51
|
Fu D, Ryan EP, Huang J, Liu Z, Weir TL, Snook RL, Ryan TP. Fermented Camellia sinensis, Fu Zhuan Tea, regulates hyperlipidemia and transcription factors involved in lipid catabolism. Food Res Int 2011. [DOI: 10.1016/j.foodres.2011.07.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
52
|
Epigallocatechin gallate changes mRNA expression level of genes involved in cholesterol metabolism in hepatocytes. Br J Nutr 2011; 107:769-73. [DOI: 10.1017/s0007114511003758] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Catechins, compounds derived from green tea, have been shown to improve cholesterol metabolism in animal studies, but the molecular mechanisms underlying this function have not been fully understood. We performed DNA microarray analysis in order to clarify the effects of epigallocatechin gallate (EGCG), the dominant catechin in green tea, on cholesterol metabolism in HepG2 hepatocytes. This revealed that the expression levels of several genes related to cholesterol metabolism, including the LDL receptor, were changed by EGCG treatment. Using a real-time PCR technique, we confirmed that EGCG treatment up-regulated mRNA expression level of the LDL receptor. Moreover, EGCG decreased extracellular apoB levels. These findings indicated that EGCG improves cholesterol metabolism through the up-regulation of LDL receptor and also reduces extracellular apoB levels.
Collapse
|
53
|
Cuccioloni M, Mozzicafreddo M, Spina M, Tran CN, Falconi M, Eleuteri AM, Angeletti M. Epigallocatechin-3-gallate potently inhibits the in vitro activity of hydroxy-3-methyl-glutaryl-CoA reductase. J Lipid Res 2011; 52:897-907. [PMID: 21357570 DOI: 10.1194/jlr.m011817] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) is the rate-controlling enzyme of cholesterol synthesis, and owing to its biological and pharmacological relevance, researchers have investigated several compounds capable of modulating its activity with the hope of developing new hypocholesterolemic drugs. In particular, polyphenol-rich extracts were extensively tested for their cholesterol-lowering effect as alternatives, or adjuvants, to the conventional statin therapies, but a full understanding of the mechanism of their action has yet to be reached. Our work reports on a detailed kinetic and equilibrium study on the modulation of HMGR by the most-abundant catechin in green tea, epigallocatechin-3-gallate (EGCG). Using a concerted approach involving spectrophotometric, optical biosensor, and chromatographic analyses, molecular docking, and site-directed mutagenesis on the cofactor site of HMGR, we have demonstrated that EGCG potently inhibits the in vitro activity of HMGR (K(i) in the nanomolar range) by competitively binding to the cofactor site of the reductase. Finally, we evaluated the effect of combined EGCG-statin administration.
Collapse
|
54
|
Chen YC, Yu SH, Tsai GJ, Tang DW, Mi FL, Peng YP. Novel technology for the preparation of self-assembled catechin/gelatin nanoparticles and their characterization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:6728-34. [PMID: 20476739 DOI: 10.1021/jf1005116] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study, self-assembled tea catechin/gelatin nanoparticles were prepared by directly mixing the catechins and gelatin solutions. The mean particle sizes were almost less than 200 nm, and the zeta potential values were negatively charged. FT-IR spectral analysis indicated that hydrogen bonding between aliphatic and aromatic hydroxyl groups, respectively, on gelatin and catechins is responsible for the self-assembly of nanoparticles. Free radical (DPPH* and ABTS*(+)) scavenging assays showed that tea catechins could be protected by the nanoparticles and that the antioxidant activity of tea catechins was almost retained after three weeks of storage. The tea catechin/gelatin nanoparticles exhibited 28-41% inhibition to trypsin against the degradation of gelatin. This result suggested that the tea catechin/gelatin nanoparticles might be a useful antioxidant carrier because catechins and gelatin were, respectively, protected from oxidation and enzymatic digestion.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Department of Cosmetic Science, Vanung University, Chung-Li, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
