51
|
Liu F, Wang M, Wang X, Wang P, Shen W, Ding S, Wang Y. Fabrication and application of nanoporous polymer ion-track membranes. NANOTECHNOLOGY 2019; 30:052001. [PMID: 30511655 DOI: 10.1088/1361-6528/aaed6d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With the development of the nano-fabrication and nanofluidics, nanoporous membranes have shown great potential in applications such as molecular separation, energy conversion, and molecular sensing. However, their performance has often been limited by the trade-off between selectivity and permeability and the lack of scalability. The prospect of overcoming these problems with nanoporous polymer ion-track membranes is promising. Focusing on these membranes, this review provides a comprehensive overview of fabrication methods, including the traditional track-etching technique and the recently developed track-UV technique; characterization methods; transport mechanisms; and major properties and applications.
Collapse
Affiliation(s)
- Feng Liu
- State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, People's Republic of China. Center for Quantitative Biology, Peking University, Beijing 100871, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
52
|
Acar ET, Buchsbaum SF, Combs C, Fornasiero F, Siwy ZS. Biomimetic potassium-selective nanopores. SCIENCE ADVANCES 2019; 5:eaav2568. [PMID: 30783627 PMCID: PMC6368432 DOI: 10.1126/sciadv.aav2568] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/21/2018] [Indexed: 05/19/2023]
Abstract
Reproducing the exquisite ion selectivity displayed by biological ion channels in artificial nanopore systems has proven to be one of the most challenging tasks undertaken by the nanopore community, yet a successful achievement of this goal offers immense technological potential. Here, we show a strategy to design solid-state nanopores that selectively transport potassium ions and show negligible conductance for sodium ions. The nanopores contain walls decorated with 4'-aminobenzo-18-crown-6 ether and single-stranded DNA (ssDNA) molecules located at one pore entrance. The ionic selectivity stems from facilitated transport of potassium ions in the pore region containing crown ether, while the highly charged ssDNA plays the role of a cation filter. Achieving potassium selectivity in solid-state nanopores opens new avenues toward advanced separation processes, more efficient biosensing technologies, and novel biomimetic nanopore systems.
Collapse
Affiliation(s)
- Elif Turker Acar
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, USA
- Department of Chemistry, Faculty of Engineering, Istanbul University Cerrahpasa, Avcılar-Istanbul, Turkey
- Corresponding author. (Z.S.S.); (E.T.A.); (S.F.B.); (F.F.)
| | - Steven F. Buchsbaum
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Corresponding author. (Z.S.S.); (E.T.A.); (S.F.B.); (F.F.)
| | - Cody Combs
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, USA
| | - Francesco Fornasiero
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
- Corresponding author. (Z.S.S.); (E.T.A.); (S.F.B.); (F.F.)
| | - Zuzanna S. Siwy
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
- Corresponding author. (Z.S.S.); (E.T.A.); (S.F.B.); (F.F.)
| |
Collapse
|
53
|
Debnath M, Fatma K, Dash J. Chemical Regulation of DNA i‐Motifs for Nanobiotechnology and Therapeutics. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813288] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Manish Debnath
- School of Chemical SciencesIndian Association for the Cultivation of Science Jadavpur Kolkata- 700032 India
| | - Khushnood Fatma
- School of Chemical SciencesIndian Association for the Cultivation of Science Jadavpur Kolkata- 700032 India
| | - Jyotirmayee Dash
- School of Chemical SciencesIndian Association for the Cultivation of Science Jadavpur Kolkata- 700032 India
| |
Collapse
|
54
|
Debnath M, Fatma K, Dash J. Chemical Regulation of DNA i-Motifs for Nanobiotechnology and Therapeutics. Angew Chem Int Ed Engl 2019; 58:2942-2957. [PMID: 30600876 DOI: 10.1002/anie.201813288] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/27/2018] [Indexed: 12/20/2022]
Abstract
DNA sequences rich in cytosine have the propensity, under acidic pH, to fold into four-stranded intercalated DNA structures called i-motifs. Recent studies have provided significant breakthroughs that demonstrate how chemists can manipulate these structures for nanobiotechnology and therapeutics. The first section of this Minireview discusses the development of advanced functional nanostructures by synthetic conjugation of i-motifs with organic scaffolds and metal nanoparticles and their role in therapeutics. The second section highlights the therapeutic targeting of i-motifs with chemical scaffolds and their significance in biology. For this, first we shed light on the long-lasting debate regarding the stability of i-motifs under physiological conditions. Next, we present a comparative analysis of recently reported small molecules for specifically targeting i-motifs over other abundant DNA structures and modulating their function in cellular systems. These advances provide new insights into i-motif-targeted regulation of gene expression, telomere maintenance, and therapeutic applications.
Collapse
Affiliation(s)
- Manish Debnath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032, India
| | - Khushnood Fatma
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-, 700032, India
| |
Collapse
|
55
|
Abstract
DNA has played an early and powerful role in the development of bottom-up nanotechnologies, not least because of DNA's precise, predictable, and controllable properties of assembly on the nanometer scale. Watson-Crick complementarity has been used to build complex 2D and 3D architectures and design a number of nanometer-scale systems for molecular computing, transport, motors, and biosensing applications. Most of such devices are built with classical B-DNA helices and involve classical A-T/U and G-C base pairs. However, in addition to the above components underlying the iconic double helix, a number of alternative pairing schemes of nucleobases are known. This review focuses on two of these noncanonical classes of DNA helices: G-quadruplexes and the i-motif. The unique properties of these two classes of DNA helix have been utilized toward some remarkable constructions and applications: G-wires; nanostructures such as DNA origami; reconfigurable structures and nanodevices; the formation and utilization of hemin-utilizing DNAzymes, capable of generating varied outputs from biosensing nanostructures; composite nanostructures made up of DNA as well as inorganic materials; and the construction of nanocarriers that show promise for the therapeutics of diseases.
Collapse
Affiliation(s)
- Jean-Louis Mergny
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , China.,ARNA Laboratory , Université de Bordeaux, Inserm U 1212, CNRS UMR5320, IECB , Pessac 33600 , France.,Institute of Biophysics of the CAS , v.v.i., Královopolská 135 , 612 65 Brno , Czech Republic
| | - Dipankar Sen
- Department of Molecular Biology & Biochemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada.,Department of Chemistry , Simon Fraser University , Burnaby , British Columbia V5A 1S6 , Canada
| |
Collapse
|
56
|
Dettori R, Yang Q, Achenie LEK, Schwarz RD. A Temperature-, pH- and Voltage-Responsive Nanogate with a Remarkably High Factor of Change in Ion Currents due to ON/OFF Switching. Chemistry 2018; 24:18897-18902. [PMID: 30252993 DOI: 10.1002/chem.201804842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Indexed: 11/10/2022]
Abstract
In biological cells, nuclear pore complexes (NPCs) embedded in cell membranes are capable of controlling the flow of ions, for example, Na+ , K+ , and Ca2+ by responding to stimuli, for example, pH and voltage. Inspired by NPCs, researchers have been endeavoring to develop nanogates to achieve the control of ion transport, but the developed nanogates only have a low factor of change in ion currents due to ON/OFF switching. As such nanopores with high temperature and pH responsivities were developed in this work. According to the experimental results, at a voltage of 3 V, the change in ion currents due to pH change is up to a factor of 170, which is remarkably high compared to other nanogates reported. Quantum chemical (QC) calculation results show that a protonated cytosine molecule (C+ ) and an unprotonated cytosine molecule (C) form three pairs of hydrogen bonds and consequently a nucleobase pair, CC+ , leading to the binding of various strands, assembly of a strand net, and blockage of ion transport. The nanogate developed is capable of responding to temperature change. At a voltage of 3 V, the factor of change in ion currents in response to temperature variation is as high as 110. Further experiments were performed to investigate the influence of the NaCl concentrations and small opening diameters exerted on nanogate performance.
