51
|
Building multi-color emitters with tailored lanthanide-based supramolecular metallogels. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
52
|
Dhibar S, Ojha SK, Mohan A, Prabhakaran SPC, Bhattacharjee S, Karmakar K, Karmakar P, Predeep P, Ojha AK, Saha B. A multistimulus-responsive self-healable supramolecular copper( ii)-metallogel derived from l-(+) tartaric acid: an efficient Schottky barrier diode. NEW J CHEM 2022. [DOI: 10.1039/d2nj03086a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A low molecular weight gelator l-(+) tartaric acid- based self-healing supramolecular Cu(ii)-metallogel offers an electronic device of Schottky barrier diode at room temperature.
Collapse
Affiliation(s)
- Subhendu Dhibar
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Saurav Kumar Ojha
- Department of Physics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj-211004, India
| | - Aiswarya Mohan
- Laboratory for Molecular Photonics and Electronics, Department of Physics, National Institute of Technology Calicut, Kozhikode-673603, Kerala, India
| | | | - Subham Bhattacharjee
- Department of Chemistry, Kazi Nazrul University, Asansol-713303, West Bengal, India
| | - Kripasindhu Karmakar
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Priya Karmakar
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| | - Padmanabhan Predeep
- Laboratory for Molecular Photonics and Electronics, Department of Physics, National Institute of Technology Calicut, Kozhikode-673603, Kerala, India
| | - Animesh Kumar Ojha
- Department of Physics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj-211004, India
| | - Bidyut Saha
- Department of Chemistry, The University of Burdwan, Golapbag, Burdwan-713104, West Bengal, India
| |
Collapse
|
53
|
Chen J, Xu Z, Zheng J, Wu H, Chi Y. Phototriggered color modulation of perovskite nanoparticles for high density optical data storage. Chem Sci 2022; 13:10315-10326. [PMID: 36277656 PMCID: PMC9473532 DOI: 10.1039/d2sc02986c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
The perovskite nanocrystals-dichloromethane (PNCs-DCM) with tunable fluorescent color under UV light are a new kind of photoresponsive luminescent materials (PLMs), which are qualified to apply in optical data storage.
Collapse
Affiliation(s)
- Jie Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory for Food Safety and Detection, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Zelian Xu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory for Food Safety and Detection, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jingcheng Zheng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory for Food Safety and Detection, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Haishan Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory for Food Safety and Detection, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yuwu Chi
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory for Food Safety and Detection, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
54
|
Shi QX, Xiao H, Sheng YJ, Li DS, Su M, Sun XL, Bao H, Wan WM. Barbier single-atom polymerization induced emission as a one-pot approach towards stimuli-responsive luminescent polymers. Polym Chem 2022. [DOI: 10.1039/d2py00816e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A one-pot strategy for the design of stimuli-responsive luminescent polymers has been demonstrated through Barbier PIE, where the N,N-dimethyl moiety endows the polymers with both stimuli-responsive and red-shifted nonconjugated emission properties.
Collapse
Affiliation(s)
- Quan-Xi Shi
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Hang Xiao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- College of Environmental Science and Engineering, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Yu-Jing Sheng
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, P. R. China
| | - De-Shan Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Min Su
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Xiao-Li Sun
- College of Environmental Science and Engineering, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
| | - Wen-Ming Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
55
|
Feng X, Wu T, Sun X, Qian X. "Indanonalkene" Photoluminescence Platform: Application in Real-Time Tracking the Synthesis, Remodeling, and Degradation of Soft Materials. J Am Chem Soc 2021; 143:21622-21629. [PMID: 34905350 DOI: 10.1021/jacs.1c09895] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this Article, we present a strategy to visually track chemically triggered covalent bonding processes in gelation, remodeling, and degradation of soft materials, i.e., hydrogels, based on a new photoluminescence platform. Initially in the development of photoluminophors named "indanonalkenes", turn-on emission can be tracked and quantified in the optical reaction between a conjugate acceptor and amine derivatives. On this basis, fluorescence enhancement and mechanical changes were recorded during the gelation process through amine-thiol exchanges under organic and aqueous conditions. Next in macromolecular remodeling, we realized a stimulus-induced transformation of one architecture into another one, exploiting the orthogonality of chemical covalent bonding that could be visualized using luminescence. Furthermore, the hydrogel network can be degraded to release the coupling partner induced by ethylene diamine, and the process can be monitored using fluorescence changes and quantified through gel permeation chromatography, while the released components can be utilized again to regenerate a new hydrogel. In addition, the photographic images provide alternatives to fluorescence spectra and can be digitally processed to quantify the macroscopic changes, resulting in a photographic imaging approach. The real-time observation and quantification of chemically triggered polymeric formation, morphology, and degradation through luminescence in spatial and time scales herald a new generation of "smart" materials.
Collapse
Affiliation(s)
- Xing Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Tianhong Wu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xiaolong Sun
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xuhong Qian
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China.,School of Chemistry and Molecular Engineering, East China Normal University, 3663 Zhongshan Road, Shanghai 200062, People's Republic of China
| |
Collapse
|
56
|
Aggarwal K, Bsoul S, Douglin JC, Li S, Dekel DR, Diesendruck C. Alkaline Stability of Low Oxophilicity Metallopolymer Anion-Exchange Membranes. Chemistry 2021; 28:e202103744. [PMID: 34878688 DOI: 10.1002/chem.202103744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 11/06/2022]
Abstract
Anion-exchange membrane fuel cells (AEMFCs) are promising energy conversion devices due to their high efficiency and relatively low cost. Nonetheless, AEMFC operation time is currently limited by the low chemical stability of their polymeric anion-exchange membranes. In recent years, metallopolymers, where the metal centers assume the ion transport function, have been proposed as a chemically stable alternative. Here we present a systematic study using a polymer backbone with side-chain N-heterocyclic carbene (NHC) ligands complexed to various metals with low oxophilicity, such as copper, zinc, nickel, and gold. The golden metallopolymer, using the metal with the lowest oxophilicity, demonstrates exceptional alkaline stability, far superior to state-of-the-art quaternary ammonium cations, as well as good in-situ AEMFC results. These results demonstrate that judiciously designed metallopolymers may be superior to purely organic membranes and provides a scientific base for further developments in the field.