55
|
Annaba F, Kumar P, Dudeja AK, Saksena S, Gill RK, Alrefai WA. Green tea catechin EGCG inhibits ileal apical sodium bile acid transporter ASBT. Am J Physiol Gastrointest Liver Physiol 2010; 298:G467-73. [PMID: 20056894 PMCID: PMC2838517 DOI: 10.1152/ajpgi.00360.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Green tea catechins exhibit hypocholesterolemic effects probably via their inhibitory effects on intestinal bile acid absorption. Ileal apical sodium-dependent bile acid transporter (ASBT) is responsible for reabsorption of bile acids. The present studies were, therefore, designed to investigate the modulation of ASBT function and membrane expression by green tea catechins in human embryonic kidney HEK-293 cells stably transfected with ASBT-V5 fusion protein and intestinal Caco-2 monolayers. Our data showed that ASBT activity was significantly decreased by (-)-epigallocatechin-3-gallate (EGCG) but not other green tea catechins. Inhibition of PKC, phosphatidylinositol 3-kinase, and MAPK-dependent pathways failed to block the reduction in ASBT activity by EGCG. Kinetics studies showed a significant decrease in the V(max) of the transporter, whereas total ASBT content on the plasma membrane was unaltered by EGCG. Concomitant with the decrease in ASBT function, EGCG significantly reduced ASBT pool in the detergent-insoluble fraction, while increasing its presence in the detergent-soluble fraction of plasma membrane. Furthermore, EGCG decreased the association of ASBT with floating lipid raft fractions of cellular membrane on Optiprep density gradient. In conclusion, our data demonstrate a novel role of lipid rafts in the modulation of ASBT function by the dietary component EGCG, which may underlie the hypocholesterolemic effects of green tea.
Collapse
Affiliation(s)
- Fadi Annaba
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Pradeep Kumar
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Amish K. Dudeja
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Seema Saksena
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Ravinder K. Gill
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Waddah A. Alrefai
- Section of Digestive Diseases and Nutrition, Department of Medicine, University of Illinois at Chicago, and Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
56
|
Shrestha S, Ehlers SJ, Lee JY, Fernandez ML, Koo SI. Dietary green tea extract lowers plasma and hepatic triglycerides and decreases the expression of sterol regulatory element-binding protein-1c mRNA and its responsive genes in fructose-fed, ovariectomized rats. J Nutr 2009; 139:640-5. [PMID: 19193814 PMCID: PMC2666357 DOI: 10.3945/jn.108.103341] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The objective of this study was to determine whether green tea (GT) inhibits the expression of genes regulating hepatic lipogenesis and intestinal lipid transport in fructose-fed ovariectomized (OX) rats. OX rats were assigned to: 1) a control group (S) fed the AIN-93G diet with corn starch as the major carbohydrate source; 2) another control group (F) fed the same diet but containing fructose at 60% as the major carbohydrate source; 3) a group fed the F diet but containing 0.5% GT; and 4) a group fed the F diet containing 1% GT. At 6 wk, plasma and liver triglyceride (TG) and cholesterol and expression of liver sterol regulatory element-binding protein-1c (SREBP-1c) and selected genes involved in lipogenesis and lipid transport were measured. Fructose elevated plasma TG and cholesterol compared with the S group. GT at 0.5 and 1.0% markedly lowered plasma and liver TG. Fructose increased the expression of SREBP-1c, fatty acid synthase, and stearoyl-CoA desaturase 1 mRNA in the liver, whereas GT decreased the expression of these lipogenic genes. Similarly, fructose increased the abundance of hepatic 3-hydroxy-3-methyl-glutaryl-CoA reductase mRNA, whereas GT significantly decreased its expression. GT did not alter the expression of scavenger receptor class B, type 1, microsomal TG transfer protein, and apobec 1 in the liver and intestine. The results suggest that the lipid-lowering effect of GT is mediated partly by its inhibition of hepatic lipogenesis involving SREBP-1c and its responsive genes without affecting lipoprotein assembly.
