51
|
Yu H, Dai M, Zhang J, Chen W, Jin Q, Wang S, He Z. Interface Engineering in 2D/2D Heterogeneous Photocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205767. [PMID: 36478659 DOI: 10.1002/smll.202205767] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/06/2022] [Indexed: 06/17/2023]
Abstract
Assembling different 2D nanomaterials into heterostructures with strong interfacial interactions presents a promising approach for novel artificial photocatalytic materials. Chemically implementing the 2D nanomaterials' construction/stacking modes to regulate different interfaces can extend their functionalities and achieve good performance. Herein, based on different fundamental principles and photochemical processes, multiple construction modes (e.g., face-to-face, edge-to-face, interface-to-face, edge-to-edge) are overviewed systematically with emphasis on the relationships between their interfacial characteristics (e.g., point, linear, planar), synthetic strategies (e.g., in situ growth, ex situ assembly), and enhanced applications to achieve precise regulation. Meanwhile, recent efforts for enhancing photocatalytic performances of 2D/2D heterostructures are summarized from the critical factors of enhancing visible light absorption, accelerating charge transfer/separation, and introducing novel active sites. Notably, the crucial roles of surface defects, cocatalysts, and surface modification for photocatalytic performance optimization of 2D/2D heterostructures are also discussed based on the synergistic effect of optimization engineering and heterogeneous interfaces. Finally, perspectives and challenges are proposed to emphasize future opportunities for expanding 2D/2D heterostructures for photocatalysis.
Collapse
Affiliation(s)
- Huijun Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Meng Dai
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jing Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Wenhan Chen
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Qiu Jin
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zuoli He
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
52
|
Chen K, Huang Y, Huang M, Zhu Y, Tang M, Bi R, Zhu M. Crystal facet and Na-doping dual engineering ultrathin BiOCl nanosheets with efficient oxygen activation for enhanced photocatalytic performance. RSC Adv 2023; 13:4729-4745. [PMID: 36760302 PMCID: PMC9900602 DOI: 10.1039/d2ra08003f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Photocatalytic oxidation (PCO) based on semiconductors offers a sustainable and promising way for environmental remediation. However, the photocatalytic performance currently suffers from weak light-harvesting ability, rapid charge combination and a lack of accessible reactive sites. Ultrathin two-dimensional (2D) materials are ideal candidates to overcome these problems and become hotpots in the research fields. Herein, we demonstrate an ultrathin (<4 nm thick) Na-doped BiOCl nanosheets with {001} facets (Na-BOC-001) fabricated via a facile bottom-up approach. Because of the synergistic effect of highly exposed active facets and optimal Na doping on the electronic and crystal structure, the Na-BOC-001 showed an upshifted conduction band (CB) with stronger reduction potential for O2 activation, more defective surface for enhanced O2 adsorption, as well as the highest visible-light driven charge separation and transfer ability. Compared with the bulk counterparts (BOC-010 and BOC-001), the largest amount of active species and the best photocatalytic performance for the tetracycline hydrochloride (TC) degradation were achieved for the Na-BOC-001 under visible-light irradiation, even though it had slightly weaker visible-light absorption ability. Moreover, the effect of the Na doping and crystal facet on the possible pathways for TC degradation was investigated. This work offers a feasible and economic strategy for the construction of highly efficient ultrathin 2D materials.
Collapse
Affiliation(s)
- Kunyu Chen
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University Nanning 530004 P. R. China
| | - Yiwei Huang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University Nanning 530004 P. R. China
| | - Meina Huang
- College of Materials and New Energy, South China Normal UniversityShanwei 516625P. R. China
| | - Yanqiu Zhu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University Nanning 530004 P. R. China .,College of Engineering, Mathematics and Physical Sciences, University of Exeter Exeter EX4 4QF UK
| | - Ming Tang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University Nanning 530004 P. R. China
| | - Renjie Bi
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University Nanning 530004 P. R. China
| | - Meiping Zhu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University Nanning 530004 P. R. China .,Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University Nanning 530004 P. R. China
| |
Collapse
|
53
|
Peng J, Chen ZJ, Ding B, Cheng HM. Recent Advances for the Synthesis and Applications of 2-Dimensional Ternary Layered Materials. RESEARCH (WASHINGTON, D.C.) 2023; 6:0040. [PMID: 37040520 PMCID: PMC10076031 DOI: 10.34133/research.0040] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023]
Abstract
Layered materials with unique structures and symmetries have attracted tremendous interest for constructing 2-dimensional (2D) structures. The weak interlayer interaction renders them to be readily isolated into various ultrathin nanosheets with exotic properties and diverse applications. In order to enrich the library of 2D materials, extensive progress has been made in the field of ternary layered materials. Consequently, many brand-new materials are derived, which greatly extend the members of 2D realm. In this review, we emphasize the recent progress made in synthesis and exploration of ternary layered materials. We first classify them in terms of stoichiometric ratio and summarize their difference in interlayer interaction, which is of great importance to produce corresponding 2D materials. The compositional and structural characteristics of resultant 2D ternary materials are then discussed so as to realize desired structures and properties. As a new family of 2D materials, we overview the layer-dependent properties and related applications in the fields of electronics, optoelectronics, and energy storage and conversion. The review finally provides a perspective for this rapidly developing field.
Collapse
Affiliation(s)
- Jing Peng
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zheng-jie Chen
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Baofu Ding
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
54
|
Pan M, Tang-Hu SY, Li C, Hong J, Liu S, Pan B. Oxygen vacancy-mediated peroxydisulfate activation and singlet oxygen generation toward 2,4-dichlorophenol degradation on specific CuO 1-x nanosheets. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129944. [PMID: 36116314 DOI: 10.1016/j.jhazmat.2022.129944] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/29/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Durable and stable removal of 2,4-dichlorophenpl (2,4-DCP) by CuO1-x nanosheets is reported. CuO1-x nanosheets were fabricated by a simple defect engineering strategy and greatly increased the efficiency of peroxydisulfate (PDS) activation to improve 2,4-DCP removal by introducing abundant oxygen vacancy (Vo) to produce an electron-rich surface. Results showed that CuO1-x nanosheets exposed more Vo as active sites for PDS activation as compared with that of CuO nanoparticles, giving rise to dramatic enhancement of catalytic performance with ultrahigh reaction rate that is qualified for serving in flow filtration system, completely degrading 100 mg L-1 of 2,4-DCP within 3 s of residence time. Besides, experimental studies confirmed that 1O2 generated by Vo - mediated PDS activation plays the dominate role in the degradation of contaminants. Relative to the previously reported CuO/PDS systems, the obtained CuO1-x nanosheets demonstrated 2.7 times higher specific PDS activity and 67 times higher specific CuO activity for 2,4-DCP removal. Our study not only improves the fundamental understanding of active sites in morphologically tunable metal oxides but also proposes a guideline for future research and engineering application of persulfate.
Collapse
Affiliation(s)
- Meilan Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Shuang-Yin Tang-Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Cong Li
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jianheng Hong
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Subiao Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Bingjun Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
55
|
Zhou Y, Yin H, Ai S. Recent advances and applications of Bi2S3-based composites in photoelectrochemical sensors and biosensors. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
56
|
Chilivery R, Zhang R, Chen G, Yao D, Fan D, Lu F, Song Y. Facile in situ construction of novel hybrid 3D-BiOCl@PDA heterostructures with vacancy induced charge transfer for efficient visible light driven photocatalysis and antibacterial activity. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
57
|
Zhang Z, Wen J, Zhang J, Guo D, Zhang Q. Vacancy-Modulated of CuS for Highly Antibacterial Efficiency via Photothermal/Photodynamic Synergetic Therapy. Adv Healthc Mater 2023; 12:e2201746. [PMID: 36303519 DOI: 10.1002/adhm.202201746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/08/2022] [Indexed: 02/03/2023]
Abstract
Cu-based nanomaterials have been developed to alleviate the problem of antibiotic resistance due to their superior properties and good biocompatibility. Defects in nanomaterials have a major role in improving photocatalytic performance. Herein, two CuS nanospheres with predominant VCuSCu and VCuSS vacancy (abbreviated as CuS and CuS-T150, respectively) characterized by positron annihilation spectra are synthesized. The combination of experimental and theoretical calculation results demonstrates that CuS-T150 exhibits excellent antibacterial, achieving bactericidal rates of 99.9% against to Escherichia coli (E. coli) under 808 nm laser irradiation. Compared with CuS, the superior antimicrobial activity of CuS-T150 is mainly attributed to its stronger ability to adsorb oxygen molecules, more easily bind with surface of E. coli, and higher photothermal conversion efficiency (PTCE). This work provides a deeper understanding of nanomaterials with vacancy modulated the antibacterial efficiency by synergistic effect of photodynamic and photothermal therapy.
