51
|
Jia X, Zhang Y, Wang T, Fu Y. Highly Efficient Method for Intracellular Delivery of Proteins Mediated by Cholera Toxin-Induced Protein Internalization. Mol Pharm 2021; 18:4067-4078. [PMID: 34672633 DOI: 10.1021/acs.molpharmaceut.1c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Delivery of functional proteins into cells may help us understand how specific protein influences cell behavior as well as treat diseases caused by protein deficiency or loss-of-function mutations. However, protein cannot enter cells by diffusion. In this work, a novel cell biology tool for delivering recombinant proteins into mammalian cells was developed. We hijacked the intracellular transport routes used by the cholera toxin and took advantage of recent development on split intein that is compatible with denatured conditions and shows an exceptional splicing activity to deliver a protein of interest into mammalian cells. Here, we used green fluorescent protein and apoptin as proofs-of-concept. The results demonstrate that the cholera toxin B subunit alone could deliver other recombinant proteins into cells through either covalent conjugation or noncovalent interaction. Our method offers more than 10-fold better delivery efficiency than the tat cell-penetrating peptide and is selective for ganglioside-rich cells. This study adds a useful tool to the receptor-mediated intracellular targeting toolkit and opens possibility for the selective delivery of therapeutic proteins into ganglioside-rich cells.
Collapse
Affiliation(s)
- Xiaofan Jia
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yan Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ting Wang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuan Fu
- Department of Pharmacology, Tianjin Key Laboratory of Inflammatory Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
52
|
Morrison MS, Wang T, Raguram A, Hemez C, Liu DR. Disulfide-compatible phage-assisted continuous evolution in the periplasmic space. Nat Commun 2021; 12:5959. [PMID: 34645844 PMCID: PMC8514426 DOI: 10.1038/s41467-021-26279-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022] Open
Abstract
The directed evolution of antibodies has yielded important research tools and human therapeutics. The dependence of many antibodies on disulfide bonds for stability has limited the application of continuous evolution technologies to antibodies and other disulfide-containing proteins. Here we describe periplasmic phage-assisted continuous evolution (pPACE), a system for continuous evolution of protein-protein interactions in the disulfide-compatible environment of the E. coli periplasm. We first apply pPACE to rapidly evolve novel noncovalent and covalent interactions between subunits of homodimeric YibK protein and to correct a binding-defective mutant of the anti-GCN4 Ω-graft antibody. We develop an intein-mediated system to select for soluble periplasmic expression in pPACE, leading to an eight-fold increase in soluble expression of the Ω-graft antibody. Finally, we evolve disulfide-containing trastuzumab antibody variants with improved binding to a Her2-like peptide and improved soluble expression. Together, these results demonstrate that pPACE can rapidly optimize proteins containing disulfide bonds, broadening the applicability of continuous evolution.
Collapse
Affiliation(s)
- Mary S Morrison
- Merkin Institute of Transformative Technologies in Health Care, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Tina Wang
- Merkin Institute of Transformative Technologies in Health Care, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Aditya Raguram
- Merkin Institute of Transformative Technologies in Health Care, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Colin Hemez
- Merkin Institute of Transformative Technologies in Health Care, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Health Care, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
53
|
Ackermann BE, Debelouchina GT. Emerging Contributions of Solid-State NMR Spectroscopy to Chromatin Structural Biology. Front Mol Biosci 2021; 8:741581. [PMID: 34708075 PMCID: PMC8544521 DOI: 10.3389/fmolb.2021.741581] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic genome is packaged into chromatin, a polymer of DNA and histone proteins that regulates gene expression and the spatial organization of nuclear content. The repetitive character of chromatin is diversified into rich layers of complexity that encompass DNA sequence, histone variants and post-translational modifications. Subtle molecular changes in these variables can often lead to global chromatin rearrangements that dictate entire gene programs with far reaching implications for development and disease. Decades of structural biology advances have revealed the complex relationship between chromatin structure, dynamics, interactions, and gene expression. Here, we focus on the emerging contributions of magic-angle spinning solid-state nuclear magnetic resonance spectroscopy (MAS NMR), a relative newcomer on the chromatin structural biology stage. Unique among structural biology techniques, MAS NMR is ideally suited to provide atomic level information regarding both the rigid and dynamic components of this complex and heterogenous biological polymer. In this review, we highlight the advantages MAS NMR can offer to chromatin structural biologists, discuss sample preparation strategies for structural analysis, summarize recent MAS NMR studies of chromatin structure and dynamics, and close by discussing how MAS NMR can be combined with state-of-the-art chemical biology tools to reconstitute and dissect complex chromatin environments.
Collapse
Affiliation(s)
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
54
|
Production of IgG1-based bispecific antibody without extra cysteine residue via intein-mediated protein trans-splicing. Sci Rep 2021; 11:19411. [PMID: 34593913 PMCID: PMC8484483 DOI: 10.1038/s41598-021-98855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/09/2021] [Indexed: 11/09/2022] Open
Abstract
A major class of bispecific antibodies (BsAbs) utilizes heterodimeric Fc to produce the native immunoglobulin G (IgG) structure. Because appropriate pairing of heavy and light chains is required, the design of BsAbs produced through recombination or reassembly of two separately-expressed antigen-binding fragments is advantageous. One such method uses intein-mediated protein trans-splicing (IMPTS) to produce an IgG1-based structure. An extra Cys residue is incorporated as a consensus sequence for IMPTS in successful examples, but this may lead to potential destabilization or disturbance of the assay system. In this study, we designed a BsAb linked by IMPTS, without the extra Cys residue. A BsAb binding to both TNFR2 and CD30 was successfully produced. Cleaved side product formation was inevitable, but it was minimized under the optimized conditions. The fine-tuned design is suitable for the production of IgG-like BsAb with high symmetry between the two antigen-binding fragments that is advantageous for screening BsAbs.
Collapse
|
55
|
Mitchener MM, Muir TW. Janus Bioparticles: Asymmetric Nucleosomes and Their Preparation Using Chemical Biology Approaches. Acc Chem Res 2021; 54:3215-3227. [PMID: 34319695 DOI: 10.1021/acs.accounts.1c00313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The fundamental repeating unit of chromatin, the nucleosome, is composed of DNA wrapped around two copies each of four canonical histone proteins. Nucleosomes possess 2-fold pseudo-symmetry that is subject to disruption in cellular contexts. For example, the post-translational modification (PTM) of histones plays an essential role in epigenetic regulation, and the introduction of a PTM on only one of the two "sister" histone copies in a given nucleosome eliminates the inherent symmetry of the complex. Similarly, the removal or swapping of histones for variants or the introduction of a histone mutant may render the two faces of the nucleosome asymmetric, creating, if you will, a type of "Janus" bioparticle. Over the past decade, many groups have detailed the discovery of asymmetric species in chromatin isolated from numerous cell types. However, in vitro biochemical and biophysical investigation of asymmetric nucleosomes has proven synthetically challenging. Whereas symmetric nucleosomes are readily formed via a stochastic combination of their histone and DNA components, asymmetric nucleosome assembly demands the selective incorporation of a single modified/mutant histone copy alongside its wild-type counterpart.Herein we describe the chemical biology tools that we and others have developed in recent years for investigating nucleosome asymmetry. Such approaches, each with its own benefits and shortcomings, fall into five broad categories. First, we discuss affinity tag-based purification methods. These enable the assembly of theoretically any asymmetric nucleosome of interest but are frequently labor-intensive and suffer from low yields. Second, we detail transient cross-linking strategies that are amenable to the preparation of histone H3- or H4-modified/mutant asymmetric species. These yield asymmetric nucleosomes in a traceless fashion, albeit through the use of more complicated synthesis techniques. Third, we describe a synthetic biology technique based on the generation of bump-hole mutant H3 histones that selectively heterodimerize. Although currently developed only for H3 and a related isoform, this method uniquely allows for the interrogation of nucleosome asymmetry in yeast. Fourth, we outline a method for generating H2A- or H2B-modified/mutant asymmetric nucleosomes that relies on the differential DNA-histone contact strength inherent in the Widom 601 DNA sequence. This technique involves the initial formation of hexasomes which are then complemented with distinct H2A/H2B dimers. Finally, we review an approach that utilizes split intein technology to isolate asymmetric H2A- or H2B-modified/mutant nucleosomes. This method shares steps in common with the former but exploits tagged, intein-fused dimers for the facile purification of asymmetric products.Throughout the Account, we highlight various biological questions that drove the development of these methods and ultimately were answered by them. Though each technique has its own shortcomings, collectively these chemical biology tools provide a means to biochemically interrogate a plethora of asymmetric nucleosome species. We conclude with a discussion of remaining challenges, particularly that of endogenous asymmetric nucleosome detection.