Collapse
Affiliation(s)
- Sudeep Shrestha
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269 and Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583
| | - Sarah J. Ehlers
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269 and Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269 and Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583
| | - Maria-Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269 and Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583
| | - Sung I. Koo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269 and Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE 68583
| |
Collapse
|
57
|
Lu N, Li Y, Qin H, Zhang YL, Sun CH. Gossypin up-regulates LDL receptor through activation of ERK pathway: a signaling mechanism for the hypocholesterolemic effect. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:11526-11532. [PMID: 19007237 DOI: 10.1021/jf802607x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Hypercholesterolemia is one of the major risk factors for the development of cardiovascular disease. This study aims to elucidate the effect of gossypin on cholesterol metabolism in HepG2 cells. Results indicated that gossypin significantly reduced the total cholesterol concentration in a dose-dependent manner. There was a time- and dose-dependent increase in the expression of low-density lipoprotein receptor (LDLR) protein. However, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme in cholesterol synthesis, was not affected by gossypin. Moreover, gossypin had no effect on nuclear sterol regulatory element binding proteins (SREBP)-2 abundance. The activity of gossypin on LDLR expression was inhibited by the extracellular signal-regulated kinase (ERK) inhibitor PD98059. Western blotting analysis revealed that gossypin treatment dose- and time-dependently increased ERK activation and preceded the up-regulation of LDLR expression. Collectively, these new findings identify gossypin as a new hypocholesterolemic agent that up-regulates LDLR expression independent of SREBP-2 but is dependent on ERK activation.
Collapse
Affiliation(s)
- Na Lu
- Department of Nutrition and Food Hygiene, Harbin Medical University, P. R. China
| | | | | | | | | |
Collapse
|
58
|
Singh DK, Banerjee S, Porter TD. Green and black tea extracts inhibit HMG-CoA reductase and activate AMP kinase to decrease cholesterol synthesis in hepatoma cells. J Nutr Biochem 2008; 20:816-22. [PMID: 18926682 DOI: 10.1016/j.jnutbio.2008.07.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/24/2008] [Accepted: 07/29/2008] [Indexed: 11/29/2022]
Abstract
Recent studies have demonstrated that green and black tea consumption can lower serum cholesterol in animals and in man, and suppression of hepatic cholesterol synthesis is suggested to contribute to this effect. To evaluate this hypothesis, we measured cholesterol synthesis in cultured rat hepatoma cells in the presence of green and black tea extracts and selected components. Green and black tea decreased cholesterol synthesis by up to 55% and 78%, respectively, as measured by a 3-h incorporation of radiolabeled acetate. Inhibition was much less evident when radiolabeled mevalonate was used, suggesting that the inhibition was mediated largely at or above the level of HMG-CoA reductase. Both extracts directly inhibited HMG-CoA reductase when added to microsomal preparations, although the extent of inhibition was considerably less than the decrease in cholesterol synthesis observed in whole cells. As HMG-CoA reductase activity also can be decreased by enzyme phosphorylation by AMP kinase, the phosphorylation state of HMG-CoA reductase and AMP kinase, which is activated by phosphorylation, was determined in lysates from cells treated with tea extracts. Both extracts increased AMP-kinase phosphorylation and HMG-CoA reductase phosphorylation by 2.5- to 4-fold, but with different time courses: maximal phosphorylation with green tea was evident within 30 min of treatment, whereas with black tea phosphorylation was slower to develop, with maximal phosphorylation occurring > or =3 hours after treatment. These results suggest that both green and black tea decrease cholesterol synthesis in whole cells by directly inhibiting HMG-CoA reductase and by promoting its inactivation by AMP kinase.