Collapse
Affiliation(s)
- Zhihao Zhang
- College of Environment and Resource, Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, China.,Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Jinghong Wen
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Jie Zhang
- College of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Donggang Guo
- College of Environment and Resource, Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, China
| | - Quanxi Zhang
- College of Environment and Resource, Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, China.,Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
58
|
Lai J, Ding L, Fan C, Wei J, Qian J, Wang K. Zinc vacancy mediated electron-hole separation in ZnO nanorod arrays for high-sensitivity organic photoelectrochemical transistor aptasensor. Chem Commun (Camb) 2022; 59:75-78. [PMID: 36468236 DOI: 10.1039/d2cc05735b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
A novel strong solvent coordination leaching method was developed to prepare surface zinc vacancies in ZnO nanorod arrays. Remarkably, the surface-zinc-vacancy-rich ZnO nanorod arrays exhibit high electron-hole separation efficiency and excellent photoelectrochemical performance for use as a promising candidate for the next generation of organic photoelectrochemical transistor aptasensors.
Collapse
Affiliation(s)
- Jingjie Lai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Lijun Ding
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Cunhao Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Jie Wei
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Jing Qian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | - Kun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| |
Collapse
|
59
|
Engineered 2D Metal Oxides for Photocatalysis as Environmental Remediation: A Theoretical Perspective. Catalysts 2022. [DOI: 10.3390/catal12121613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Modern-day society requires advanced technologies based on renewable and sustainable energy resources to meet environmental remediation challenges. Solar-inspired photocatalytic applications such as water splitting, hydrogen evolution reaction (HER), and carbon dioxide reduction reaction (CO2RR) are unique solutions based on green and efficient technologies. Considering the special electronic features and larger surface area, two-dimensional (2D) materials, especially metal oxides (MOs), have been broadly explored for the abovementioned applications in the past few years. However, their photocatalytic potential has not been optimized yet to the level required for practical and commercial applications. Among many strategies available, defect engineering, including cation and anion vacancy creations, can potentially boost the photocatalytic performance of 2D MOs. This mini-review covers recent advancements in 2D engineered materials for various photocatalysis applications such as H2O2 oxidation, HER, and CO2RR for environmental remediation from theoretical perspectives. By thoroughly addressing the fundamental aspects, recent developments, and associated challenges—the author’s recommendations in compliance with future challenges and prospects will pave the way for readers.
Collapse
|
60
|
Qu X, Lin J, Qiang W, Chen C, Sun D. Self-doped defect-mediated TiO 2 with disordered surface for high-efficiency photodegradation of various pollutants. CHEMOSPHERE 2022; 308:136239. [PMID: 36049638 DOI: 10.1016/j.chemosphere.2022.136239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Photocatalytic technology in eliminating organic pollutants is considered to be one of the most promising technologies to solve environmental issues. However, the low catalytic activity exhibited by Titanium dioxide (TiO2) limits its further application. In order to enhance the photocatalytic activity, structural regulation of TiO2 is designed by chemical reduction method to promote the production of massive Ti3+ and oxygen vacancies (OVs), these defects can serve as inter-band level of semiconductor to enhance photon capture and transfer efficiency of photogenerated charge. The samples show strong light absorption ability, which leads to excellent photocatalytic activity for various organic pollutants degradation. Results showed robust degradation of MO, RhB, DCP and TC under UV irradiation within 60 min. Estimated quantum yields of as-synthesized TiO2 systems for removing representative pollutants are calculated, which indicates higher reactivity than commercial TiO2. The XPS, TEM, photoelectrochemical analysis and EPR results intuitive reveal the micro-morphology, band structure and active species of Ti3+ doped defective TiO2. This work can provide an essential reference for structural regulation and composition of oxide semiconductor since the methodology could be freely applicable to other systems.
Collapse
Affiliation(s)
- Xiao Qu
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, PR China
| | - Jianbin Lin
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, PR China
| | - Wei Qiang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, PR China
| | - Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, PR China.
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, PR China.
| |
Collapse
|
61
|
Jiang H, Wang W, Sun L, Kong T, Lu Z, Tang H, Wang L, Liu Q. Boosting photocatalytic CO2 reduction by tuning photogenerated carrier kinetics in two-dimensional WOx/BiOCl S-scheme heterojunction with oxygen vacancies. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
62
|
Liu X, Bai L, Cao X, Wu F, Yin T, Lu W. Rapid determination of SARS-CoV-2 nucleocapsid proteins based on 2D/2D MXene/P–BiOCl/Ru(bpy) 32+ heterojunction composites to enhance electrochemiluminescence performance. Anal Chim Acta 2022; 1234:340522. [PMID: 36328721 PMCID: PMC9575274 DOI: 10.1016/j.aca.2022.340522] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022]
Abstract
At the end of 2019, the novel coronavirus disease 2019 (COVID-19), a cluster of atypical pneumonia caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been known as a highly contagious disease. Herein, we report the MXene/P–BiOCl/Ru(bpy)32+ heterojunction composite to construct an electrochemiluminescence (ECL) immunosensor for SARS-CoV-2 nucleocapsid protein (CoVNP) determination. Two-dimensional (2D) material ultrathin phosphorus-doped bismuth oxychloride (P–BiOCl) is exploited and first applied in ECL. 2D architectures MXene not only act as “soft substrate” to improve the properties of P–BiOCl, but also synergistically work with P–BiOCl. Owing to the inimitable set of bulk and interfacial properties, intrinsic high electrochemical conductivity, hydrophilicity and good biocompatible of 2D/2D MXene/P–BiOCl/Ru(bpy)32+, this as-exploited heterojunction composite is an efficient signal amplifier and co-reaction accelerator in the presence of tri-n-propylamine (TPA) as a coreactant. The proposed MXene/P–BiOCl/Ru(bpy)32+-TPA system exhibits a high and stable ECL signal and achieves ECL emission quenching for “signal on-off” recognition of CoVNP. Fascinatingly, the constructed ECL biosensor towards CoVNP allows a wide linear concentration range from 1 fg/mL to 10 ng/mL and a low limit of detection (LOD) of 0.49 fg/mL (S/N = 3). Furthermore, this presented strategy sheds light on designing a highly efficient ECL nanostructure through the combination of 2D MXene architectures with 2D semiconductor materials in the field of nanomedicine. This ECL biosensor can successfully detect CoVNP in human serum, which can promote the prosperity and development of diagnostic methods of SARS-CoV-2.