Collapse
Affiliation(s)
- Michelle M. Mitchener
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
56
|
Oh H, Jung Y, Moon S, Hwang J, Ban C, Chung J, Chung WJ, Kweon DH. Development of End-Spliced Dimeric Nanodiscs for the Improved Virucidal Activity of a Nanoperforator. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36757-36768. [PMID: 34319090 DOI: 10.1021/acsami.1c06364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lipid-bilayer nanodiscs (NDs) wrapped in membrane scaffold proteins (MSPs) have primarily been used to study membrane proteins of interest in a physiological environment. Recently, NDs have been employed in broader applications including drug delivery, cancer immunotherapy, bio-imaging, and therapeutic virucides. Here, we developed a method to synthesize a dimeric nanodisc, whose MSPs are circularly end-spliced, with long-term thermal stability and resistance to aggregation. The end-spliced nanodiscs (esNDs) were assembled using MSPs that were self-circularized inside the cytoplasm ofEscherichia colivia highly efficient protein trans-splicing. The esNDs demonstrated a consistent size and 4-5-fold higher stability against heat and aggregation than conventional NDs. Moreover, cysteine residues on trans-spliced circularized MSPs allowed us to modulate the formation of either monomeric nanodiscs (essNDs) or dimeric nanodiscs (esdNDs) by controlling the oxidation/reduction conditions and lipid-to-protein ratios. When the esdNDs were used to prepare an antiviral nanoperforator that induced the disruption of the viral membrane upon contact, antiviral activity was dramatically increased, suggesting that the dimerization of nanodiscs led to cooperativity between linked nanodiscs. We expect that controllable structures, long-term stability, and aggregation resistance of esNDs will aid the development of novel versatile membrane-mimetic nanomaterials with flexible designs and improved therapeutic efficacy.
Collapse
Affiliation(s)
- Hyunseok Oh
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Younghun Jung
- Institute of Biomolecular Control, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seokoh Moon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jaehyeon Hwang
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Choongjin Ban
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Environmental Horticulture, University of Seoul, Seoul 02504, Republic of Korea
| | - Jinhyo Chung
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
57
|
Functional cross-talk between phosphorylation and disease-causing mutations in the cardiac sodium channel Na v1.5. Proc Natl Acad Sci U S A 2021; 118:2025320118. [PMID: 34373326 PMCID: PMC8379932 DOI: 10.1073/pnas.2025320118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The cardiac sodium channel (Nav1.5) is crucial for generating a regular heartbeat. It is thus not surprising that Nav1.5 mutations have been linked to life-threatening arrhythmias. Interestingly, Nav1.5 activity can also be altered by posttranslational modifications, such as tyrosine phosphorylation. Our combination of protein engineering and molecular modeling has revealed that the detrimental effect of a long QT3 patient mutation is only exposed when a proximal tyrosine is phosphorylated. This suggests a dynamic cross-talk between the genetic mutation and a neighboring phosphorylation, a phenomenon that could be important in other classes of proteins. Additionally, we show that phosphorylation can affect the channel’s sensitivity toward clinically relevant drugs, a finding that may prove important when devising patient-specific treatment plans. The voltage-gated sodium channel Nav1.5 initiates the cardiac action potential. Alterations of its activation and inactivation properties due to mutations can cause severe, life-threatening arrhythmias. Yet despite intensive research efforts, many functional aspects of this cardiac channel remain poorly understood. For instance, Nav1.5 undergoes extensive posttranslational modification in vivo, but the functional significance of these modifications is largely unexplored, especially under pathological conditions. This is because most conventional approaches are unable to insert metabolically stable posttranslational modification mimics, thus preventing a precise elucidation of the contribution by these modifications to channel function. Here, we overcome this limitation by using protein semisynthesis of Nav1.5 in live cells and carry out complementary molecular dynamics simulations. We introduce metabolically stable phosphorylation mimics on both wild-type (WT) and two pathogenic long-QT mutant channel backgrounds and decipher functional and pharmacological effects with unique precision. We elucidate the mechanism by which phosphorylation of Y1495 impairs steady-state inactivation in WT Nav1.5. Surprisingly, we find that while the Q1476R patient mutation does not affect inactivation on its own, it enhances the impairment of steady-state inactivation caused by phosphorylation of Y1495 through enhanced unbinding of the inactivation particle. We also show that both phosphorylation and patient mutations can impact Nav1.5 sensitivity toward the clinically used antiarrhythmic drugs quinidine and ranolazine, but not flecainide. The data highlight that functional effects of Nav1.5 phosphorylation can be dramatically amplified by patient mutations. Our work is thus likely to have implications for the interpretation of mutational phenotypes and the design of future drug regimens.
Collapse
|
58
|
Song H, Burton AJ, Shirran SL, Fahrig-Kamarauskaitė J, Kaspar H, Muir TW, Künzler M, Naismith JH. Engineering of a Peptide α-N-Methyltransferase to Methylate Non-Proteinogenic Amino Acids. Angew Chem Int Ed Engl 2021; 60:14319-14323. [PMID: 33856715 PMCID: PMC8251615 DOI: 10.1002/anie.202100818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Indexed: 12/24/2022]
Abstract
Introduction of α‐N‐methylated non‐proteinogenic amino acids into peptides can improve their biological activities, membrane permeability and proteolytic stability. This is commonly achieved, in nature and in the lab, by assembling pre‐methylated amino acids. The more appealing route of methylating amide bonds is challenging. Biology has evolved an α‐N‐automethylating enzyme, OphMA, which acts on the amide bonds of peptides fused to its C‐terminus. Due to the ribosomal biosynthesis of its substrate, the activity of this enzyme towards peptides with non‐proteinogenic amino acids has not been addressed. An engineered OphMA, intein‐mediated protein ligation and solid‐phase peptide synthesis have allowed us to demonstrate the methylation of amide bonds in the context of non‐natural amides. This approach may have application in the biotechnological production of therapeutic peptides.
Collapse
Affiliation(s)
- Haigang Song
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK.,The Research Complex at Harwell, Harwell Campus, Oxford, OX11 0FA, UK.,The Rosalind Franklin Institute, Harwell Campus, Oxford, OX11 0FA, UK
| | - Antony J Burton
- Department of Chemistry, Frick Chemistry Laboratory, Princeton University, Princeton, NJ, USA
| | - Sally L Shirran
- Biomedical Sciences Research Complex, North Haugh, University of St. Andrews, Fife, KY16 9ST, UK
| | - Jūratė Fahrig-Kamarauskaitė
- Department of Biology, Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Hannelore Kaspar
- Department of Biology, Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Tom W Muir
- Department of Chemistry, Frick Chemistry Laboratory, Princeton University, Princeton, NJ, USA
| | - Markus Künzler
- Department of Biology, Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - James H Naismith
- Division of Structural Biology, Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK.,The Research Complex at Harwell, Harwell Campus, Oxford, OX11 0FA, UK.,The Rosalind Franklin Institute, Harwell Campus, Oxford, OX11 0FA, UK
| |
Collapse
|
59
|
Song H, Burton AJ, Shirran SL, Fahrig‐Kamarauskaitė J, Kaspar H, Muir TW, Künzler M, Naismith JH. Engineering of a Peptide α-N-Methyltransferase to Methylate Non-Proteinogenic Amino Acids. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:14440-14444. [PMID: 38505374 PMCID: PMC10947093 DOI: 10.1002/ange.202100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Indexed: 11/07/2022]
Abstract
Introduction of α-N-methylated non-proteinogenic amino acids into peptides can improve their biological activities, membrane permeability and proteolytic stability. This is commonly achieved, in nature and in the lab, by assembling pre-methylated amino acids. The more appealing route of methylating amide bonds is challenging. Biology has evolved an α-N-automethylating enzyme, OphMA, which acts on the amide bonds of peptides fused to its C-terminus. Due to the ribosomal biosynthesis of its substrate, the activity of this enzyme towards peptides with non-proteinogenic amino acids has not been addressed. An engineered OphMA, intein-mediated protein ligation and solid-phase peptide synthesis have allowed us to demonstrate the methylation of amide bonds in the context of non-natural amides. This approach may have application in the biotechnological production of therapeutic peptides.