Collapse
Affiliation(s)
| | - Saja Bsoul
- Technion Israel Institute of Technology, Chemical Engineering, ISRAEL
| | - John C Douglin
- Technion Israel Institute of Technology, Chemical Engineering, ISRAEL
| | - Songlin Li
- Technion Israel Institute of Technology, Chemical Engineering, ISRAEL
| | - Dario R Dekel
- Technion Israel Institute of Technology, Chemical Engineering, ISRAEL
| | - Charles Diesendruck
- Technion - Israel Institute of Technology, Schulich Faculty of Chemistry, Kiryat Hatechnion, 3200008, Haifa, ISRAEL
| |
Collapse
|
57
|
Guan XF, Zhao HJ, Hao YJ, Guo XR, Yang ZP, Zhang FY, Wang WM. Structures, luminescence properties and single-molecule magnet behavior of four dinuclear lanthanide compounds. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
58
|
|
59
|
Zhang T, Kitagawa Y, Moriake R, Ferreira da Rosa PP, Islam MJ, Yoneda T, Inokuma Y, Fushimi K, Hasegawa Y. Hybrid Eu III Coordination Luminophore Standing on Two Legs on Silica Nanoparticles for Enhanced Luminescence. Chemistry 2021; 27:14438-14443. [PMID: 34409670 DOI: 10.1002/chem.202102156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 11/05/2022]
Abstract
In this study, we have demonstrated a two-legged, upright molecular design method for monochromatic and bright red luminescent LnIII -silica nanomaterials. A novel EuIII -silica hybrid nanoparticle was developed by using a doubly binding TPPO-Si(OEt)3 (TPPO: triphenyl phosphine oxide) linker. The TPPO-Si(OEt)3 was confirmed by 1 H, 31 P, 29 Si NMR spectroscopy and single-crystal X-ray analysis. Luminescent Eu(hfa)3 and Eu(tfc)3 moieties (hfa: hexafluoroacetylacetonate, tfc: 3-(trifluoromethylhydroxymethylene)camphorate) were fixed onto TPPO-Si(OEt)3 -modified silica nanoparticles, producing Eu(hfa)3 (TPPO-Si)2 -SiO2 and Eu(tfc)3 (TPPO-Si)2 -SiO2 , respectively. Eu(hfa)3 (TPPO-Si)2 -SiO2 exhibited the higher intrinsic luminescence quantum yield (93 %) and longer emission lifetime (0.98 ms), which is much larger than those of previously reported EuIII -based hybrid materials. Eu(tfc)3 (TPPO-Si)2 -SiO2 showed an extra-large intrinsic emission quantum yield (54 %), although the emission quantum yield for the precursor Eu(tfc)3 (TPPO-Si(OEt)3 )2 was found to be 39 %. These results confirmed that the TPPO-Si(OEt)3 linker is a promising candidate for development of EuIII -based luminescent materials.
Collapse
Affiliation(s)
- Teng Zhang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Yuichi Kitagawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan.,Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Ryoma Moriake
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | | | - Md Jahidul Islam
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan
| | - Tomoki Yoneda
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Yasuhide Inokuma
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan.,Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Koji Fushimi
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| | - Yasuchika Hasegawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan.,Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, 060-8628, Japan
| |
Collapse
|
60
|
Li B, Yu J, Niu Q, Li Z, Zhang Y, Yang D, Li H. Organic-Inorganic Hybrid Luminescent Hydrogel Glued by a Cationic Polymeric Binder. Macromol Rapid Commun 2021; 42:e2100562. [PMID: 34648673 DOI: 10.1002/marc.202100562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/13/2021] [Indexed: 12/24/2022]
Abstract
Luminescent hydrogels have shown great potential in many fields, such as lighting, display, imaging, and sensing, because of their unique optical properties, biocompatibility, and easy processing. Organic-inorganic hybrid self-assembly can not only enhance the hydrogels' mechanical strength, but also retain their self-healing ability. Herein, a luminescent supramolecular hydrogel is reported, which is formed via self-assembly of the negatively charged Laponite nanosheets and cationic lanthanide coordination polymer. The corresponding results reveal that the multiple binding interaction between Laponite and the polymeric binder is vital for improving the mechanical performance of the obtained luminescent supramolecular hydrogel.
Collapse
Affiliation(s)
- Bin Li
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China
| | - Jinxie Yu
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China
| | - Qingyu Niu
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China
| | - Zhiqiang Li
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China
| | - Ying Zhang
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China
| | - Daqing Yang
- College of Chemistry and Environmental Science, Hebei University No. 180 Wusi East Road, Baoding, 071002, P. R. China
| | - Huanrong Li
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China
| |
Collapse
|
61
|
Xue Y, Li C, Wang W, Liu Z, Guo Z, Tan J, Zhang Q. Preparation of Poly(thiol-urethane) Covalent Adaptable Networks Based on Multiple-Types Dynamic Motifs. Macromol Rapid Commun 2021; 43:e2100510. [PMID: 34643989 DOI: 10.1002/marc.202100510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/25/2021] [Indexed: 11/10/2022]
Abstract
To solve the issue of polymeric materials recycling, developing intrinsic self-healing materials containing dynamic bonds has attracted many researchers' highly concerning. However, the tradeoff between their mechanical strength and stretchability always does not avoid. Herein, to surmount the above tradeoff, metal-ligand (Cu2+ -S) interactions are introduced into the cross-linking polythiourethane covalent adaptable networks (PTU CANs) with three kinds of dynamic motifs (thiourethane, disulfide, and hydrogen bonds). When the molar ratio of Cu2+ to S is 6.37%, the break strength (9.41 ± 0.34 MPa) and Young's modulus (26.02 ± 0.55 MPa) of the metal-ligand coordination complex PTU (Cu2+ -PTU-3) dramatically increase, whereas the peak strain almost does not decline (454.44 ± 3.95%). To conduct the repairing, Cu2+ -PTU-3 is further confirmed excellent repairing capability. Therefore, these new PTU CANs have significant potential for the new self-healing materials.
Collapse
Affiliation(s)
- Ying Xue
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Department of Applied Chemistry Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chunmei Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Department of Applied Chemistry Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wenyan Wang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Department of Applied Chemistry Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zongxu Liu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Department of Applied Chemistry Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zijian Guo
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Department of Applied Chemistry Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiaojun Tan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Department of Applied Chemistry Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
62
|
Sultana N, Kawahara T, Kuwahara Y, Ihara H, Takafuji M. Supramolecular assembly of glutamide attached terpyridine-lanthanide complex with enhanced chirality and high fluorescence quantum yield. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
63
|
KALITA PANKAJ, GOURA JOYDEB, NAYAK PRAKASH, COLACIO ENRIQUE, CHANDRASEKHAR VADAPALLI. Octanuclear {Ln8} complexes: magneto-caloric effect in the {Gd8} analogue. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01920-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
64
|
|
65
|
Li B, Qin Y, Li Z, Zhang Y, Li H. Smart luminescent hydrogel with superior mechanical performance based on polymer networks embedded with lanthanide containing clay nanocomposites. NANOSCALE 2021; 13:11380-11386. [PMID: 34160533 DOI: 10.1039/d1nr01642c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to their inherent biocompatibility and unique optical properties, luminescent hydrogels have recently garnered tremendous interest. However, most of the explored luminescent hydrogels cannot well meet the requirements of both sufficient mechanical properties and smart luminescence. Here we report a smart luminescent hydrogel with superior mechanical performance by in situ copolymerization of the acrylamide monomers and lanthanide loaded clay nanosheets. The Eu-DPA@clay nanosheets emitting center can not only be well dispersed in aqueous solution, but also maintain robust luminescence. Interestingly, the additional interaction between the Eu-DPA@clay nanosheets and the polymer network endows the hydrogel with excellent mechanical properties. Moreover, a luminescence on/off switch is also achieved by alternative acid and base stimuli, which may have potential applications in smart luminescent devices.