Collapse
Affiliation(s)
- Xuebo Liu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Liwei Bai
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Xiaowei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Feng Wu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, China
| | - Tao Yin
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, China
| | - Wenbo Lu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, 030031, China,Corresponding author
| |
Collapse
|
63
|
Ni L, Xiao Y, Zhou X, Jiang Y, Liu Y, Zhang W, Zhang J, Liu Z. Significantly Enhanced Photocatalytic Performance of the g-C 3N 4/Sulfur-Vacancy-Containing Zn 3In 2S 6 Heterostructure for Photocatalytic H 2 and H 2O 2 Generation by Coupling Defects with Heterojunction Engineering. Inorg Chem 2022; 61:19552-19566. [DOI: 10.1021/acs.inorgchem.2c03491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Linxin Ni
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Yan Xiao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Xiangyu Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Yinhua Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Wenli Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Zhanchao Liu
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang212003, P. R. China
| |
Collapse
|
64
|
Li S, Pan D, Cui Z, Xu Y, Shang H, Hua W, Wu F, Wu W. Synergistic effects of oxygen vacancies and heterostructures for visible-light-driven photoreduction of uranium. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
65
|
Teng D, Qu J, Li P, Jin P, Zhang J, Zhang Y, Cao Y. Heterostructured α-Bi 2O 3/BiOCl Nanosheet for Photocatalytic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3631. [PMID: 36296821 PMCID: PMC9608947 DOI: 10.3390/nano12203631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Photocatalytic degradation of organic pollutants in wastewater is recognized as a promising technology. However, photocatalyst Bi2O3 responds to visible light and suffers from low quantum yield. In this study, the α-Bi2O3 was synthetized and used for removing Cl- in acidic solutions to transform BiOCl. A heterostructured α-Bi2O3/BiOCl nanosheet can be fabricated by coupling Bi2O3 (narrow band gap) with layered BiOCl (rapid photoelectron transmission). During the degradation of Rhodamine B (RhB), the Bi2O3/BiOCl composite material presented excellent photocatalytic activity. Under visible light irradiation for 60 min, the Bi2O3/BiOCl photocatalyst delivered a superior removal rate of 99.9%, which was much higher than pristine Bi2O3 (36.0%) and BiOCl (74.4%). Radical quenching experiments and electron spin resonance spectra further confirmed the dominant effect of electron holes h+ and superoxide radical anions ·O2- for the photodegradation process. This work develops a green strategy to synthesize a high-performance photocatalyst for organic dye degradation.
Collapse
Affiliation(s)
- Daoguang Teng
- School of Chemical Engineering and Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Qu
- School of Chemical Engineering and Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Li
- School of Chemical Engineering and Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Jin
- School of Chemical Engineering and Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Zhang
- School of Chemical Engineering and Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Yijun Cao
- School of Chemical Engineering and Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
66
|
Guan Y, Wang S, Du Q, Wu M, Zheng Z, Li Z, Yan S. C-scheme electron transfer mechanism: An efficient ternary heterojunction photocatalyst carbon quantum dots/Bi/BiOBr with full ohmic contact. J Colloid Interface Sci 2022; 624:168-180. [PMID: 35660886 DOI: 10.1016/j.jcis.2022.05.091] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 12/13/2022]
Abstract
With a facile one-pot solvothermal method, an efficient ternary heterojunction photocatalyst carbon quantum dots (CQDs)/Bi/BiOBr is firstly prepared. Ethylene glycol (EG) is used as the solvent and carbon source for the first time. At 190 °C for 3 h, while BiOBr is synthesized, EG is employed to prepare CQDs through bottom-up method. CQDs are grafted by a large number of functional groups with reducibility, which reduce some neighboring BiO+ to metal Bi. By modifying the solvothermal temperature and time, CQDs and Bi are in-situ controllably deposited on the surface of BiOBr microspheres. Due to different Fermi levels and work functions, the interfaces of CQDs, BiOBr and Bi are connected through ohmic junctions with low contact impedance. The hot electrons from Bi with surface plasmon resonance (SPR) properties, and electrons in the CB of BiOBr flow to CQDs, forming a C-scheme electron transfer mechanism. O2- from CQDs and h+ in the VB of BiOBr respectively attack the sites with higher and lower electron density in methyl orange (MO) molecule, resulting in its photodegradation into small molecular products.
Collapse
Affiliation(s)
- Yuan Guan
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Shaomang Wang
- School of Environment and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, PR China.
| | - Qiongdie Du
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Mingfei Wu
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Zhiqian Zheng
- School of Environment and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Zhongyu Li
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, PR China; School of Environment and Safety Engineering, Changzhou University, Changzhou, Jiangsu 213164, PR China.
| | - Shicheng Yan
- Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, PR China.
| |
Collapse
|
67
|
Recent Developments in Heterogeneous Photocatalysts with Near-Infrared Response. Symmetry (Basel) 2022. [DOI: 10.3390/sym14102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Photocatalytic technology has been considered as an efficient protocol to drive chemical reactions in a sustainable and green way. With the assistance of semiconductor-based materials, heterogeneous photocatalysis converts solar energy directly into chemical energy that can be readily stored. It has been employed in several fields including CO2 reduction, H2O splitting, and organic synthesis. Given that near-infrared (NIR) light occupies 47% of sunlight, photocatalytic systems with a NIR response are gaining more and more attention. To enhance the solar-to-chemical conversion efficiency, precise regulation of the symmetric/asymmetric nanostructures and band structures of NIR-response photocatalysts is indispensable. Under the irradiation of NIR light, the symmetric nano-morphologies (e.g., rod-like core-shell shape), asymmetric electronic structures (e.g., defect levels in band gap) and asymmetric heterojunctions (e.g., PN junctions, semiconductor-metal or semiconductor-dye composites) of designed photocatalytic systems play key roles in promoting the light absorption, the separation of electron/hole pairs, the transport of charge carriers to the surface, or the rate of surface photocatalytic reactions. This review will comprehensively analyze the four main synthesis protocols for the fabrication of NIR-response photocatalysts with improved reaction performance. The design methods involve bandgap engineering for the direct utilization of NIR photoenergy, the up-conversion of NIR light into ultraviolet/visible light, and the photothermal effect by converting NIR photons into local heat. Additionally, challenges and perspectives for the further development of heterogeneous photocatalysts with NIR response are also discussed based on their potential applications.
Collapse
|
68
|
Wang X, Wu J, Zhang Y, Sun Y, Ma K, Xie Y, Zheng W, Tian Z, Kang Z, Zhang Y. Vacancy Defects in 2D Transition Metal Dichalcogenide Electrocatalysts: From Aggregated to Atomic Configuration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2206576. [PMID: 36189862 DOI: 10.1002/adma.202206576] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Vacancy defect engineering has been well leveraged to flexibly shape comprehensive physicochemical properties of diverse catalysts. In particular, growing research effort has been devoted to engineering chalcogen anionic vacancies (S/Se/Te) of 2D transition metal dichalcogenides (2D TMDs) toward the ultimate performance limit of electrocatalytic hydrogen evolution reaction (HER). In spite of remarkable progress achieved in the past decade, systematic and in-depth insights into the state-of-the-art vacancy engineering for 2D-TMDs-based electrocatalysis are still lacking. Herein, this review delivers a full picture of vacancy engineering evolving from aggregated to atomic configurations covering their development background, controllable manufacturing, thorough characterization, and representative HER application. Of particular interest, the deep-seated correlations between specific vacancy regulation routes and resulting catalytic performance improvement are logically clarified in terms of atomic rearrangement, charge redistribution, energy band variation, intermediate adsorption-desorption optimization, and charge/mass transfer facilitation. Beyond that, a broader vision is cast into the cutting-edge research fields of vacancy-engineering-based single-atom catalysis and dynamic structure-performance correlations across catalyst service lifetime. Together with critical discussion on residual challenges and future prospects, this review sheds new light on the rational design of advanced defect catalysts and navigates their broader application in high-efficiency energy conversion and storage fields.