Collapse
Affiliation(s)
- Haigang Song
- Division of Structural BiologyWellcome Centre for Human GeneticsRoosevelt DriveOxfordOX3 7BNUK
- The Research Complex at HarwellHarwell CampusOxfordOX11 0FAUK
- The Rosalind Franklin InstituteHarwell CampusOxfordOX11 0FAUK
| | - Antony J. Burton
- Department of ChemistryFrick Chemistry LaboratoryPrinceton UniversityPrincetonNJUSA
| | - Sally L. Shirran
- Biomedical Sciences Research Complex, North HaughUniversity of St. AndrewsFifeKY16 9STUK
| | - Jūratė Fahrig‐Kamarauskaitė
- Department of BiologyInstitute of MicrobiologyEidgenössische Technische Hochschule (ETH) ZürichZürichSwitzerland
| | - Hannelore Kaspar
- Department of BiologyInstitute of MicrobiologyEidgenössische Technische Hochschule (ETH) ZürichZürichSwitzerland
| | - Tom W. Muir
- Department of ChemistryFrick Chemistry LaboratoryPrinceton UniversityPrincetonNJUSA
| | - Markus Künzler
- Department of BiologyInstitute of MicrobiologyEidgenössische Technische Hochschule (ETH) ZürichZürichSwitzerland
| | - James H. Naismith
- Division of Structural BiologyWellcome Centre for Human GeneticsRoosevelt DriveOxfordOX3 7BNUK
- The Research Complex at HarwellHarwell CampusOxfordOX11 0FAUK
- The Rosalind Franklin InstituteHarwell CampusOxfordOX11 0FAUK
| |
Collapse
|
60
|
Xu L, Zhang C, Li H, Wang P, Gao Y, Mokadam NA, Ma J, Arnold WD, Han R. Efficient precise in vivo base editing in adult dystrophic mice. Nat Commun 2021; 12:3719. [PMID: 34140489 PMCID: PMC8211797 DOI: 10.1038/s41467-021-23996-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 05/29/2021] [Indexed: 12/26/2022] Open
Abstract
Recent advances in base editing have created an exciting opportunity to precisely correct disease-causing mutations. However, the large size of base editors and their inherited off-target activities pose challenges for in vivo base editing. Moreover, the requirement of a protospacer adjacent motif (PAM) nearby the mutation site further limits the targeting feasibility. Here we modify the NG-targeting adenine base editor (iABE-NGA) to overcome these challenges and demonstrate the high efficiency to precisely edit a Duchenne muscular dystrophy (DMD) mutation in adult mice. Systemic delivery of AAV9-iABE-NGA results in dystrophin restoration and functional improvement. At 10 months after AAV9-iABE-NGA treatment, a near complete rescue of dystrophin is measured in mdx4cv mouse hearts with up to 15% rescue in skeletal muscle fibers. The off-target activities remains low and no obvious toxicity is detected. This study highlights the promise of permanent base editing using iABE-NGA for the treatment of monogenic diseases.
Collapse
MESH Headings
- Animals
- CRISPR-Cas Systems
- Cell Line
- Dependovirus
- Disease Models, Animal
- Dystrophin/genetics
- Dystrophin/metabolism
- Gene Editing/methods
- Genetic Therapy/methods
- Genetic Vectors
- Humans
- Mice
- Mice, Inbred mdx
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Mutation
- RNA-Seq
Collapse
Affiliation(s)
- Li Xu
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Chen Zhang
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Haiwen Li
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Peipei Wang
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yandi Gao
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Nahush A Mokadam
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jianjie Ma
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - W David Arnold
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Renzhi Han
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
61
|
Hayes HC, Luk LYP, Tsai YH. Approaches for peptide and protein cyclisation. Org Biomol Chem 2021; 19:3983-4001. [PMID: 33978044 PMCID: PMC8114279 DOI: 10.1039/d1ob00411e] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/01/2021] [Indexed: 12/26/2022]
Abstract
The cyclisation of polypeptides can play a crucial role in exerting biological functions, maintaining stability under harsh conditions and conferring proteolytic resistance, as demonstrated both in nature and in the laboratory. To date, various approaches have been reported for polypeptide cyclisation. These approaches range from the direct linkage of N- and C- termini to the connection of amino acid side chains, which can be applied both in reaction vessels and in living systems. In this review, we categorise the cyclisation approaches into chemical methods (e.g. direct backbone cyclisation, native chemical ligation, aldehyde-based ligations, bioorthogonal reactions, disulphide formation), enzymatic methods (e.g. subtiligase variants, sortases, asparaginyl endopeptidases, transglutaminases, non-ribosomal peptide synthetases) and protein tags (e.g. inteins, engineered protein domains for isopeptide bond formation). The features of each approach and the considerations for selecting an appropriate method of cyclisation are discussed.
Collapse
Affiliation(s)
- Heather C Hayes
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK
| | - Louis Y P Luk
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK and Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT.
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK and Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| |
Collapse
|
62
|
Liu Y, Huang W, Meng M, Chen M, Cao C. Progress in the application of spider silk protein in medicine. J Biomater Appl 2021; 36:859-871. [PMID: 33853426 DOI: 10.1177/08853282211003850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Spider silk protein has attracted much attention on account of its excellent mechanical properties, biodegradability, and biocompatibility. As the main protein component of spider silk, spidroin plays important role in spider spinning under natural circumstances and biomaterial application in medicine as well. Compare to the native spidroin which has a large molecular weight (>300 kDa) with highly repeat glycine and polyalanine regions, the recombinant spidroin was maintained the core amino motifs and much easier to collect. Here, we reviewed the application of recombinant spider silk protein eADF4(C16), major ampullate spidroin (MaSp), minor ampullate spidroin (MiSp), and the derivatives of recombinant spider silk protein in drug delivery system. Moreover, we also reviewed the application of spider silk protein in the field of alternative materials, repairing materials, wound dressing, surgical sutures along with advances in recombinant spider silk protein.
Collapse
Affiliation(s)
- Yi Liu
- 1Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities, School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Wei Huang
- 1Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities, School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Minsi Meng
- 1Key Laboratories of Fine Chemicals and Surfactants in Sichuan Provincial Universities, School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Minhui Chen
- 2Department of Neurosurgery, Zigong Fourth People's Hospital, Zigong, China
| | - Chengjian Cao
- 3Department of Clinical Laboratory, Zigong First People's Hospital, Zigong, China
| |
Collapse
|
63
|
Oncohistone mutations enhance chromatin remodeling and alter cell fates. Nat Chem Biol 2021; 17:403-411. [PMID: 33649601 PMCID: PMC8174649 DOI: 10.1038/s41589-021-00738-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 12/24/2020] [Indexed: 12/18/2022]
Abstract
Whole genome sequencing data mining efforts have revealed numerous histone mutations in a wide range of cancer types. These occur in all four core histones in both the tail and globular domains and remain largely uncharacterized. Here we used two high-throughput approaches, a DNA-barcoded mononucleosome library and a humanized yeast library, to profile the biochemical and cellular effects of these mutations. We identified cancer-associated mutations in the histone globular domains that enhance fundamental chromatin remodeling processes, histone exchange and nucleosome sliding, and are lethal in yeast. In mammalian cells, these mutations upregulate cancer-associated gene pathways and inhibit cellular differentiation by altering expression of lineage-specific transcription factors. This work represents a comprehensive functional analysis of the histone mutational landscape in human cancers and leads to a model in which histone mutations that perturb nucleosome remodeling may contribute to disease development and/or progression.
Collapse
|
64
|
Hofmann T, Schmidt J, Ciesielski E, Becker S, Rysiok T, Schütte M, Toleikis L, Kolmar H, Doerner A. Intein mediated high throughput screening for bispecific antibodies. MAbs 2021; 12:1731938. [PMID: 32151188 PMCID: PMC7153837 DOI: 10.1080/19420862.2020.1731938] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bispecific antibodies comprise extremely diverse architectures enabling complex modes of action, such as effector cell recruitment or conditional target modulation via dual targeting, not conveyed by monospecific antibodies. In recent years, research on bispecific therapeutics has substantially grown. However, evaluation of binding moiety combinations often leads to undesired prolonged development times. While high throughput screening for small molecules and classical antibodies has evolved into a mature discipline in the pharmaceutical industry, dual-targeting antibody screening methodologies lack the ability to fully evaluate the tremendous number of possible combinations and cover only a limited portion of the combinatorial screening space. Here, we propose a novel combinatorial screening approach for bispecific IgG-like antibodies to extenuate screening limitations in industrial scale, expanding the limiting screening space. Harnessing the ability of a protein trans-splicing reaction by the split intein Npu DnaE, antibody fragments were reconstituted within the hinge region in vitro. This method allows for fully automated, rapid one-pot antibody reconstitution, providing biological activity in several biochemical and functional assays. The technology presented here is suitable for automated functional and combinatorial high throughput screening of bispecific antibodies.
Collapse
Affiliation(s)
- Tim Hofmann
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany.,Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Johannes Schmidt
- Compound Logistic & Bioassay Automation, Merck KGaA, Darmstadt, Germany
| | - Elke Ciesielski
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Stefan Becker
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Thomas Rysiok
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Mark Schütte
- Global Innovation and Alliance Management, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riß, Germany
| | - Lars Toleikis
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Achim Doerner
- Protein Engineering and Antibody Technologies, Merck KGaA, Darmstadt, Germany
| |
Collapse
|
65
|
Nakata M, Kreikemeyer B. Genetics, Structure, and Function of Group A Streptococcal Pili. Front Microbiol 2021; 12:616508. [PMID: 33633705 PMCID: PMC7900414 DOI: 10.3389/fmicb.2021.616508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus; GAS) is an exclusively human pathogen. This bacterial species is responsible for a large variety of infections, ranging from purulent but mostly self-limiting oropharynx/skin diseases to streptococcal sequelae, including glomerulonephritis and rheumatic fever, as well as life-threatening streptococcal toxic-shock syndrome. GAS displays a wide array of surface proteins, with antigenicity of the M protein and pili utilized for M- and T-serotyping, respectively. Since the discovery of GAS pili in 2005, their genetic features, including regulation of expression, and structural features, including assembly mechanisms and protein conformation, as well as their functional role in GAS pathogenesis have been intensively examined. Moreover, their potential as vaccine antigens has been studied in detail. Pilus biogenesis-related genes are located in a discrete section of the GAS genome encoding fibronectin and collagen binding proteins and trypsin-resistant antigens (FCT region). Based on the heterogeneity of genetic composition and DNA sequences, this region is currently classified into nine distinguishable forms. Pili and fibronectin-binding proteins encoded in the FCT region are known to be correlated with infection sites, such as the skin and throat, possibly contributing to tissue tropism. As also found for pili of other Gram-positive bacterial pathogens, GAS pilin proteins polymerize via isopeptide bonds, while intramolecular isopeptide bonds present in the pilin provide increased resistance to degradation by proteases. As supported by findings showing that the main subunit is primarily responsible for T-serotyping antigenicity, pilus functions and gene expression modes are divergent. GAS pili serve as adhesins for tonsillar tissues and keratinocyte cell lines. Of note, a minor subunit is considered to have a harpoon function by which covalent thioester bonds with host ligands are formed. Additionally, GAS pili participate in biofilm formation and evasion of the immune system in a serotype/strain-specific manner. These multiple functions highlight crucial roles of pili during the onset of GAS infection. This review summarizes the current state of the art regarding GAS pili, including a new mode of host-GAS interaction mediated by pili, along with insights into pilus expression in terms of tissue tropism.
