50 μs of all-atom molecular dynamics P-drop refolding simulations with four different force fields. Two of the force fields yield compact nonnative states with misplaced α-helix content within a few microseconds of the P-drop. Our overall conclusion from experiment and simulation is that the pressure-denatured state of λ*YA contains mainly residual helix and little β-sheet; following a fast P-drop, at least some λ*YA forms misplaced helical structure within microseconds. We hypothesize that nonnative helix at helix-turn interfaces traps the protein in compact nonnative conformations. These traps delay the folding of at least some of the population for 1.4 ms en route to the native state. Based on molecular dynamics, we predict specific mutations at the helix-turn interfaces that should speed up refolding from the pressure-denatured state, if this hypothesis is correct.
Collapse
|
83
|
The stability of 2-state, 3-state and more-state proteins from simple spectroscopic techniques... plus the structure of the equilibrium intermediates at the same time. Arch Biochem Biophys 2013; 531:4-13. [DOI: 10.1016/j.abb.2012.10.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/22/2012] [Accepted: 10/28/2012] [Indexed: 11/20/2022]
|
84
|
Volume of Hsp90 ligand binding and the unfolding phase diagram as a function of pressure and temperature. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 42:355-62. [DOI: 10.1007/s00249-012-0884-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 11/15/2012] [Accepted: 12/13/2012] [Indexed: 12/14/2022]
|
85
|
Using simulations to provide the framework for experimental protein folding studies. Arch Biochem Biophys 2012; 531:128-35. [PMID: 23266569 DOI: 10.1016/j.abb.2012.12.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/10/2012] [Accepted: 12/14/2012] [Indexed: 12/27/2022]
Abstract
Molecular dynamics simulations are a powerful theoretical tool to model the protein folding process in atomistic details under realistic conditions. Combined with a number of experimental techniques, simulations provide a detailed picture of how a protein folds or unfolds in the presence of explicit solvent and other molecular species, such as cosolvents, osmolytes, cofactors, active binding partners or inert crowding agents. The denaturing effects of temperature, pressure and external mechanical forces can also be probed. Qualitative and quantitative agreement with experiment contributes to a comprehensive molecular picture of protein states along the folding/unfolding pathway. The variety of systems examined reveals key features of the protein folding process.
Collapse
|
86
|
Ben-Naim A. Theoretical aspects of pressure and solute denaturation of proteins: A Kirkwood-buff-theory approach. J Chem Phys 2012; 137:235102. [DOI: 10.1063/1.4772463] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
87
|
Roche J, Dellarole M, Caro JA, Guca E, Norberto DR, Yang Y, Garcia AE, Roumestand C, García-Moreno B, Royer CA. Remodeling of the folding free energy landscape of staphylococcal nuclease by cavity-creating mutations. Biochemistry 2012; 51:9535-46. [PMID: 23116341 DOI: 10.1021/bi301071z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The folding of staphylococcal nuclease (SNase) is known to proceed via a major intermediate in which the central OB subdomain is folded and the C-terminal helical subdomain is disordered. To identify the structural and energetic determinants of this folding free energy landscape, we have examined in detail, using high-pressure NMR, the consequences of cavity creating mutations in each of the two subdomains of an ultrastable SNase, Δ+PHS. The stabilizing mutations of Δ+PHS enhanced the population of the major folding intermediate. Cavity creation in two different regions of the Δ+PHS reference protein, despite equivalent effects on global stability, had very distinct consequences on the complexity of the folding free energy landscape. The L125A substitution in the C-terminal helix of Δ+PHS slightly suppressed the major intermediate and promoted an additional excited state involving disorder in the N-terminus, but otherwise decreased landscape heterogeneity with respect to the Δ+PHS background protein. The I92A substitution, located in the hydrophobic OB-fold core, had a much more profound effect, resulting in a significant increase in the number of intermediate states and implicating the entire protein structure. Denaturant (GuHCl) had very subtle and specific effects on the landscape, suppressing some states and favoring others, depending upon the mutational context. These results demonstrate that disrupting interactions in a region of the protein with highly cooperative, unfrustrated folding has very profound effects on the roughness of the folding landscape, whereas the effects are less pronounced for an energetically equivalent substitution in an already frustrated region.