Collapse
Affiliation(s)
- Dev K Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | | | | |
Collapse
|
59
|
Chen ZY, Jiao R, Ma KY. Cholesterol-lowering nutraceuticals and functional foods. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:8761-8773. [PMID: 18778072 DOI: 10.1021/jf801566r] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Epidemiological studies have demonstrated that elevated levels of plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) are the major risk factors for coronary heart disease (CHD), whereas high concentrations of plasma high-density lipoprotein cholesterol (HDL-C) and a low ratio of TC to HDL-C are protective against CHD. A relationship between plasma TC and the risk of CHD is well established at concentrations above 240 mg/dL. In addition to the use of three main classes of cholesterol-lowering medications, including HMG-CoA reductase inhibitors, anion-exchange resins, and fibrates, a nutritionally balanced diet that reduces saturated fat and cholesterol intake has traditionally been the first goal of dietary therapy in lowering plasma TC. In recent years, nutraceuticals and functional foods have attracted much interest as possible alternative therapies for lowering plasma TC, especially for hypercholesterolemia patients, whose blood cholesterol level is marginally high (200-240 mg/dL) but not high enough to warrant the prescription of cholesterol-lowering medications. This review summarizes the findings of recent studies on the production, application, efficacy, and mechanisms of popular cholesterol-lowering nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Zhen-Yu Chen
- Food and Nutritional Sciences Programme, Department of Biochemistry, The Chinese University of Hong Kong, Shatin, NT, China.
| | | | | |
Collapse
|
60
|
Dou XB, Wo XD, Fan CL. Progress of research in treatment of hyperlipidemia by monomer or compound recipe of Chinese herbal medicine. Chin J Integr Med 2008; 14:71-5. [PMID: 18568331 DOI: 10.1007/s11655-008-0071-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Indexed: 12/30/2022]
Abstract
Hyperlipidemia (HLP) is the No.1 risk factor for patients with atherosclerosis (AS) and is directly related to the occurrence of coronary artery disease (CAD) and cerebrovascular disease. Therefore, prevention and treatment of AS is of great importance and of practical significance in controlling the incidence and mortality of CAD. With its peculiar syndrome-dependent therapy, traditional Chinese medicine (TCM) has accumulated abundant practical experiences in this field and good clinical effects have been achieved. Chinese herbal medicine, with its particularly unique advantages and high potentials yet to be tapped, displays its huge strength in HLP prevention and treatment. The progress of studies concerning prevention and treatment of HLP by Chinese herbal medicines, in the form of monomers or compound recipes, is reviewed in this paper.
Collapse
Affiliation(s)
- Xiao-bing Dou
- Zhejiang University of Chinese Medicine, Hangzhou, 310053, China.
| | | | | |
Collapse
|
61
|
Yang RL, Li W, Shi YH, Le GW. Lipoic acid prevents high-fat diet–induced dyslipidemia and oxidative stress: A microarray analysis. Nutrition 2008; 24:582-8. [DOI: 10.1016/j.nut.2008.02.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 01/21/2008] [Accepted: 02/01/2008] [Indexed: 01/05/2023]
|
62
|
Abstract
Green tea catechins are known to have hypocholesterolaemic effects in animals and human subjects. In the present study, we investigated the effects of green tea catechins on the mRNA level and promoter activity of hepatic cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in the conversion of cholesterol to bile acids, in human hepatoma cells. Real-time PCR assays showed that different catechins, ( − )-epicatechin gallate (ECG), ( − )-epigallocatechin-3-gallate (EGCG), ( − )-epigallocatechin (EGC) and ( − )-epicatechin (EC), up regulated the CYP7A1 mRNA level by 5·5-, 4·2-, 2·9- and 1·9-fold, respectively, compared with the control. The − 1312/+358 bp of the CYP7A1 promoter was subcloned into the pGL3 basic vector that includes luciferase as a reporter gene. ECG or EGCG significantly increased CYP7A1 promoter activity by 6·0- or 4·0-fold, respectively, compared with the control. Also, EGCG stimulated CYP7A1 at both mRNA level and promoter activity in a dose-dependent manner. These results suggest that the expression of the CYP7A1 gene may be directly regulated by green tea catechins at the transcriptional level.