Collapse
Affiliation(s)
- Bin Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, P. R. China.
| | - Yan Qin
- Inner Mongolia Yitai Coal Based New Materials Research Institute Co., Ltd, High Tech Industrial Park, Ordos 010700, P. R. China
| | - Zhiqiang Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, P. R. China.
| | - Ying Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, P. R. China.
| | - Huanrong Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, P. R. China.
| |
Collapse
|
66
|
Magrini T, Kiebala D, Grimm D, Nelson A, Schrettl S, Bouville F, Weder C, Studart AR. Tough Bioinspired Composites That Self-Report Damage. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27481-27490. [PMID: 34076408 DOI: 10.1021/acsami.1c05964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The increasing use of lightweight composite materials in structural applications requires the development of new damage monitoring technologies to ensure their safe use and prevent accidents. Although several molecular strategies have been proposed to report damage in polymers through mechanochromic responses, these approaches have not yet been translated into lightweight bioinspired composites for load-bearing applications. Here, we report on the development of bioinspired laminates of alternating polymer and nacre-like layers that combine optical translucency, high fracture toughness, and damage-reporting capabilities. The composites signal damage via a fluorescence color change that arises from the force activation of mechanophore molecules embedded in the material's polymer phase. A quantitative correlation between the applied strain and the fluorescence intensity was successfully established. We demonstrate that optical imaging of mechanically loaded composites allows for the localized detection of damage prior to fracture. This fluorescence-based self-reporting mechanism offers a promising approach for the early detection of damage in lightweight structural composites and can serve as a useful tool for the analysis of fracture processes in bulk transparent materials.
Collapse
Affiliation(s)
- Tommaso Magrini
- Complex Materials, Department of Materials, ETH Zürich, Zürich 8093, Switzerland
| | - Derek Kiebala
- Adolphe Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland
| | - Dominique Grimm
- Complex Materials, Department of Materials, ETH Zürich, Zürich 8093, Switzerland
| | - Anna Nelson
- Complex Materials, Department of Materials, ETH Zürich, Zürich 8093, Switzerland
| | - Stephen Schrettl
- Adolphe Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland
| | - Florian Bouville
- Centre for Advanced Structural Ceramics, Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Fribourg 1700, Switzerland
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
67
|
Visual Detection of Triethylamine and a Dual Input/Output Logic Gate Based on a Eu 3+-Complex. Molecules 2021; 26:molecules26113244. [PMID: 34071311 PMCID: PMC8198769 DOI: 10.3390/molecules26113244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
A series of Ln3+-metal centered complexes, Ln(TTA)3(DPPI) (Ln = La, 1; Ln = Eu, 2; Ln = Tb, 3; or Ln = Gd, 4) [(DPPI = N-(4-(1H-imidazo [4,5-f][1,10]phenanthrolin-2-yl)phenyl)-N-phenylbenzenamine) and (TTA = 2-Thenoyltrifluoroacetone)] have been synthesized and characterized. Among which, the Eu3+-complex shows efficient purity red luminescence in dimethylsulfoxide (DMSO) solution, with a Commission International De L’ Eclairage (CIE) coordinate at x = 0.638, y = 0.323 and ΦEuL = 38.9%. Interestingly, increasing the amounts of triethylamine (TEA) in the solution regulates the energy transfer between the ligand and the Eu3+-metal center, which further leads to the luminescence color changing from red to white, and then bluish-green depending on the different excitation wavelengths. Based on this, we have designed the IMPLICATION logic gate for TEA recognition by applying the amounts of TEA and the excitation wavelengths as the dual input signal, which makes this Eu3+-complex a promising candidate for TEA-sensing optical sensors.
Collapse
|
68
|
Koziol MF, Fischer K, Seiffert S. Structural and Gelation Characteristics of Metallo-Supramolecular Polymer Model-Network Hydrogels Probed by Static and Dynamic Light Scattering. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martha Franziska Koziol
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Karl Fischer
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
69
|
Toughening, recyclable and healable nitrile rubber based on multi-coordination crosslink networks after “tetrazine click” reaction. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
70
|
Tian Y, Du C, Liu B, Qiu HN, Zhang X, Wu ZL, Zheng Q. Tough and fluorescent hydrogels composed of poly(hydroxyurethane) and poly(stearyl acrylate‐
co
‐acrylic acid) with hydrophobic associations and hydrogen bonds as the physical crosslinks. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ye Tian
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
- College of Mechanical Engineering Zhejiang University of Technology Hangzhou China
- Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Ministry of Education and Zhejiang Province Zhejiang University of Technology Hangzhou China
| | - Cong Du
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Bin Liu
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Hao Nan Qiu
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Xing‐Hong Zhang
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Zi Liang Wu
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Qiang Zheng
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
71
|
Wang HX, Wei CW, Wang XJ, Xiang HF, Yang XZ, Wu GL, Lin YW. A facile gelator based on phenylalanine derivative is capable of forming fluorescent Zn-metallohydrogel, detecting Zn 2+ in aqueous solutions and imaging Zn 2+ in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119378. [PMID: 33401180 DOI: 10.1016/j.saa.2020.119378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Supramolecular hydrogels are attracting soft materials with potential applications. In this study, we synthesized a facile gelator (named 2-QF) based on phenylalanine derivative with a Quinoline group. 2-QF can assemble to form hydrogels at room temperature in different colors under low pH values. Moreover, 2-QF was triggered to form a yellow metallohydrogel (2-QF-Zn) at high pH by the coordination between 2-QF and Zn2+. 2-QF-Zn metallohydrogel showed excellent multi-stimuli responsiveness, especially the reversible "on-off" luminescence switching, as induced by base/acid. In addition, at a low concentration, 2-QF can selectively and visibly identify Zn2+ through fluorescence enhancement, and can detect Zn2+ at physiological pH as a chemosensor. Remarkably, 2-QF and 2-QF-Zn exhibited an excellent biocompatibility without cell cytotoxicity, and 2-QF is able to penetrate live HeLa cells and image intracellular Zn2+ by a turn-on fluorescent response, which makes it a potential candidate for biomedical applications.
