51
|
Natural antimicrobial-coated supports as filter aids for the microbiological stabilisation of drinks. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
52
|
Baharmi S, Kalantari H, Kalantar M, Goudarzi M, Mansouri E, Kalantar H. Pretreatment with Gallic Acid Mitigates Cyclophosphamide Induced Inflammation and Oxidative Stress in Mice. Curr Mol Pharmacol 2021; 15:204-212. [PMID: 34061011 DOI: 10.2174/1874467214666210531162741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/25/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cyclophosphamide (CP) as an alkylating compound has been widely applied to treat cancer and autoimmune diseases. CP is observed to be nephrotoxic in humans and animals because it produces reactive oxygen species. Gallic acid (GA), a polyhydroxy phenolic compound, is reported to exhibit antioxidant and anti-inflammatory effects. OBJECTIVE The current research aimed at evaluating the GA effect on CP-related renal toxicity. METHODS In total, 35 male mice were assigned to 5 groups. Group1: receiving normal saline, group 2: CP group, receiving one CP injection (200 mg/kg; i.p.) on day 6. Groups 3 and 4: GA+CP, GA (10 and 30 mg/kg; p.o.; respectively) received through six consecutive days plus CP on the 6th day 2 hr after the last dose of GA, group 5: received GA (30 mg/kg; p.o.) for six consecutive days. Then on day 7, blood samples were collected for determining creatinine (Cr), serum kidney injury molecule-1 (KIM-1), blood urea nitrogen (BUN), and neutrophil gelatinase-associated lipocalin (NGAL) concentrations. Malondialdehyde (MDA), nitric oxide (NO) concentration, catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GPx) activities, and IL-1β, TNF-α levels were assessed in renal tissue. RESULTS CP administration significantly increases KIM-1, NGAL, Cr, BUN, MDA, NO, IL-1β, and TNF-α level. It also decreases GSH concentration, SOD, GPx, and CAT function. Pretreatment with GA prevented these changes. Histopathological assessments approved the GA protective effect. CONCLUSION Our results showed that GA is possibly effective as a protective agent in cyclophosphamide-associated toxicities.
Collapse
Affiliation(s)
- Saeed Baharmi
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Heibatullah Kalantari
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and Molecular Research Center, Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadi Kalantar
- Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
53
|
Oh Y, Ahn CB, Marasinghe MPCK, Je JY. Insertion of gallic acid onto chitosan promotes the differentiation of osteoblasts from murine bone marrow-derived mesenchymal stem cells. Int J Biol Macromol 2021; 183:1410-1418. [PMID: 34022306 DOI: 10.1016/j.ijbiomac.2021.05.122] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
Chitosan, a naturally occurring biodegradable and biocompatible polymer, has found use as a food additive, nutraceuticals, and functional foods in recent years. In this study, gallic acid-g-chitosan (GAC) was prepared by the insertion of GA onto plain chitosan (PC) via free radical-mediated grafting and its osteogenic effects were investigated in murine bone marrow-derived mesenchymal stem cells (mBMMSCs). Structural characterization of PC and GAC was performed using 1H NMR and FT-IR spectroscopy. The amount of GA successfully grafted onto PC was 111 mg GA/g GAC via the Folin-Ciocalteu's method. While PC and GAC promoted the increase in alkaline phosphatase activity and mineralization, GAC increased these factors significantly more than PC, indicating that the grafting of GA onto chitosan increased its osteogenic potential. Mechanistic study revealed that GAC activated Wnt1 and Wnt3a mRNA and protein expression as well as increased the translocation of β-catenin into the nucleus and upregulated the expression of β-catenin targeted genes including Runx2, osterix, type I collagen and cyclin D1. In addition, DKK-1, a Wnt antagonist, decreased GAC-mediated osteoblast differentiation in mBMMSCs through blocking the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yunok Oh
- Convergence Research Center for Smart Healthcare, Kyungsung University, Busan 48434, Republic of Korea
| | - Chang-Bum Ahn
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - M P C K Marasinghe
- Department of Food and Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Jae-Young Je
- Department of Marine-Bio Convergence Science, Pukyong National University, Busan 48547, Republic of Korea.
