51
|
Liu L, Li L, DeGayner JA, Winegar PH, Fang Y, Harris TD. Harnessing Structural Dynamics in a 2D Manganese–Benzoquinoid Framework To Dramatically Accelerate Metal Transport in Diffusion-Limited Metal Exchange Reactions. J Am Chem Soc 2018; 140:11444-11453. [DOI: 10.1021/jacs.8b06774] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lujia Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Liang Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Department of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jordan A. DeGayner
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Peter H. Winegar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Yu Fang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - T. David Harris
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
52
|
Tu W, Xu Y, Yin S, Xu R. Rational Design of Catalytic Centers in Crystalline Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707582. [PMID: 29873121 DOI: 10.1002/adma.201707582] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Crystalline frameworks including primarily metal organic frameworks (MOF) and covalent organic frameworks (COF) have received much attention in the field of heterogeneous catalysts recently. Beyond providing large surface area and spatial confinement, these crystalline frameworks can be designed to either directly act as or influence the catalytic sites at molecular level. This approach offers a unique advantage to gain deeper insights of structure-activity correlations in solid materials, leading to new guiding principles for rational design of advanced solid catalysts for potential important applications related to energy and fine chemical synthesis. In this review, recent key progress achieved in designing MOF- and COF-based molecular solid catalysts and the mechanistic understanding of the catalytic centers and associated reaction pathways are summarized. The state-of-the-art rational design of MOF- and COF-based solid catalysts in this review is grouped into seven different areas: (i) metalated linkers, (ii) metalated moieties anchored on linkers, (iii) organic moieties anchored on linkers, (iv) encapsulated single sites in pores, and (v) metal-mode-based active sites in MOFs. Along with this, some attention is paid to theoretical studies about the reaction mechanisms. Finally, technical challenges and possible solutions in applying these catalysts for practical applications are also presented.
Collapse
Affiliation(s)
- Wenguang Tu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - You Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, P. R. China
| | - Shengming Yin
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Rong Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- C4T CREATE, National Research Foundation, CREATE Tower 1 Create Way, Singapore, 138602, Singapore
| |
Collapse
|
53
|
Wang JJ, Zhang RC, Cao YL, Li YA, Wang YR, Wang QL. Selective fluorescent sensing and photocatalytic properties of three MOFs based on naphthalene-1,4-dicarboxylic acid and 2,4,5-tri(4-pyridyl)-imidazole. NEW J CHEM 2018. [DOI: 10.1039/c7nj03530f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Three MOFs display high sensitivity in the detection of NB and Ca2+ or Co2+ ions as luminescent probes. Moreover, 3 exhibits a relatively good photocatalytic degradation activity of rhodamine B.
Collapse
Affiliation(s)
- Jun-Jie Wang
- College of Chemistry and Chemical Engineering
- and Henan Key Laboratory of New Optoelectric Functional Materials
- Anyang Normol University
- Anyang
- P. R. China
| | - Ren-Chun Zhang
- College of Chemistry and Chemical Engineering
- and Henan Key Laboratory of New Optoelectric Functional Materials
- Anyang Normol University
- Anyang
- P. R. China
| | - Ya-Li Cao
- College of Chemistry and Chemical Engineering
- and Henan Key Laboratory of New Optoelectric Functional Materials
- Anyang Normol University
- Anyang
- P. R. China
| | - Yan-Ang Li
- College of Chemistry and Chemical Engineering
- and Henan Key Laboratory of New Optoelectric Functional Materials
- Anyang Normol University
- Anyang
- P. R. China
| | - Yi-Ran Wang
- College of Chemistry and Chemical Engineering
- and Henan Key Laboratory of New Optoelectric Functional Materials
- Anyang Normol University
- Anyang
- P. R. China
| | - Qing-Lun Wang
- College of Chemistry
- Nankai University
- Tianjin
- P. R. China
| |
Collapse
|
54
|
Wang JJ, Zhang YJ, Chen Y, Si PP, Pan YY, Yang J, Fan RY, Li ZY. Three new Zn-based metal–organic frameworks exhibiting selective fluorescence sensing and photocatalytic activity. CrystEngComm 2018. [DOI: 10.1039/c8ce00598b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three MOFs with different 2D networks have been crystallised in a one-pot solvothermal reaction. They all display high sensitivity in the detection of ACE and relatively good photocatalytic activity in the degradation of RhB.