Collapse
Affiliation(s)
- Hai-Xia Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Chuan-Wan Wei
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Heng-Fang Xiang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Xin-Zhi Yang
- Lab of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China
| | - Gui-Long Wu
- Lab of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China; Lab of Protein Structure and Function, University of South China Medical School, Hengyang 421001, China.
| |
Collapse
|
72
|
Re-usable colorimetric polymeric gel for visual and facile detection of multiple metal ions. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
73
|
Zhang S, Yin W, Yang Z, Yang Y, Li Z, Zhang S, Zhang B, Dong F, Lv J, Han B, Lei Z, Ma H. Functional Copolymers Married with Lanthanide(III) Ions: A Win-Win Pathway to Fabricate Rare Earth Fluorescent Materials with Multiple Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5539-5550. [PMID: 33481562 DOI: 10.1021/acsami.0c19827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lanthanide(III)-based luminescent materials have attracted great research interests due to their unique optical, electronic, and chemical characteristics. Up to now, how to extend these materials into large, broad application fields is still a great challenging task. In this contribution, we are intended to present a simple but facile strategy to enhance the luminescence from lanthanide ions and impart lanthanide(III)-based luminescent materials with more applicable properties, leading to meet the requirements from different purposes, such as being used as highly emissive powders, hydrogels, films, and sensitive probes under external stimuli. Herein, a water soluble, blue color emissive, temperature sensitive, and film-processable copolymer (Poly-ligand) was designed and synthesized. Upon complexing with Eu3+ and Tb3+ ions, the red color-emitting Poly-ligand-Eu and green color-emitting Poly-ligand-Tb were produced. After finely tuning the ratios between them, a standard white color emitting Poly-ligand-Eu1:Tb4 (CIE = 0.33 and 0.33) was obtained. Furthermore, the resulted materials not only possessed the emissive luminescent property but also inherited functions from the copolymer of Poly-ligand. Thus, these lanthanide(III)-based materials were used for fingerprint imaging, luminescent soft matters formation, colorful organic light-emitting diode device fabrication, and acid/alkali vapors detection.
Collapse
Affiliation(s)
- Shaoxiong Zhang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Weidong Yin
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Zengming Yang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Yuan Yang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Zhao Li
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Shengjun Zhang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Bo Zhang
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Fenghao Dong
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Jiawei Lv
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Bingyang Han
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Ziqiang Lei
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| | - Hengchang Ma
- Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P.R. China
| |
Collapse
|
74
|
Ma Y, Ren Q, Liu Z, Wang K, Zhou S, Shi Z, Yin J. Reversible stimuli-responsive luminescent polymers with adaptable mechanical properties based on europium-malonate complex. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
75
|
Yin G, Kandapal S, Liu C, Wang H, Huang J, Jiang S, Ji T, Yan Y, Khalife S, Zhou R, Ye L, Xu B, Yang H, Nieh M, Li X. Metallo‐Helicoid with Double Rims: Polymerization Followed by Folding by Intramolecular Coordination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Guang‐Qiang Yin
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Sneha Kandapal
- Single Molecule Study Laboratory College of Engineering and Nanoscale Science and Engineering Center University of Georgia Athens GA 30602 USA
| | - Chung‐Hao Liu
- Department of Chemical and Biomolecular Engineering University of Connecticut Storrs CT 06269 USA
| | - Heng Wang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Jianxiang Huang
- Institute of Quantitative Biology Zhejiang University Hangzhou Zhejiang 310027 China
| | - Shu‐Ting Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
| | - Tan Ji
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
| | - Yu Yan
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Sandra Khalife
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Ruhong Zhou
- Institute of Quantitative Biology Zhejiang University Hangzhou Zhejiang 310027 China
| | - Libin Ye
- Department of Cell Biology, Microbiology and Molecular Biology University of South Florida Tampa FL 33620 USA
| | - Bingqian Xu
- Single Molecule Study Laboratory College of Engineering and Nanoscale Science and Engineering Center University of Georgia Athens GA 30602 USA
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
| | - Mu‐Ping Nieh
- Department of Chemical and Biomolecular Engineering University of Connecticut Storrs CT 06269 USA
- Polymer Program Institute of Material Science University of Connecticut Storrs CT 06269 USA
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| |
Collapse
|
76
|
Li Y, Zhou Y, Yao Y, Gao T, Yan P, Li H. White-light emission from the quadruple-stranded dinuclear Eu( iii) helicate decorated with pendent tetraphenylethylene (TPE). NEW J CHEM 2021. [DOI: 10.1039/d1nj00700a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The hybrid film doped with a quadruple-stranded Eu3+ helicate displayed tuneable emission and white light.
Collapse
Affiliation(s)
- Yuying Li
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Yanyan Zhou
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Yuan Yao
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Ting Gao
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| | - Hongfeng Li
- Key Laboratory of Functional Inorganic Material Chemistry
- Ministry of Education
- P. R. China
- School of Chemistry and Materials Science
- Heilongjiang University
| |
Collapse
|
77
|
Liu X, Song Z, Li Z, Li H. Adhesion enhancement via the synergistic effect of metal–ligand coordination and supramolecular host–guest interactions in luminescent hydrogels. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01203c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report an approach to achieve adhesion enhancement via the synergistic effect of metal–ligand coordination and supramolecular host–guest interactions in luminescent hydrogels without affecting their luminescence behavior.
Collapse
Affiliation(s)
- Xiao Liu
- Tianjin Key Laboratory of Chemical Process Safety
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin 300130
- P. R. China
| | - Zhihua Song
- School of Pharmacy
- Collaborative Innovation Center of Advanced Drug Delivery Systems and Biotech Drugs in Universities of Shandong
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University)
- Ministry of Education
- Yantai University
| | - Zhiqiang Li
- Tianjin Key Laboratory of Chemical Process Safety
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin 300130
- P. R. China
| | - Huanrong Li
- Tianjin Key Laboratory of Chemical Process Safety
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin 300130
- P. R. China
| |
Collapse
|
78
|
Baruah U, Manna U. The synthesis of a chemically reactive and polymeric luminescent gel. Chem Sci 2020; 12:2097-2107. [PMID: 34163973 PMCID: PMC8179304 DOI: 10.1039/d0sc05166g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/29/2020] [Indexed: 12/13/2022] Open
Abstract
In the past, chemically reactive polymeric interfaces have been considered to be of potential interest for developing functional materials for a wide range of practical applications. Furthermore, the rational incorporation of luminescence properties into such chemically reactive interfaces could provide a basis for extending the horizon of their prospective utility. In this report, a simple catalyst-free chemical approach is introduced to develop a chemically reactive and optically active polymeric gel. Branched-polyethyleneimine (BPEI)-derived, inherently luminescent carbon dots (BPEI-CDs) were covalently crosslinked with pentaacrylate (5Acl) through a 1,4-conjugate addition reaction under ambient conditions. The synthesized polymeric gel was milky white under visible light; however, it displayed fluorescence under UV light. Additionally, the residual acrylate groups in the synthesized fluorescent gel allowed its chemical functionality to be tailored through facile, robust 1,4-conjugate addition reactions with primary-amine-containing small molecules under ambient conditions. The chemical reactivity of the luminescent gel was further employed for a proof-of-concept demonstration of portable and parallel 'ON'/'OFF' toxic chemical sensing (namely, the sensing of nitrite ions as a model analyte). First, the chemically reactive luminescent gel derived from BPEI-CDs was covalently post-modified with aniline for the selective synthesis of a diazo compound in the presence of nitrite ions. During this process, the color of the gel under visible light changed from white to yellow and, thus, the colorimetric mode of the sensor was turned 'ON'. In parallel, the luminescence of the gel under UV light was quenched, which was denoted as the 'OFF' mode of the sensor. This parallel and unambiguous 'ON'/'OFF' sensing of a toxic chemical (nitrite ions, with a detection limit of 3 μM) was also achieved even in presence of other relevant interfering ions and at concentrations well below the permissible limit (65 μM) set by the World Health Organization (WHO). Furthermore, this chemically reactive luminescent gel could be of potential interest in a wide range of basic and applied contexts.