| |
Collapse
|
54
|
Yue L, Zheng M, Khan IM, Wang Z. Chlorin e6 conjugated chitosan as an efficient photoantimicrobial agent. Int J Biol Macromol 2021; 183:1309-1316. [PMID: 34000311 DOI: 10.1016/j.ijbiomac.2021.05.085] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/25/2021] [Accepted: 05/12/2021] [Indexed: 12/17/2022]
Abstract
The development of antibacterial agents with high bacteria-binding capability and antibacterial efficiency is highly desirable. Herein, cationic polysaccharide chitosan (CS) was combined with photosensitizer Chlorin e6 (Ce6) to construct a novel photodynamic antibacterial agent (CS-Ce6 conjugates) for combating gram-positive bacteria Staphylococcus aureus (S. aureus) and gram-negative bacteria Escherichia coli (E. coli). CS-Ce6 conjugates with different degrees of substitution (DS) were synthesized and characterized by a spectroscopic method and organic elemental analysis to understand the relationship between structure and antibacterial effect. CS-Ce6 conjugates revealed good reactive oxygen species (ROS) generation ability and photodynamic antibacterial effect. Meanwhile, they both were positively correlated with DS in the range of 4.81% ~ 11.56% resulting in stronger photodynamic antibacterial ability. These findings highlight that CS-Ce6 conjugates have the potential as an effective photodynamic bactericidal agent in the antibacterial field.
Collapse
Affiliation(s)
- Lin Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China.
| | - Meihong Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China.
| |
Collapse
|
55
|
Rajivgandhi GN, Chenthis Kanisha C, Vijayakumar S, Alharbi NS, Kadaikunnan S, Khaled JM, Alanzi KF, Li WJ. Enhanced anti-biofilm activity of facile synthesized silver oxide nanoparticles against K. pneumoniae. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02013-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
56
|
Yue L, Zheng M, Wang M, Khan IM, Wang B, Ma X, Peng C, Wang Z, Xia W. A general strategy to synthesis chitosan oligosaccharide-O-Terpenol derivatives with antibacterial properties. Carbohydr Res 2021; 503:108315. [PMID: 33865180 DOI: 10.1016/j.carres.2021.108315] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 02/04/2023]
Abstract
The objectives of the present study are to synthesize a series of chitosan oligosaccharide-O-Terpenol (COS-O-Ter) derivatives and their implication to evaluate in vitro antibacterial activity. Herein, a general strategy is described for preparing COS-O-Ter derivatives, including substitution and deprotection reactions. The structures of COS-O-Ter derivatives were characterized by FT-IR, 1H NMR, XRD, TGA, and elemental analysis. COS-O-Ter derivatives revealed the excellent solubility and in vitro antibacterial activity. Moreover, their antibacterial activities were more sensitive to Staphylococcus aureus (S. aureus) than Escherichia coli (E. coli) indicating the effective potential application of COS-O-Ter derivatives as natural antibacterial agents. The aforementioned study opens a pave to expand the application scope of COS and its derivatives in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Lin Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China.
| | - Meihong Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Min Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Bin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Xiaoyuan Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Chifang Peng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi, 214122, PR China
| |
Collapse
|
57
|
Zhou J, Zhang L, He Y, Liu K, Zhang F, Zhang H, Lu Y, Yang C, Wang Z, Fareed MS, Liang X, Yan W, Wang K. An optimized analog of antimicrobial peptide Jelleine-1 shows enhanced antimicrobial activity against multidrug resistant P. aeruginosa and negligible toxicity in vitro and in vivo. Eur J Med Chem 2021; 219:113433. [PMID: 33878564 DOI: 10.1016/j.ejmech.2021.113433] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/13/2021] [Accepted: 03/30/2021] [Indexed: 01/30/2023]
Abstract
Due to the threat of escalating multi-drug resistant gram-negative bacteria to human health and life, novel antimicrobial agents against gram-negative pathogens are urgently needed. As antimicrobial peptides are not prone to induce bacteria resistance, they are believed to be one kind of promising class of potential antimicrobial agent candidates to combat multi-drug resistant bacteria for long-term use. Jelleine-1, first isolated from the royal jelly of honeybees, is a typical amphiphilic antimicrobial peptide and shows broad antimicrobial spectrum and negligible toxicity. To promote its antimicrobial activity and extend its potential of clinical use against multi-drug resistant gram-negative bacteria, novel analogs of jelleine-1 were designed, synthesized and their antimicrobial functions and toxicity were examined in this study. Our results showed that fine tuning of the cationic charge, polarity, and basicity of the sequence through amino acids substitution at position 3, 5, 7 and maintaining position 1, 4, 6, 8 unchanged could improve the bioactivity of jelleine-1 significantly. Meanwhile, we also found that the substitution of phenylalanine by tryptophan also could improve the antimicrobial activity of jelleine-1. Among all the analogs, analog 15, which is enriched in arginine and leucine, showed the most potent antimicrobial activity against both gram-negative and gram-positive bacteria, especially to multi-drug resistant Pseudomonas aeruginosa in vivo and in vitro. In addition, analog 15 also showed potent inhibition of the formation of multi-drug resistant P. aeruginosa biofilm and negligible toxicity, which was certified by MTT, hemolysis, blood assay, and biochemical analysis.