Collapse
Affiliation(s)
- Julien Roche
- Centre de Biochimie Structurale, INSERM U554, CNRS UMR 5048, Universités de Montpellier, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Dias CL. Unifying microscopic mechanism for pressure and cold denaturations of proteins. PHYSICAL REVIEW LETTERS 2012; 109:048104. [PMID: 23006112 DOI: 10.1103/physrevlett.109.048104] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Indexed: 06/01/2023]
Abstract
We study the stability of globular proteins as a function of temperature and pressure through NPT simulations of a coarse-grained model. We reproduce the elliptical stability of proteins and highlight a unifying microscopic mechanism for pressure and cold denaturations. The mechanism involves the solvation of nonpolar residues with a thin layer of water. These solvated states have lower volume and lower hydrogen-bond energy compared to other conformations of nonpolar solutes. Hence, these solvated states are favorable at high pressure and low temperature, and they facilitate protein unfolding under these thermodynamical conditions.
Collapse
Affiliation(s)
- Cristiano L Dias
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195 Berlin, Germany
| |
Collapse
|
89
|
Terefe NS, Sheean P, Fernando S, Versteeg C. The stability of almond β-glucosidase during combined high pressure-thermal processing: a kinetic study. Appl Microbiol Biotechnol 2012; 97:2917-28. [PMID: 22644526 DOI: 10.1007/s00253-012-4162-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 01/02/2023]
Abstract
The thermal and the combined high pressure-thermal inactivation kinetics of almond β-glucosidase (β-D-glucoside glucohydrolase, EC 3.2.1.21) were investigated at pressures from 0.1 to 600 MPa and temperatures ranging from 30 to 80 °C. Thermal treatments at temperatures higher than 50 °C resulted in significant inactivation with complete inactivation after 2 min of treatment at 80 °C. Both the thermal and high pressure inactivation kinetics were described well by first-order model. Application of pressure increased the inactivation kinetics of the enzyme except at moderate temperatures (50 to 70 °C) and pressures between 0.1 and 100 MPa where slight pressure stabilisation of the enzyme against thermal denaturation was observed. The activation energy for the inactivation of the enzyme at atmospheric pressure was estimated to be 216.2±8.6 kJ/mol decreasing to 55.2±3.9 kJ/mol at 600 MPa. The activation volumes were negative at all temperature conditions excluding the temperature-pressure range where slight pressure stabilisation was observed. The values of the activation volumes were estimated to be -29.6±0.6, -29.8±1.7, -20.6±3.2, -41.2±4.8, -36.5±1.8, -39.6±4.3, -31.0±4.5 and -33.8±3.9 cm3/mol at 30, 35, 40, 45, 50, 60, 65 and 70 °C, respectively, with no clear trend with temperature. The pressure-temperature dependence of the inactivation rate constants was well described by an empirical third-order polynomial model.
Collapse
|
90
|
Nellas RB, Glover MM, Hamelberg D, Shen T. High-pressure effect on the dynamics of solvated peptides. J Chem Phys 2012; 136:145103. [DOI: 10.1063/1.3700183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
91
|
Abstract
It has been known for nearly 100 years that pressure unfolds proteins, yet the physical basis of this effect is not understood. Unfolding by pressure implies that the molar volume of the unfolded state of a protein is smaller than that of the folded state. This decrease in volume has been proposed to arise from differences between the density of bulk water and water associated with the protein, from pressure-dependent changes in the structure of bulk water, from the loss of internal cavities in the folded states of proteins, or from some combination of these three factors. Here, using 10 cavity-containing variants of staphylococcal nuclease, we demonstrate that pressure unfolds proteins primarily as a result of cavities that are present in the folded state and absent in the unfolded one. High-pressure NMR spectroscopy and simulations constrained by the NMR data were used to describe structural and energetic details of the folding landscape of staphylococcal nuclease that are usually inaccessible with existing experimental approaches using harsher denaturants. Besides solving a 100-year-old conundrum concerning the detailed structural origins of pressure unfolding of proteins, these studies illustrate the promise of pressure perturbation as a unique tool for examining the roles of packing, conformational fluctuations, and water penetration as determinants of solution properties of proteins, and for detecting folding intermediates and other structural details of protein-folding landscapes that are invisible to standard experimental approaches.
Collapse
|
92
|
Spooner J, Wiebe H, Boon N, Deglint E, Edwards E, Yanciw B, Patton B, Thiele L, Dance P, Weinberg N. Molecular dynamics calculation of molecular volumes and volumes of activation. Phys Chem Chem Phys 2012; 14:2264-77. [DOI: 10.1039/c2cp22949h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|