Collapse
|
63
|
Jemai H, Fki I, Bouaziz M, Bouallagui Z, El Feki A, Isoda H, Sayadi S. Lipid-lowering and antioxidant effects of hydroxytyrosol and its triacetylated derivative recovered from olive tree leaves in cholesterol-fed rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:2630-2636. [PMID: 18380465 DOI: 10.1021/jf072589s] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study was designed to test the lipid-lowering and antioxidative activities of triacetylated hydroxytyrosol compared with its native compound, hydroxytyrosol, purified from olive tree leaves. Wistar rats fed a standard laboratory diet or a cholesterol-rich diet for 16 weeks were used. The serum lipid levels, the thiobarbituric acid-reactive substances (TBARS) level, as an indicator of lipid peroxidation, and the activity of superoxide dismutase (SOD) as well as that of catalase (CAT) were examined. The cholesterol-rich diet induced hypercholesterolemia that was manifested in the elevation of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C). Administration of hydroxytyrosol and triacetylated hydroxytyrosol (3 mg/kg of body weight) decreased the serum levels of TC, TG, and LDL-C significantly and increased the serum level of high-density lipoprotein cholesterol (HDL-C). Furthermore, the content of TBARS in liver, heart, kidney, and aorta decreased significantly when hydroxytyrosol and its triacetylated derivatives were orally administered to rats compared with those fed a cholesterol-rich diet. In addition, triacetylated hydroxytyrosol and hydroxytyrosol increased CAT and SOD activities in the liver. These results suggested that the hypolipidemic effect of triacetylated hydroxytyrosol and hydroxytyrosol might be due to their abilities to lower serum TC, TG, and LDL-C levels as well as to their antioxidant activities preventing the lipid peroxidation process.
Collapse
Affiliation(s)
- Hedya Jemai
- Laboratoire des Bioprocédés, Pôle d'Excellence Régional AUF, Centre de Biotechnologie de Sfax, B.P. K 3038 Sfax, Tunisia
| | | | | | | | | | | | | |
Collapse
|
64
|
Lee SM, Kim CW, Kim JK, Shin HJ, Baik JH. GCG-Rich Tea Catechins are Effective in Lowering Cholesterol and Triglyceride Concentrations in Hyperlipidemic Rats. Lipids 2008; 43:419-29. [DOI: 10.1007/s11745-008-3167-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 02/21/2008] [Indexed: 12/11/2022]
|
65
|
Soundararajan R, Wishart AD, Rupasinghe HPV, Arcellana-Panlilio M, Nelson CM, Mayne M, Robertson GS. Quercetin 3-glucoside protects neuroblastoma (SH-SY5Y) cells in vitro against oxidative damage by inducing sterol regulatory element-binding protein-2-mediated cholesterol biosynthesis. J Biol Chem 2007; 283:2231-45. [PMID: 18032389 DOI: 10.1074/jbc.m703583200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The flavonoid quercetin 3-glucoside (Q3G) protected SH-SY5Y, HEK293, and MCF-7 cells against hydrogen peroxide-induced oxidative stress. cDNA microarray studies suggested that Q3G-pretreated cells subjected to oxidative stress up-regulate the expression of genes associated with lipid and cholesterol biosynthesis. Q3G pretreatment elevated both the expression and activation of sterol regulatory element-binding protein-2 (SREBP-2) only in SH-SY5Y cells subjected to oxidative stress. Inhibition of SREBP-2 expression by small interfering RNA or small molecule inhibitors of 2,3-oxidosqualene:lanosterol cyclase or HMG-CoA reductase blocked Q3G-mediated cytoprotection in SH-SY5Y cells. By contrast, Q3G did not protect either HEK293 or MCF-7 cells via this signaling pathway. Moreover, the addition of isopentenyl pyrophosphate rescued SH-SY5Y cells from the inhibitory effect of HMG-CoA reductase inhibition. Last, Q3G pretreatment enhanced the incorporation of [(14)C]acetate into [(14)C]cholesterol in SH-SY5Y cells under oxidative stress. Taken together, these studies suggest a novel mechanism for flavonoid-induced cytoprotection in SH-SY5Y cells involving SREBP-2-mediated sterol synthesis that decreases lipid peroxidation by maintaining membrane integrity in the presence of oxidative stress.