Collapse
Affiliation(s)
- Jingjing Zhou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Lishi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Yuhang He
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Kexin Liu
- School of Stomatology, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Fangfang Zhang
- Key Laboratory for Gynecologic Oncology of Gansu Province, Department of Gynecology, The First Hospital of Lanzhou University, Lanzhou University, West Donggang Road 1, Lanzhou, 730000, China
| | - Hanru Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China; Department of Obstetrics & Gynecology, Gansu Provincial Maternity and Child Care Hospital, North Road 143, Qilihe District, Lanzhou, 730000, China
| | - Yaqi Lu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Changyan Yang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Zhaopeng Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Muhammad Subaan Fareed
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China
| | - Xiaolei Liang
- Key Laboratory for Gynecologic Oncology of Gansu Province, Department of Gynecology, The First Hospital of Lanzhou University, Lanzhou University, West Donggang Road 1, Lanzhou, 730000, China.
| | - Wenjin Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China.
| | - Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, West Donggang Road 199, Lanzhou, 730000, China.
| |
Collapse
|
58
|
Liang X, Yan J, Lu Y, Liu S, Chai X. The Antimicrobial Peptide Melectin Shows Both Antimicrobial and Antitumor Activity via Membrane Interference and DNA Binding. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1261-1273. [PMID: 33776423 PMCID: PMC7989573 DOI: 10.2147/dddt.s288219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/05/2021] [Indexed: 12/17/2022]
Abstract
Purpose Increasingly complex diseases require novel drugs for their treatment. Antimicrobial peptides (AMPs) are promising candidate treatments due to their broad existence and special characteristics. However, the current understanding of AMPs is not sufficient to allow them to be produced commercially for clinical use. Materials and Methods Melectin, from the venom of the cleptoparasitic bee Melecta albifrons, does not exhibit sequence homology with other wasp venom peptides. To investigate this more deeply, we explored the antibacterial and antitumor activities of Melectin and related mechanisms. Results Our results demonstrate that Melectin possesses antimicrobial properties against standard sensitive/clinical drug-resistant bacteria strains as well as antitumor activity. It has an α-helix form and exhibits moderate cytotoxicity. Its action mechanisms are involved with membrane interfering and DNA binding. The membrane interfering effect was distinct between different phospholipid compositions. Conclusion We found that Melectin may serve as a new potential template in the battle against multidrug resistance, and our study indicated that there are promising prospects for medically applicable drugs based on AMPs.
Collapse
Affiliation(s)
- Xiaolei Liang
- Key Laboratory for Gynecologic Oncology Gansu Province, Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Jiexi Yan
- The Precision Medicine Laboratory, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Yingwei Lu
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, People's Republic of China
| | - Shan Liu
- The First Clinical Medicine School, Lanzhou University, Lanzhou, People's Republic of China
| | - Xiaojing Chai
- The Key Laboratory, The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| |
Collapse
|
59
|
Zhou C, Ao HY, Han X, Jiang WW, Yang ZF, Ma L, Deng XY, Wan YZ. Engineering a novel antibacterial agent with multifunction: Protocatechuic acid-grafted-quaternized chitosan. Carbohydr Polym 2021; 258:117683. [PMID: 33593556 DOI: 10.1016/j.carbpol.2021.117683] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/31/2020] [Accepted: 01/16/2021] [Indexed: 12/15/2022]
Abstract
As a mild cationic antibacterial agent, hydroxypropyltrimethyl ammonium chloride chitosan (HACC) could kill gram-positive bacteria and gram-positive drug-resistant bacteria without cytotoxicity. Nevertheless, it was not effective against gram-negative bacteria. Herein, protocatechuic acid (PA) with broad-spectrum antibacterial properties and pharmacological activities was grafted on HACC. PA-g-HACC showed favourable antioxidant capacity and anti-inflammatory properties. Most importantly, the results of antibacterial assay indicated that the antibacterial rates of all PA-g-HACC groups against Staphylococcus aureus (S. aureus) and methicillin-resistant Staphylococcus aureus (MRSA) were above 92 %, and the antibacterial rate of PA-g-HACC against E. coli was increased with the amount of grafted PA. Furthermore, the cytocompatibility of PA-g-HACC was improved by appropriate grafting ratio of PA, while excessive grafted PA can lead to toxicity. We believe that PA-g-HACC in optimum grafting ratio of PA with favorable antibacterial properties, pharmacological activities and cytocompatibility will be potential antibacterial agent for treating infections.