Collapse
Affiliation(s)
| | - Quan Yang
- Sandia National Laboratories, Livermore, CA, 94551-0969, USA.,Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Luke E K Achenie
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Roland D Schwarz
- Department of Material Science and Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
57
|
Zhang D, Zhou S, Liu Y, Fan X, Zhang M, Zhai J, Jiang L. Self-Assembled Porphyrin Nanofiber Membrane-Decorated Alumina Channels for Enhanced Photoelectric Response. ACS NANO 2018; 12:11169-11177. [PMID: 30376291 DOI: 10.1021/acsnano.8b05695] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photoresponsive nanochannel systems whose ionic transportation properties can be controlled by the photoelectric effect, such as for green chlorophyll pigments in plants, are attracting widespread attention. Herein, we prepared photoresponsive heterogeneous nanochannels by decorating self-assembled tetra(4-sulfonatophenyl)porphyrin (TPPS) nanofiber membranes on a membrane of hourglass-shaped alumina (Al2O3) nanochannels using the diffusion-limited patterning (DLP) method. The close arrangement of large-area nanofibers promoted the photoresponse sensitivity of the heterogeneous nanochannels, which showed the highest ionic transportation current. With illumination comparable to sunlight in intensity, the photoresponsive ionic current was approximately 9.7 μA, demonstrating photoswitching, which could be used to regulate the reversible transformation of ionic currents. Meanwhile, the cooperative effect of the TPPS nanofibers assembled at the entrance to the nanochannels and the TPPS molecules inside the nanochannels allowed the heterogeneous nanochannels to exhibit a good rectifying performance.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry , Beihang University , Beijing 100083 , People's Republic of China
| | - Shuqi Zhou
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry , Beihang University , Beijing 100083 , People's Republic of China
| | - You Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry , Beihang University , Beijing 100083 , People's Republic of China
| | - Xia Fan
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry , Beihang University , Beijing 100083 , People's Republic of China
| | - Mingliang Zhang
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors , Chinese Academy of Sciences , Beijing 100083 , People's Republic of China
- College of Materials Science and Optoelectronic Technology , University of Chinese Academy of Sciences , Beijing 101408 , People's Republic of China
| | - Jin Zhai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry , Beihang University , Beijing 100083 , People's Republic of China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry , Beihang University , Beijing 100083 , People's Republic of China
| |
Collapse
|
58
|
Zhang D, Wang Q, Fan X, Zhang M, Zhai J, Jiang L. An Effective Dark-Vis-UV Ternary Biomimetic Switching Based on N3/Spiropyran-Modified Nanochannels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1804862. [PMID: 30284330 DOI: 10.1002/adma.201804862] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Many natural photomodulated nanochannels are investigated and are crucial for biological activity. Biomimetic nanochannels with a bistable conductance state under light stimulus are demonstrated. In this system, two molecules, cis-bis-(4,4'-dicarboxy-2,2'-bipyridine) dithiocyanato ruthenium(II) (N3) and spiropyran 1'-(3-carboxypropyl)-3',3'-dimethyl-6-nitro-spiro[2H-1]benzopyran-2,2'-indoline (SP-COOH), each with unique photoresponsive properties, are modified in alumina nanochannels. The two segments of the hourglass-shaped alumina nanochannels are designated to graft a certain molecule. Under ultraviolet (UV) or visible light (vis) irradiation, electrons belonging to N3 are excited, resulting in negatively charged surfaces on the sides of nanochannels modified with N3 molecules. Only under UV stimulus, the conformation change of the SP-COOH molecules leads to positively charged surfaces of nanochannels in the SP-COOH occupied sides. Benefiting from the joint effect of N3 and SP-COOH, low, medium, and high (i.e., "0," "1," and "2") ternary levels of ion conductance are established under the dark-vis-UV alternate stimuli. The multistage current switching containing "0-1-2-0" and "0-1-2-1-0" procedures is stable and robust. Additionally, the diode-like ion transport behavior of the nanochannels could be exploited to support a multivalued logical gating with the management of light signals.
Collapse
Affiliation(s)
- Dan Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry, Beihang University, Beijing, 100083, P. R. China
| | - Qinqin Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry, Beihang University, Beijing, 100083, P. R. China
| | - Xia Fan
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry, Beihang University, Beijing, 100083, P. R. China
| | - Mingliang Zhang
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Jin Zhai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry, Beihang University, Beijing, 100083, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of the Ministry of Education, School of Chemistry, Beihang University, Beijing, 100083, P. R. China
| |
Collapse
|
59
|
|
60
|
Maheedhara RS, Sachar HS, Jing H, Das S. Ionic Diffusoosmosis in Nanochannels Grafted with End-Charged Polyelectrolyte Brushes. J Phys Chem B 2018; 122:7450-7461. [DOI: 10.1021/acs.jpcb.8b04827] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Raja Sampath Maheedhara
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Harnoor Singh Sachar
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Haoyuan Jing
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
61
|
Chen G, Sachar HS, Das S. Efficient electrochemomechanical energy conversion in nanochannels grafted with end-charged polyelectrolyte brushes at medium and high salt concentration. SOFT MATTER 2018; 14:5246-5255. [PMID: 29888349 DOI: 10.1039/c8sm00768c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We develop a theory to study the generation of the streaming potential and the resulting electrochemomechanical energy conversion (ECMEC) in the presence of pressure-driven transport in nanochannels grafted with end-charged polyelectrolyte (PE) brushes. Our theory gives a thermodynamically self-consistent coupled description of the PE-brush and the electrostatics of the electric double layer (EDL) induced by the PE charges. The end-charged brushes localize the maximum EDL charge density away from the wall, thereby enabling a larger magnitude of pressure-driven transport to stream the ions downstream. This effect is retarded by the drag force imparted by the brushes as well as by the enhanced electroosmotic transport in a direction opposite to the pressure-driven transport. An interplay of these three issues leads to highly non-trivial electrohydrodynamic transport that eventually allows us to converge on appropriate properties of the brushes (e.g., grafting density and the number of monomers) that lead to the generation of a significantly larger streaming potential and a much improved efficiency of the ECMEC as compared to the brush-free nanochannels particularly at medium and high salt concentrations.
Collapse
Affiliation(s)
- Guang Chen
- Department of Mechanical Engineering, University of Maryland, College Park, MD-20742, USA.
| | | | | |
Collapse
|
62
|
Zhang W, Zhao Q, Yuan J. Porous Polyelectrolytes: The Interplay of Charge and Pores for New Functionalities. Angew Chem Int Ed Engl 2018; 57:6754-6773. [PMID: 29124842 PMCID: PMC6001701 DOI: 10.1002/anie.201710272] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Indexed: 01/27/2023]
Abstract
The past decade has witnessed rapid advances in porous polyelectrolytes and there is tremendous interest in their synthesis as well as their applications in environmental, energy, biomedicine, and catalysis technologies. Research on porous polyelectrolytes is motivated by the flexible choice of functional organic groups and processing technologies as well as the synergy of the charge and pores spanning length scales from individual polyelectrolyte backbones to their nano-/micro-superstructures. This Review surveys recent progress in porous polyelectrolytes including membranes, particles, scaffolds, and high surface area powders/resins as well as their derivatives. The focus is the interplay between surface chemistry, Columbic interaction, and pore confinement that defines new chemistry and physics in such materials for applications in energy conversion, molecular separation, water purification, sensing/actuation, catalysis, tissue engineering, and nanomedicine.