Collapse
Affiliation(s)
- Jun-Jie Wang
- School of Chemistry and Chemical Engineering, and Henan Province Key Laboratory of New Opto-Electronic Functional Materials
- Anyang Normal University
- Anyang 455000
- China
| | - You-Juan Zhang
- School of Chemistry and Chemical Engineering, and Henan Province Key Laboratory of New Opto-Electronic Functional Materials
- Anyang Normal University
- Anyang 455000
- China
| | - Yan Chen
- School of Chemistry and Chemical Engineering, and Henan Province Key Laboratory of New Opto-Electronic Functional Materials
- Anyang Normal University
- Anyang 455000
- China
| | - Pan-Pan Si
- School of Chemistry and Chemical Engineering, and Henan Province Key Laboratory of New Opto-Electronic Functional Materials
- Anyang Normal University
- Anyang 455000
- China
| | - Ya-Ya Pan
- School of Chemistry and Chemical Engineering, and Henan Province Key Laboratory of New Opto-Electronic Functional Materials
- Anyang Normal University
- Anyang 455000
- China
| | - Jie Yang
- School of Chemistry and Chemical Engineering, and Henan Province Key Laboratory of New Opto-Electronic Functional Materials
- Anyang Normal University
- Anyang 455000
- China
| | - Rui-Yang Fan
- School of Chemistry and Chemical Engineering, and Henan Province Key Laboratory of New Opto-Electronic Functional Materials
- Anyang Normal University
- Anyang 455000
- China
| | - Zhao-Yang Li
- School of Materials Science and Engineering
- Nankai University
- Tianjin 300350
- China
| |
Collapse
|
55
|
A readily available urea based MOF that act as a highly active heterogeneous catalyst for Friedel-Crafts reaction of indoles and nitrostryenes. CATAL COMMUN 2018. [DOI: 10.1016/j.catcom.2017.10.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
56
|
Stubbs AW, Braglia L, Borfecchia E, Meyer RJ, Román- Leshkov Y, Lamberti C, Dincă M. Selective Catalytic Olefin Epoxidation with MnII-Exchanged MOF-5. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02946] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Amanda W. Stubbs
- Department
of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Luca Braglia
- Department
of Chemistry, NIS and CrisDi Interdepartmental Centers, INSTM Reference
Center, University of Turin, Via P Giuria 7, I-10125 Turin, Italy
- International
research center “Smart Materials”, Southern Federal University, 5 Zorge Street, Rostov-on-Don 344090, Russia
| | - Elisa Borfecchia
- Department
of Chemistry, NIS and CrisDi Interdepartmental Centers, INSTM Reference
Center, University of Turin, Via P Giuria 7, I-10125 Turin, Italy
| | - Randall J. Meyer
- Corporate
Strategic Research, ExxonMobil Research and Engineering, 1545 Route 22, Annandale, New Jersey 08801, United States
| | - Yuriy Román- Leshkov
- Department
of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| | - Carlo Lamberti
- Department
of Chemistry, NIS and CrisDi Interdepartmental Centers, INSTM Reference
Center, University of Turin, Via P Giuria 7, I-10125 Turin, Italy
- International
research center “Smart Materials”, Southern Federal University, 5 Zorge Street, Rostov-on-Don 344090, Russia
| | - Mircea Dincă
- Department
of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
57
|
Novel glucose-based adsorbents (Glc-As) with preferential adsorption of ethane over ethylene and high capacity. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
58
|
Wijeratne GB, Hematian S, Siegler MA, Karlin KD. Copper(I)/NO (g) Reductive Coupling Producing a trans-Hyponitrite Bridged Dicopper(II) Complex: Redox Reversal Giving Copper(I)/NO (g) Disproportionation. J Am Chem Soc 2017; 139:13276-13279. [PMID: 28820592 PMCID: PMC5630263 DOI: 10.1021/jacs.7b07808] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A copper complex, [CuI(tmpa)(MeCN)]+, effectively reductively couples NO(g) at RT in methanol (MeOH), giving a structurally characterized hyponitrito-dicopper(II) adduct. Hydrogen-bonding from MeOH is critical for the hyponitrite complex formation and stabilization. This complex exhibits the reverse redox process in aprotic solvents, giving CuI + NO(g), leading to CuI-mediated NO(g)-disproportionation. The relationship of this chemistry to biological iron and/or copper mediated NO(g) reductive coupling to give N2O(g) is discussed.