Collapse
Affiliation(s)
- Ramani Soundararajan
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | | | | | | | | | |
Collapse
|
66
|
Rosenblat M, Volkova N, Coleman R, Almagor Y, Aviram M. Antiatherogenicity of extra virgin olive oil and its enrichment with green tea polyphenols in the atherosclerotic apolipoprotein-E-deficient mice: enhanced macrophage cholesterol efflux. J Nutr Biochem 2007; 19:514-523. [PMID: 17904345 DOI: 10.1016/j.jnutbio.2007.06.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 05/29/2007] [Accepted: 06/13/2007] [Indexed: 02/06/2023]
Abstract
The antiatherogenic properties of extra virgin olive oil (EVOO) enriched with green tea polyphenols (GTPPs; hereafter called EVOO-GTPP), in comparison to EVOO, were studied in the atherosclerotic apolipoprotein-E-deficient (E0) mice. E0 mice (eight mice in each group) consumed EVOO or EVOO-GTPP (7 microl/mouse/day, for 2 months) by gavage feeding. The placebo group received only water. At the end of the study, blood samples, peritoneal macrophages and aortas were collected. Consumption of EVOO or EVOO-GTPP resulted in a minimal increase in serum total and high-density lipoprotein (HDL) cholesterol levels (by 12%) and in serum paraoxonase 1 activity (by 6% and 10%). EVOO-GTPP (but not EVOO) decreased the susceptibility of the mouse serum to AAPH-induced lipid peroxidation (by 18%), as compared to the placebo-treated mice. The major effect of both EVOO and EVOO-GTPP consumption was on HDL-mediated macrophage cholesterol efflux. Consumption of EVOO stimulated cholesterol efflux rate from mouse peritoneal macrophages (MPMs) by 42%, while EVOO-GTPP increased it by as much as 139%, as compared to MPMs from placebo-treated mice. Finally, the atherosclerotic lesion size of mice was significantly reduced by 11% or 20%, after consumption of EVOO or EVOO-GTPP, respectively. We thus conclude that EVOO possesses beneficial antiatherogenic effects, and its enrichment with GTPPs further improved these effects, leading to the attenuation of atherosclerosis development.
Collapse
Affiliation(s)
- Mira Rosenblat
- The Lipid Research Laboratory, Technion Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Rambam Medical Center, Haifa 31096, Israel
| | - Nina Volkova
- The Lipid Research Laboratory, Technion Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Rambam Medical Center, Haifa 31096, Israel
| | - Raymond Coleman
- Department of Anatomy and Cell Biology, Technion Faculty of Medicine, Haifa 31096, Israel
| | - Yaron Almagor
- Department of Cardiology, Shaarei Zedek Medical Center, Jerusalem 91031, Israel
| | - Michael Aviram
- The Lipid Research Laboratory, Technion Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Rambam Medical Center, Haifa 31096, Israel
| |
Collapse
|
67
|
Bursill CA, Abbey M, Roach PD. A green tea extract lowers plasma cholesterol by inhibiting cholesterol synthesis and upregulating the LDL receptor in the cholesterol-fed rabbit. Atherosclerosis 2007; 193:86-93. [PMID: 16970948 DOI: 10.1016/j.atherosclerosis.2006.08.033] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 08/02/2006] [Accepted: 08/14/2006] [Indexed: 10/24/2022]
Abstract
Green tea extracts enriched in catechins decrease plasma cholesterol in hamsters, mice and rats. The aims of this study were to determine whether a catechin-enriched extract of green tea could lower plasma cholesterol in the cholesterol-fed rabbit and to determine the mechanism of action. Four groups of six New Zealand White rabbits were initially made hypercholesterolaemic by feeding a 0.25% (w/w) cholesterol diet for 2 weeks before the diet was supplemented with a catechin extract from green tea at 0, 0.5, 1 or 2% (w/w) for 4 weeks. Administration of the crude catechin extract from green tea significantly (p<0.05) lowered cholesterol in plasma (-60%), VLDL+IDL (-70%), LDL (-80%), liver (total by -25% and unesterified by -15%) and aorta (-25%) compared to control. There was a significant reduction in the cholesterol synthesis index (-60%) and a significant increase in hepatic LDL receptor activity (+80%) and protein (+70%) but there was no change in the intrinsic capacity to absorb cholesterol from the intestines. These results suggest that green tea catechins lowered plasma, liver and aortic cholesterol in the cholesterol-fed rabbit by lowering cholesterol synthesis and upregulating the hepatic LDL receptor.