Collapse
Affiliation(s)
- Masanobu Nakata
- Department of Oral Microbiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany
| |
Collapse
|
66
|
Approaches for the sensitive detection of rare base and prime editing events. Methods 2021; 194:75-82. [PMID: 33484827 DOI: 10.1016/j.ymeth.2021.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022] Open
Abstract
Precision chemistry entailing user-directed nucleotide substitutions and template-specified repair can be facilitated by base editing and prime editing, respectively. Recently, the diversification of adenine, cytosine, and prime editor variants obliges a considered, high-throughput evaluation of these tools for optimized, end-point applications. Herein, we outline novel, cost-effective and scalable approaches for the rapid detection of base editing and prime editing outcomes using gel electrophoresis. For base editing, we exploit primer mismatch amplification (SNP genotyping) for the gel-based detection of base editing efficiencies as low as 0.1%. For prime editing, we describe a one-pot reaction combining polymerase chain reaction (PCR) amplification of the target region with restriction digestion (restriction fragment length polymorphism; RFLP). RFLP enables the rapid detection of insertion or deletion events in under 2.5 h from genomic DNA extraction. We show that our method of SNP genotyping is amenable to both endogenous target loci as well as transfected, episomal plasmid targets in BHK-21 cells. Next, we validate the incidence of base and prime editing by describing Sanger sequencing and next-generation sequencing (NGS) workflows for the accurate validation and quantification of on-target editing efficiencies. Our workflow details three different methods for the detection of rare base and prime editing events, enabling a tiered approach from low to high resolution that makes use of gel electrophoresis, Sanger sequencing, and NGS.
Collapse
|
67
|
Kim C, Park M, Yang J, Shin J, Park YC, Kim SK, Kweon DH. Inducible plasmid display system for high-throughput selection of proteins with improved solubility. J Biotechnol 2020; 329:143-150. [PMID: 33373627 DOI: 10.1016/j.jbiotec.2020.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022]
Abstract
Soluble expression of enzymes inside the cell is a prerequisite for the successful biotransformation of valuable products. Some key enzymes involved in biotransformation processes, however, are hardly expressed in their soluble forms. Here, we propose an inducible plasmid display, which is a molecular evolution strategy coupled with a high-throughput screening and/or selection method, as a simple and powerful tool for improving the solubility of target enzymes. Specifically, the Oct-1 DNA-binding domain and intein (i.e., auto-processing domain) were employed as anchoring and protein trans-splicing motifs to develop the system, in which the probability of protein trans-splicing is dependent on the soluble property of target proteins. The applicability of inducible plasmid display was investigated using an α-1,2-fucosyltransferase (FucT2) from Helicobacter pylori, a highly insoluble and unstable enzyme in the cytoplasmic space of Escherichia coli, as a model protein. One round of the overall inducible plasmid display process, which consists of in vivo production of FucT2 mutants and in vitro screening, enabled soluble expression of FucT2 and selection of plasmids containing the corresponding genetic information. The inducible plasmid display developed in this study will contribute to the rapid and efficient screening and/or selection of soluble proteins.
Collapse
Affiliation(s)
- Chakhee Kim
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Myungseo Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jinkyeong Yang
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Jonghyeok Shin
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea
| | - Yong-Cheol Park
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi, 17546, Republic of Korea.
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi, 16419, Republic of Korea; Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
68
|
Kawase M, Fujioka M, Takahashi T. Activation of Protease and Luciferase Using Engineered Nostoc punctiforme PCC73102 DnaE Intein with Altered Split Position. Chembiochem 2020; 22:577-584. [PMID: 32969142 DOI: 10.1002/cbic.202000609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/17/2020] [Indexed: 12/22/2022]
Abstract
Inteins, self-catalytic enzymes, have been widely used in the field of protein engineering and chemical biology. Here, Nostoc punctiforme PCC73102 (Npu) DnaE intein was engineered to have an altered split position. An 11-residue N-intein of DnaE in which Gly and Asp were substituted for Tyr4 and Glu5, respectively, was designed, and the active C-intein variants were acquired by a GFP fluorescence-based screening. The designed N-intein and the obtained active C-intein variants were used to construct a turn-on system for enzyme activities such as human immunodeficiency 1 protease and NanoLuc luciferase. Based on the NanoLuc-intein fusion, we developed two intein pairs, each of which is capable of reacting preferentially, by interchanging the charged amino acids on N- and C-inteins. The specific splicing reactions were easily monitored and discriminated by bioluminescence resonance energy transfer (BRET).
Collapse
Affiliation(s)
- Misaki Kawase
- Faculty of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Meiko Fujioka
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| | - Tsuyoshi Takahashi
- Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan
| |
Collapse
|
69
|
Karimi Baba Ahmadi M, Mohammadi SA, Makvandi M, Mamoueie M, Rahmati M, Wood D. Column-free purification and coating of SpyCatcher protein on ELISA wells generates universal solid support for capturing of SpyTag-fusion protein from the non-purified condition. Protein Expr Purif 2020; 174:105650. [PMID: 32360597 PMCID: PMC7189850 DOI: 10.1016/j.pep.2020.105650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/02/2020] [Accepted: 04/20/2020] [Indexed: 01/22/2023]
Abstract
•Spy Tag-Protein covalent interaction is rapid and specific method for protein immobilization.•Column free purification of SpyCatcher protein enables develop a universal solid support for SpyTag protein purification.•This method is highly simple and applicable to other proteins.
Collapse
Affiliation(s)
- Mohammad Karimi Baba Ahmadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Abolghasem Mohammadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Manoochehr Makvandi
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Morteza Mamoueie
- Department of Animal Science, Ramin Agricultural and Natural Resources University, Ahvaz, Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Animal Science, Ramin Agricultural and Natural Resources University, Ahvaz, Iran.
| | - David Wood
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Ave., Columbus, OH, 43210, USA
| |
Collapse
|
70
|
Motoyama T, Hiramatsu N, Asano Y, Nakano S, Ito S. Protein Sequence Selection Method That Enables Full Consensus Design of Artificial l-Threonine 3-Dehydrogenases with Unique Enzymatic Properties. Biochemistry 2020; 59:3823-3833. [PMID: 32945652 DOI: 10.1021/acs.biochem.0c00570] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exponentially increasing protein sequence data enables artificial enzyme design using sequence-based protein design methods, including full-consensus protein design (FCD). The success of artificial enzyme design is strongly dependent on the nature of the sequences used. Hence, sequences must be selected from databases and curated libraries prepared to enable a successful design by FCD. In this study, we proposed a selection approach regarding several key residues as sequence motifs. We used l-threonine 3-dehydrogenase (TDH) as a model to test the validity of this approach. In the classification, four residues (143, 174, 188, and 214) were used as key residues. We classified thousands of TDH homologous sequences into five groups containing hundreds of sequences. Utilizing sequences in the libraries, we designed five artificial TDHs by FCD. Among the five, we successfully expressed four in soluble form. Biochemical analysis of artificial TDHs indicated that their enzymatic properties vary; half of the maximum measured enzyme activity (t1/2) and activation energies were distributed from 53 to 65 °C and from 38 to 125 kJ/mol, respectively. The artificial TDHs had unique kinetic parameters, distinct from one another. Structural analysis indicates that consensus mutations are mainly introduced in the secondary or outer shell. The functional diversity of the artificial TDHs is due to the accumulation of mutations that affect their physicochemical properties. Taken together, our findings indicate that our proposed approach can help generate artificial enzymes with unique enzymatic properties.