Collapse
Affiliation(s)
| | | | - Maxime A. Siegler
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kenneth D. Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
59
|
Confer AM, McQuilken AC, Matsumura H, Moënne-Loccoz P, Goldberg DP. A Nonheme, High-Spin {FeNO} 8 Complex that Spontaneously Generates N 2O. J Am Chem Soc 2017; 139:10621-10624. [PMID: 28749673 DOI: 10.1021/jacs.7b05549] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One-electron reduction of [Fe(NO)-(N3PyS)]BF4 (1) leads to the production of the metastable nonheme {FeNO}8 complex, [Fe(NO)(N3PyS)] (3). Complex 3 is a rare example of a high-spin (S = 1) {FeNO}8 and is the first example, to our knowledge, of a mononuclear nonheme {FeNO}8 species that generates N2O. A second, novel route to 3 involves addition of Piloty's acid, an HNO donor, to an FeII precursor. This work provides possible new insights regarding the mechanism of nitric oxide reductases.
Collapse
Affiliation(s)
- Alex M Confer
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Alison C McQuilken
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| | - Hirotoshi Matsumura
- Institute of Environmental Health, Oregon Health & Science University , Portland, Oregon 97239, United States
| | - Pierre Moënne-Loccoz
- Institute of Environmental Health, Oregon Health & Science University , Portland, Oregon 97239, United States
| | - David P Goldberg
- Department of Chemistry, Johns Hopkins University , Baltimore, Maryland 21218, United States
| |
Collapse
|
60
|
Rogge SMJ, Bavykina A, Hajek J, Garcia H, Olivos-Suarez AI, Sepúlveda-Escribano A, Vimont A, Clet G, Bazin P, Kapteijn F, Daturi M, Ramos-Fernandez EV, Llabrés i Xamena FX, Van Speybroeck V, Gascon J. Metal-organic and covalent organic frameworks as single-site catalysts. Chem Soc Rev 2017; 46:3134-3184. [PMID: 28338128 PMCID: PMC5708534 DOI: 10.1039/c7cs00033b] [Citation(s) in RCA: 608] [Impact Index Per Article: 86.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 12/22/2022]
Abstract
Heterogeneous single-site catalysts consist of isolated, well-defined, active sites that are spatially separated in a given solid and, ideally, structurally identical. In this review, the potential of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) as platforms for the development of heterogeneous single-site catalysts is reviewed thoroughly. In the first part of this article, synthetic strategies and progress in the implementation of such sites in these two classes of materials are discussed. Because these solids are excellent playgrounds to allow a better understanding of catalytic functions, we highlight the most important recent advances in the modelling and spectroscopic characterization of single-site catalysts based on these materials. Finally, we discuss the potential of MOFs as materials in which several single-site catalytic functions can be combined within one framework along with their potential as powerful enzyme-mimicking materials. The review is wrapped up with our personal vision on future research directions.