Collapse
Affiliation(s)
- Xin Wang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jing Wu
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yuwei Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yu Sun
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Kaikai Ma
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yong Xie
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Wenhao Zheng
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhen Tian
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhuo Kang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
69
|
Naing HH, Li Y, Ghasemi JB, Wang J, Zhang G. Enhanced visible-light-driven photocatalysis of in-situ reduced of bismuth on BiOCl nanosheets and montmorillonite loading: Synergistic effect and mechanism insight. CHEMOSPHERE 2022; 304:135354. [PMID: 35714959 DOI: 10.1016/j.chemosphere.2022.135354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Various improvement strategies have been developed to enhance the visible light photocatalytic properties of materials. In these enhancement strategies, bismuth, a non-noble metal-based plasma metal, is deposited on the surface of the photocatalyst, which can improve the visible light response and photocatalytic performance of the photocatalyst. Herein, we constructed montmorillonite loaded BiOCl nanosheets with in situ reduced bismuth by one-step hydrothermal method. As for the results of TEM analysis, the in-situ reduced bismuth nanoparticles with diameters of 5-20 nm were evenly distributed on the surface of BiOCl nanosheets. Due to the surface plasmon resonance (SPR) effect of semi metallic bismuth nanoparticles on the BiOCl nanosheets, the light absorption range of the modified photocatalyst was expanded and its absorption band gap (Eg) was reduced from 3.16 eV (pure BiOCl) to 2.26 eV. Besides, the results of dark adsorption experiments confirmed that the montmorillonite supporter greatly enhanced the adsorption capacity of the modified photocatalyst for pollutants. Moreover, the radical species trapping tests revealed that •O2- and h+ were the pivotal active agents in the pollutant degradation process. The visible light driven photocatalytic degradation rate of TCs and RhB by the modified photocatalyst was 3 and 4 times higher than that of pure BiOCl because of the synergistic effect of montmorillonite supporter and bismuth nanoparticles. The present work provides an innovative strategy for the great feasibility of fabricating low-cost clay and effective bismuth nanoparticles as a substitute for noble metal in environmental pollutants degradation.
Collapse
Affiliation(s)
- Htet Htet Naing
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yuan Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Jahan B Ghasemi
- Chemistry Faculty School of Sciences, University of Tehran, Tehran POB, 14155-6455, Iran
| | - Junting Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Gaoke Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
70
|
Shi X, Dong F. The dynamic chlorine defects enable the Bi<sub>5</sub>O<sub>7</sub>Cl with 100% selective photoreduction of CO<sub>2</sub> to CO. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-1021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
71
|
Confined cobalt oxide embedded into hierarchical bismuth tungstate in S-scheme micro-heterojunction for enhanced air purification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
72
|
Sreedhar A, Hoai Ta QT, Noh JS. Role of p-n junction initiated mixed-dimensional 0D/2D, 1D/2D, and 2D/2D BiOX (X = Cl, Br, and I)/TiO 2 nanocomposite interfaces for environmental remediation applications: A review. CHEMOSPHERE 2022; 305:135478. [PMID: 35760130 DOI: 10.1016/j.chemosphere.2022.135478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, we are critically facing various environmental issues. Among these, water contamination is the foremost issue, which worsens our health and living organisms in the water. Thus, it is necessary to provide an avenue to minimize the toxic matter through the development of facile technique and harmless photocatalyst. In this review, we intended to uncover the findings associated with various 0D, 1D, and 2D nanostructures featured photocatalysts for advancements in interfacial characteristics and toxic matter degradation. In this context, we evaluated the promising mixed-dimensional 0D/2D, 1D/2D, and 2D/2D bismuth oxyhalides BiOX (X = Cl, Br, and I) integrated TiO2 nanostructure interfaces. Tunable mixed-dimensional interfaces highlighted with higher surface area, more heterojunctions, variation in the conduction and valence band potential, narrowed band gap, and built-in electric field formation between BiOX and TiO2, which exhibits remarkable toxic dye, heavy metals, and antibiotics degradation. Further, this review further examines insights into the charge carrier generation, separation, and shortened charge transfer path at reduced recombination. Considering the advantages of type-II, S-scheme, and Z-scheme charge transfer mechanisms in the BiOX/TiO2, we heightened the combination of various reactive species generation. In a word, the concept of mixed-dimensional BiOX/TiO2 heterojunction interface endows toxic matter adsorption and decomposition into useful products. Challenges and future perspectives are also provided.
Collapse
Affiliation(s)
- Adem Sreedhar
- Department of Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, South Korea
| | - Qui Thanh Hoai Ta
- Department of Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, South Korea
| | - Jin-Seo Noh
- Department of Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 461-701, South Korea.
| |
Collapse
|
73
|
Structural Fine‐Tuning and In‐situ Generation of P, O Vacancies in Hollow Co‐Ferrocene‐MOFs Derived Phosphides for Efficient Water Oxidation. ChemCatChem 2022. [DOI: 10.1002/cctc.202200558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
74
|
Zhang L, Zhai T, Yang M, Hu C. Few-layered Bi 4O 5I 2 nanosheets enclosed by {1 0-1} facets with oxygen vacancies for highly-efficient removal of water contaminants. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129274. [PMID: 35897179 DOI: 10.1016/j.jhazmat.2022.129274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Few-layered Bi4O5I2 nanosheets (FL-Bi4O5I2) were synthesized by intergrowth with Bi2O2CO3 under room temperature. The photoactivity of FL-Bi4O5I2 was 2.5 and 9.5 times higher than that of Bi4O5I2 nanoflakes (NF-Bi4O5I2, about 30 nm thickness) and standard visible-light-driven N-TiO2, respectively. Moreover, FL-Bi4O5I2 exhibited a wide pH application range (3.0 - 10.0) and excellent photostability. The characterization results showed FL-Bi4O5I2 was consisted of 5 - 8 layers with thickness of 4 - 7 nm and enclosed by {1 0 - 1} facets. The ultrathin characteristics could accelerate the charge transfer to the surface due to the shortened transport distance. Compared to NF-Bi4O5I2, surface oxygen vacancies and the more negative CB potential were formed on FL-Bi4O5I2. The photogenerated electrons were confirmed to be captured by surface oxygen vacancies to effectively reduce surface adsorbed O2 into HO2•/O2•-, leaving more h+ to oxidize organic pollutants. This process was further facilitated by the more negative CB potential of FL-Bi4O5I2, resulting in the highly efficient removal of pollutants.
Collapse
Affiliation(s)
- Lili Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Zhai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute of Environmental Research at Greater Bay, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
75
|
Ren ZQ, Yu LQ, Wang H, Li GF, Zhang LG, Du XN, Huang BC, Jin RC. Inorganic quantum dots - anammox consortia hybrid for stable nitrogen elimination under high-intensity solar-simulated irradiation. WATER RESEARCH 2022; 223:119033. [PMID: 36058096 DOI: 10.1016/j.watres.2022.119033] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
External stimulus such as light irradiation is able to deteriorate intracellular redox homeostasis and induce photooxidative damage to non-photogenic bacteria. Exploiting effective strategies to help bacteria resisting infaust stress is meaningful for achieving a stable operation of biological treatment system. In this work, selenium-doped carbon quantum dots (Se-CQDs) were blended into anaerobic ammonia oxidation (anammox) bacteria and an inorganic nanoparticle-microbe hybrid was successfully fabricated to evaluate its nitrogen removal performance under solar-simulated irradiation. It was found that the specific anammox activity decreased by 29.7 ± 5.2% and reactive oxygen species (ROS) content increased by 134.8 ± 4.1% under 50,000 lux light. Sludge activity could be completely recovered under the optimum dosage of 0.42 mL·(g volatile suspended solid) -1 Se-CQDs. Hydroxyl radical (·OH) and superoxide anion radical (·O2-) were identified as the leading ROS inducing lipid peroxidation and antioxidase function detriment. Also, the structure of ladderane lipids located on anammoxosome was destroyed by ROS and functional genes abundances declined accordingly. Although cell surface coated Se-CQDs could absorb ultraviolet light and partially mitigated the photoinhibition, the direct scavenging of ROS by intracellular Se-CQDs primarily contributed to the cellular redox homeostasis, antioxidase activity recovery and sludge activity improvement. The findings of this work provide in-depth understanding the metabolic response mechanism of anammox consortia to light irradiation and might be valuable for a more stable and sustainable nitrogen removal technology, i.e., algal-bacterial symbiotic system, development.