Collapse
Affiliation(s)
- Tomoharu Motoyama
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Nozomi Hiramatsu
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shogo Nakano
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Sohei Ito
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
71
|
Braun N, Sheikh ZP, Pless SA. The current chemical biology tool box for studying ion channels. J Physiol 2020; 598:4455-4471. [DOI: 10.1113/jp276695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Affiliation(s)
- N. Braun
- Department of Drug Design and Pharmacology University of Copenhagen Jagtvej 160 Copenhagen 2100 Denmark
| | - Z. P. Sheikh
- Department of Drug Design and Pharmacology University of Copenhagen Jagtvej 160 Copenhagen 2100 Denmark
| | - S. A. Pless
- Department of Drug Design and Pharmacology University of Copenhagen Jagtvej 160 Copenhagen 2100 Denmark
| |
Collapse
|
72
|
Sternke M, Tripp KW, Barrick D. The use of consensus sequence information to engineer stability and activity in proteins. Methods Enzymol 2020; 643:149-179. [PMID: 32896279 DOI: 10.1016/bs.mie.2020.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The goal of protein design is to create proteins that are stable, soluble, and active. Here we focus on one approach to protein design in which sequence information is used to create a "consensus" sequence. Such consensus sequences comprise the most common residue at each position in a multiple sequence alignment (MSA). After describing some general ideas that relate MSA and consensus sequences and presenting a statistical thermodynamic framework that relates consensus and non-consensus sequences to stability, we detail the process of designing a consensus sequence and survey reports of consensus design and characterization from the literature. Many of these consensus proteins retain native biological activities including ligand binding and enzyme activity. Remarkably, in most cases the consensus protein shows significantly higher stability than extant versions of the protein, as measured by thermal or chemical denaturation, consistent with the statistical thermodynamic model. To understand this stability increase, we compare various features of consensus sequences with the extant MSA sequences from which they were derived. Consensus sequences show enrichment in charged residues (most notably glutamate and lysine) and depletion of uncharged polar residues (glutamine, serine, and asparagine). Surprisingly, a survey of stability changes resulting from point substitutions show little correlation with residue frequencies at the corresponding positions within the MSA, suggesting that the high stability of consensus proteins may result from interactions among residue pairs or higher-order clusters. Whatever the source, the large number of reported successes demonstrates that consensus design is a viable route to generating active and in many cases highly stabilized proteins.
Collapse
Affiliation(s)
- Matt Sternke
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States; Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Katherine W Tripp
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States
| | - Doug Barrick
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
73
|
In situ chromatin interactomics using a chemical bait and trap approach. Nat Chem 2020; 12:520-527. [PMID: 32472103 DOI: 10.1038/s41557-020-0474-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Elucidating the physiological binding partners of histone post-translational modifications (hPTMs) is key to understanding fundamental epigenetic regulatory pathways. Determining such interactomes will enable the study of how perturbations of these interactions affect disease. Here we use a synthetic biology approach to set a series of hPTM-controlled photo-affinity traps in native chromatin. Using quantitative proteomics, the local interactomes of these chemically customized chromatin landscapes are determined. We show that the approach captures transiently interacting factors such as methyltransferases and demethylases, as well as previously reported and novel hPTM reader proteins. We also apply this in situ proteomics approach to a recently disclosed cancer-associated histone mutation, H3K4M, revealing a number of perturbed interactions with the mutated tail. Collectively our studies demonstrate that modifying and interrogating native chromatin with chemical precision is a powerful tool for exploring epigenetic regulation and dysregulation at the molecular level.
Collapse
|
74
|
Khoo KK, Galleano I, Gasparri F, Wieneke R, Harms H, Poulsen MH, Chua HC, Wulf M, Tampé R, Pless SA. Chemical modification of proteins by insertion of synthetic peptides using tandem protein trans-splicing. Nat Commun 2020; 11:2284. [PMID: 32385250 PMCID: PMC7210297 DOI: 10.1038/s41467-020-16208-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022] Open
Abstract
Manipulation of proteins by chemical modification is a powerful way to decipher their function. However, most ribosome-dependent and semi-synthetic methods have limitations in the number and type of modifications that can be introduced, especially in live cells. Here, we present an approach to incorporate single or multiple post-translational modifications or non-canonical amino acids into proteins expressed in eukaryotic cells. We insert synthetic peptides into GFP, NaV1.5 and P2X2 receptors via tandem protein trans-splicing using two orthogonal split intein pairs and validate our approach by investigating protein function. We anticipate the approach will overcome some drawbacks of existing protein enigineering methods.
Collapse
Affiliation(s)
- K K Khoo
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - I Galleano
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - F Gasparri
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - R Wieneke
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438, Frankfurt/Main, Germany
| | - H Harms
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - M H Poulsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - H C Chua
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - M Wulf
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - R Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Strasse 9, 60438, Frankfurt/Main, Germany
| | - S A Pless
- Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.
| |
Collapse
|
75
|
Seo HN, Bang D. Promiscuous Trans-splicing Activities Revealed by Next Generation Sequencing-based Analysis of 298 Split Inteins. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
76
|
Abstract
Protein semisynthesis-defined herein as the assembly of a protein from a combination of synthetic and recombinant fragments-is a burgeoning field of chemical biology that has impacted many areas in the life sciences. In this review, we provide a comprehensive survey of this area. We begin by discussing the various chemical and enzymatic methods now available for the manufacture of custom proteins containing noncoded elements. This section begins with a discussion of methods that are more chemical in origin and ends with those that employ biocatalysts. We also illustrate the commonalities that exist between these seemingly disparate methods and show how this is allowing for the development of integrated chemoenzymatic methods. This methodology discussion provides the technical foundation for the second part of the review where we cover the great many biological problems that have now been addressed using these tools. Finally, we end the piece with a short discussion on the frontiers of the field and the opportunities available for the future.
Collapse
Affiliation(s)
| | - Tom W. Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, New Jersey 08544, United States
| |
Collapse
|
77
|
Pinto F, Thornton EL, Wang B. An expanded library of orthogonal split inteins enables modular multi-peptide assemblies. Nat Commun 2020; 11:1529. [PMID: 32251274 PMCID: PMC7090010 DOI: 10.1038/s41467-020-15272-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/26/2020] [Indexed: 01/03/2023] Open
Abstract
Inteins are protein segments capable of joining adjacent residues via a peptide bond. In this process known as protein splicing, the intein itself is not present in the final sequence, thus achieving scarless peptide ligation. Here, we assess the splicing activity of 34 inteins (both uncharacterized and known) using a rapid split fluorescent reporter characterization platform, and establish a library of 15 mutually orthogonal split inteins for in vivo applications, 10 of which can be simultaneously used in vitro. We show that orthogonal split inteins can be coupled to multiple split transcription factors to implement complex logic circuits in living organisms, and that they can also be used for the in vitro seamless assembly of large repetitive proteins with biotechnological relevance. Our work demonstrates the versatility and vast potential of an expanded library of orthogonal split inteins for their use in the fields of synthetic biology and protein engineering.
Collapse
Affiliation(s)
- Filipe Pinto
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Ella Lucille Thornton
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Baojun Wang
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK.
- Centre for Synthetic and Systems Biology, University of Edinburgh, Edinburgh, EH9 3FF, UK.
| |
Collapse
|
78
|
Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat Biomed Eng 2020. [PMID: 31937940 DOI: 10.1038/s41551-019-0501-5.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The success of base editors for the study and treatment of genetic diseases depends on the ability to deliver them in vivo to the relevant cell types. Delivery via adeno-associated viruses (AAVs) is limited by AAV packaging capacity, which precludes the use of full-length base editors. Here, we report the application of dual AAVs for the delivery of split cytosine and adenine base editors that are then reconstituted by trans-splicing inteins. Optimized dual AAVs enable in vivo base editing at therapeutically relevant efficiencies and dosages in the mouse brain (up to 59% of unsorted cortical tissue), liver (38%), retina (38%), heart (20%) and skeletal muscle (9%). We also show that base editing corrects, in mouse brain tissue, a mutation that causes Niemann-Pick disease type C (a neurodegenerative ataxia), slowing down neurodegeneration and increasing lifespan. The optimized delivery vectors should facilitate the efficient introduction of targeted point mutations into multiple tissues of therapeutic interest.
Collapse
|
79
|
Abstract
In recent years, split inteins have seen widespread use as molecular platforms for the design of a variety of peptide and protein chemistry technologies, most notably protein ligation. The development of these approaches is dependent on the identification and/or design of split inteins with robust activity, stability, and solubility. Here, we describe two approaches to characterize and compare the activities of newly identified or engineered split inteins. The first assay employs an E. coli-based selection system to rapidly screen the activities of many inteins and can be repurposed for directed evolution. The second assay utilizes reverse-phase high-performance liquid chromatography (RP-HPLC) to provide insights into individual chemical steps in the protein splicing reaction, information that can guide further engineering efforts. These techniques provide useful alternatives to common assays that utilize SDS-PAGE to analyze splicing reaction progress.
Collapse
|
80
|
Abstract
Expressed protein ligation is a method of protein semisynthesis and typically involves the reaction of recombinant protein C-terminal thioesters with N-cysteine containing synthetic peptides in a chemoselective ligation. The recombinant protein C-terminal thioesters are produced by exploiting the action of nature's inteins which are protein modules that catalyze protein splicing. This chapter discusses the basic principles of expressed protein ligation and recent advances and applications in this protein semisynthesis field. Comparative strengths and weaknesses of the method and future challenges are highlighted.