Collapse
Affiliation(s)
- S. M. J. Rogge
- Center for Molecular Modeling , Ghent University , Technologiepark 903 , 9052 Zwijnaarde , Belgium .
| | - A. Bavykina
- Delft University of Technology , Chemical Engineering Department , Catalysis Engineering , Van der Maasweg 9 , 2629 HZ Delft , The Netherlands .
| | - J. Hajek
- Center for Molecular Modeling , Ghent University , Technologiepark 903 , 9052 Zwijnaarde , Belgium .
| | - H. Garcia
- Instituto de Tecnología Química UPV-CSIC , Universitat Politècnica de Valencia , Consejo Superior de Investigaciones Científicas , Avda. de los Naranjos, s/n , 46022 , Valencia , Spain .
| | - A. I. Olivos-Suarez
- Delft University of Technology , Chemical Engineering Department , Catalysis Engineering , Van der Maasweg 9 , 2629 HZ Delft , The Netherlands .
| | - A. Sepúlveda-Escribano
- Inorganic Chemistry Department , University Institute of Materials , University of Alicante , Ctra. San Vicente-Alicante s/n , Alicante , Spain .
| | - A. Vimont
- Normandie Université , ENSICAEN , UNICAEN , CNRS , Laboratoire Catalyse et Spectrochimie , 14000 Caen , France .
| | - G. Clet
- Normandie Université , ENSICAEN , UNICAEN , CNRS , Laboratoire Catalyse et Spectrochimie , 14000 Caen , France .
| | - P. Bazin
- Normandie Université , ENSICAEN , UNICAEN , CNRS , Laboratoire Catalyse et Spectrochimie , 14000 Caen , France .
| | - F. Kapteijn
- Delft University of Technology , Chemical Engineering Department , Catalysis Engineering , Van der Maasweg 9 , 2629 HZ Delft , The Netherlands .
| | - M. Daturi
- Normandie Université , ENSICAEN , UNICAEN , CNRS , Laboratoire Catalyse et Spectrochimie , 14000 Caen , France .
| | - E. V. Ramos-Fernandez
- Inorganic Chemistry Department , University Institute of Materials , University of Alicante , Ctra. San Vicente-Alicante s/n , Alicante , Spain .
| | - F. X. Llabrés i Xamena
- Instituto de Tecnología Química UPV-CSIC , Universitat Politècnica de Valencia , Consejo Superior de Investigaciones Científicas , Avda. de los Naranjos, s/n , 46022 , Valencia , Spain .
| | - V. Van Speybroeck
- Center for Molecular Modeling , Ghent University , Technologiepark 903 , 9052 Zwijnaarde , Belgium .
| | - J. Gascon
- Delft University of Technology , Chemical Engineering Department , Catalysis Engineering , Van der Maasweg 9 , 2629 HZ Delft , The Netherlands .
| |
Collapse
|
61
|
Tu B, Pang Q, Xu H, Li X, Wang Y, Ma Z, Weng L, Li Q. Reversible Redox Activity in Multicomponent Metal–Organic Frameworks Constructed from Trinuclear Copper Pyrazolate Building Blocks. J Am Chem Soc 2017; 139:7998-8007. [DOI: 10.1021/jacs.7b03578] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Binbin Tu
- Department
of Chemistry, iChEM (Collaborative Innovation Center of Chemistry
for Energy Materials), and Shanghai Key Laboratory of Molecular Catalysis
and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Qingqing Pang
- Department
of Chemistry, iChEM (Collaborative Innovation Center of Chemistry
for Energy Materials), and Shanghai Key Laboratory of Molecular Catalysis
and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Huoshu Xu
- Department
of Chemistry, iChEM (Collaborative Innovation Center of Chemistry
for Energy Materials), and Shanghai Key Laboratory of Molecular Catalysis
and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Xiaomin Li
- Department
of Chemistry, iChEM (Collaborative Innovation Center of Chemistry
for Energy Materials), and Shanghai Key Laboratory of Molecular Catalysis
and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yulin Wang
- Department
of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Zhen Ma
- Department
of Environmental Science and Engineering, Fudan University, Shanghai 200433, P. R. China
| | - Linhong Weng
- Department
of Chemistry, iChEM (Collaborative Innovation Center of Chemistry
for Energy Materials), and Shanghai Key Laboratory of Molecular Catalysis
and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Qiaowei Li
- Department