Collapse
Affiliation(s)
- Weiyi Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials ProcessingClarkson UniversityPotsdamNY13699-5814USA
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074China
| | - Jiayin Yuan
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials ProcessingClarkson UniversityPotsdamNY13699-5814USA
- Department of Materials and Environmental Chemistry (MMK)Stockholm University10691StockholmSweden
| |
Collapse
|
63
|
Wu Y, Wang D, Willner I, Tian Y, Jiang L. Smart DNA Hydrogel Integrated Nanochannels with High Ion Flux and Adjustable Selective Ionic Transport. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803222] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yafeng Wu
- School of Chemistry and Chemical Engineering; Southeast University; Nanjing 211189 China
- Laboratory of Bioinspired Smart Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Dianyu Wang
- Jilin University; College of Chemistry; Changchun 130012 P. R. China
| | - Itamar Willner
- Institute of Chemistry; The Minerva Center for Complex Biohybrid Systems; The Hebrew University of Jerusalem; Jerusalem 91904 Israel
| | - Ye Tian
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Lei Jiang
- Laboratory of Bioinspired Smart Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| |
Collapse
|
64
|
Wu Y, Wang D, Willner I, Tian Y, Jiang L. Smart DNA Hydrogel Integrated Nanochannels with High Ion Flux and Adjustable Selective Ionic Transport. Angew Chem Int Ed Engl 2018; 57:7790-7794. [DOI: 10.1002/anie.201803222] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Yafeng Wu
- School of Chemistry and Chemical Engineering; Southeast University; Nanjing 211189 China
- Laboratory of Bioinspired Smart Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Dianyu Wang
- Jilin University; College of Chemistry; Changchun 130012 P. R. China
| | - Itamar Willner
- Institute of Chemistry; The Minerva Center for Complex Biohybrid Systems; The Hebrew University of Jerusalem; Jerusalem 91904 Israel
| | - Ye Tian
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| | - Lei Jiang
- Laboratory of Bioinspired Smart Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P. R. China
| |
Collapse
|
65
|
Zhang W, Zhao Q, Yuan J. Poröse Polyelektrolyte: Zusammenspiel zwischen Poren und Ladung für neue Funktionen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201710272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Weiyi Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials Processing; Clarkson University; Potsdam NY 13699-5814 USA
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage; Ministry of Education; School of Chemistry and Chemical Engineering; Huazhong University of Science and Technology; Wuhan 430074 China
| | - Jiayin Yuan
- Department of Chemistry & Biomolecular Science, Center for Advanced Materials Processing; Clarkson University; Potsdam NY 13699-5814 USA
- Department of Materials and Environmental Chemistry (MMK); Stockholm University; 10691 Stockholm Schweden
| |
Collapse
|
66
|
Abstract
Bioinspired smart asymmetric nanochannel membranes (BSANM) have been explored extensively to achieve the delicate ionic transport functions comparable to those of living organisms. The abiotic system exhibits superior stability and robustness, allowing for promising applications in many fields. In view of the abundance of research concerning BSANM in the past decade, herein, we present a systematic overview of the development of the state-of-the-art BSANM system. The discussion is focused on the construction methodologies based on raw materials with diverse dimensions (i.e. 0D, 1D, 2D, and bulk). A generic strategy for the design and construction of the BSANM system is proposed first and put into context with recent developments from homogeneous to heterogeneous nanochannel membranes. Then, the basic properties of the BSANM are introduced including selectivity, gating, and rectification, which are associated with the particular chemical and physical structures. Moreover, we summarized the practical applications of BSANM in energy conversion, biochemical sensing and other areas. In the end, some personal opinions on the future development of the BSANM are briefly illustrated. This review covers most of the related literature reported since 2010 and is intended to build up a broad and deep knowledge base that can provide a solid information source for the scientific community.
Collapse
Affiliation(s)
- Zhen Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | | | | |
Collapse
|
67
|
Shi S, Lin S, Li Y, Zhang T, Shao X, Tian T, Zhou T, Li Q, Lin Y. Effects of tetrahedral DNA nanostructures on autophagy in chondrocytes. Chem Commun (Camb) 2018; 54:1327-1330. [PMID: 29349457 DOI: 10.1039/c7cc09397g] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tetrahedral DNA nanostructures (TDNs) have gathered great attention and are being widely used in biomedicine.
Collapse
Affiliation(s)
- Sirong Shi
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Yong Li
- Department of Oral and Maxillofacial Surgery
- Hospital of Stomatology
- Southwest Medical University
- Luzhou 646000
- China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Xiaoru Shao
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Tengfei Zhou
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Qianshun Li
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- P. R. China
| |
Collapse
|
68
|
Zhang Q, Kang J, Xie Z, Diao X, Liu Z, Zhai J. Highly Efficient Gating of Electrically Actuated Nanochannels for Pulsatile Drug Delivery Stemming from a Reversible Wettability Switch. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30. [PMID: 29215141 DOI: 10.1002/adma.201703323] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/16/2017] [Indexed: 05/16/2023]
Abstract
Many ion channels in the cell membrane are believed to function as gates that control the water and ion flow through the transitions between an inherent hydrophobic state and a stimuli-induced hydration state. The construction of nanofluidic gating systems with high gating efficiency and reversibility is inspired by this hydrophobic gating behavior. A kind of electrically actuated nanochannel is developed by integrating a polypyrrole (PPy) micro/nanoporous film doped with perfluorooctanesulfonate ions onto an anodic aluminum oxide nanoporous membrane. Stemming from the reversible wettability switch of the doped PPy film in response to the applied redox potentials, the nanochannels exhibit highly efficient and reversible gating behaviors. The optimized gating ratio is over 105 , which is an ultrahigh value when compared with that of the existing reversibly gated nanochannels with comparable pore diameters. Furthermore, the gating behavior of the electrically actuated nanochannels shows excellent repeatability and stability. Based on this highly efficient and reversible gating function, the electrically actuated nanochannels are further applied for drug delivery, which achieves the pulsatile release of two water-soluble drug models. The electrically actuated nanochannels may find potential applications in accurate and on-demand drug therapy.
Collapse
Affiliation(s)
- Qianqian Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- Key Laboratory of Micro-Nano Measurement, Manipulation and Physics of Ministry of Education, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jianxin Kang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Zhiqiang Xie
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- Key Laboratory of Micro-Nano Measurement, Manipulation and Physics of Ministry of Education, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Xungang Diao
- Key Laboratory of Micro-Nano Measurement, Manipulation and Physics of Ministry of Education, School of Physics and Nuclear Energy Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Zhaoyue Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Jin Zhai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
69
|
Lepoitevin M, Ma T, Bechelany M, Janot JM, Balme S. Functionalization of single solid state nanopores to mimic biological ion channels: A review. Adv Colloid Interface Sci 2017; 250:195-213. [PMID: 28942265 DOI: 10.1016/j.cis.2017.09.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
In nature, ion channels are highly selective pores and act as gate to ensure selective ion transport, allowing ions to cross the membrane. By mimicking them, single solid state nanopore devices emerge as a new, powerful class of molecule sensors that allow for the label-free detection of biomolecules (DNA, RNA, and proteins), non-biological polymers, as well as small molecules. In this review, we exhaustively describe the fabrication and functionalization techniques to design highly robust and selective solid state nanopores. First we outline the different materials and methods to design nanopores, we explain the ionic conduction in nanopores, and finally we summarize some techniques to modify and functionalize the surface in order to obtain biomimetic nanopores, responding to different external stimuli.