Collapse
Affiliation(s)
- Christina A Bursill
- Wellcome Trust Centre of Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | | | | |
Collapse
|
68
|
Bursill CA, Roach PD. A green tea catechin extract upregulates the hepatic low-density lipoprotein receptor in rats. Lipids 2007; 42:621-7. [PMID: 17582541 DOI: 10.1007/s11745-007-3077-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Accepted: 05/16/2007] [Indexed: 10/23/2022]
Abstract
Green tea extracts have hypocholesterolaemic properties in epidemiological and animal intervention studies. Upregulation of the low-density lipoprotein (LDL) receptor may be one mechanism to explain this as it is the main way cholesterol is removed from the circulation. This study aimed to determine if a green tea extract could upregulate the hepatic LDL receptor in vivo in the rat. A green tea extract (GTE) enriched in its anti-oxidant constituents, the catechins, was fed to rats (n = 6) at concentrations of either 0, 0.5, 1.0 or 2.0% (w/w) mixed in with their normal chow along with 0.25% (w/w) cholesterol for 12 days. Administration of the GTE had no effect on plasma total or LDL cholesterol concentrations but high-density lipoprotein significantly increased (41%; p < 0.05). Interestingly, there was a significant increase in LDL receptor binding activity (2.7-fold) and LDL receptor protein (3.4-fold) in the 2% (w/w) treatment group compared to controls. There were also significant reductions in liver total and unesterified cholesterol (40%). Administration of the GTE significantly reduced cholesterol absorption (24%) but did not affect cholesterol synthesis. These results show that, despite no effect on plasma cholesterol, the GTE upregulated the LDL receptor in vivo. This appears to be via a reduction in liver cholesterol concentration and suggests that the green tea extract was able to increase the efflux of cholesterol from liver cells.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Anticholesteremic Agents/pharmacology
- Catechin/isolation & purification
- Catechin/pharmacology
- Cholesterol, Dietary/administration & dosage
- Cholesterol, HDL/blood
- Cholesterol, HDL/metabolism
- Cholesterol, LDL/blood
- Cholesterol, LDL/metabolism
- Dose-Response Relationship, Drug
- Intestinal Absorption/drug effects
- Liver/drug effects
- Liver/metabolism
- Male
- Plant Extracts/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, LDL/drug effects
- Receptors, LDL/metabolism
- Tea/chemistry
- Up-Regulation
Collapse
Affiliation(s)
- Christina A Bursill
- Heart Research Institute, University of Sydney, 114 Pyrmont Bridge Road, Camperdown, NSW 2050, Australia.