of Chemistry, iChEM (Collaborative Innovation Center of Chemistry
for Energy Materials), and Shanghai Key Laboratory of Molecular Catalysis
and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
62
|
Metz S. N 2O Formation via Reductive Disproportionation of NO by Mononuclear Copper Complexes: A Mechanistic DFT Study. Inorg Chem 2017; 56:3820-3833. [PMID: 28291346 DOI: 10.1021/acs.inorgchem.6b02551] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism of the copper(I)-mediated reductive disproportionation reaction of NO to form N2O was investigated for five different 3,5-substituted tris(pyrazolyl)borate copper complexes (CuTpR1,R2) by means of DFT calculations. A thorough search of the potential surface was performed, using the B3LYP functional with the def2-SVP basis set for optimization purposes and def2-TZVP single-point calculations for constructing the potential energy surface for two of these complexes. The results can be condensed into six competing reaction mechanisms, two of which were more closely investigated using full def2-TZVP optimized potential and free energies. The results consistently predict the same mechanism to have the lowest overall barrier. For all five different complexes, this is found to be in good agreement with the experimental reaction barriers. The key intermediate for the transition from the N-bound reactant to the O-bound product contains a stable (NO)3 unit with one N-Cu and one O-Cu bond, which was not included in the mechanistic considerations reported in the literature. Further analysis of the charge distribution and the spin density demonstrates the formation of a Cu(II)-(N2O2-) intermediate and the electronic influence of the different ligands.
Collapse
Affiliation(s)
- Sebastian Metz
- Scientific Computing Department, STFC Daresbury Laboratory , Daresbury, Warrington, U.K
| |
Collapse
|
63
|
Denysenko D, Volkmer D. Cyclic gas-phase heterogeneous process in a metal–organic framework involving a nickel nitrosyl complex. Faraday Discuss 2017; 201:101-112. [DOI: 10.1039/c7fd00034k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cubic metal–organic framework MFU-4l ([Zn5Cl4(BTDD)3], H2-BTDD = bis(1H-1,2,3-triazolo[4,5-b],[4′,5′-i])dibenzo[1,4]dioxin) featuring large pore apertures can be modified post-synthetically via partial or complete substitution of peripheral metal sites and chloride side-ligands, thus opening a route towards a large variety of functionalized MOFs. In this way, Ni-MFU-4l-nitrite (or Ni-MFU-4l-NO2) with an analytically determined chemical composition [Zn2.6Ni2.4(NO2)2.9Cl1.1(BTDD)3], containing accessible Ni–NO2 units, was prepared. Ni-MFU-4l-NO2 undergoes selective heterogeneous gas-phase reduction by carbon monoxide at 350 °C, leading to formation of Ni–NO units at the peripheral sites of the MFU-4l framework (Ni-MFU-4l-NO). The crystallinity and porosity of the MFU-4l framework are completely retained upon this transformation. The so-formed nickel nitrosyl complex, showing high thermal stability, readily reacts with nitrogen monoxide at room temperature, producing Ni–NO2 units and dinitrogen monoxide (N2O). Hence, the reaction of Ni-MFU-4l-NO2 with CO followed by NO represents a cyclic process with an overall stoichiometry 2NO + CO → N2O + CO2, in which the Ni-MFU-4l framework serves as a catalyst. It can be considered as a model process for the removal of highly toxic NO and CO gases, which are converted to non-toxic CO2 and N2O. Diffuse reflectance infrared Fourier transform spectroscopic studies show that at least 10 cycles can be repeated. The framework's reactivity drops down by ca. 50% after 10 cycles, which is most likely due to the accumulation of highly reactive NO2 and N2O4 contaminants. Therefore, further investigations on characterizing reaction intermediates should be done in order to improve the catalyst's performance. Our results confirm the potential of MFU-4l frameworks as selective single-site catalysts for heterogeneous gas-phase transformations and provide a motivation for further studies.