Collapse
Affiliation(s)
- Zhipeng A Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
81
|
Levy JM, Yeh WH, Pendse N, Davis JR, Hennessey E, Butcher R, Koblan LW, Comander J, Liu Q, Liu DR. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat Biomed Eng 2020; 4:97-110. [PMID: 31937940 PMCID: PMC6980783 DOI: 10.1038/s41551-019-0501-5] [Citation(s) in RCA: 286] [Impact Index Per Article: 71.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/04/2019] [Indexed: 12/26/2022]
Abstract
The success of base editors for the study and treatment of genetic diseases depends on the ability to deliver them in vivo to the relevant cell types. Delivery via adeno-associated viruses (AAVs) is limited by AAV packaging capacity, which precludes the use of full-length base editors. Here, we report the application of dual AAVs for the delivery of split cytosine and adenine base editors that are then reconstituted by trans-splicing inteins. Optimized dual AAVs enable in vivo base editing at therapeutically relevant efficiencies and dosages in the mouse brain (up to 59% of unsorted cortical tissue), liver (38%), retina (38%), heart (20%) and skeletal muscle (9%). We also show that base editing corrects, in mouse brain tissue, a mutation that causes Niemann-Pick disease type C (a neurodegenerative ataxia), slowing down neurodegeneration and increasing lifespan. The optimized delivery vectors should facilitate the efficient introduction of targeted point mutations into multiple tissues of therapeutic interest.
Collapse
Affiliation(s)
- Jonathan M Levy
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Wei-Hsi Yeh
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, USA
| | - Nachiket Pendse
- Ocular Genomics Institute, Massachusetts Eye and Ear Institute, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jessie R Davis
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Erin Hennessey
- Ocular Genomics Institute, Massachusetts Eye and Ear Institute, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Rossano Butcher
- Ocular Genomics Institute, Massachusetts Eye and Ear Institute, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Luke W Koblan
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jason Comander
- Ocular Genomics Institute, Massachusetts Eye and Ear Institute, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Qin Liu
- Ocular Genomics Institute, Massachusetts Eye and Ear Institute, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
82
|
Abstract
The split inteins from the DnaE cyanobacterial family are efficient and versatile tools for protein engineering and chemical biology applications. Their ultrafast splicing kinetics allow for the efficient production of native proteins from two separate polypeptides both in vitro and in cells. They can also be used to generate proteins with C-terminal thioesters for downstream applications. In this chapter, we describe a method based on a genetically fused version of the DnaE intein Npu for the preparation of doubly modified proteins through recombinant expression. In particular, we provide protocols for the recombinant production of modified ubiquitin through amber suppression where fused Npu is used (1) as a traceless purification tag or (2) as a protein engineering tool to introduce C-terminal modifications for subsequent attachment to other proteins of interest. Our purification protocol allows for quick and facile separation of truncated products and eliminates the need for engineering protease cleavage sites. Our approach can be easily adapted to different proteins and applications where the simultaneous presence of internal and C-terminal modifications is desirable.
Collapse
|
83
|
Abstract
The development of expressed protein ligation (EPL) widened the scope of questions that could be addressed by mechanistic biochemistry. Protein trans-splicing (PTS) relies on the same basic chemical principles, but utilizes split inteins to tracelessly ligate distinct peptide or polypeptide fragments together with native peptide bonds. Here we present a method to adapt PTS methodologies for their use in live cells, in order to deliver synthetic or native histone modifications. As an example, we provide a protocol to incorporate a small molecule fluorophore into chromatinized histones. The protocol should be easily adaptable to incorporate other modifications to chromatin in vivo.
Collapse
|
84
|
Bowen CH, Reed TJ, Sargent CJ, Mpamo B, Galazka JM, Zhang F. Seeded Chain-Growth Polymerization of Proteins in Living Bacterial Cells. ACS Synth Biol 2019; 8:2651-2658. [PMID: 31742389 DOI: 10.1021/acssynbio.9b00362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Microbially produced protein-based materials (PBMs) are appealing due to use of renewable feedstock, low energy requirements, tunable side-chain chemistry, and biodegradability. However, high-strength PBMs typically have high molecular weights (HMW) and repetitive sequences that are difficult to microbially produce due to genetic instability and metabolic burden. We report the development of a biosynthetic strategy termed seeded chain-growth polymerization (SCP) for synthesis of HMW PBMs in living bacterial cells. SCP uses split intein (SI) chemistry to cotranslationally polymerize relatively small, genetically stable material protein subunits, effectively preventing intramolecular cyclization. We apply SCP to bioproduction of spider silk in Escherichia coli, generating HMW spider silk proteins (spidroins) up to 300 kDa, resulting in spidroin fibers of high strength, modulus, and toughness. SCP provides a modular strategy to synthesize HMW, repetitive material proteins, and may facilitate bioproduction of a variety of high-performance PBMs for broad applications.
Collapse
Affiliation(s)
| | | | | | | | - Jonathan M. Galazka
- Space Biosciences Division, Ames Research Center, National Aeronautics and Space Administration, Moffett Field, California 94035, United States
| | | |
Collapse
|
85
|
Abstract
Interactions between proteins normally depend on a range of noncovalent contacts. Under challenging conditions, such as with mechanical force or over long time periods, noncovalent interactions break. Unbreakable protein–protein interactions, linked by covalent bonding, provide many opportunities for robust connection of molecular building blocks, including for biomaterials, enzymes, and vaccines. When evaluating unbreakable interactions, it is important to consider whether reaction happens quickly even at low concentrations. Here we establish a genetically encoded peptide that reacts with its genetically encoded protein partner with a speed close to the limit set by diffusion. We apply a range of biophysical methods to understand the dynamics required for this interaction, demonstrating applicability to rapid and specific detection in a range of species. Much of life’s complexity depends upon contacts between proteins with precise affinity and specificity. The successful application of engineered proteins often depends on high-stability binding to their target. In recent years, various approaches have enabled proteins to form irreversible covalent interactions with protein targets. However, the rate of such reactions is a major limitation to their use. Infinite affinity refers to the ideal where such covalent interaction occurs at the diffusion limit. Prototypes of infinite affinity pairs have been achieved using nonnatural reactive groups. After library-based evolution and rational design, here we establish a peptide–protein pair composed of the regular 20 amino acids that link together through an amide bond at a rate approaching the diffusion limit. Reaction occurs in a few minutes with both partners at low nanomolar concentration. Stopped flow fluorimetry illuminated the conformational dynamics involved in docking and reaction. Hydrogen–deuterium exchange mass spectrometry gave insight into the conformational flexibility of this split protein and the process of enhancing its reaction rate. We applied this reactive pair for specific labeling of a plasma membrane target in 1 min on live mammalian cells. Sensitive and specific detection was also confirmed by Western blot in a range of model organisms. The peptide–protein pair allowed reconstitution of a critical mechanotransmitter in the cytosol of mammalian cells, restoring cell adhesion and migration. This simple genetic encoding for rapid irreversible reaction should provide diverse opportunities to enhance protein function by rapid detection, stable anchoring, and multiplexing of protein functionality.
Collapse
|
86
|
Olorunniji FJ, Lawson-Williams M, McPherson AL, Paget JE, Stark WM, Rosser SJ. Control of ϕC31 integrase-mediated site-specific recombination by protein trans-splicing. Nucleic Acids Res 2019; 47:11452-11460. [PMID: 31667500 PMCID: PMC6868429 DOI: 10.1093/nar/gkz936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 11/13/2022] Open
Abstract
Serine integrases are emerging as core tools in synthetic biology and have applications in biotechnology and genome engineering. We have designed a split-intein serine integrase-based system with potential for regulation of site-specific recombination events at the protein level in vivo. The ϕC31 integrase was split into two extein domains, and intein sequences (Npu DnaEN and Ssp DnaEC) were attached to the two termini to be fused. Expression of these two components followed by post-translational protein trans-splicing in Escherichia coli generated a fully functional ϕC31 integrase. We showed that protein splicing is necessary for recombination activity; deletion of intein domains or mutation of key intein residues inactivated recombination. We used an invertible promoter reporter system to demonstrate a potential application of the split intein-regulated site-specific recombination system in building reversible genetic switches. We used the same split inteins to control the reconstitution of a split Integrase-Recombination Directionality Factor fusion (Integrase-RDF) that efficiently catalysed the reverse attR x attL recombination. This demonstrates the potential for split-intein regulation of the forward and reverse reactions using the integrase and the integrase-RDF fusion, respectively. The split-intein integrase is a potentially versatile, regulatable component for building synthetic genetic circuits and devices.