Collapse
|
70
|
Feng Y, Zhu W, Guo W, Jiang L. Bioinspired Energy Conversion in Nanofluidics: A Paradigm of Material Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1702773. [PMID: 28795437 DOI: 10.1002/adma.201702773] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/25/2017] [Indexed: 06/07/2023]
Abstract
Well-developed structure-function relationships in living systems have become inspirations for the design and application of innovative materials. Building artificial nanofluidic systems for energy conversion undergoes three essential steps of structural and functional development with the uptake of separate biological inspirations. This research field started from the mimicking of the bioelectric function of electric eels, wherein a transmembrane ion concentration gradient is converted into ultrastrong electrical impulses via membrane-protein-regulated ion transport. On a small scale, solid-state nanopores are transformed from cylindrical to cone-shaped to acquire asymmetric ion-transport properties; they also further gain versatile responsiveness via chemical modification. These features mimic the rectifying and gating functions of the biological ion channels. Toward large-scale integration and real-world applications, the structure of the nanofluidic system evolves from a one-dimensional straight-channel to a two-dimensional layered membrane, inspired by the layered microstructure of nacre. The research progress, current challenges, and future perspectives of this growing field are highlighted and discussed from the viewpoint of material evolution.
Collapse
Affiliation(s)
- Yaping Feng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Weiwei Zhu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wei Guo
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- MOE Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Chemistry and Environment, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
71
|
A NIR-controlled cage mimicking system for hydrophobic drug mediated cancer therapy. Biomaterials 2017; 139:151-162. [DOI: 10.1016/j.biomaterials.2017.06.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/23/2017] [Accepted: 06/05/2017] [Indexed: 11/21/2022]
|
72
|
Xiao K, Chen L, Zhang Z, Xie G, Li P, Kong XY, Wen L, Jiang L. A Tunable Ionic Diode Based on a Biomimetic Structure-Tailorable Nanochannel. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201704137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kai Xiao
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Green Printing; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- School of Future Technologies; University of Chinese Academy of Sciences; Beijing 101407 P.R. China
| | - Lu Chen
- Key Laboratory of Bio-inspired Materials and Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Zhen Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Green Printing; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- School of Future Technologies; University of Chinese Academy of Sciences; Beijing 101407 P.R. China
| | - Ganhua Xie
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Green Printing; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- School of Future Technologies; University of Chinese Academy of Sciences; Beijing 101407 P.R. China
| | - Pei Li
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Green Printing; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Xiang-Yu Kong
- Key Laboratory of Bio-inspired Materials and Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- School of Future Technologies; University of Chinese Academy of Sciences; Beijing 101407 P.R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- School of Future Technologies; University of Chinese Academy of Sciences; Beijing 101407 P.R. China
| |
Collapse
|
73
|
Xiao K, Chen L, Zhang Z, Xie G, Li P, Kong XY, Wen L, Jiang L. A Tunable Ionic Diode Based on a Biomimetic Structure-Tailorable Nanochannel. Angew Chem Int Ed Engl 2017; 56:8168-8172. [DOI: 10.1002/anie.201704137] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Kai Xiao
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Green Printing; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- School of Future Technologies; University of Chinese Academy of Sciences; Beijing 101407 P.R. China
| | - Lu Chen
- Key Laboratory of Bio-inspired Materials and Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Zhen Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Green Printing; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- School of Future Technologies; University of Chinese Academy of Sciences; Beijing 101407 P.R. China
| | - Ganhua Xie
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Green Printing; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- School of Future Technologies; University of Chinese Academy of Sciences; Beijing 101407 P.R. China
| | - Pei Li
- Beijing National Laboratory for Molecular Sciences (BNLMS); Key Laboratory of Green Printing; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Xiang-Yu Kong
- Key Laboratory of Bio-inspired Materials and Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- School of Future Technologies; University of Chinese Academy of Sciences; Beijing 101407 P.R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science; Technical Institute of Physics and Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
- School of Future Technologies; University of Chinese Academy of Sciences; Beijing 101407 P.R. China
| |
Collapse
|
74
|
Zhang H, Hou J, Ou R, Hu Y, Wang H, Jiang L. Periodic oscillation of ion conduction of nanofluidic diodes using a chemical oscillator. NANOSCALE 2017; 9:7297-7304. [PMID: 28524913 DOI: 10.1039/c7nr01343d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Periodic ion-conduction oscillation of biological ion channels in a living system is essential for numerous life processes. Here we report an oscillatory nanofluidic system that can self-regulate its ion-conduction states under constant conditions. The oscillatory nanofluidic system is constructed by integrating a chemical oscillator into an artificial single nanochannel system. Oscillating chemical reactions of the pH oscillator carried out inside the nanochannel are used to switch the surface properties of the channel between highly and lowly charged states, thus realizing an autonomous, continuous and periodic oscillation of the ion conductance of the channel between high and low ion-conduction states. The ion-conduction switching is characterized by the periodic ion current oscillation of the nanochannel measured under constant conditions. The oscillation period of the nanofluidic devices decreased gradually with increasing the working temperature. This study is a potential step toward the ability to directly convert chemical energy to ion-conduction oscillation in nanofluidics. On the basis of these findings, we believe that a variety of artificial oscillatory nanofluidic systems will be achieved in future by integrating artificial functional nanochannels with diverse oscillating chemical reactions.
Collapse
Affiliation(s)
- Huacheng Zhang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | | | | | |
Collapse
|
75
|
|
76
|
Wang L, Feng Y, Zhou Y, Jia M, Wang G, Guo W, Jiang L. Photo-switchable two-dimensional nanofluidic ionic diodes. Chem Sci 2017; 8:4381-4386. [PMID: 28660062 PMCID: PMC5472846 DOI: 10.1039/c7sc00153c] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/31/2017] [Indexed: 11/21/2022] Open
Abstract
The bottom-up assembly of ion-channel-mimetic nanofluidic devices and materials with two-dimensional (2D) nano-building blocks paves a straightforward way towards the real-world applications of the novel transport phenomena on a nano- or sub-nanoscale. One immediate challenge is to provide the 2D nanofluidic systems with adaptive responsibilities and asymmetric ion transport characteristics. Herein, we introduce a facile and general strategy to provide a graphene-oxide-based 2D nanofluidic system with photo-switchable ionic current rectification (ICR). The degree of ICR can be prominently enhanced upon UV irradiation and it can be perfectly retrieved under irradiation with visible light. A maximum ICR ratio of about 48 was achieved. The smart and functional nanofluidic devices have applications in energy conversion, chemical sensing, water treatment, etc.