Collapse
Affiliation(s)
- Chen Zhou
- Jiangxi Key Laboratory of Nanobiomaterials & Institute of Advanced Materials, East China Jiaotong University, Nanchang 330000, China
| | - Hai-Yong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & Institute of Advanced Materials, East China Jiaotong University, Nanchang 330000, China.
| | - Xiao Han
- College of Materials Science and Engineering, East China Jiaotong University, Nanchang 330000, China
| | - Wen-Wen Jiang
- Jiangxi Key Laboratory of Nanobiomaterials & Institute of Advanced Materials, East China Jiaotong University, Nanchang 330000, China
| | - Zhi-Fei Yang
- Jiangxi Key Laboratory of Nanobiomaterials & Institute of Advanced Materials, East China Jiaotong University, Nanchang 330000, China
| | - Le Ma
- Jiangxi Key Laboratory of Nanobiomaterials & Institute of Advanced Materials, East China Jiaotong University, Nanchang 330000, China
| | - Xiao-Yan Deng
- Jiangxi Key Laboratory of Nanobiomaterials & Institute of Advanced Materials, East China Jiaotong University, Nanchang 330000, China
| | - Yi-Zao Wan
- Jiangxi Key Laboratory of Nanobiomaterials & Institute of Advanced Materials, East China Jiaotong University, Nanchang 330000, China.
| |
Collapse
|
60
|
Thymol as a critical component of Thymus vulgaris L. essential oil combats Pseudomonas aeruginosa by intercalating DNA and inactivating biofilm. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110354] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
61
|
Liu Y, Wang D, Sun Z, Liu F, Du L, Wang D. Preparation and characterization of gelatin/chitosan/3-phenylacetic acid food-packaging nanofiber antibacterial films by electrospinning. Int J Biol Macromol 2020; 169:161-170. [PMID: 33309663 DOI: 10.1016/j.ijbiomac.2020.12.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 12/06/2020] [Indexed: 12/19/2022]
Abstract
In this study, antibacterial nanofiber films were prepared by electrospinning gelatin, chitosan, and 3-phenyllactic acid (PLA). The addition of PLA improved the microstructures of the nanofibers, and the nanofiber films (GCP-1 and GCP-2) had uniform and continuous structures with a diameter range of 40--70 nm when the PLA concentrations in the polymers were 1% and 2%. Under acidic conditions, chitosan and PLA interacted and formed hydrogen bonds, which decreased the crystallinity of the nanofiber films. The GCP-2 nanofiber film had the best thermal stability, water stability, and water vapor permeability. Compared with the control GCP-0 film, the four nanofiber films with PLA (GCP-1, GCP-2, GCP-3, and GCP-4) had more effective antibacterial effects, and GCP-2 film reduced approximately 4 log CFU/mL of Salmonella enterica Enteritidis and Staphylococcus aureus in 30 min. Results suggested that the GCP-2 nanofiber film mat can be used as an active food packaging.
Collapse
Affiliation(s)
- Yini Liu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Debao Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhilan Sun
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Fang Liu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lihui Du
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Daoying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
62
|
Chitosan decoration improves the rapid and long-term antibacterial activities of cinnamaldehyde-loaded liposomes. Int J Biol Macromol 2020; 168:59-66. [PMID: 33279567 DOI: 10.1016/j.ijbiomac.2020.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
In this work, cinnamaldehyde-loaded liposomes decorated with different concentrations of chitosan (0, 0.25, 0.5, 1, 2, 3, and 4 mg/mL) were prepared and their physical and antibacterial properties were evaluated. The results showed that the physical decoration of chitosan improved the encapsulation efficiency and storage stability of the liposomes. Liposomes decorated with chitosan at the concentration of 0.25 to 4 mg/mL were able to achieve an obvious antibacterial efficiency against Staphylococcus aureus after only 10 min of incubation. The antibacterial efficiency of chitosan-decorated liposomes was still higher than 90% after being stored for 28 d when the chitosan concentration was greater than 1 mg/mL. Besides, increasing the chitosan concentration significantly decreased the minimum inhibitory concentration of the liposomes. The comparison of the antibacterial activities and mechanisms of cinnamaldehyde-loaded liposomes decorated with chitosan at a concentration of 4 mg/mL (CH-CL), cinnamaldehyde-loaded liposomes (CL), cinnamaldehyde, and chitosan revealed that chitosan and cinnamaldehyde exerted a cumulative and synergistic bacteriostatic effect in the liposomes. This led to damage to the cell membrane integrity, causing cell death by inducing leakage of intracellular components. These results can potentially provide guidance for the preparation and application of natural preservatives with rapid and long-term bacteriostatic effects.