Collapse
Affiliation(s)
- D. Denysenko
- Chair of Solid State and Materials Science
- Institute of Physics
- University of Augsburg
- D-86159 Augsburg
- Germany
| | - D. Volkmer
- Chair of Solid State and Materials Science
- Institute of Physics
- University of Augsburg
- D-86159 Augsburg
- Germany
| |
Collapse
|
64
|
Brozek CK, Ozarowski A, Stoian SA, Dincă M. Dynamic structural flexibility of Fe-MOF-5 evidenced by 57Fe Mössbauer spectroscopy. Inorg Chem Front 2017. [DOI: 10.1039/c6qi00584e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
57Fe Mössbauer spectroscopy reveals unexpected dynamics at the Fe sites in Fe-substituted MOF-5, especially in the presence of nitrogen.
Collapse
Affiliation(s)
- C. K. Brozek
- Department of Chemistry
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - A. Ozarowski
- National High Magnetic Field Laboratory
- Florida State University
- Tallahassee
- USA
| | - S. A. Stoian
- National High Magnetic Field Laboratory
- Florida State University
- Tallahassee
- USA
| | - M. Dincă
- Department of Chemistry
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
65
|
Gaviglio C, Pellegrino J, Milstein D, Doctorovich F. NO˙ disproportionation by a {RhNO}9 pincer-type complex. Dalton Trans 2017; 46:16878-16884. [DOI: 10.1039/c7dt03944a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NO˙ disproportionation by the pincer-type complex [Rh(PCPtBu)(NO)]˙ (1˙) results in the formation of Rh(PCPtBu)(NO)(NO2) (2) with coordinated nitrite and quantitative release of N2O.
Collapse
Affiliation(s)
- Carina Gaviglio
- Comisión Nacional de Energía Atómica
- CAC-GIyANN
- Departamento de Física de la Materia Condensada
- Buenos Aires
- Argentina
| | - Juan Pellegrino
- Departamento de Química Inorgánica
- Analítica
- y Química Física
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires. INQUIMAE-CONICET
| | - David Milstein
- Department of Organic Chemistry
- The Weizmann Institute of Science
- Rehovot
- Israel
| | - Fabio Doctorovich
- Departamento de Química Inorgánica
- Analítica
- y Química Física
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires. INQUIMAE-CONICET
| |
Collapse
|
66
|
Impeng S, Siwaipram S, Bureekaew S, Probst M. Ethane C–H bond activation on the Fe(iv)–oxo species in a Zn-based cluster of metal–organic frameworks: a density functional theory study. Phys Chem Chem Phys 2017; 19:3782-3791. [DOI: 10.1039/c6cp07771d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The generation of a Fe(iv)–oxo complex and its reactivity for C–H bond activation of ethane have been theoretically unraveled.