Collapse
Affiliation(s)
- Zhi-Qi Ren
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Lin-Qian Yu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Wang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Gui-Feng Li
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Li-Ge Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xue-Ning Du
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Bao-Cheng Huang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou 310018, China.
| | - Ren-Cun Jin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; School of Engineering, Hangzhou Normal University, Hangzhou 310018, China.
| |
Collapse
|
76
|
Liu J, Wang H, Chang MJ, Sun M, He ZW, Zhang CM, Zhu WY, Chen JL, Du HL, Peng LG, Luo ZM, Zhang L. Magnetically separatable CoFe2O4/BiOCl: Controllable synthesis, superior photocatalytic performance and mechanism towards decomposing RhB, NOR and Cr(VI) under visible light. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
77
|
Liu Y, Cun F, Tian D, Zhou P, Yuan Y, Xiong Z, He C, Du Y, Pan Z, Lai B. Fast photo-Fenton-like oxidation in bismuth catalysis: A novel Fe(III) self-doped sodium bismuthate nanosheet. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128975. [PMID: 35468394 DOI: 10.1016/j.jhazmat.2022.128975] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/28/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Sodium bismuthate dihydrate (NaBiO3.2 H2O, NBH) nanosheets were successfully prepared in this study using the persulfate oil bath oxidation method. Benefited from the unique layered structure of NBH, the Fe(III) as a variable valence metal ion was explored for enhancing NBH activation of peroxymonosulfate (PMS) to degrade levofloxacin (LVF) in the visible-light catalytic system. Based on results of the reactive oxygen species (ROS) quenching experiments and electron paramagnetic resonance (EPR) analysis, singlet oxygen (1O2) and superoxide radical (O2·-) were identified as the main ROS. The morphology, chemical structure, and optical properties of NBH were analyzed using various characterization methods. It was confirmed that Fe(III) embedded in the NBH via the ion exchange with Na, resulting in lattice oxygen vacancies on the surface of the NBH, after the formation of oxygen defect sites, reacts with PMS in the solution to produce active oxygen species with oxidizing efficiency. This study expands the technological application of NBH in the catalytic oxidation of variable valence metals, which are essential for the removal of fluoroquinolone antibiotics.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Water Safety and Water Pollution Control Engineering Technology Research Center in Sichuan Province, Haitian Water Group, Chengdu 610041, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Fenxian Cun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Water Safety and Water Pollution Control Engineering Technology Research Center in Sichuan Province, Haitian Water Group, Chengdu 610041, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Dongqi Tian
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644044, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644044, China; School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yue Yuan
- School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Water Safety and Water Pollution Control Engineering Technology Research Center in Sichuan Province, Haitian Water Group, Chengdu 610041, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Chuanshu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Ye Du
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhicheng Pan
- Water Safety and Water Pollution Control Engineering Technology Research Center in Sichuan Province, Haitian Water Group, Chengdu 610041, China; School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China; Sichuan University Yibin Park, Yibin Institute of Industrial Technology, Yibin 644044, China; School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
78
|
Vinoth S, Ong WJ, Pandikumar A. Defect engineering of BiOX (X = Cl, Br, I) based photocatalysts for energy and environmental applications: Current progress and future perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214541] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
79
|
Ma J, An L, Liu D, Yao J, Qi D, Xu H, Song C, Cui F, Chen X, Ma J, Wang W. A Light-Permeable Solar Evaporator with Three-Dimensional Photocatalytic Sites to Boost Volatile-Organic-Compound Rejection for Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9797-9805. [PMID: 35748330 DOI: 10.1021/acs.est.2c01874] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solar-driven interfacial evaporation (SIE) is emerging as an energy-efficient technology to alleviate the global water shortages. However, there is a fatal disadvantage in using SIE, that is, the volatile organic compounds (VOCs) widely present in feedwater would concurrently evaporate and transport in distilled water, which threatens the water safety. Photocatalysis is a sustainable technology for pollution control, and after years of development, it has become a mature method. Considering the restriction by the insufficient reaction of the permeating VOCs on the two-dimensional (2D) light-available interface of conventional materials, a 3D photocatalytic approach can be established to boost VOC rejection for photothermal evaporation. In the present work, a light-permeable solar evaporator with 3D photocatalytic sites is constructed by a porous sponge decorated with BiOBrI nanosheets with oxygen-rich vacancies. The 3D microchannels in the evaporator provide a light-permeable path with the deepest irradiation depth of about 580 μm, and the reactive interface is increased by tens of times compared with the traditional 2D membrane, resulting in suppression of VOC remnants in distilled water by around four orders of magnitude. When evaporating river water containing 5 mg L-1 extra added phenol, no phenol residues (below 0.001 mg/L) were detected in the produced freshwater. This development is believed to provide a powerful strategy to resolve the VOC bottleneck of SIE.
Collapse
Affiliation(s)
- Jiaxiang Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liuqian An
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dongmei Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinxin Yao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Hongbo Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Chengjie Song
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fuyi Cui
- College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 639798 Singapore
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
80
|
Facial synthesis of mesoporous {Mo132}/BiOCl for the efficient oxidative desulfurization of fuel. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
81
|
|
82
|
Zhu P, Xu J, Xie L, Duan M, Wu X, Xiao X, Liu M. Preparation and characterization of highly efficient Z-scheme oxygen vacancy-BiOBr/CoFe2O4 heterojunction photocatalyst driven by visible light for antibiotic degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128810] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
83
|
Hao L, Zhang T, Sang H, Jiang S, Zhang J, Yang J. Advances in facet-dependent photocatalytic properties of BiOCl catalyst for environmental remediation. REV INORG CHEM 2022. [DOI: 10.1515/revic-2022-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Bismuth chloride oxide (BiOCl) is a typical V-VI-VII ternary oxide material, which is one of the widely studied metal oxides due to its unique surface, electronic and photocatalytic properties. However, the broad bandgap and the large number of photogenerated electron-hole pair complexes of BiOCl limit its photocatalytic efficiency. Since the photocatalytic performance of BiOCl is highly dependent on its exposed crystallographic facets, research attention has increasingly focused on the different structures and properties possessed by different crystallographic facets of BiOCl. This article reviews the basic principles of using different crystalline surfaces of BiOCl materials to enhance photocatalytic activity, summarizes the applications of BiOCl single-crystal catalysts and composite catalysts in the environmental field, and provides an outlook on the challenges and new research directions for future development in this emerging frontier area. It is hoped that the crystalline surface-related photocatalysis of BiOCl can be used to provide new guidance for the rational design of novel catalysts for various energy and environment-related applications.