| | | |
Collapse
|
69
|
Lecumberri E, Goya L, Mateos R, Alía M, Ramos S, Izquierdo-Pulido M, Bravo L. A diet rich in dietary fiber from cocoa improves lipid profile and reduces malondialdehyde in hypercholesterolemic rats. Nutrition 2007; 23:332-41. [PMID: 17367998 DOI: 10.1016/j.nut.2007.01.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 01/11/2007] [Accepted: 01/23/2007] [Indexed: 01/18/2023]
Abstract
OBJECTIVE The potential hypolipidemic effect of a new cocoa product rich in dietary fiber (DF) naturally containing antioxidant polyphenols (cocoa fiber [CF]) was studied in a rat model of dietary-induced hypercholesterolemia. METHODS For 3 wk animals were fed normal, cholesterol-free diets or diets supplemented with cholesterol to evoke hypercholesterolemia. Control diets contained 10% cellulose as DF, and test diets were supplemented with 165 g of CF per kilogram (providing 10% DF). Lipid profile, total antioxidant capacity, and malondialdehyde were measured in serum in addition to the activity of the antioxidant enzymes catalase, glutathione reductase, glutathione peroxidase, and superoxide dismutase and concentrations of glutathione and malondialdehyde in the liver. RESULTS Hypercholesterolemia and hypertriglyceridemia were established as a consequence of the cholesterol-rich diets. CF showed an important hypolipidemic action, returning triacylglycerol levels in hypercholesterolemic animals to normal values. The hypocholesterolemic effect was also patent, reducing total and low-density lipoprotein cholesterol, yet basal values were not attained. Decreased lipid peroxidation in serum and liver as a consequence of CF intake was patent not only in hypercholesterolemic but also in normocholesterolemic animals. No apparent effects on serum total antioxidant capacity or on the activity of antioxidant enzymes and hepatic levels of glutathione were observed. These effects might be attributed to the high DF content of CF and to the natural presence of antioxidant polyphenols. CONCLUSION The consumption of CF with a hypercholesterolemic diet improved the lipidemic profile and reduced lipid peroxidation, suggesting that CF might contribute to a reduction of cardiovascular risk.
Collapse
Affiliation(s)
- Elena Lecumberri
- Department of Metabolism and Nutrition, Instituto del Frío CSIC, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
70
|
Pastore RL, Fratellone P. Potential Health Benefits of Green Tea (Camellia sinensis): A Narrative Review. Explore (NY) 2006; 2:531-9. [PMID: 17113495 DOI: 10.1016/j.explore.2006.08.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Robert L Pastore
- Beth Israel Medical Center, St Lukes-Roosevelt Hospital, New York City, NY, USA
| | | |
Collapse
|
71
|
Dávalos A, Fernández-Hernando C, Cerrato F, Martínez-Botas J, Gómez-Coronado D, Gómez-Cordovés C, Lasunción MA. Red grape juice polyphenols alter cholesterol homeostasis and increase LDL-receptor activity in human cells in vitro. J Nutr 2006; 136:1766-73. [PMID: 16772435 DOI: 10.1093/jn/136.7.1766] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Red grape juice (RGJ) polyphenols have been shown to reduce circulating levels of LDL cholesterol and to increase LDL receptor activity. To explore the effect of RGJ-derived polyphenols on intracellular cholesterol homeostasis, human hepatocarcinoma HepG2 and promyelocytic HL-60 cell lines were incubated in serum-free medium, with or without LDL, in the presence or absence of RGJ. In the presence of LDL, RGJ increased both the activity and cell surface expression of the LDL receptor, and increased the cell total cholesterol content. In cells exposed to LDL, RGJ also increased levels of the active form of sterol regulatory element-binding protein-1 and mRNA expression of the LDL receptor and hydroxymethylglutaryl-CoA reductase. In contrast, RGJ caused a marked reduction in the expression of CYP7A1, apolipoprotein B, ABCA1, and ABCG5. Experiments using the acyl-CoA cholesterol acyltransferase inhibitor S-58035 indicated that no measurable free cholesterol from endocytosed LDL reaches the endoplasmic reticulum in cells treated with RGJ. Finally, fluorescence microscopy revealed that in RGJ-treated cells, DiI-labeled LDL did not colocalize with CD63, a protein localized at steady state in the internal vesicles of late endosomes. These results indicate that RGJ polyphenols disrupt or delay LDL trafficking through the endocytic pathway, thus preventing LDL cholesterol from exerting regulatory effects on intracellular lipid homeostasis.
Collapse
Affiliation(s)
- Alberto Dávalos
- Departamento de Bioquímica y Biología Molecular, Universidad de Alcalá, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|