Collapse
|
63
|
Abd El-Hack ME, El-Saadony MT, Shafi ME, Zabermawi NM, Arif M, Batiha GE, Khafaga AF, Abd El-Hakim YM, Al-Sagheer AA. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. Int J Biol Macromol 2020; 164:2726-2744. [PMID: 32841671 DOI: 10.1016/j.ijbiomac.2020.08.153] [Citation(s) in RCA: 441] [Impact Index Per Article: 88.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
In this era, there is a global concern in the use of bioactive molecules such as chitosan in the field of antimicrobial and antioxidant benefits. Because of its biodegradability, biological compatibility, antimicrobial, antioxidants activity, and high safety, chitosan could be used in a large number of applications. It could exist in many forms, such as fibers, gels, films, sponges, nanoparticles, and beads. The different biological activities of chitosan and its products are extensively investigated to broaden the application fields in several areas. Chitosan's natural properties depend strongly on water and other solvent solubility. Consequently, the chitosan oligosaccharides with a low polymerization degree are getting significant attention in the pharmaceutical and medical applications because they have lower viscosity and higher water solubility than chitosan. The objective of this review article is to put the antioxidant and antimicrobial properties of chitosan and its derivatives under the spotlight. The impacts of chitosan on physicochemical parameters like molecular weight and deacetylation degree on its bioactivities are also identified. Additionally, other applications of chitosan and its derivatives, including wound healing products, wastewater treatment, and cosmetics, have also been highlighted.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Manal E Shafi
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nidal M Zabermawi
- Department of Biological Sciences, Microbiology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Arif
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Gaber Elsaber Batiha
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2-13, Inada-cho, 080-8555 Obihiro, Hokkaido, Japan; Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | | | - Adham A Al-Sagheer
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
64
|
Mittal A, Singh A, Aluko RE, Benjakul S. Pacific white shrimp (Litopenaeus vannamei) shell chitosan and the conjugate with epigallocatechin gallate: Antioxidative and antimicrobial activities. J Food Biochem 2020; 45:e13569. [PMID: 33249640 DOI: 10.1111/jfbc.13569] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/01/2020] [Accepted: 11/05/2020] [Indexed: 11/28/2022]
Abstract
Chitin was isolated from Pacific white shrimp (Litopenaeus vannamei) shell by demineralization and deproteinization using 1 M HCl (1:20, w/v) for 2 hr and 1 M NaOH (1:30 w/v) for 80 min at 70ºC, respectively, with 29.96% optimum yield. Thereafter, the chitin was deacetylated at various temperatures for different times, in which the chitosan prepared at 130ºC for 4 hr (CS-130-4) showed higher yield (73.11%), crystallinity index (19.75%), and 85.28% degree of deacetylation (DDA) as measured by 1 H-NMR. CS-130-4 was then conjugated to epigallocatechin gallate (EGCG) at various concentrations (2-8%, w/w of chitosan). CS-130-4 was grafted with 8% EGCG (CE-8) had the higher conjugation efficiency (92.63%) and antimicrobial/antioxidant activities as compared to other conjugates (p < .05). 1 H-NMR analysis also confirmed the successful conjugation of CE-8. All the conjugates were completely water soluble. Therefore, CE-8 may be used as the natural antimicrobial and antioxidant agents in various food products. PRACTICAL APPLICATIONS: Shrimp shells are generally considered as processing by-products of the shellfish industries and can cause environmental pollution when improperly disposed. Chitosan from shrimp shells has been widely produced but it is soluble mainly in acidic solutions, which limits its applications. However, grafting of epigallocatechin gallate (EGCG) onto chitosan yielded water-soluble conjugates with enhanced antioxidant and antimicrobial properties. Although several preservatives have been applied in foods, their health hazards have been a major concern. To mitigate this limitation, chitosan-EGCG conjugates could be employed as alternative natural preservatives or additives for shelf-life extension of various foods.
Collapse
Affiliation(s)
- Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Avtar Singh
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
65
|
Elucidating Antibacterial Activity and Mechanism of Daphnetin against Pseudomonas fluorescens and Shewanella putrefaciens. J FOOD QUALITY 2020. [DOI: 10.1155/2020/6622355] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In this research, the antibacterial activity and mechanism of daphnetin against Pseudomonas fluorescens and Shewanella putrefaciens were evaluated. The minimum inhibitory concentration (MIC) of daphnetin on P. fluorescens and S. putrefaciens was 0.16 and 0.08 mg·mL−1, respectively. The growth curve test also showed that daphnetin had a good antibacterial effect. The results of intracellular component leakage and cell viability analysis illustrated that daphnetin destroyed the morphology of the cell membrane. According to scanning electron microscope and transmission electron microscope observations, the treated bacterial cells displayed obvious morphological and ultrastructural changes in the cell membrane of the two tested strains, whichconfirmed daphnetin’s damage to the integrity of the cell membrane. The findings indicated that daphnetin mainly exerted its antibacterial effect by destroying the membrane and suggested that it had good potential to be as a natural food preservative.