Collapse
Affiliation(s)
- Upama Baruah
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Uttam Manna
- Bio-Inspired Polymeric Materials Lab, Department of Chemistry, Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
- Centre for Nanotechnology, Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| |
Collapse
|
79
|
Chen H, Wang L, Yin Q, Dai C, Zhang X, Chen Z, Weng G. Fluorochromic polymeric elastomer film containing copper nanoclusters in response to multistimuli. NANOTECHNOLOGY 2020; 31:475711. [PMID: 32914763 DOI: 10.1088/1361-6528/abafda] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Smart chromic elastomers exhibiting multistimuli responsiveness are of interest with regard to the development of sensors, optical data storage, and smart wearable devices. We report a new design of Cu nanoclusters (Cu NCs) containing polymeric elastomer film, showing reversible fluorescence ON/OFF when subjected to organic solvents (e.g. ethanol, methanol and tetrahydrofuran), and heating/cooling cycles at temperatures lower than 80 °C. Different from the solvato-responsiveness of Cu NCs in solution state, organic solvents increase nonradiative decay and quench fluorescence emission in the solid polymer matrix. It is deduced that lower temperatures (<80 °C) increase reversible nonradiative decay, while higher temperatures (>80 °C) trigger an irreversible change of the aggregation state of Cu NCs in the elastomer film. A strong oxidizer (e.g. H2O2) irreversibly quenches the fluorescence emission and changes its color (under sunlight) from light green to blue, by oxidizing Cu NCs to Cu2+ ions. This Cu NC-containing elastomer film illustrates a new pathway to the fabrication of multi-responsive smart optical materials, particularly for potential applications in optical data storage (e.g. thermo-printing), and multistimuli-responsive elastomeric sensors integrated into wearable devices.
Collapse
Affiliation(s)
- Huan Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People's Republic of China. State Key Laboratory Base of Novel Functional Materials and Preparation Science, Ningbo Key Laboratory of Specialty Polymers, Ningbo University, Ningbo 315211, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
80
|
Yin GQ, Kandapal S, Liu CH, Wang H, Huang J, Jiang ST, Ji T, Yan Y, Khalife S, Zhou R, Ye L, Xu B, Yang HB, Nieh MP, Li X. Metallo-Helicoid with Double Rims: Polymerization Followed by Folding by Intramolecular Coordination. Angew Chem Int Ed Engl 2020; 60:1281-1289. [PMID: 33009693 DOI: 10.1002/anie.202010696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Indexed: 11/08/2022]
Abstract
In this study, we established a feasible strategy to construct a new type of metallo-polymer with helicoidal structure through the combination of covalent polymerization and intramolecular coordination-driven self-assembly. In the design, a tetratopic monomer (M) was prepared with two terminal alkynes in the outer rim for polymerization, and two terpyridines (TPYs) in the inner rim for subsequent folding by selective intramolecular coordination. Then, the linear covalent polymer (P) was synthesized by polymerization of M via Glaser-Hay homocoupling reaction. Finally, intramolecular coordination interactions between TPYs and Zn(II) folded the backbone of P into a right- or left-handed metallo-helicoid (H) with double rims. Owing to multiple positive charges on the inner rim of helicoid, double-stranded DNA molecules (dsDNA) could interact with H through electrostatic interactions. Remarkably, dsDNA allowed exclusive formation of H with right handedness by means of chiral induction.
Collapse
Affiliation(s)
- Guang-Qiang Yin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Sneha Kandapal
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA, 30602, USA
| | - Chung-Hao Liu
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Jianxiang Huang
- Institute of Quantitative Biology, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Shu-Ting Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai, 200062, China
| | - Tan Ji
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai, 200062, China
| | - Yu Yan
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Sandra Khalife
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Ruhong Zhou
- Institute of Quantitative Biology, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Libin Ye
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA, 30602, USA
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai, 200062, China
| | - Mu-Ping Nieh
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA.,Polymer Program, Institute of Material Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
81
|
Traeger H, Kiebala DJ, Weder C, Schrettl S. From Molecules to Polymers-Harnessing Inter- and Intramolecular Interactions to Create Mechanochromic Materials. Macromol Rapid Commun 2020; 42:e2000573. [PMID: 33191595 DOI: 10.1002/marc.202000573] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/16/2020] [Indexed: 12/30/2022]
Abstract
The development of mechanophores as building blocks that serve as predefined weak linkages has enabled the creation of mechanoresponsive and mechanochromic polymer materials, which are interesting for a range of applications including the study of biological specimens or advanced security features. In typical mechanophores, covalent bonds are broken when polymers that contain these chemical motifs are exposed to mechanical forces, and changes of the optical properties upon bond scission can be harnessed as a signal that enables the detection of applied mechanical stresses and strains. Similar chromic effects upon mechanical deformation of polymers can also be achieved without relying on the scission of covalent bonds. The dissociation of motifs that feature directional noncovalent interactions, the disruption of aggregated molecules, and conformational changes in molecules or polymers constitute an attractive element for the design of mechanoresponsive and mechanochromic materials. In this article, it is reviewed how such alterations of molecules and polymers can be exploited for the development of mechanochromic materials that signal deformation without breaking covalent bonds. Recent illustrative examples are highlighted that showcase how the use of such mechanoresponsive motifs enables the visual mapping of stresses and damage in a reversible and highly sensitive manner.
Collapse
Affiliation(s)
- Hanna Traeger
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | - Derek J Kiebala
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | - Stephen Schrettl
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| |
Collapse
|
82
|
Huang XD, Wen GH, Bao SS, Jia JG, Zheng LM. Thermo- and light-triggered reversible interconversion of dysprosium-anthracene complexes and their responsive optical, magnetic and dielectric properties. Chem Sci 2020; 12:929-937. [PMID: 34163859 PMCID: PMC8178979 DOI: 10.1039/d0sc04851h] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Artificial smart materials with switchable multifunctionality are of immense interest owing to their wide application in sensors, displays and memory devices. Lanthanide complexes are promising multifunctional materials integrating optical and magnetic characteristics. However, synergistic manipulation of different physical properties in lanthanide systems is still challenging. Herein we designed and synthesized a mononuclear complex [DyIII(SCN)3(depma)2(4-hpy)2] (1), which incorporates 9-diethylphosphonomethylanthracene (depma) as a photo-active component and 4-hydroxypyridine (4-hpy) as a polar component. This compound shows several unusual features: (a) reversible thermo-responsive phase transition associated with the order-disorder transition of 4-hpy and SCN-, which leads to thermochromic behavior and dielectric anomaly; (b) reversible photo-induced dimerization of anthracene groups, which leads to synergistic switching of luminescence, magnetic and dielectric properties. To our knowledge, compound 1 is the first example of lanthanide complexes that show stimuli-triggered synergistic and reversible switching of luminescence, magnetic and dielectric properties.