Collapse
Affiliation(s)
- Lili Wang
- Department of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , China .
| | - Yaping Feng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science , Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| | - Yi Zhou
- School of Geoscience and Surveying Engineering , China University of Mining and Technology , Beijing 100083 , China
| | - Meijuan Jia
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science , Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| | - Guojie Wang
- Department of Materials Science and Engineering , University of Science and Technology Beijing , Beijing 100083 , China .
| | - Wei Guo
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science , Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science , Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , China .
| |
Collapse
|
77
|
Chen G, Das S. Massively Enhanced Electroosmotic Transport in Nanochannels Grafted with End-Charged Polyelectrolyte Brushes. J Phys Chem B 2017; 121:3130-3141. [DOI: 10.1021/acs.jpcb.7b00493] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Guang Chen
- Department of Mechanical
Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Siddhartha Das
- Department of Mechanical
Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
78
|
Wang J, Fang R, Hou J, Zhang H, Tian Y, Wang H, Jiang L. Oscillatory Reaction Induced Periodic C-Quadruplex DNA Gating of Artificial Ion Channels. ACS NANO 2017; 11:3022-3029. [PMID: 28226213 DOI: 10.1021/acsnano.6b08727] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Many biological ion channels controlled by biochemical reactions have autonomous and periodic gating functions, which play important roles in continuous mass transport and signal transmission in living systems. Inspired by these functional biological ion channel systems, here we report an artificial self-oscillating nanochannel system that can autonomously and periodically control its gating process under constant conditions. The system is constructed by integrating a chemical oscillator, consisting of BrO3-, Fe(CN)64-, H+, and SO32-, into a synthetic proton-sensitive nanochannel modified with C-quadruplex (C4) DNA motors. The chemical oscillator, containing H+-producing and H+-consuming reactions, can cyclically drive conformational changes of the C4-DNA motors on the channel wall between random coil and folded i-motif structures, thus leading to autonomous gating of the nanochannel between open and closed states. The autonomous gating processes are confirmed by periodic high-low ionic current oscillations of the channel monitored under constant reaction conditions. The utilization of a chemical oscillator integrated with DNA molecules represents a method to directly convert chemical energy of oscillating reactions to kinetic energy of conformational changes of the artificial nanochannels and even to achieve diverse autonomous gating functions in artificial nanofluidic devices.
Collapse
Affiliation(s)
- Jian Wang
- Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Ruochen Fang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University , Beijing 100084, People's Republic of China
| | - Jue Hou
- Department of Chemical Engineering, Monash University , Clayton, Victoria 3800, Australia
| | - Huacheng Zhang
- Department of Chemical Engineering, Monash University , Clayton, Victoria 3800, Australia
| | - Ye Tian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Huanting Wang
- Department of Chemical Engineering, Monash University , Clayton, Victoria 3800, Australia
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
- Department of Chemical Engineering, Monash University , Clayton, Victoria 3800, Australia
| |
Collapse
|
79
|
Yang Y, Tashiro R, Suzuki Y, Emura T, Hidaka K, Sugiyama H, Endo M. A Photoregulated DNA-Based Rotary System and Direct Observation of Its Rotational Movement. Chemistry 2017; 23:3979-3985. [PMID: 28199775 DOI: 10.1002/chem.201605616] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Indexed: 12/15/2022]
Abstract
Various DNA-based nanodevices have been developed on the nanometer scale using light as regulation input. However, the programmed controllability is still a major challenge for these artificial nanodevices. Herein, we demonstrate a rotary DNA nanostructure in which the rotations are controlled by light. A bar-shaped DNA rotor, fabricated as a stiff double-crossover molecule, was placed on the top of a rectangular DNA tile. The photoresponsive oligonucleotides modified with azobenzenes were employed as switching motifs to release/trap the rotor at specific angular position on DNA tile by switching photoirradiations between ultraviolet and visible light. As a result, two reconfigurable states (perpendicular and parallel) of rotor were obtained, in which the angular changes were characterized by AFM and fluorescence quenching assays. Moreover, the reversible rotary motions during the photoirradiation were directly visualized on the DNA tile surface in a nanometer-scale precision using a second-scale scanning of the high-speed AFM.
Collapse
Affiliation(s)
- Yangyang Yang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.,Present address: Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ryu Tashiro
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minanitamagakicho, Suzuka-shi, Mie, 513-8670, Japan
| | - Yuki Suzuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan.,Present address: Frontier Research Institute, for Interdisciplinary Sciences, Tohoku University, Aramaki aza Aoba 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | - Tomoko Emura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kumi Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan.,Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masayuki Endo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
80
|
Pérez-Mitta G, Albesa AG, Trautmann C, Toimil-Molares ME, Azzaroni O. Bioinspired integrated nanosystems based on solid-state nanopores: " iontronic" transduction of biological, chemical and physical stimuli. Chem Sci 2017; 8:890-913. [PMID: 28572900 PMCID: PMC5452273 DOI: 10.1039/c6sc04255d] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/25/2016] [Indexed: 12/17/2022] Open
Abstract
The ability of living systems to respond to stimuli and process information has encouraged scientists to develop integrated nanosystems displaying similar functions and capabilities. In this regard, biological pores have been a source of inspiration due to their exquisite control over the transport of ions within cells, a feature that ultimately plays a major role in multiple physiological processes, e.g. transduction of physical stimuli into nervous signals. Developing abiotic nanopores, which respond to certain chemical, biological or physical inputs producing "iontronic" signals, is now a reality thanks to the combination of "soft" surface science with nanofabrication techniques. The interplay between the functional richness of predesigned molecular components and the remarkable physical characteristics of nanopores plays a critical role in the rational integration of molecular functions into nanopore environments, permitting us to envisage nanopore-based biomimetic integrated nanosystems that respond to a variety of external stimuli such as pH, redox potential, molecule concentration, temperature, or light. Transduction of these stimuli into a predefined "iontronic" response can be amplified by exploiting nanoconfinement and physico-chemical effects such as charge distribution, steric constraints, equilibria displacement, or local changes in ionic concentration, to name but a few examples. While in past decades the focus has been mostly on their fundamental aspects and the in-depth study of their interesting transport properties, for several years now nanopore research has started to shift towards specific practical applications. This work is dedicated to bringing together the latest developments in the use of nanopores as "iontronic" transducing elements. Our aim is to show the wide potential of abiotic nanopores in sensing and signal transduction and also to promote the potential of this technology among doctoral students, postdocs, and researchers. We believe that even a casual reader of this perspective will not fail to be impressed by the wealth of opportunities that solid-state nanopores can offer to the transduction of biological, physical and chemical stimuli.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mitta
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) , Universidad Nacional de La Plata , CONICET , CC. 16 Suc. 4 , 1900 La Plata , Argentina .
| | - Alberto G Albesa
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) , Universidad Nacional de La Plata , CONICET , CC. 16 Suc. 4 , 1900 La Plata , Argentina .
| | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung , Darmstadt , Germany
- Technische Universität Darmstadt , Darmstadt , Germany
| | | | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) , Universidad Nacional de La Plata , CONICET , CC. 16 Suc. 4 , 1900 La Plata , Argentina .
| |
Collapse
|
81
|
Gao J, Feng Y, Guo W, Jiang L. Nanofluidics in two-dimensional layered materials: inspirations from nature. Chem Soc Rev 2017; 46:5400-5424. [DOI: 10.1039/c7cs00369b] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review highlights the recent progress, current challenges, and future perspectives in the design and application of 2D layered materials for nanofluidic research, with emphasis on the thought of bio-inspiration.