Collapse
Affiliation(s)
- Linjing Hao
- School of Ecology and Environment , Zhengzhou University , Henan 450001 , P. R. China
- International Joint Laboratory of Environment and Resources of Henan Province , Henan 450001 , P. R. China
| | - Tingting Zhang
- School of Ecology and Environment , Zhengzhou University , Henan 450001 , P. R. China
- International Joint Laboratory of Environment and Resources of Henan Province , Henan 450001 , P. R. China
| | - Haoran Sang
- School of Ecology and Environment , Zhengzhou University , Henan 450001 , P. R. China
- International Joint Laboratory of Environment and Resources of Henan Province , Henan 450001 , P. R. China
| | - Suyu Jiang
- School of Chemical Engineering , Zhengzhou University , Henan 450001 , P. R. China
- Research Center of Heterogeneous Catalysis & Engineering Sciences , Zhengzhou University , Henan 450001 , P. R. China
| | - Jie Zhang
- School of Ecology and Environment , Zhengzhou University , Henan 450001 , P. R. China
- International Joint Laboratory of Environment and Resources of Henan Province , Henan 450001 , P. R. China
- Research Centre of Engineering and Technology for Synergetic Control of Environmental Pollution and Carbon Emissions of Henan Province , Henan 450001 , P. R. China
| | - Jinghe Yang
- School of Chemical Engineering , Zhengzhou University , Henan 450001 , P. R. China
| |
Collapse
|
84
|
Yuan X, Yang J, Yao Y, Shen H, Meng Y, Xie B, Ni Z, Xia S. Preparation, characterization and photodegradation mechanism of 0D/2D Cu2O/BiOCl S-scheme heterojunction for efficient photodegradation of tetracycline. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120965] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
85
|
Self-doped Br in Bi5O7Br ultrathin nanotubes: Efficient photocatalytic NO purification and mechanism investigation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
86
|
Liu X, Duan X, Bao T, Hao D, Chen Z, Wei W, Wang D, Wang S, Ni BJ. High-performance photocatalytic decomposition of PFOA by BiOX/TiO 2 heterojunctions: Self-induced inner electric fields and band alignment. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128195. [PMID: 35180518 DOI: 10.1016/j.jhazmat.2021.128195] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
BiOX (X = Cl, Br and I) and BiOX/TiO2 photocatalysts were prepared by a facile hydrothermal approach. The BiOX/TiO2 heterojunctions demonstrated significantly enhanced efficiency for photocatalytic decomposition of perfluorooctanoic acid (PFOA) compared with sole BiOX or TiO2. PFOA (10 mg L1) was completely degraded by BiOCl(Br)/TiO2 in 8 h. Moreover, BiOCl/TiO2 attained deep decomposition of PFOA with a high defluorination ratio of 82%. The p-n heterojunctions between BiOX and TiO2 were confirmed by a series of characterizations. The photo-induced holes would migrate from the valance band (VB) of TiO2 to BiOX, driven by the built-in electric field (BIEF) near the interfaces of p-n heterojunctions, the inner electric fields (IEF) in BiOX and the higher VB position of BiOX. The X-ray diffraction (XRD) and TEM characterizations indicated that TiO2 combined with BiOX along the [110] facet, which facilitated photo-induced electron transfer in the [001] direction, thus benefiting PFOA decomposition.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Teng Bao
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Derek Hao
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
87
|
Zeng H, Hu X, Zhou Q, Luo J, Hou X. Extracellular polymeric substances mediate defect generation and phytotoxicity of single-layer MoS 2. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128361. [PMID: 35236038 DOI: 10.1016/j.jhazmat.2022.128361] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Two-dimensional transition metal dichalcogenide (TMDC) nanomaterials have attracted tremendous research interest in various fields, but the effects of eco-corona formation on the transformation mechanisms and ecological risk of TMDCs remain largely unknown. The effect of eco-corona formation on TMDC reactivity was explored using extracellular polymeric substances (EPS) as the eco-corona constituents and single-layer molybdenum disulfide (SLMoS2) as the model TMDC. We found that EPS promoted lattice distortion and the formation of defects (sulfur vacancies and pores) on SLMoS2 after it was aged (precoated) with EPS under simulated visible-light irradiation. In addition, the EPS-corona induced higher free radical (especially hyperoxide radical) photogeneration by SLMoS2. Furthermore, compared to pristine SLMoS2, SLMoS2-EPS exhibited stronger developmental inhibition, oxidative stress, membrane damage, photosynthetic toxicity and metabolic perturbation effects on Chlorella vulgaris. However, the endocytosis pathway (especially macropinocytosis) of SLMoS2 entry into C. vulgaris was inhibited by EPS. Metabolic and transcriptomic analyses revealed that the enhanced toxicity of SLMoS2-EPS was associated with the downregulation of fatty acid metabolism and transcription related to photosynthesis, respectively. The present work provides mechanistic insights into the roles of the EPS-corona on the environmental transformation and phytotoxicity of TMDCs, which benefit environmental safety assessments and sustainable applications of engineered nanomaterials.
Collapse
Affiliation(s)
- Hui Zeng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Jiwei Luo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuan Hou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
88
|
Chen F, Zhang Y, Huang H. Layered photocatalytic nanomaterials for environmental applications. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
89
|
S-Scheme BiOCl/MoSe 2 Heterostructure with Enhanced Photocatalytic Activity for Dyes and Antibiotics Degradation under Sunlight Irradiation. SENSORS 2022; 22:s22093344. [PMID: 35591035 PMCID: PMC9099531 DOI: 10.3390/s22093344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022]
Abstract
Semiconductor photocatalysis is considered to be a promising technique to completely eliminate the organic pollutants in wastewater. Recently, S-scheme heterojunction photocatalysts have received much attention due to their high solar efficiency, superior transfer efficiency of charge carriers, and strong redox ability. Herein, we fabricated an S-scheme heterostructure BiOCl/MoSe2 by loading MoSe2 nanosheets on the surface of BiOCl microcrystals, using a solvothermal method. The microstructures, light absorption, and photoelectrochemical performances of the samples were characterized by the means of SEM, TEM, XRD, transient photocurrents, electrochemical impedance, and photoluminescence (PL) spectra. The photocatalytic activities of BiOCl, MoSe2, and the BiOCl/MoSe2 samples with different MoSe2 contents were evaluated by the degradation of methyl orange (MO) and antibiotic sulfadiazine (SD) under simulated sunlight irradiation. It was found that BiOCl/MoSe2 displayed an evidently enhanced photocatalytic activity compared to single BiOCl and MoSe2, and 30 wt.% was an optimal loading amount for obtaining the highest photocatalytic activity. On the basis of radical trapping experiments and energy level analyses, it was deduced that BiOCl/MoSe2 follows an S-scheme charge transfer pathway and •O2−, •OH, and h+ all take part in the degradation of organic pollutants.
Collapse
|
90
|
Luo Z, Ye X, Zhang S, Xue S, Yang C, Hou Y, Xing W, Yu R, Sun J, Yu Z, Wang X. Unveiling the charge transfer dynamics steered by built-in electric fields in BiOBr photocatalysts. Nat Commun 2022; 13:2230. [PMID: 35468890 PMCID: PMC9038904 DOI: 10.1038/s41467-022-29825-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 04/01/2022] [Indexed: 11/09/2022] Open
Abstract
Construction of internal electric fields (IEFs) is crucial to realize efficient charge separation for charge-induced redox reactions, such as water splitting and CO2 reduction. However, a quantitative understanding of the charge transfer dynamics modulated by IEFs remains elusive. Here, electron microscopy study unveils that the non-equilibrium photo-excited electrons are collectively steered by two contiguous IEFs within binary (001)/(200) facet junctions of BiOBr platelets, and they exhibit characteristic Gaussian distribution profiles on reduction facets by using metal co-catalysts as probes. An analytical model justifies the Gaussian curve and allows us to measure the diffusion length and drift distance of electrons. The charge separation efficiency, as well as photocatalytic performances, are maximized when the platelet size is about twice the drift distance, either by tailoring particle dimensions or tuning IEF-dependent drift distances. The work offers great flexibility for precisely constructing high-performance particulate photocatalysts by understanding charge transfer dynamics.
Collapse
Affiliation(s)
- Zhishan Luo
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.,College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xiaoyuan Ye
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shijia Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Sikang Xue
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Can Yang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Wandong Xing
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Key Laboratory of Advanced Materials of Ministry of Education of China, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, China
| | - Rong Yu
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Key Laboratory of Advanced Materials of Ministry of Education of China, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, China
| | - Jie Sun
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China and College of Physics and Information Engineering, Fuzhou University, Fuzhou, 350100, China
| | - Zhiyang Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
91
|
Xue Y, Shao P, Lin M, Yuan Y, Shi W, Cui F. Tailoring S-vacancy concentration changes the type of the defect and photocatalytic activity in ZFS. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128215. [PMID: 35033917 DOI: 10.1016/j.jhazmat.2022.128215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/06/2021] [Accepted: 01/02/2022] [Indexed: 06/14/2023]
Abstract
Defect engineering is crucial in the development of semiconductor catalyst activity. However, the influence of defect/vacancy density and states on catalysis remains vague. Thus, the optimized sulfur vacancy (SV) state is achieved among Fe-ZnS models (ZFS) via a chemical etching strategy for photocatalytic degradation (PD). As the SV concentration (ρSV) increases, the predominant state of vacancies changes from isolated defects-a state to a combination of a state and vacancy clusters-e state, as verified by positron annihilation and X-ray absorption fine structure spectra. However, the two types of defect states activated the intrinsic activity of the crystal via radically different mechanisms and exerted different degrees of influence on PD activity, as revealed by first-principles calculations and quantitative structure-activity relationship. Our results suggest that the SV activity is strongly influenced by its concentration in the ZFS crystal, while the vacancy concentration is not a control parameter for the PD activity, but a defect form. The underlying essence of atomic defects behavior affecting crystal catalytic activity at the atomic level is also revealed in this paper. Uncovering these structural relationships provide a theoretical basis for designing effective catalysts.