Collapse
|
66
|
Francolini I, Piozzi A. Role of Antioxidant Molecules and Polymers in Prevention of Bacterial Growth and Biofilm Formation. Curr Med Chem 2020; 27:4882-4904. [DOI: 10.2174/0929867326666190409120409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 01/22/2023]
Abstract
Background:
Antioxidants are multifaceted molecules playing a crucial role in several
cellular functions. There is by now a well-established knowledge about their involvement in numerous
processes associated with aging, including vascular damage, neurodegenerative diseases and
cancer. An emerging area of application has been lately identified for these compounds in relation to
the recent findings indicating their ability to affect biofilm formation by some microbial pathogens,
including Staphylococcus aureus, Streptococcus mutans, and Pseudomonas aeruginosa.
Methods:
A structured search of bibliographic databases for peer-reviewed research literature was
performed using a focused review question. The quality of retrieved papers was appraised using
standard tools.
Results:
One hundred sixty-five papers extracted from pubmed database and published in the last
fifteen years were included in this review focused on the assessment of the antimicrobial and antibiofilm
activity of antioxidant compounds, including vitamins, flavonoids, non-flavonoid polyphenols,
and antioxidant polymers. Mechanisms of action of some important antioxidant compounds,
especially for vitamin C and phenolic acids, were identified.
Conclusion:
The findings of this review confirm the potential benefits of the use of natural antioxidants
as antimicrobial/antibiofilm compounds. Generally, gram-positive bacteria were found to be
more sensitive to antioxidants than gram-negatives. Antioxidant polymeric systems have also been
developed mainly derived from functionalization of polysaccharides with antioxidant molecules.
The application of such systems in clinics may permit to overcome some issues related to the systemic
delivery of antioxidants, such as poor absorption, loss of bioactivity, and limited half-life.
However, investigations focused on the study of antibiofilm activity of antioxidant polymers are still
very limited in number and therefore they are strongly encouraged in order to lay the foundations for
application of antioxidant polymers in treatment of biofilm-based infections.
Collapse
Affiliation(s)
- Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5 - 00185, Rome, Italy
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5 - 00185, Rome, Italy
| |
Collapse
|
67
|
Development of bioactive Bombacaceae gum films containing cinnamon leaf essential oil and their application in packaging of fresh salmon fillets. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
68
|
Liu J, Yong H, Liu Y, Bai R. Recent advances in the preparation, structural characteristics, biological properties and applications of gallic acid grafted polysaccharides. Int J Biol Macromol 2020; 156:1539-1555. [DOI: 10.1016/j.ijbiomac.2019.11.202] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023]
|
69
|
Witch Hazel Significantly Improves the Efficacy of Commercially Available Teat Dips. Pathogens 2020; 9:pathogens9020092. [PMID: 32024049 PMCID: PMC7168658 DOI: 10.3390/pathogens9020092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/17/2022] Open
Abstract
Bovine intramammary infections (IMIs) are the main cause of economic loss in milk production. Antibiotics are often ineffective in treating infections due to antimicrobial resistance and the formation of bacterial biofilms that enhance bacterial survival and persistence. Teat dips containing germicides are recommended to prevent new IMIs and improve udder health and milk quality. IMIs are often caused by staphylococci, which are Gram-positive bacteria that become pathogenic by forming biofilms and producing toxins. As a model for a teat dip (DIP), the BacStop iodine-based teat dip (DIP) was used. Witch hazel extract (whISOBAX (WH)) was tested because it contains a high concentration of the anti-biofilm/anti-toxin phenolic compound hamamelitannin. We found that the minimal inhibitory or bactericidal concentrations of DIP against planktonic S. epidermidis cells increased up to 160fold in the presence of WH, and that DIP was 10-fold less effective against biofilm cells. While both DIP and WH are effective in inhibiting the growth of S. aureus, only WH inhibits toxin production (tested for enterotoxin-A). Importantly, WH also significantly enhances the antibacterial effect of DIP against Gram-negative bacteria that can cause IMIs, like Escherichia coli and Pseudomonas aeruginosa. Put together, these results suggest that the antibacterial activity of DIP combined with WH is significantly higher, and thus have potential in eradicating bacterial infections, both in acute (planktonic-associated) and in chronic (biofilm-associated) conditions.