Collapse
Affiliation(s)
- Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Ge-Hua Wen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Jia-Ge Jia
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
83
|
Lei P, Zhang S, Zhang N, Yin X, Wang N, Chen P. Triptycene-Based Luminescent Materials in Homoconjugated Charge-Transfer Systems: Synthesis, Electronic Structures, AIE Activity, and Highly Tunable Emissions. ACS OMEGA 2020; 5:28606-28614. [PMID: 33195912 PMCID: PMC7658946 DOI: 10.1021/acsomega.0c03565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
We have developed a new family of luminescent materials featuring through-space charge transfer from electron donors to acceptors that are electronically separated by triptycene. Most of these molecules are highly fluorescent, and modulation of their emissions was achieved by tuning the electron-accepting strength in a range from the weak triptycene acceptor over triarylborane (BMes) to strongly accepting naphthalimide (Npa) moieties. Pz-Pz shows an aggregation-induced emission in aggregates and in the solid state coupled with a highly red-shifted broad emission (ca. 160 nm) of the excimer, indicating that phenothiazine (Pz) also plays a vital role in the emission responses as an electron donor. This work may help develop new approaches to photophysical mechanism based on the rigid, homoconjugated, and structurally unusual 3D triptycene scaffold.
Collapse
Affiliation(s)
- Puyi Lei
- Beijing
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical
Engineering, Beijing Institute of Technology
of China, Beijing 102488, People’s Republic
of China
| | - Songhe Zhang
- Beijing
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical
Engineering, Beijing Institute of Technology
of China, Beijing 102488, People’s Republic
of China
| | - Niu Zhang
- Analysis
and Testing Centre, Beijing Institute of
Technology of China, Beijing 102488, People’s Republic
of China
| | - Xiaodong Yin
- Beijing
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical
Engineering, Beijing Institute of Technology
of China, Beijing 102488, People’s Republic
of China
| | - Nan Wang
- Beijing
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical
Engineering, Beijing Institute of Technology
of China, Beijing 102488, People’s Republic
of China
| | - Pangkuan Chen
- Beijing
Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials,
Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical
Engineering, Beijing Institute of Technology
of China, Beijing 102488, People’s Republic
of China
| |
Collapse
|
84
|
Tough Double Metal-ion Cross-linked Elastomers with Temperature-adaptable Self-healing and Luminescence Properties. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2517-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
85
|
Tang KY, Jiang L, Yeo JCC, Owh C, Ye E, Loh XJ, Li Z. Engineering luminescent pectin-based hydrogel for highly efficient multiple sensing. Int J Biol Macromol 2020; 166:869-875. [PMID: 33144259 DOI: 10.1016/j.ijbiomac.2020.10.243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
Luminescent hydrogels with sensing capabilities have attracted much interest in recent years, especially those responsive to stimuli, making such materials potential for various applications. Pectin is a high-molecular-weight carbohydrate polymer that has the ability to form hydrogel upon heating or mixing with divalent cations. However, intrinsic pectin gels are weak and lack of functionalities. In this study, lanthanide ions and silk fibroin derived carbon dots were incorporated into Pectin/PVA hydrogel (PPH) to form luminescent tough hydrogels. The luminescence of the hydrogel can be tuned by adjusting the ratio of blue emission carbon dots to Eu3+ ions (red emission) and Tb3+ ions (green emission). Such incorporation of emitters only slightly changed the mechanical properties of the tough hydrogel. Notably, the luminescent Pectin/PVA hydrogel (LPPH) showed chromic response to external stimuli, like pH and metal ions. By measuring the ratio of luminescent intensity at 473 nm and 617 nm (I473/I617), the pH response can be quantified in high sensitivity. In addition, the specific detection of Cu2+ and Fe3+ ions using the fabricated hydrogel were demonstrated, the mechanism was also proposed. The different chromic responses to Fe2+ and Fe3+ endow the luminescent tough Pectin/PVA hydrogel potential for multiple sensing applications.
Collapse
Affiliation(s)
- Karen Yuanting Tang
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, 138634, Singapore
| | - Lu Jiang
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, 138634, Singapore
| | - Jayven Chee Chuan Yeo
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, 138634, Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, 138634, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, 138634, Singapore.
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, 138634, Singapore.
| | - Zibiao Li
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, 138634, Singapore.
| |
Collapse
|
86
|
Structural and magnetic study of a new dinuclear SMM. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
87
|
Lu Y, Shao J, Wang S, Guo Z, Hu Y. A dual-crosslinking strategy for building photoluminescence hydrogel with toughness, self-recovery, and two-color tunability. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04756-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
88
|
Tang Z, Lyu X, Luo L, Shen Z, Fan XH. White-Light-Emitting AIE/Eu 3+-Doped Ion Gel with Multistimuli-Responsive Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45420-45428. [PMID: 32966044 DOI: 10.1021/acsami.0c15656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A white-light-emitting ion gel composed of a poly[(2-(4-vinylphenyl)ethene-1,1,2-triyl)tribenzene-b-ethylene glycol-b-(2-(4-vinylphenyl)ethene-1,1,2-triyl)tribenzene] aggregation-induced emission (AIE) network and a poly([2,2':6',2″-terpyridin]-4'-yl methacrylate-co-methyl methacrylate) Eu3+-doped network was fabricated via a solution mixing process. This ion gel exhibits special multistimuli-responsive properties, and it can change its luminescent color by changing pH, temperature, or the solvent. The unique color-changing property is attributed to the different luminescent mechanisms of the AIE/Eu3+-doped polymer networks. The former is affected by changes in its aggregation state, while the latter is controlled by the dynamic metal-ligand cross-linking bonds. Furthermore, owing to the interpenetrating networks formed by the two polymers, the hybrid gel has both good mechanical strength and flexibility. It may be used in the fields of sensors, probes, and light-emitting materials.