Collapse
Affiliation(s)
- Yanei Xue
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Mingli Lin
- China Academy of Urban Planning and Design, Beijing 100000, PR China
| | - Yixing Yuan
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wenxin Shi
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Fuyi Cui
- College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
92
|
Zhang Z, Carlos C, Wang Y, Dong Y, Yin X, German L, Berg KJ, Bu W, Wang X. Nucleation Kinetics and Structure Evolution of Quasi-Two-Dimensional ZnO at the Air-Water Interface: An In Situ Time-Resolved Grazing Incidence X-ray Scattering Study. NANO LETTERS 2022; 22:3040-3046. [PMID: 35357195 DOI: 10.1021/acs.nanolett.2c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The design and synthesis of high-quality two-dimensional (2D) materials with desired morphology are essential for property control. One critical challenge that impedes the understanding and control of 2D crystal nucleation and growth is the inability of direct observation of the nanocrystal evolution process with high enough time resolution. Here, we demonstrated an in situ X-ray scattering approach that directly reveals 2D wurtzite ZnO nanosheet growth at the air-water interface. The time-resolved grazing incidence X-ray diffraction (GID) and grazing incidence X-ray off-specular scattering (GIXOS) results uncovered a lateral to vertical growth kinetics switch phenomenon in the ZnO nanosheet growth. This switch represents the 2D to three-dimensional (3D) crystal structure evolution, which governs the size and thickness of nanosheets, respectively. This phenomenon can guide 2D nanocrystal synthesis with rationally controlled size and thickness. Our work opens a new pathway toward the understanding of 2D nanomaterial growth kinetics based on time-resolved liquid surface grazing incidence X-ray techniques.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Corey Carlos
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yizhan Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yutao Dong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xin Yin
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Lazarus German
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kelvin Jordan Berg
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Wei Bu
- NSF's ChemMatCARS, Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
93
|
Wu G, Sun J, Zhang Z, Guo D, Liu J, Liu L. Recent advances in biological applications of nanomaterials through defect engineering. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151647. [PMID: 34785228 DOI: 10.1016/j.scitotenv.2021.151647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/07/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
In recent years, defect engineering sprung up in the artificial nanomaterials (NMs) has attracted significant attention, since the physical and chemical properties of NMs could be largely optimized based on the rational control of different defect types and densities. Defective NMs equipped with the improved electric and catalytic ability, would be widely utilized as the photoelectric device and catalysts to alleviate the growing demands of industrial production and environmental treatments. In particular, considering that the features of targeting, adsorptive, loading and optical could be adjusted by the introduction of defects, numerous defective NMs are encouraged to be applied in the biological fields including bacterial inactivation, cancer therapy and so on. And this review is devoted to summarize the recent biological applications of NMs with abundant defects. Moreover, the opportunity of these defective NMs released into the surrounding environment continue to increase, the direct and indirect contact with biological molecules and organisms would be inevitable. Due to its high reactivity and adsorption triggered by defects, NMs tend to exhibit overestimate biological behaviors and effects on organisms. Thus, the sections regarding toxicological effects of NMs with abundant defects are also carried out to supplement the safety assessments of NMs and guide further applications in the industrial production and living.
Collapse
Affiliation(s)
- Guizhu Wu
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; College of Environmental Science and Engineering, Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, PR China
| | - Jingyu Sun
- College of Environmental Science and Engineering, Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, PR China
| | - Ze Zhang
- College of Environmental Science and Engineering, Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, PR China
| | - Donggang Guo
- College of Environment and Resource, Shanxi University, Taiyuan 30006, PR China.
| | - Jiandang Liu
- State Key Laboratory of Particle Detection and Electronics, University of Science & Technology of China, Hefei, Anhui 230026, PR China.
| | - Lu Liu
- College of Environmental Science and Engineering, Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, PR China.
| |
Collapse
|
94
|
Hussain A, Hou J, Tahir M, Ali S, Rehman ZU, Bilal M, Zhang T, Dou Q, Wang X. Recent advances in BiOX-based photocatalysts to enhanced efficiency for energy and environment applications. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2041836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Asif Hussain
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
- School of Physics, College of Physical Science and Technology, Yangzhou University, 225127, Yangzhou, P.R. China
- Department of Physics, University of Lahore, Lahore, Pakistan
| | - Jianhua Hou
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
- School of Physics, College of Physical Science and Technology, Yangzhou University, 225127, Yangzhou, P.R. China
- Guangling College, Yangzhou University, 225009, Yangzhou, Jiangsu. PR, China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210095, Nanjing, P. R. China
| | - Muhammad Tahir
- Physics Department, Division of Science & Technology, University of Education, Lahore, Pakistan
| | - S.S Ali
- School of Physical Sciences University of the Punjab Lahore, 54590, Pakistan
| | - Zia Ur Rehman
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
- School of Physics, College of Physical Science and Technology, Yangzhou University, 225127, Yangzhou, P.R. China
| | - Muhammad Bilal
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
- School of Physics, College of Physical Science and Technology, Yangzhou University, 225127, Yangzhou, P.R. China
| | - Tingting Zhang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Qian Dou
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Xiaozhi Wang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
- Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, 210095, Nanjing, P. R. China
| |
Collapse
|
95
|
Yu LQ, Zhao YH, Wang H, Jin F, Chen SL, Wen TE, He CS, Huang BC, Jin RC. Surface oxygen vacancies formation on Zn 2SnO 4 for bisphenol-A degradation under visible light: The tuning effect by peroxymonosulfate. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127828. [PMID: 34815121 DOI: 10.1016/j.jhazmat.2021.127828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Visible light catalysis has been widely coupled with persulfate activation for refractory pollutants removal, while the exact role of persulfate played in such composite system is still questionable. In this work, the relation between peroxymonosulfate (PMS) induced structure change and visible light responsive activity of inverse spinel: i.e., Zn2SnO4, was deciphered. Under the visible light illumination (λ> 420nm) PMS addition would endow the composite system with pollutant removal performance. Batch test revealed that 60% of bisphenol-A (5 mg L-1) was mineralized within 3 h reaction time, by dosing 0.81 mM PMS and 0.1 g L-1 catalyst. The above oxidative system was also effective for other refractory pollutants elimination. Further analysis indicated that PMS could reduce the band gap of spinel from 2.75 to 2.52 eV and thereby enabling its visible light activity. Photogenerated h+ induced •OH and e- mediated •O2- contributed to the pollutant removal while h+ played a leading role. Density functional theory revealed that PMS would capture oxygen atom of spinel and induce surface oxygen vacancy defect structure formation. Also, three-oxygen atom coordinated Zn was identified as the possible catalyze site. This work is valuable for deep understanding the exact role of persulfate in photocatalytic system.