Collapse
|
70
|
Qin Y, Li P. Antimicrobial Chitosan Conjugates: Current Synthetic Strategies and Potential Applications. Int J Mol Sci 2020; 21:E499. [PMID: 31941068 PMCID: PMC7013974 DOI: 10.3390/ijms21020499] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/31/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
As a natural polysaccharide, chitosan possesses good biocompatibility, biodegradability and biosafety. Its hydroxyl and amino groups make it an ideal carrier material in the construction of polymer-drug conjugates. In recent years, various synthetic strategies have been used to couple chitosan with active substances to obtain conjugates with diverse structures and unique functions. In particular, chitosan conjugates with antimicrobial activity have shown great application prospects in the fields of medicine, food, and agriculture in recent years. Hence, we will place substantial emphasis on the synthetic approaches for preparing chitosan conjugates and their antimicrobial applications, which are not well summarized. Meanwhile, the challenges, limitations, and prospects of antimicrobial chitosan conjugates are described and discussed.
Collapse
Affiliation(s)
- Yukun Qin
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
71
|
Chitosan and its oligosaccharides, a promising option for sustainable crop production- a review. Carbohydr Polym 2020; 227:115331. [DOI: 10.1016/j.carbpol.2019.115331] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/15/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022]
|
72
|
Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria. Colloids Surf B Biointerfaces 2020; 185:110627. [DOI: 10.1016/j.colsurfb.2019.110627] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 02/08/2023]
|
73
|
Wang Y, Xie M, Ma G, Fang Y, Yang W, Ma N, Fang D, Hu Q, Pei F. The antioxidant and antimicrobial activities of different phenolic acids grafted onto chitosan. Carbohydr Polym 2019; 225:115238. [DOI: 10.1016/j.carbpol.2019.115238] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 01/06/2023]
|
74
|
Characterization of the physical properties and biological activity of chitosan films grafted with gallic acid and caffeic acid: A comparison study. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100401] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
75
|
Matica MA, Aachmann FL, Tøndervik A, Sletta H, Ostafe V. Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. Int J Mol Sci 2019; 20:E5889. [PMID: 31771245 PMCID: PMC6928789 DOI: 10.3390/ijms20235889] [Citation(s) in RCA: 431] [Impact Index Per Article: 71.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 02/07/2023] Open
Abstract
Fighting bacterial resistance is one of the concerns in modern days, as antibiotics remain the main resource of bacterial control. Data shows that for every antibiotic developed, there is a microorganism that becomes resistant to it. Natural polymers, as the source of antibacterial agents, offer a new way to fight bacterial infection. The advantage over conventional synthetic antibiotics is that natural antimicrobial agents are biocompatible, non-toxic, and inexpensive. Chitosan is one of the natural polymers that represent a very promising source for the development of antimicrobial agents. In addition, chitosan is biodegradable, non-toxic, and most importantly, promotes wound healing, features that makes it suitable as a starting material for wound dressings. This paper reviews the antimicrobial properties of chitosan and describes the mechanisms of action toward microbial cells as well as the interactions with mammalian cells in terms of wound healing process. Finally, the applications of chitosan as a wound-dressing material are discussed along with the current status of chitosan-based wound dressings existing on the market.
Collapse
Affiliation(s)
- Mariana Adina Matica
- Advanced Environmental Research Laboratories, Department of Biology—Chemistry, West University of Timisoara, Oituz 4, 300086 Timisoara, Romania;
| | - Finn Lillelund Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Sciences, NTNU Norwegian University of Science and Technology, Sem Sælands vei 6/8, 7491 Trondheim, Norway;
| | - Anne Tøndervik
- SINTEF Industry, Department of Biotechnology and Nanomedicine, Richard Birkelands veg 3 B, 7034 Trondheim, Norway; (A.T.); (H.S.)
| | - Håvard Sletta
- SINTEF Industry, Department of Biotechnology and Nanomedicine, Richard Birkelands veg 3 B, 7034 Trondheim, Norway; (A.T.); (H.S.)