Collapse
Affiliation(s)
- Zhehao Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaolin Lyu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Longfei Luo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xing-He Fan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
89
|
Zhang L, Hou Y, Lv C, Liu W, Zhang Z, Peng X. Copper-based metal-organic xerogels on paper for chemiluminescence detection of dopamine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:4191-4198. [PMID: 32780054 DOI: 10.1039/d0ay01191f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, copper(ii)-containing metal-organic xerogels (Cu-MOXs), which were composed of copper as the central ion and 2,2'-bipyridine-6,6'-dicarboxylic acid as the ligand, were quickly synthesized by a mild facile strategy. The Cu-MOXs exhibited superior catalytic performance for the luminol-H2O2 chemiluminescence (CL) system. The possible mechanism was studied via CL spectra, UV-Vis absorption and electron paramagnetic resonance (ESR). Since dopamine (DA) can inhibit the reaction of this system, a sensitive paper-based CL device for the detection of DA was established. Under the optimal experimental conditions, the linear range of this method was 40-200 nM with a detection limit of 10 nM. The proposed method was used for the determination of DA in urine samples.
Collapse
Affiliation(s)
- Liu Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, PR China.
| | | | | | | | | | | |
Collapse
|
90
|
Yu C, Wang X, Wu T, Gu X, Huang W, Kirillov AM, Wu D. Color tuning of intrinsic white-light emission in anthracene-linker coordination networks. Dalton Trans 2020; 49:12082-12087. [PMID: 32820779 DOI: 10.1039/d0dt02033h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
White light-emitting diodes (WLEDs) have aroused great attention due to their potential technological applications. In this work, we present two new Zn(ii) anthracene-linker-driven coordination polymers that exhibit intrinsic white-light emission. The emission covers the whole visible spectrum at room temperature. The chromaticity coordinates of the broadband emission can be tuned under external stimuli, including thermal and mechanical grinding. The obtained coordination polymer materials emit a "warm" white light at room temperature suitable for indoor lighting applications as well as a "cold" white light at the cryogenic temperature. Hence, the well-defined structures and mechanically tunable emission provide an excellent opportunity for realizing their potential as white emitters in optoelectronics.
Collapse
Affiliation(s)
- Chengfeng Yu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Xiaoling Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Ting Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Xiangwei Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Wei Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Alexander M Kirillov
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal and Research Institute of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., Moscow, 117198, Russia
| | - Dayu Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China.
| |
Collapse
|
91
|
Takafuji M, Kawahara T, Sultana N, Ryu N, Yoshida K, Kuwahara Y, Oda R, Ihara H. Extreme enhancement of secondary chirality through coordination-driven steric changes of terpyridyl ligand in glutamide-based molecular gels. RSC Adv 2020; 10:29627-29632. [PMID: 35518247 PMCID: PMC9056163 DOI: 10.1039/d0ra05057a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/03/2020] [Indexed: 01/01/2023] Open
Abstract
Aggregation-induced chirality is potentially useful in sensor technology applications. Herein we show extreme enhancement of secondary chirality through coordination-driven steric changes of terpyridyl ligand in molecular gels. The secondary chirality reflecting on enhancement of chiral signals (i.e., circular dichroism (CD) and circularly polarised luminescence (CPL)) of the molecular gels formed from glutamide-attached terpyridine (G-tpy) is extremely enhanced by the coordination of its terpyridyl groups to metal ions such as Cu2+, Zn2+ and Ru2+, which is due to dramatic changes in the stacked structure of the chromophore groups through the formation of metal ion complex. Metal-free terpyridine exists in a non-planar geometry, which suppress π-π stacking interactions among aggregates. The planarity of the terpyridyl group is improved through metal-ion complexation, which induces the metal-ion-coordinated terpyridyl groups to stack. The thermal stabilities of the CD signals are strongly affected by the metal-ion species. CPL signal is generated in the molecular gel formed from G-tpy-Zn2+ complex accompanied by chelation-enhanced fluorescence. It is expected that large and sensitive coordination-driven secondary chirality signals (CD and CPL) are useful for sensing guest molecules and the surrounding environment.
Collapse
Affiliation(s)
- Makoto Takafuji
- Department of Applied Chemistry and Biochemistry, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Tomoki Kawahara
- Department of Applied Chemistry and Biochemistry, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Nahid Sultana
- Department of Applied Chemistry and Biochemistry, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Naoya Ryu
- Materials Development Department, Kumamoto Industrial Research Institute 3-11-38 Higashimachi, Higashi-ku Kumamoto 862-0901 Japan
| | - Kyohei Yoshida
- Institut de Chimie & Biologie des Membranes & des Nano-objets (UMR5248 CBMN), CNRS, Université de Bordeaux, Institut Polytechnique Bordeaux 2 rue Robert Escarpit 33607 Pessac France
| | - Yutaka Kuwahara
- Department of Applied Chemistry and Biochemistry, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| | - Reiko Oda
- Institut de Chimie & Biologie des Membranes & des Nano-objets (UMR5248 CBMN), CNRS, Université de Bordeaux, Institut Polytechnique Bordeaux 2 rue Robert Escarpit 33607 Pessac France
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry, Kumamoto University 2-39-1 Kurokami, Chuo-ku Kumamoto 860-8555 Japan
| |
Collapse
|
92
|
Self-healable, Eu3+-based polymeric gels containing terpyridyl groups with tunable luminescence based on ion recognition. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2019.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
93
|
Li D, Zhang Q, Zhao W, Dong S, Li T, Stang PJ. Thermo/Anion Dual-Responsive Supramolecular Organoplatinum–Crown Ether Complex. Org Lett 2020; 22:4289-4293. [DOI: 10.1021/acs.orglett.0c01333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Doudou Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Qiao Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Shengyi Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Tao Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
94
|
Zhang M, Xue J, Zhu Y, Yao C, Yang D. Multiresponsive White-Light Emitting Aerogel Prepared with Codoped Lanthanide/Thymidine/Carbon Dots. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22191-22199. [PMID: 32320198 DOI: 10.1021/acsami.0c04253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aerogels hold great promise as a lightweight replacement in materials fields. Dynamic fluorochromic aerogels that possess reversible stimuli responsiveness have been particularly attractive recently for new design opportunities in practical solid-state lighting and wide applications in advanced sensors/probe. In this study, we report a reversibly multiresponsive white-light-emitting (WLE) aerogel prepared with codoped lanthanide, thymidine, and carbon dots. By precisely modulating the stoichiometric ratio of lanthanide complexes and carbon dots, broad-spectrum output from purple to red is obtained, including pure white light (CIE (0.33, 0.32)). The freeze-drying process contributes to the elimination of hydration between water molecules and lanthanide ions, further preventing the quenching of lanthanide luminescence and preserving the high quantum yield (47.4%) of our aerogel. Moreover, the dynamic coordination bond between lanthanide (europium and terbium) and thymidine endows the aerogel with reversible responsiveness upon five different stimuli, including halide anions, metal ions, pH, temperature, and humidity. We envision that our WLE aerogel has considerable potential for use in various fields such as display devices, advanced sensors, and environmentally friendly probes where multiresponsiveness is required.