Collapse
Affiliation(s)
- Lin-Qian Yu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Yi-Heng Zhao
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Hao Wang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Feng Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Shu-La Chen
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Te-Er Wen
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Chuan-Shu He
- Department of Environmental Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Bao-Cheng Huang
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
96
|
Yang Z, Shi Y, Li H, Mao C, Wang X, Liu X, Liu X, Zhang L. Oxygen and Chlorine Dual Vacancies Enable Photocatalytic O 2 Dissociation into Monatomic Reactive Oxygen on BiOCl for Refractory Aromatic Pollutant Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3587-3595. [PMID: 35199995 DOI: 10.1021/acs.est.1c08532] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Room-temperature molecular oxygen (O2) dissociation is challenging toward chemical reactions due to its triplet ground-state and spin-forbidden characteristic. Herein, we demonstrate that BiOCl of oxygen and chlorine dual vacancies can photocatalytically dissociate O2 into monatomic reactive oxygen (•O-) for the ring opening of aromatic refractory pollutants toward deep oxidation. The electron-rich and geometry-flexible dual vacancies of oxygen and chlorine remarkably lengthen the O-O bond of adsorbed O2 from 1.21 to 2.74 Å, resulting in the rapid O2 dissociation and the subsequent •O- formation. During the photocatalytic degradation of sulfamethazine, the in situ-formed •O- plays an indispensable role in breaking the critical intermediate of pyrimidine containing a stubborn aromatic heterocyclic ring, thus facilitating the overall mineralization. More importantly, BiOCl of oxygen and chlorine dual vacancies is also superior to its monovacancy counterparts on the degradation of other refractory pollutants containing conjugated six-membered rings, including p-chlorophenol, p-chloronitrobenzene, p-hydroxybenzoic acid, and p-nitrobenzoic acid. This study sheds light on the importance of sophisticated defects for regulating the O2 activation manner and deliveries a novel O2 activation approach for environmental remediation with solar energy.
Collapse
Affiliation(s)
- Zhiping Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yanbiao Shi
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengliang Mao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiaobing Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiufan Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, China
| | - Xiao Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental Chemistry, Central China Normal University, Wuhan 430079, China
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
97
|
Cao X, Huang A, Liang C, Chen HC, Han T, Lin R, Peng Q, Zhuang Z, Shen R, Chen HM, Yu Y, Chen C, Li Y. Engineering Lattice Disorder on a Photocatalyst: Photochromic BiOBr Nanosheets Enhance Activation of Aromatic C-H Bonds via Water Oxidation. J Am Chem Soc 2022; 144:3386-3397. [PMID: 35167259 DOI: 10.1021/jacs.1c10112] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Solar-driven photocatalytic reactions can mildly activate hydrocarbon C-H bonds to produce value-added chemicals. However, the inefficient utilization of photogenerated carriers hinders the application. Here, we report reversible photochromic BiOBr (denoted as p-BiOBr) nanosheets that were colored by trapping photogenerated holes upon visible light irradiation and bleached by water oxidation to generate hydroxyl radicals, demonstrating enhanced carrier separation and water oxidation. The photocatalytic coupling and oxidation reactions of ethylbenzene were efficiently realized by p-BiOBr in a water-based medium under ambient temperature and pressure (apparent quantum yield is 14 times that of pristine BiOBr). The p-BiOBr nanosheets feature lattice disordered defects on the surface, providing rich uncoordinated catalytic sites and inducing structural distortions and lattice strain, which further leads to an altered band structure and significantly enhanced photocatalytic performances. These hole-trapping materials open up the possibility of substantially elevating the utilization efficiency of photogenerated holes for high-efficiency photocatalytic activation of various saturated C-H bonds.
Collapse
Affiliation(s)
- Xing Cao
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Aijian Huang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.,School of Electronics Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Chao Liang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Hsiao-Chien Chen
- Center for Reliability Science and Technologies, Chang Gung University, Taoyuan 33302, Taiwan.,Kidney Research Center, Department of Nephrology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Tong Han
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Rui Lin
- Nanoinstitute Munich, Ludwig-Maximilians-Universität München, Munich 80539, Germany
| | - Qing Peng
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zewen Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Rongan Shen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hao Ming Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Chen Chen
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
98
|
Wang H, Yang W, Bian K, Zeng W, Jin X, Ouyang R, Xu Y, Dai C, Zhou S, Zhang B. Oxygen-Deficient BiOCl Combined with L-Buthionine-Sulfoximine Synergistically Suppresses Tumor Growth through Enhanced Singlet Oxygen Generation under Ultrasound Irradiation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104550. [PMID: 34910856 DOI: 10.1002/smll.202104550] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Excess generation of reactive oxygen species (ROS) based on sensitizers under ultrasound (US) excitation can cause the death of tumor cells via oxidative damage, but sonosensitizers are largely unexplored. Herein, oxygen-deficient black BiOCl (B-BiOCl) nanoplates (NPs) are reported, with post-treatment on conventional BiOCl by simple UV excitation, showing stronger singlet oxygen (1 O2 ) generation than commercial TiO2 nanoparticles and their derivatives under US irradiation. Moreover, L-buthionine-sulfoximine (BSO), a GSH biosynthesis inhibitor, is incorporated into B-BiOCl NPs. The authors find that BSO can be released owing to the degradation of B-BiOCl NPs in the presence of acid and GSH, which are overexpressed in tumors. The results show that BSO/B-BiOCl-PEG NPs have a multifunctional synergistic effect on improving ROS production. In particular, BiOCl has remarkable near-infrared light absorption after UV treatment and is good for photoacoustic imaging that can guide subsequent sonodynamic therapy. This work shows that just with a simple oxygen deficiency treatment, strong 1 O2 generation can be provided to a conventional material under US irradiation and, interestingly, this effect can be amplified by using a small inhibitor BSO, and this is clearly demonstrated in cell and mice experiments.
Collapse
Affiliation(s)
- Hui Wang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, The Institute for Biomedical Engineering and Nano Science School of Medicine, Tongji University, Shanghai, 200072, China
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Weitao Yang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, The Institute for Biomedical Engineering and Nano Science School of Medicine, Tongji University, Shanghai, 200072, China
| | - Kexin Bian
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, The Institute for Biomedical Engineering and Nano Science School of Medicine, Tongji University, Shanghai, 200072, China
| | - Weiwei Zeng
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, The Institute for Biomedical Engineering and Nano Science School of Medicine, Tongji University, Shanghai, 200072, China
| | - Xiao Jin
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, The Institute for Biomedical Engineering and Nano Science School of Medicine, Tongji University, Shanghai, 200072, China
| | - Ruizhuo Ouyang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yan Xu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, The Institute for Biomedical Engineering and Nano Science School of Medicine, Tongji University, Shanghai, 200072, China
| | - Chenyu Dai
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shuang Zhou
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, The Institute for Biomedical Engineering and Nano Science School of Medicine, Tongji University, Shanghai, 200072, China
| | - Bingbo Zhang
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, The Institute for Biomedical Engineering and Nano Science School of Medicine, Tongji University, Shanghai, 200072, China
| |
Collapse
|
99
|
Abstract
Energy storage and conversion in a clean, efficient, and safe way is the core appeal of a modern sustainable society, which is built on the development of multifunctional materials. Superlattice structures can integrate the advantage of their sublayers while new phenomena may arise from the interface, which play key roles in modern semiconductor technology; however, additional concerns such as stability and yield challenge their large-scale applications in industrial products. In this Perspective we focus our interest on a distinctive category of easily available multilayered inorganic materials that have well-defined subunit structures and can be regarded as bulk superlattice analogues. We illustrate several specific combining forms of subunits in bulk superlattice analogues, including soft/rigid sublayers, electron/phonon transport sublayers, quasi-two-dimensional layers, and intercalated metal layers. We hope to provide insights into material design and broaden the application scope in the field of energy conversion by integrating the versatility of subunits into these bulk superlattice analogues.
Collapse
Affiliation(s)
- Wei Bai
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Chong Xiao
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, People's Republic of China.,Dalian National Laboratory for Clean Energy, Chinese Academy of Science, Dalian, Liaoning 116023, People's Republic of China
| | - Yi Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, People's Republic of China
| |
Collapse
|
100
|
Ursu D, Svera P, Banica R. Influence of PDS Loading Upon Type CD1–xZNxS Photocatalysts. J WATER CHEM TECHNO+ 2022. [DOI: 10.3103/s1063455x22010106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|