Collapse
Affiliation(s)
- Jun Gao
- Physics of Complex Fluids
- University of Twente
- Enschede 7500
- The Netherlands
| | - Yaping Feng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Wei Guo
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
82
|
Liu N, Li C, Zhang T, Hou R, Xiong Z, Li Z, Wei B, Yang Z, Gao P, Lou X, Zhang X, Guo W, Xia F. Fabrication of "Plug and Play" Channels with Dual Responses by Host-Guest Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1600287. [PMID: 27158970 DOI: 10.1002/smll.201600287] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/22/2016] [Indexed: 06/05/2023]
Abstract
The "Plug and Play" template can be individually or successively grafted by dual-responsive molecules on the α-CD modified channels by host-guest interactions and can be peeled off by UV irradiation. The artificial channels present six kinds of responses cycling among four states responding to three environment stimuli, as light, pH, and temperature.
Collapse
Affiliation(s)
- Nannan Liu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Cao Li
- Key Laboratory of Biomedical Polymers, Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Faculty of Materials Science & Engineering, Hubei University, Wuhan, 430062, P. R. China
| | - Tianchi Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Ruizuo Hou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Zhiping Xiong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Zeyong Li
- Key Laboratory of Biomedical Polymers, Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Benmei Wei
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Zekun Yang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Pengcheng Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Xiaoding Lou
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Xianzheng Zhang
- Key Laboratory of Biomedical Polymers, Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Wei Guo
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fan Xia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| |
Collapse
|
83
|
Fang R, Zhang H, Yang L, Wang H, Tian Y, Zhang X, Jiang L. Supramolecular Self-Assembly Induced Adjustable Multiple Gating States of Nanofluidic Diodes. J Am Chem Soc 2016; 138:16372-16379. [DOI: 10.1021/jacs.6b09601] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ruochen Fang
- Key
Lab of Organic Optoelectronics and Molecular Engineering, Department
of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Huacheng Zhang
- Department
of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Liulin Yang
- Key
Lab of Organic Optoelectronics and Molecular Engineering, Department
of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Huanting Wang
- Department
of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Ye Tian
- Beijing National
Laboratory for Molecular Sciences, Key Laboratory
of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Xi Zhang
- Key
Lab of Organic Optoelectronics and Molecular Engineering, Department
of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial
Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- Department
of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
84
|
Li H, Chen G, Das S. Electric double layer electrostatics of pH-responsive spherical polyelectrolyte brushes in the decoupled regime. Colloids Surf B Biointerfaces 2016; 147:180-190. [DOI: 10.1016/j.colsurfb.2016.07.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 11/29/2022]
|
85
|
Chen Y, Zhou D, Meng Z, Zhai J. An ion-gating multinanochannel system based on a copper-responsive self-cleaving DNAzyme. Chem Commun (Camb) 2016; 52:10020-3. [PMID: 27443504 DOI: 10.1039/c6cc03943j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed an ion-gating nanochannel composite system by immobilizing a Cu(2+)-responsive self-cleaving DNAzyme into PET conical multinanochannels, which could control the ion transport by regulating the surface charge density of the channels.
Collapse
Affiliation(s)
- Yang Chen
- Beijing Key Laboratory of Bio-Inspired Energy Materials and Devices, School of Chemistry and Environment, Beihang University, Beijing 100191, P. R. China.
| | | | | | | |
Collapse
|
86
|
Xiao K, Wen L, Jiang L. Biomimetic Solid-State Nanochannels: From Fundamental Research to Practical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2810-2831. [PMID: 27040151 DOI: 10.1002/smll.201600359] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/25/2016] [Indexed: 06/05/2023]
Abstract
In recent years, solid-state smart nanopores/nanochannels for intelligent control of the transportation of ions and molecules as organisms have been extensively studied, because they hold great potential applications in molecular sieves, nanofluidics, energy conversion, and biosensors. To keep up with the fast development of this field, it is necessary to summarize the construction, characterization, and application of biomimetic smart nanopores/nanochannels. These can be classified into four sections: the fabrication of solid-state nanopores/nanochannels, the functionalization methods and materials, the mechanism explanation about the ion rectification, and the practical applications. A brief conclusion and outlook for the biomimetic nanochannels is provided, highlighting those that could be developed and integrated into devices for use in tackling current and the future problems including resources, energy, environment, and health.
Collapse
Affiliation(s)
- Kai Xiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liping Wen
- Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
87
|
Dembska A. The analytical and biomedical potential of cytosine-rich oligonucleotides: A review. Anal Chim Acta 2016; 930:1-12. [PMID: 27265899 DOI: 10.1016/j.aca.2016.05.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/30/2016] [Accepted: 05/04/2016] [Indexed: 02/04/2023]
Abstract
Polycytosine DNA strands are often found among natural sequences, including the ends of telomeres, centromeres, and introns or in the regulatory regions of genes. A characteristic feature of oligonucleotides that are rich in cytosine (C-rich) is their ability to associate under acidic conditions to form a tetraplex i-motif consisting of two parallel stranded cytosine-hemiprotonated cytosine (C·C+) base-paired duplexes that are mutually intercalated in an antiparallel orientation. Nanotechnology has been exploiting the advantages of i-motif pH-dependent formation to fabricate nanomachines, nanoswitches, electrodes and intelligent nanosurfaces or nanomaterials. Although a few reviews regarding the structure, properties and applications of i-motifs have been published, this review focuses on recently developed biosensors (e.g., to detect pH, glucose or silver ions) and drug-delivery biomaterials. Furthermore, we have included examples of sensors based on parallel C-rich triplexes and silver nanoclusters (AgNCs) fabricated on cytosine-rich DNA strands. The potential diagnostic and therapeutic applications of this type of material are discussed.
Collapse
Affiliation(s)
- Anna Dembska
- Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland.
| |
Collapse
|
88
|
Li P, Kong XY, Xie G, Xiao K, Zhang Z, Wen L, Jiang L. Adenosine-Activated Nanochannels Inspired by G-Protein-Coupled Receptors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1854-1858. [PMID: 26915491 DOI: 10.1002/smll.201503863] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 01/26/2016] [Indexed: 06/05/2023]
Abstract
A bioinspired adenosine activated nanodevice is demonstrated in which the conformations of the designed aptamer change and cause signal transmission according to the emergence of adenosine. This bioinspired system exhibits very high response ratios (activated/nonactivated ratio up to 614) and excellent stability and reversibility, and shows promising applications in the fields of biosensors, pharmaceutica, and healthcare systems.
Collapse
Affiliation(s)
- Pei Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Xiang-Yu Kong
- Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ganhua Xie
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Kai Xiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhen Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liping Wen
- Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing, 100191, P. R. China
- Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
89
|
Liu Q, Wen L, Xiao K, Lu H, Zhang Z, Xie G, Kong XY, Bo Z, Jiang L. A Biomimetic Voltage-Gated Chloride Nanochannel. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:3181-3186. [PMID: 26917448 DOI: 10.1002/adma.201505250] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/03/2016] [Indexed: 06/05/2023]
Abstract
A novel biomimetic voltage-gated chloride nanochannel is described. This artificial nanochannel can realize reversible switching between the "on" and "off" states upon addition and removal of Cl(-) and can realize the selective and directional transport of Cl(-) driven by voltage. Moreover, it also has high sensitivity, good selectivity, responsive switchability, and good stability.