Collapse
Affiliation(s)
- Sarawoot Impeng
- Department of Chemical and Biomolecular Engineering
- School of Energy Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Rayong 21210
- Thailand
| | - Siwarut Siwaipram
- Department of Chemical and Biomolecular Engineering
- School of Energy Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Rayong 21210
- Thailand
| | - Sareeya Bureekaew
- Department of Chemical and Biomolecular Engineering
- School of Energy Science and Engineering
- Vidyasirimedhi Institute of Science and Technology
- Rayong 21210
- Thailand
| | - Michael Probst
- Institute of Ion Physics and Applied Physics
- University of Innsbruck
- 6020 Innsbruck
- Austria
| |
Collapse
|
67
|
|
68
|
Wang X, Wu Y, Zhou X, Xiao J, Xia Q, Wang H, Li Z. Novel C-PDA adsorbents with high uptake and preferential adsorption of ethane over ethylene. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2016.08.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
69
|
Li B, Wen HM, Cui Y, Zhou W, Qian G, Chen B. Emerging Multifunctional Metal-Organic Framework Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8819-8860. [PMID: 27454668 DOI: 10.1002/adma.201601133] [Citation(s) in RCA: 863] [Impact Index Per Article: 107.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/27/2016] [Indexed: 05/25/2023]
Abstract
Metal-organic frameworks (MOFs), also known as coordination polymers, represent an interesting type of solid crystalline materials that can be straightforwardly self-assembled through the coordination of metal ions/clusters with organic linkers. Owing to the modular nature and mild conditions of MOF synthesis, the porosities of MOF materials can be systematically tuned by judicious selection of molecular building blocks, and a variety of functional sites/groups can be introduced into metal ions/clusters, organic linkers, or pore spaces through pre-designing or post-synthetic approaches. These unique advantages enable MOFs to be used as a highly versatile and tunable platform for exploring multifunctional MOF materials. Here, the bright potential of MOF materials as emerging multifunctional materials is highlighted in some of the most important applications for gas storage and separation, optical, electric and magnetic materials, chemical sensing, catalysis, and biomedicine.
Collapse
Affiliation(s)
- Bin Li
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, 78249, United States
| | - Hui-Min Wen
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, 78249, United States
| | - Yuanjing Cui
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wei Zhou
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899-6102, United States
| | - Guodong Qian
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, 78249, United States.
| |
Collapse
|
70
|
Liang W, Xu F, Zhou X, Xiao J, Xia Q, Li Y, Li Z. Ethane selective adsorbent Ni(bdc)(ted)0.5 with high uptake and its significance in adsorption separation of ethane and ethylene. Chem Eng Sci 2016. [DOI: 10.1016/j.ces.2016.04.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
71
|
Holmberg RJ, Burns T, Greer SM, Kobera L, Stoian SA, Korobkov I, Hill S, Bryce DL, Woo TK, Murugesu M. Intercalation of Coordinatively Unsaturated Fe(III) Ion within Interpenetrated Metal-Organic Framework MOF-5. Chemistry 2016; 22:7711-5. [PMID: 27061210 DOI: 10.1002/chem.201600566] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 11/10/2022]
Abstract
Coordinatively unsaturated Fe(III) metal sites were successfully incorporated into the iconic MOF-5 framework. This new structure, Fe(III) -iMOF-5, is the first example of an interpenetrated MOF linked through intercalated metal ions. Structural characterization was performed with single-crystal and powder XRD, followed by extensive analysis by spectroscopic methods and solid-state NMR, which reveals the paramagnetic ion through its interaction with the framework. EPR and Mössbauer spectroscopy confirmed that the intercalated ions were indeed Fe(III) , whereas DFT calculations were employed to ascertain the unique pentacoordinate architecture around the Fe(III) ion. Interestingly, this is also the first crystallographic evidence of pentacoordinate Zn(II) within the MOF-5 SBU. This new MOF structure displays the potential for metal-site addition as a framework connector, thus creating further opportunity for the innovative development of new MOF materials.