Collapse
Affiliation(s)
- Femi J Olorunniji
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Makeba Lawson-Williams
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK
| | - Arlene L McPherson
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Jane E Paget
- UK Centre for Mammalian Synthetic Biology at the Institute of Quantitative Biology, Biochemistry, and Biotechnology, SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JD, UK.,Institute for Bioengineering, University of Edinburgh, Faraday Building, The King's Buildings, Edinburgh, 2 EH9 3DW, UK
| | - W Marshall Stark
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Susan J Rosser
- UK Centre for Mammalian Synthetic Biology at the Institute of Quantitative Biology, Biochemistry, and Biotechnology, SynthSys, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JD, UK.,Institute for Bioengineering, University of Edinburgh, Faraday Building, The King's Buildings, Edinburgh, 2 EH9 3DW, UK
| |
Collapse
|
87
|
An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp. Nature 2019; 575:674-678. [PMID: 31695193 PMCID: PMC6883173 DOI: 10.1038/s41586-019-1735-9] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/03/2019] [Indexed: 12/03/2022]
Abstract
Bacteria have evolved sophisticated mechanisms to inhibit the growth of competitors1. One such mechanism involves type VI secretion systems, which bacteria can use to directly inject antibacterial toxins into neighboring cells. Many of these toxins target cell envelope integrity, but the full range of growth inhibitory mechanisms remains to be determined2. Here, we discover a novel type VI secretion effector, Tas1, in the opportunistic pathogen Pseudomonas aeruginosa. A crystal structure of Tas1 reveals similarity to enzymes that synthesize (p)ppGpp, a broadly conserved signaling molecule in bacteria that modulates cell growth rate, particularly in response to nutritional stress3. Strikingly, however, we find that Tas1 does not synthesize (p)ppGpp, and instead pyrophosphorylates adenosine nucleotides to produce (p)ppApp at rates of nearly 180,000 per min. Consequently, delivery of Tas1 into competitor cells drives the rapid accumulation of (p)ppApp, depletion of ATP, and widespread dysregulation of essential metabolic pathways, resulting in target cell death. Collectively, our findings reveal a new mechanism for interbacterial antagonism and demonstrate, for the first time, a physiological role for the metabolite (p)ppApp in bacteria.
Collapse
|
88
|
|
89
|
A mesophilic cysteine-less split intein for protein trans-splicing applications under oxidizing conditions. Proc Natl Acad Sci U S A 2019; 116:22164-22172. [PMID: 31611397 DOI: 10.1073/pnas.1909825116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Split intein-mediated protein trans-splicing has found extensive applications in chemical biology, protein chemistry, and biotechnology. However, an enduring limitation of all well-established split inteins has been the requirement to carry out the reaction in a reducing environment due to the presence of 1 or 2 catalytic cysteines that need to be in a reduced state for splicing to occur. The concomitant exposure of the fused proteins to reducing agents severely limits the scope of protein trans-splicing by excluding proteins sensitive to reducing conditions, such as those containing critical disulfide bonds. Here we report the discovery, characterization, and engineering of a completely cysteine-less split intein (CL intein) that is capable of efficient trans-splicing at ambient temperatures, without a denaturation step, and in the absence of reducing agents. We demonstrate its utility for the site-specific chemical modification of nanobodies and an antibody Fc fragment by N- and C-terminal trans-splicing with short peptide tags (CysTag) that consist of only a few amino acids and have been prelabeled on a single cysteine using classical cysteine bioconjugation. We also synthesized the short N-terminal fragment of the atypically split CL intein by solid-phase peptide synthesis. Furthermore, using the CL intein in combination with a nanobody-epitope pair as a high-affinity mediator, we showed chemical labeling of the extracellular domain of a cell surface receptor on living mammalian cells with a short CysTag containing a synthetic fluorophore. The CL intein thus greatly expands the scope of applications for protein trans-splicing.
Collapse
|
90
|
Kondo Y, Ognjenović J, Banerjee S, Karandur D, Merk A, Kulhanek K, Wong K, Roose JP, Subramaniam S, Kuriyan J. Cryo-EM structure of a dimeric B-Raf:14-3-3 complex reveals asymmetry in the active sites of B-Raf kinases. Science 2019; 366:109-115. [PMID: 31604311 DOI: 10.1126/science.aay0543] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
Raf kinases are important cancer drug targets. Paradoxically, many B-Raf inhibitors induce the activation of Raf kinases. Cryo-electron microscopy structural analysis of a phosphorylated B-Raf kinase domain dimer in complex with dimeric 14-3-3, at a resolution of ~3.9 angstroms, shows an asymmetric arrangement in which one kinase is in a canonical "active" conformation. The distal segment of the C-terminal tail of this kinase interacts with, and blocks, the active site of the cognate kinase in this asymmetric arrangement. Deletion of the C-terminal segment reduces Raf activity. The unexpected asymmetric quaternary architecture illustrates how the paradoxical activation of Raf by kinase inhibitors reflects an innate mechanism, with 14-3-3 facilitating inhibition of one kinase while maintaining activity of the other. Conformational modulation of these contacts may provide new opportunities for Raf inhibitor development.
Collapse
Affiliation(s)
- Yasushi Kondo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jana Ognjenović
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20814, USA
| | - Saikat Banerjee
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Deepti Karandur
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Alan Merk
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20814, USA
| | - Kayla Kulhanek
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kathryn Wong
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sriram Subramaniam
- University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. .,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.,Divisions of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
91
|
Gramespacher JA, Burton AJ, Guerra LF, Muir TW. Proximity Induced Splicing Utilizing Caged Split Inteins. J Am Chem Soc 2019; 141:13708-13712. [PMID: 31418547 DOI: 10.1021/jacs.9b05721] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Naturally split inteins drive the ligation of separately expressed polypeptides through a process called protein trans splicing (PTS). The ability to control PTS, so-called conditional protein splicing (CPS), has led to the development of tools to modulate protein structure and function at the post-translational level. CPS applications that utilize proximity as a trigger are especially intriguing as they afford the possibility to activate proteins in both a temporal and spatially targeted manner. In this study, we present the first proximity triggered CPS method that utilizes a naturally split fast splicing intein, Npu. We show that this method is amenable to diverse proximity triggers and capable of reconstituting and locally activating the acetyltransferase p300 in mammalian cells. This technology opens up a range of possibilities for the use of proximity triggered CPS.
Collapse
Affiliation(s)
- Josef A Gramespacher
- Department of Chemistry , Princeton University , Frick Laboratory, Princeton , New Jersey 08544 , United States
| | - Antony J Burton
- Department of Chemistry , Princeton University , Frick Laboratory, Princeton , New Jersey 08544 , United States
| | - Luis F Guerra
- Department of Chemistry , Princeton University , Frick Laboratory, Princeton , New Jersey 08544 , United States
| | - Tom W Muir
- Department of Chemistry , Princeton University , Frick Laboratory, Princeton , New Jersey 08544 , United States
| |
Collapse
|
92
|
Utilizing intein trans-splicing for in vivo generation of site-specifically modified proteins. Methods Enzymol 2019; 626:203-222. [PMID: 31606075 DOI: 10.1016/bs.mie.2019.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many cellular processes as well as their associated pathologies are regulated by protein post-translational modifications (PTMs). Understanding the precise roles of these adducts hinges on the development of methods to robustly and site-specifically manipulate proteins in their physiological environments. Recently, ultrafast intein protein trans-splicing (PTS) was harnessed to incorporate site-specific modifications on cellular chromatin in live cells. In this chapter, we present the protocols for the generation of synthetic modifications on native chromatin as well as highlight the capabilities of this methodology.
Collapse
|
93
|
Thompson RE, Stevens AJ, Muir TW. Protein engineering through tandem transamidation. Nat Chem 2019; 11:737-743. [PMID: 31263208 PMCID: PMC6711197 DOI: 10.1038/s41557-019-0281-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/10/2019] [Indexed: 01/01/2023]
Abstract
Semisynthetic proteins engineered to contain non-coded elements such as post-translational modifications (PTMs) represent a powerful class of tools for interrogating biological processes. Here, we introduce a one-pot, chemoenzymatic method that allows broad access to chemically modified proteins. The approach involves a tandem transamidation reaction cascade that integrates intein-mediated protein splicing with enzyme-mediated peptide ligation. We show that this approach can be used to introduce PTMs and biochemical probes into a range of proteins including Cas9 nuclease and the transcriptional regulator MeCP2, which causes Rett syndrome when mutated. The versatility of the approach is further illustrated through the chemical tailoring of histone proteins within a native chromatin setting. We expect our approach will extend the scope of semisynthesis in protein engineering.
Collapse
Affiliation(s)
- Robert E Thompson
- Department of Chemistry, Princeton University, Frick Chemistry Laboratory, Princeton, NJ, USA
| | - Adam J Stevens
- Department of Chemistry, Princeton University, Frick Chemistry Laboratory, Princeton, NJ, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Tom W Muir
- Department of Chemistry, Princeton University, Frick Chemistry Laboratory, Princeton, NJ, USA.
| |
Collapse
|
94
|
Covalently-assembled single-chain protein nanostructures with ultra-high stability. Nat Commun 2019; 10:3317. [PMID: 31346167 PMCID: PMC6658521 DOI: 10.1038/s41467-019-11285-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022] Open
Abstract
Protein nanostructures with precisely defined geometries have many potential applications in catalysis, sensing, signal processing, and drug delivery. While many de novo protein nanostructures have been assembled via non-covalent intramolecular and intermolecular interactions, a largely unexplored strategy is to construct nanostructures by covalently linking multiple individually folded proteins through site-specific ligations. Here, we report the synthesis of single-chain protein nanostructures with triangular and square shapes made using multiple copies of a three-helix bundle protein and split intein chemistry. Coarse-grained simulations confirm the experimentally observed flexibility of these nanostructures, which is optimized to produce triangular structures with high regularity. These single-chain nanostructures also display ultra-high thermostability, resist denaturation by chaotropes and organic solvents, and have applicability as scaffolds for assembling materials with nanometer resolution. Our results show that site-specific covalent ligation can be used to assemble individually folded proteins into single-chain nanostructures with bespoke architectures and high stabilities. De novo protein nanostructures are typically assembled via top-down approaches. Here, the authors developed a bottom-up approach, using split inteins to ligate multiple copies of a three-helix bundle to create 2D triangular and square-shaped structures with high stability.