Collapse
Affiliation(s)
- Qian Liu
- Beijing Key Laboratory of Energy Conversionand Storage Materials, College of Chemistry, Key Laboratory of Theoretical and ComputationalPhotochemistry, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Liping Wen
- Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Kai Xiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Heng Lu
- Beijing Key Laboratory of Energy Conversionand Storage Materials, College of Chemistry, Key Laboratory of Theoretical and ComputationalPhotochemistry, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zhen Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ganhua Xie
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiang-Yu Kong
- Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversionand Storage Materials, College of Chemistry, Key Laboratory of Theoretical and ComputationalPhotochemistry, Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lei Jiang
- Laboratory of Bioinspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
90
|
Wang D, Zhang Y, Wang M, Dong Y, Zhou C, Isbell MA, Yang Z, Liu H, Liu D. A switchable DNA origami nanochannel for regulating molecular transport at the nanometer scale. NANOSCALE 2016; 8:3944-3948. [PMID: 26839050 DOI: 10.1039/c5nr08206d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A nanochannel with a shutter at one end was built by DNA nanotechnology. Using DNA hybridization the shutter could be opened or closed, influencing the transport of materials through the channel. This process was visualized by an enzyme cascade reaction occurring in the structure.
Collapse
Affiliation(s)
- Dianming Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Yiyang Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Miao Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Yuanchen Dong
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Chao Zhou
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Mark Antonin Isbell
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Zhongqiang Yang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Huajie Liu
- Laboratory of Physical Biology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
91
|
Pérez-Mitta G, Burr L, Tuninetti JS, Trautmann C, Toimil-Molares ME, Azzaroni O. Noncovalent functionalization of solid-state nanopores via self-assembly of amphipols. NANOSCALE 2016; 8:1470-8. [PMID: 26676314 DOI: 10.1039/c5nr08190d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In recent years there has been increasing interest in the development of new methods for conferring functional features to nanopore-based fluidic devices. In this work, we describe for the first time the noncovalent integration of amphoteric-amphipathic polymers, also known as "amphipols", into single conical nanopores in order to obtain signal-responsive chemical nanodevices. Highly-tapered conical nanopores were fabricated by single-sided chemical etching of polycarbonate foils. After etching, the surface of the conical nanopores was chemically modified, by first metallizing the surface via gold sputtering and then by amphiphilic self-assembly of the amphipol. The net charge of adsorbed amphipols was regulated via pH changes under the environmental conditions. The pH-dependent chemical equilibrium of the weak acidic and basic monomers facilitates the regulation of the ionic transport through the nanopore by adjusting the pH of the electrolyte solution. Our results demonstrate that functional amphipathic polymers are powerful building blocks for the surface modification of nanopores and might ultimately pave the way to a new means of integrating functional and/or responsive units within nanofluidic structures.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mitta
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4 (1900) La Plata, Argentina.
| | - Loïc Burr
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany and Materialwissenschaft, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | - Jimena S Tuninetti
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4 (1900) La Plata, Argentina.
| | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany and Materialwissenschaft, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287 Darmstadt, Germany
| | | | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4 (1900) La Plata, Argentina. and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
92
|
Gao P, Hu L, Liu N, Yang Z, Lou X, Zhai T, Li H, Xia F. Functional "Janus" Annulus in Confined Channels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:460-5. [PMID: 26765675 DOI: 10.1002/adma.201502344] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/30/2015] [Indexed: 05/12/2023]
Abstract
Scattered Au 3D nanoparticles form distinct functional regions with an uncovered internal surface in confined channels, named the "Janus" annulus. Electrochemical impedance spectroscopy responses to the variations in DNA self-assembly and hybridization in the channels decorated by the "Janus" annulus are presented. Single nucleotide mutations are further detected in a linear DNA chain, including terminal base polymorphisms.
Collapse
Affiliation(s)
- Pengcheng Gao
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Lintong Hu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Material Sciences and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Nannan Liu
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Zekun Yang
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Xiaoding Lou
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Material Sciences and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Material Sciences and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Fan Xia
- Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
- National Engineering Research Center for Nanomedicine Institute of Material Medical, College of Life Science & Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| |
Collapse
|
93
|
Benabou S, Garavís M, Lyonnais S, Eritja R, González C, Gargallo R. Understanding the effect of the nature of the nucleobase in the loops on the stability of the i-motif structure. Phys Chem Chem Phys 2016; 18:7997-8004. [DOI: 10.1039/c5cp07428b] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The nature of bases in the loops affects the acid–base and thermal stability of i-motif structures.
Collapse
Affiliation(s)
- Sanae Benabou
- Department of Analytical Chemistry
- University of Barcelona
- E-08028 Barcelona
- Spain
| | - Miguel Garavís
- Institute of Physical Chemistry “Rocasolano”
- CSIC
- E-28006 Madrid
- Spain
| | - Sébastien Lyonnais
- Institute of Molecular Biology of Barcelona (IBMB-CSIC)
- 08028 Barcelona
- Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC)
- CIBER-BBN
- E-08034 Barcelona
- Spain
| | - Carlos González
- Institute of Physical Chemistry “Rocasolano”
- CSIC
- E-28006 Madrid
- Spain
- BIOESTRAN
| | - Raimundo Gargallo
- Department of Analytical Chemistry
- University of Barcelona
- E-08028 Barcelona
- Spain
- BIOESTRAN
| |
Collapse
|
94
|
Cai SL, Zheng YB, Cao SH, Cai XH, Li YQ. A conformation and charge co-modulated ultrasensitive biomimetic ion channel. Chem Commun (Camb) 2016; 52:12450-12453. [DOI: 10.1039/c6cc04899d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For the first time, an ultrasensitive nanopore-based sensor that co-modulated simultaneously by conformation and charge has been developed for the detection of ATP.
Collapse
Affiliation(s)
- Sheng-Lin Cai
- Department of Chemistry and Key Laboratory of Analytical Sciences
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- P. R. China
| | - Yu-Bin Zheng
- Department of Chemistry and Key Laboratory of Analytical Sciences
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- P. R. China
| | - Shuo-Hui Cao
- Department of Chemistry and Key Laboratory of Analytical Sciences
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- P. R. China
| | - Xiu-Hong Cai
- Department of Chemistry and Key Laboratory of Analytical Sciences
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- P. R. China
| | - Yao-Qun Li
- Department of Chemistry and Key Laboratory of Analytical Sciences
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen
- P. R. China
| |
Collapse
|
95
|
Lin JY, Lin CY, Hsu JP, Tseng S. Ionic Current Rectification in a pH-Tunable Polyelectrolyte Brushes Functionalized Conical Nanopore: Effect of Salt Gradient. Anal Chem 2015; 88:1176-87. [DOI: 10.1021/acs.analchem.5b03074] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jeng-Yang Lin
- Department
of Chemical Engineering, National Taiwan University, Taipei, Taiwan 10617
| | - Chih-Yuan Lin
- Department
of Chemical Engineering, National Taiwan University, Taipei, Taiwan 10617
| | - Jyh-Ping Hsu
- Department
of Chemical Engineering, National Taiwan University, Taipei, Taiwan 10617
| | - Shiojenn Tseng
- Department
of Mathematics, Tamkang University, Tamsui, New Taipei City, Taiwan 25137
| |
Collapse
|
96
|
Zhang H, Tian Y, Hou J, Hou X, Hou G, Ou R, Wang H, Jiang L. Bioinspired Smart Gate-Location-Controllable Single Nanochannels: Experiment and Theoretical Simulation. ACS NANO 2015; 9:12264-73. [PMID: 26474219 DOI: 10.1021/acsnano.5b05542] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
pH-activated gates intelligently govern the ion transport behaviors of a wide range of bioinspired ion channels, but the mechanisms between the gate locations and the functionalities of the ion channels remain poorly understood. Here, we construct an artificial gate-location-tunable single-nanochannel system to systematically investigate the impact of the gate location on the ion transport property of the biomimetic ion channel. The gate-location-controllable single nanochannels are prepared by asymmetrically grafting pH-responsive polymer gates on one side of single nanochannels with gradual shape transformation. Experimental ion current measurements show that the gating abilities and rectification effects of the pH-gated nanochannels can be gradually altered by precisely locating the artificial pH gates on the different sites of the channels. The experimental gate-location-dependent gating and rectification of ion current in the bioinspired ion channel system is further well confirmed by theoretical simulation. This work, as an example, provides a new avenue to optimize the smart ion transport features of diverse artificial nanogate devices via precisely locating the gates on the appropriate sites of the artificial nanochannels.