Collapse
Affiliation(s)
- Rebecca J Holmberg
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Thomas Burns
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Samuel M Greer
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, 32306, USA.,National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, 32310, USA
| | - Libor Kobera
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Sebastian A Stoian
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, 32310, USA
| | - Ilia Korobkov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Stephen Hill
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, 32310, USA.,Department of Physics, Florida State University, Tallahassee, Florida, 32306, USA
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Tom K Woo
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| | - Muralee Murugesu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
72
|
Lionetti D, de Ruiter G, Agapie T. A trans-Hyponitrite Intermediate in the Reductive Coupling and Deoxygenation of Nitric Oxide by a Tricopper-Lewis Acid Complex. J Am Chem Soc 2016; 138:5008-11. [PMID: 27028157 DOI: 10.1021/jacs.6b01083] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reduction of nitric oxide (NO) to nitrous oxide (N2O) is a process relevant to biological chemistry as well as to the abatement of certain environmental pollutants. One of the proposed key intermediates in NO reduction is hyponitrite (N2O2(2-)), the product of reductive coupling of two NO molecules. We report the reductive coupling of NO by an yttrium-tricopper complex generating a trans-hyponitrite moiety supported by two μ-O-bimetallic (Y,Cu) cores, a previously unreported coordination mode. Reaction of the hyponitrite species with Brønsted acids leads to the generation of N2O, demonstrating the viability of the hyponitrite complex as an intermediate in NO reduction to N2O. The additional reducing equivalents stored in each tricopper unit are employed in a subsequent step for N2O reduction to N2, for an overall (partial) conversion of NO to N2. The combination of Lewis acid and multiple redox active metals facilitates this four electron conversion via an isolable hyponitrite intermediate.
Collapse
Affiliation(s)
- Davide Lionetti
- Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Graham de Ruiter
- Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology , 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States
| |
Collapse
|
73
|
Metzger ED, Brozek CK, Comito RJ, Dincă M. Selective Dimerization of Ethylene to 1-Butene with a Porous Catalyst. ACS CENTRAL SCIENCE 2016; 2:148-53. [PMID: 27163041 PMCID: PMC4827558 DOI: 10.1021/acscentsci.6b00012] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Indexed: 05/19/2023]
Abstract
Current heterogeneous catalysts lack the fine steric and electronic tuning required for catalyzing the selective dimerization of ethylene to 1-butene, which remains one of the largest industrial processes still catalyzed by homogeneous catalysts. Here, we report that a metal-organic framework catalyzes ethylene dimerization with a combination of activity and selectivity for 1-butene that is premier among heterogeneous catalysts. The capacity for mild cation exchange in the material MFU-4l (MFU-4l = Zn5Cl4(BTDD)3, H2BTDD = bis(1H-1,2,3-triazolo[4,5-b],[4',5'-i])dibenzo[1,4]dioxin) was leveraged to create a well-defined and site-isolated Ni(II) active site bearing close structural homology to molecular tris-pyrazolylborate complexes. In the presence of ethylene and methylaluminoxane, the material consumes ethylene at a rate of 41,500 mol per mole of Ni per hour with a selectivity for 1-butene of up to 96.2%, exceeding the selectivity reported for the current industrial dimerization process.
Collapse
|
74
|
D'Alessandro DM. Exploiting redox activity in metal–organic frameworks: concepts, trends and perspectives. Chem Commun (Camb) 2016; 52:8957-71. [DOI: 10.1039/c6cc00805d] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This feature article highlights latest developments in experimental, theoretical and computational concepts relevant to redox-active metal–organic Frameworks.
Collapse
|
75
|
Canivet J, Vandichel M, Farrusseng D. Origin of highly active metal–organic framework catalysts: defects? Defects! Dalton Trans 2016; 45:4090-9. [DOI: 10.1039/c5dt03522h] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This article provides a comprehensive review of the nature of catalytic sites in MOFs.
Collapse
Affiliation(s)
- J. Canivet
- CNRS/University Lyon-1
- IRCELYON
- 69626 Villeurbanne
- France
| | - M. Vandichel
- CNRS/University Lyon-1
- IRCELYON
- 69626 Villeurbanne
- France
- Center for Molecular Modeling
| | - D. Farrusseng
- CNRS/University Lyon-1
- IRCELYON
- 69626 Villeurbanne
- France
| |
Collapse
|
76
|
Affiliation(s)
- John R Morris
- Department of Chemistry, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - John N Russell
- Chemistry Division, Naval Research Laboratory , Washington, District of Columbia 20375, United States
| | - Christopher J Karwacki
- Protection and Decontamination Division, U.S. Army, Edgewood Chemical Biological Center , Aberdeen Proving Ground, Aberdeen, Maryland 21010, United States
| |
Collapse
|