Collapse
Affiliation(s)
- Meng Zhang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Juan Xue
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Yi Zhu
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Chi Yao
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| | - Dayong Yang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, People's Republic of China
| |
Collapse
|
95
|
Sutar P, Maji TK. Recent advances in coordination-driven polymeric gel materials: design and applications. Dalton Trans 2020; 49:7658-7672. [PMID: 32373858 DOI: 10.1039/d0dt00863j] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, research attention has been directed towards the coordination driven synthesis of gels, including coordination polymer gels (CPGs) and metal-organic cage based gels, which have shown applications in diverse fields, including optoelectronics, catalysis, sensing, gas-storage, and self-healing. A wide variety of CPGs and metal-organic cage based gels have been reported, to date, by choosing the right combination of metal ions and rationally designed organic linkers. In this article, we focused on recent developments in CPGs and metal-organic cage based gels and their applications.
Collapse
Affiliation(s)
- Papri Sutar
- Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India.
| | | |
Collapse
|
96
|
Ma S, Jiang J, Liu Z, Jiang Y, Wu Z, Liu M. A self-assembled nanohelix for white circularly polarized luminescence via chirality and energy transfer. NANOSCALE 2020; 12:7895-7901. [PMID: 32227012 DOI: 10.1039/c9nr10946c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chiral nanostructures and their optical activity have been attracting great interest. Here, we designed an enantiomer bolaamphiphile containing a naphthalene moiety (bola-1) and an alkyl spacer, and investigated its self-assembly as well as optical activity. It was found that the compound could form gels in various organic or mixed organic/water mixtures. In mixed DMSO/water, it formed a nanohelix. Due to the fluorescent nature of the naphthyl group, the nanohelix showed both CD and circularly polarized luminescence (CPL). When three achiral fluorescent molecules, pyrene-1-carboxylic acid (D2), rhodamine 110 (D3) and rhodamine B (D4), were incorporated into the helical structures formed by bola-1, the nanohelix could be retained and the CPL from the dye molecules could be induced. In addition, an energy transfer occurred between the bola-1 nanohelix and the dyes. By mixing the different emission dyes with the bola-1 in an appropriate ratio, white CPL was obtained. It was found that the dissymmetry factor of the white CPL could be increased through energy transfer. This work provided a new convenient and efficient way for obtaining white CPL.
Collapse
Affiliation(s)
- Sijia Ma
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China.
| | | | | | | | | | | |
Collapse
|
97
|
Lanthanoids Goes Healing: Lanthanoidic Metallopolymers and Their Scratch Closure Behavior. Polymers (Basel) 2020; 12:polym12040838. [PMID: 32268577 PMCID: PMC7240633 DOI: 10.3390/polym12040838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
Metallopolymers represent an interesting combination of inorganic metal complexes and polymers resulting in a variety of outstanding properties and applications. One field of interest are stimuli-responsive materials and, in particular, self-healing polymers. These systems could be achieved by the incorporation of terpyridine–lanthanoid complexes of Eu (III), Tb (III), and Dy (III) in the side chains of well-defined copolymers, which were prepared applying the reversible addition fragmentation chain-transfer (RAFT)-polymerization technique. The metal complexes crosslink the polymer chains in order to form reversible supramolecular networks. These dynamics enable the self-healing behavior. The information on composition, reversibility, and stability of the complexes was obtained by isothermal titration calorimetry (ITC). Moreover, self-healing experiments were performed by using 3D-microscopy and indentation.
Collapse
|
98
|
Yang L, Huang J, Qin M, Ma X, Dou X, Feng C. Highly efficient full-color and white circularly polarized luminescent nanoassemblies and their performance in light emitting devices. NANOSCALE 2020; 12:6233-6238. [PMID: 32134412 DOI: 10.1039/d0nr00279h] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chiral nanomaterials with circularly polarized luminescence (CPL) have attracted increasing attention as they show improved luminous efficiency and high contrast images in optical displays. Herein, nanotwisted fibers with bright full-color CPL are developed through the co-assembly of chiral phenylalanine derived gelators and achiral aromatic molecules. The synergic effect of π-π stacking and hydrogen bonding interactions between the chiral and achiral building blocks results in long-range ordered self-assembly, enabling the chirality of the gelators to be better transmitted to the achiral aromatic molecules. Highly ordered co-assemblies lead to the formation of supramolecular gels with high glum values which range up to 10-3. Moreover, nanoassemblies with white CPL are obtained by tuning the ratio of colorful achiral aromatic molecules in the gels. These nanotwisted gels show diverse colors or even white circularly polarized light when coated on UV chips, which enable their future application in the construction of low-cost and flexible light-emitting devices such as circularly polarized organic light-emitting diodes (CPOLEDs).
Collapse
Affiliation(s)
- Li Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240, Shanghai, China.
| | - Juexin Huang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240, Shanghai, China.
| | - Minggao Qin
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240, Shanghai, China.
| | - Xiaoyu Ma
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240, Shanghai, China.
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240, Shanghai, China.
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Dongchuan Road 800, 200240, Shanghai, China.
| |
Collapse
|
99
|
Yang J, Zhang Z, Yan Y, Liu S, Li Z, Wang Y, Li H. Highly Stretchable and Fast Self-Healing Luminescent Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13239-13247. [PMID: 32091192 DOI: 10.1021/acsami.9b20582] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nowadays, the flourishing exploitation of multifunction luminescent materials with fast self-healing and superior mechanical features greatly broadens the scope for wide applications in optical and display devices, but this is still a formidably challenging task. Herein, we realize color-tunable luminescent materials functionalized with lanthanide ions (Ln3+) and terpyridine ligand coordination complexes that show highly stretchable and rapid self-healing performance, simultaneously broadening their application prospects both optically and mechanically. The multiple color emission, including visible and near-infrared luminescence, can be achieved by energy transfer from the coordinating terpyridine unit to Ln3+ via the so-called "antenna effect". The dynamic Ln-N coordination exhibits extreme stretchability and fast self-healing under ambient conditions. Of particular interest is that the healing process is not significantly affected by surface aging and atmospheric moisture. The multifunction materials open up a new pathway for future development of the next-generation wearable electronics including flexible and self-healable conductors.
Collapse
Affiliation(s)
- Jing Yang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, P. R. China
| | - Zhihao Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, P. R. China
| | - Yaqian Yan
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, P. R. China
| | - Shuo Liu
- College of Chemistry, Nankai University, Tianjin 300350, P. R. China
| | - Zhiqiang Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, P. R. China
| | - Yige Wang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, P. R. China
| | - Huanrong Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, P. R. China
| |
Collapse
|
100
|
Dhibar S, Dey A, Majumdar S, Dey A, Ray PP, Dey B. Organic-Acid-Mediated Luminescent Supramolecular Tb(III)-metallogel Applied in an Efficient Photosensitive Electronic Device with Excellent Charge Transport Properties. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Subhendu Dhibar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Arka Dey
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
- Department of Physics, Jadavpur University, Kolkata700032, India
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | - Amiya Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| | | | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India
| |
Collapse
|