Collapse
Affiliation(s)
- Huacheng Zhang
- Laboratory of Bio-Inspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | - Ye Tian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing, 100190, People's Republic of China
| | - Jue Hou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing, 100190, People's Republic of China
| | - Xu Hou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing, 100190, People's Republic of China
| | - Guanglei Hou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing, 100190, People's Republic of China
| | - Ranwen Ou
- Department of Chemical Engineering, Monash University , Clayton, Victoria 3800, Australia
| | - Huanting Wang
- Department of Chemical Engineering, Monash University , Clayton, Victoria 3800, Australia
| | - Lei Jiang
- Laboratory of Bio-Inspired Smart Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| |
Collapse
|
97
|
Plett T, Shi W, Zeng Y, Mann W, Vlassiouk I, Baker LA, Siwy ZS. Rectification of nanopores in aprotic solvents--transport properties of nanopores with surface dipoles. NANOSCALE 2015; 7:19080-19091. [PMID: 26523891 DOI: 10.1039/c5nr06340j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Nanopores have become a model system to understand transport properties at the nanoscale. We report experiments and modeling of ionic current in aprotic solvents with different dipole moments through conically shaped nanopores in a polycarbonate film and through glass nanopipettes. We focus on solutions of the salt LiClO4, which is of great importance in modeling lithium based batteries. Results presented suggest ion current rectification observed results from two effects: (i) adsorption of Li(+) ions to the pore walls, and (ii) a finite dipole moment rendered by adsorbed solvent molecules. Properties of surfaces in various solvents were probed by means of scanning ion conductance microscopy, which confirmed existence of an effectively positive surface potential in aprotic solvents with high dipole moments.
Collapse
Affiliation(s)
- Timothy Plett
- Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Nguyen QH, Ali M, Nasir S, Ensinger W. Transport properties of track-etched membranes having variable effective pore-lengths. NANOTECHNOLOGY 2015; 26:485502. [PMID: 26553245 DOI: 10.1088/0957-4484/26/48/485502] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The transport rate of molecules through polymeric membranes is normally limited because of their micrometer-scale thickness which restricts their suitability for more practical application. To study the effect of effective pore length on the transport behavior, polymer membranes containing cylindrical and asymmetric-shaped nanopores were prepared through a two-step ion track-etching technique. Permeation experiments were performed separately to investigate the transport properties (molecular flux and selectivity) of these track-etched membranes. The permeation data shows that the molecular flux across membranes containing asymmetric nanopores is higher compared to those having cylindrical pores. On the other hand, the cylindrical pore membranes exhibit higher selectivity than asymmetric pores for the permeation of charged molecules across the membrane. Current-voltage (I-V) measurements of single-pore membranes further verify that asymmetric pores exhibit lower resistance for the flow of ions and therefore show higher currents than cylindrical pores. Moreover, unmodified and polyethyleneimine (PEI) modified asymmetric-shaped pore membranes were successfully used for the separation of cationic and anionic analyte molecules from their mixture, respectively. In this study, two distinct effects (pore geometry and pore density, i.e. number of pores cm(-2)), which mainly influence membrane selectivity and molecular transport rates, were thoroughly investigated in order to optimize the membrane performance. In this context, we believe that membranes with high molecular transport rates could readily find their application in molecular separation and controlled drug delivery processes.
Collapse
Affiliation(s)
- Quoc Hung Nguyen
- Technische Universität Darmstadt, Fachbereich Material- u. Geowissenschaften, Fachgebiet Materialanalytik, Alarich-Weiss-Str. 2, D-64287 Darmstadt, Germany. GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, D-64291 Darmstadt, Germany
| | | | | | | |
Collapse
|
99
|
Taghipoor M, Bertsch A, Renaud P. Thermal control of ionic transport and fluid flow in nanofluidic channels. NANOSCALE 2015; 7:18799-18804. [PMID: 26507947 DOI: 10.1039/c5nr05409e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this work, we report a nanofluidic gating mechanism that uses the thermal effect for modulating the ionic transport inside nanofluidic channels. The control of the ionic transport inside a nanochannel is demonstrated using electrical conductivity. A thermal gate controls the ionic transport more effectively than most of the other gating mechanisms previously described in the scientific literature. Gating in both bulk and overlapping electric double layer regimes can be obtained. The relatively short response time of opening and closing processes makes it a good candidate for manipulating small molecules in micro- and nanoscale devices.
Collapse
Affiliation(s)
- Mojtaba Taghipoor
- Microsystems Laboratory, École Polytechnique Fédérale de Lausanne, EPFL STI-IMT-LMIS, Station 17, 1015 Lausanne, Switzerland.
| | | | | |
Collapse
|
100
|
Das S, Banik M, Chen G, Sinha S, Mukherjee R. Polyelectrolyte brushes: theory, modelling, synthesis and applications. SOFT MATTER 2015; 11:8550-83. [PMID: 26399305 DOI: 10.1039/c5sm01962a] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Polyelectrolyte (PE) brushes are a special class of polymer brushes (PBs) containing charges. Polymer chains attain "brush"-like configuration when they are grafted or get localized at an interface (solid-fluid or liquid-fluid) with sufficiently close proximity between two-adjacent grafted polymer chains - such a proximity triggers a particular nature of interaction between the adjacent polymer molecules forcing them to stretch orthogonally to the grafting interface, instead of random-coil arrangement. In this review, we discuss the theory, synthesis, and applications of PE brushes. The theoretical discussion starts with the standard scaling concepts for polymer and PE brushes; following that, we shed light on the state of the art in continuum modelling approaches for polymer and PE brushes directed towards analysis beyond the scaling calculations. A special emphasis is laid in pinpointing the cases for which the PE electrostatic effects can be de-coupled from the PE entropic and excluded volume effects; such de-coupling is necessary to appropriately probe the complicated electrostatic effects arising from pH-dependent charging of the PE brushes and the use of these effects for driving liquid and ion transport at the interfaces covered with PE brushes. We also discuss the atomistic simulation approaches for polymer and PE brushes. Next we provide a detailed review of the existing approaches for the synthesis of polymer and PE brushes on interfaces, nanoparticles, and nanochannels, including mixed brushes and patterned brushes. Finally, we discuss some of the possible applications and future developments of polymer and PE brushes grafted on a variety of interfaces.
Collapse
Affiliation(s)
- Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, MD-20742, USA.
| | - Meneka Banik
- Instability and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Pin - 721302, Kharagpur, West Bengal, India
| | - Guang Chen
- Department of Mechanical Engineering, University of Maryland, College Park, MD-20742, USA.
| | - Shayandev Sinha
- Department of Mechanical Engineering, University of Maryland, College Park, MD-20742, USA.
| | - Rabibrata Mukherjee
- Instability and Soft Patterning Laboratory, Department of Chemical Engineering, Indian Institute of Technology Kharagpur, Pin - 721302, Kharagpur, West Bengal, India
| |
Collapse
|