Collapse
|
95
|
Beyer HM, Iwaï H. Off-Pathway-Sensitive Protein-Splicing Screening Based on a Toxin/Antitoxin System. Chembiochem 2019; 20:1933-1938. [PMID: 30963690 PMCID: PMC6771659 DOI: 10.1002/cbic.201900139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Indexed: 02/04/2023]
Abstract
Protein‐splicing domains are frequently used engineering tools that find application in the in vivo and in vitro ligation of protein domains. Directed evolution is among the most promising technologies used to advance this technology. However, the available screening systems for protein‐splicing activity are associated with bottlenecks such as the selection of pseudo‐positive clones arising from off‐pathway reaction products or fragment complementation. Herein, we report a stringent screening method for protein‐splicing activity in cis and trans, that exclusively selects productively splicing domains. By fusing splicing domains to an intrinsically disordered region of the antidote from the Escherichia coli CcdA/CcdB type II toxin/antitoxin system, we linked protein splicing to cell survival. The screen allows selecting novel cis‐ and trans‐splicing inteins catalyzing productive highly efficient protein splicing, for example, from directed‐evolution approaches or the natural intein sequence space.
Collapse
Affiliation(s)
- Hannes M Beyer
- Research Program in Structural Biology and Biophysics, University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland
| | - Hideo Iwaï
- Research Program in Structural Biology and Biophysics, University of Helsinki, Viikinkaari 1, 00014, Helsinki, Finland
| |
Collapse
|
96
|
Consensus sequence design as a general strategy to create hyperstable, biologically active proteins. Proc Natl Acad Sci U S A 2019; 116:11275-11284. [PMID: 31110018 DOI: 10.1073/pnas.1816707116] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Consensus sequence design offers a promising strategy for designing proteins of high stability while retaining biological activity since it draws upon an evolutionary history in which residues important for both stability and function are likely to be conserved. Although there have been several reports of successful consensus design of individual targets, it is unclear from these anecdotal studies how often this approach succeeds and how often it fails. Here, we attempt to assess generality by designing consensus sequences for a set of six protein families with a range of chain lengths, structures, and activities. We characterize the resulting consensus proteins for stability, structure, and biological activities in an unbiased way. We find that all six consensus proteins adopt cooperatively folded structures in solution. Strikingly, four of six of these consensus proteins show increased thermodynamic stability over naturally occurring homologs. Each consensus protein tested for function maintained at least partial biological activity. Although peptide binding affinity by a consensus-designed SH3 is rather low, K m values for consensus enzymes are similar to values from extant homologs. Although consensus enzymes are slower than extant homologs at low temperature, they are faster than some thermophilic enzymes at high temperature. An analysis of sequence properties shows consensus proteins to be enriched in charged residues, and rarified in uncharged polar residues. Sequence differences between consensus and extant homologs are predominantly located at weakly conserved surface residues, highlighting the importance of these residues in the success of the consensus strategy.
Collapse
|
97
|
Wright JN, Wong WL, Harvey JA, Garnett JA, Itzhaki LS, Main ERG. Scalable Geometrically Designed Protein Cages Assembled via Genetically Encoded Split Inteins. Structure 2019; 27:776-784.e4. [PMID: 30879889 DOI: 10.1016/j.str.2019.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/21/2018] [Accepted: 02/15/2019] [Indexed: 01/20/2023]
Abstract
Engineering proteins to assemble into user-defined structures is key in their development for biotechnological applications. However, designing generic rather than bespoke solutions is challenging. Here we describe an expandable recombinant assembly system that produces scalable protein cages via split intein-mediated native chemical ligation. Three types of component are used: two complementary oligomeric "half-cage" protein fusions and an extendable monomeric "linker" fusion. All are composed of modular protein domains chosen to fulfill the required geometries, with two orthogonal pairs of split intein halves to drive assembly when mixed. This combination enables both one-pot construction of two-component cages and stepwise assembly of larger three-component scalable cages. To illustrate the system's versatility, trimeric half-cages and linker constructs comprising consensus-designed repeat proteins were ligated in one-pot and stepwise reactions. Under mild conditions, rapid high-yielding ligations were obtained, from which discrete proteins cages were easily purified and shown to form the desired trigonal bipyramidal structures.
Collapse
Affiliation(s)
- James N Wright
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Wan Ling Wong
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Joseph A Harvey
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - James A Garnett
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK
| | - Laura S Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Ewan R G Main
- School of Biological and Chemical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
98
|
Huang WYC, Alvarez S, Kondo Y, Lee YK, Chung JK, Lam HYM, Biswas KH, Kuriyan J, Groves JT. A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS. Science 2019; 363:1098-1103. [PMID: 30846600 PMCID: PMC6563836 DOI: 10.1126/science.aau5721] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022]
Abstract
The guanine nucleotide exchange factor (GEF) Son of Sevenless (SOS) is a key Ras activator that is autoinhibited in the cytosol and activates upon membrane recruitment. Autoinhibition release involves structural rearrangements of the protein at the membrane and thus introduces a delay between initial recruitment and activation. In this study, we designed a single-molecule assay to resolve the time between initial receptor-mediated membrane recruitment and the initiation of GEF activity of individual SOS molecules on microarrays of Ras-functionalized supported membranes. The rise-and-fall shape of the measured SOS activation time distribution and the long mean time scale to activation (~50 seconds) establish a basis for kinetic proofreading in the receptor-mediated activation of Ras. We further demonstrate that this kinetic proofreading is modulated by the LAT (linker for activation of T cells)-Grb2-SOS phosphotyrosine-driven phase transition at the membrane.
Collapse
Affiliation(s)
- William Y C Huang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Steven Alvarez
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Yasushi Kondo
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Young Kwang Lee
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Jean K Chung
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | - Kabir H Biswas
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - John Kuriyan
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Divisions of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
- Divisions of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
99
|
Castillo F, Tavassoli A. Genetic Selections with SICLOPPS Libraries: Toward the Identification of Novel Protein-Protein Interaction Inhibitors and Chemical Tools. Methods Mol Biol 2019; 2001:317-328. [PMID: 31134578 DOI: 10.1007/978-1-4939-9504-2_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cyclic peptide libraries have successfully been employed for the identification of inhibitors of highly challenging targets. While several methodologies exist for the generation of cyclic peptide libraries, genetically encoded libraries hold several advantages over purely in vitro methods of library generation, including the ability to conduct cell-based functional screens and straightforward hit deconvolution. Here we detail the use of split-intein circular ligation of peptides and proteins (SICLOPPS) for the identification and optimization of several first-in-class and best-in-class inhibitors. We describe the current advances in the identification of SICLOPPS-derived inhibitors, as well as the optimization of library generation through the use of new inteins. Finally, we discuss the production of more diverse libraries as a way of enhancing the hit rate against difficult protein-protein interactions.
Collapse
Affiliation(s)
| | - Ali Tavassoli
- School of Chemistry, University of Southampton, Southampton, UK.
| |
Collapse
|
100
|
Wang B, Dai P, Ding D, Del Rosario A, Grant RA, Pentelute BL, Laub MT. Affinity-based capture and identification of protein effectors of the growth regulator ppGpp. Nat Chem Biol 2018; 15:141-150. [PMID: 30559427 PMCID: PMC6366861 DOI: 10.1038/s41589-018-0183-4] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 10/29/2018] [Indexed: 01/29/2023]
Abstract
The nucleotide ppGpp is a highly conserved regulatory molecule in prokaryotes that helps tune growth rate to nutrient availability. Despite decades of study, how ppGpp regulates growth remains poorly understood. Here, we develop and validate a capture-compound mass spectrometry approach that identifies >50 putative ppGpp targets in Escherichia coli. These targets control many key cellular processes and include 13 enzymes required for nucleotide synthesis. We demonstrate that ppGpp inhibits the de novo synthesis of all purine nucleotides by directly targeting the enzyme PurF. By solving a structure of PurF bound to ppGpp, we design a mutation that ablates ppGpp-based regulation, leading to a dysregulation of purine nucleotide synthesis following ppGpp accumulation. Collectively, our results provide new insights into ppGpp-based growth control and a nearly comprehensive set of targets for future exploration. The capture compounds developed will also now enable the rapid identification of ppGpp targets in any species, including pathogens.
Collapse
Affiliation(s)
- Boyuan Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peng Dai
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Ding
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amanda Del Rosario
- Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert A Grant
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bradley L Pentelute
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Center for Environmental Health Sciences MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|