| | - Vasile Ostafe
- Advanced Environmental Research Laboratories, Department of Biology—Chemistry, West University of Timisoara, Oituz 4, 300086 Timisoara, Romania;
| |
Collapse
|
76
|
Côté H, Pichette A, Simard F, Ouellette ME, Ripoll L, Mihoub M, Grimard D, Legault J. Balsacone C, a New Antibiotic Targeting Bacterial Cell Membranes, Inhibits Clinical Isolates of Methicillin-Resistant Staphylococcus aureus (MRSA) Without Inducing Resistance. Front Microbiol 2019; 10:2341. [PMID: 31681206 PMCID: PMC6804428 DOI: 10.3389/fmicb.2019.02341] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/25/2019] [Indexed: 12/20/2022] Open
Abstract
New options are urgently needed for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. Balsacone C is a new dihydrochalcone extracted from Populus balsamifera that has been reported previously as being active against Staphylococcus aureus. Here, we evaluate the antibacterial activity of balsacone C against MRSA. Thirty-four (34) MRSA isolates were obtained from hospitalized patients; these isolates were then characterized for their resistance. Most of these MRSA (>85%) were resistant to penicillin, amoxicillin/clavulanic acid, ciprofloxacin, moxifloxacin, levofloxacin, clindamycin, erythromycin, and cefoxitin as well as being sensitive to linezolid, trimethoprim/sulfamethoxazole, rifampicin, and gentamicin. When tested against all MRSA isolates and various gram-positive bacteria, the antibacterial activity of balsacone C produced a MIC of 3-11.6 mg/mL. We observed no resistant isolates of MRSA (against balsacone C) even after 30 passages. Microscopy fluorescence showed that bacteria cell membrane integrity was compromised by low concentrations of balsacone C. Scanning electron microscope (SEM) confirmed balsacone C-provoked changes in the bacterial cell membrane and we find a dose-dependent release of DNA and proteins. This loss of cellular integrity leads to cell death and suggests a low potential for the development of spontaneous resistance.
Collapse
Affiliation(s)
- Héloïse Côté
- Laboratoire d’Analyse et de Séparation des Essences Végétales, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - André Pichette
- Laboratoire d’Analyse et de Séparation des Essences Végétales, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
- Centre de Recherche sur la Boréalie, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - François Simard
- Laboratoire d’Analyse et de Séparation des Essences Végétales, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Marie-Eve Ouellette
- Laboratoire d’Analyse et de Séparation des Essences Végétales, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Lionel Ripoll
- Laboratoire d’Analyse et de Séparation des Essences Végétales, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
- Centre de Recherche sur la Boréalie, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Mouadh Mihoub
- Laboratoire d’Analyse et de Séparation des Essences Végétales, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Doria Grimard
- Laboratoire de Microbiologie, Complexe Hospitalier de la Sagamie, Chicoutimi, QC, Canada
| | - Jean Legault
- Laboratoire d’Analyse et de Séparation des Essences Végétales, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
- Centre de Recherche sur la Boréalie, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| |
Collapse
|
77
|
Cao R, Ma Q, Fu Y, Zhou Z, Zhao X. Preparation, Evaluation and Characterization of Rutin-Chitooligosaccharide Complex. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2019; 74:328-333. [PMID: 31172349 DOI: 10.1007/s11130-019-00740-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Rutin possesses a wide range of application prospects with various bioactivities. However, its bitter and water-insoluble properties restrict its application in the field of functional foods. A new complex of rutin and chitooligosaccharide (Rutin-COS) was prepared via spray-drying method (100 °C, 1 L/h) and freeze-drying method (-80 °C, 24 h), respectively. The water solubility, bitterness, antioxidant and antibacterial activities of Rutin-COS were evaluated, and the complexation of Rutin-COS was characterized by SEM, 1H-NMR and ROESY. Compared to freeze-drying method, spray-drying method was more effective for preparing stable Rutin-COS complex. The spray-dried Rutin-COS showed increased water solubility, weakened bitterness, enhanced antioxidant and antibacterial activity compared to rutin. The Rutin-COS complex was demonstrated to be formed through hydrogen bonds between the A, B rings of rutin and COS.
Collapse
Affiliation(s)
- Ruge Cao
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Qiuchen Ma
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Yu Fu
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China
| | - Zhongkai Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, Tianjin, 300457, China.
- ARC Industrial Transformation Training Centre for Functional Grains, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia.
| | - Xiaoyu Zhao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China
| |
Collapse
|
78
|
Improved antibacterial and antioxidant activities of gallic acid grafted chitin-glucan complex. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1893-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
79
|
Banthia S, Hazra C, Sen R, Das S, Das K. Electrodeposited functionally graded coating inhibits Gram-positive and Gram-negative bacteria by a lipid peroxidation mediated membrane damage mechanism. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:623-633. [PMID: 31147034 DOI: 10.1016/j.msec.2019.04.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/18/2019] [Accepted: 04/27/2019] [Indexed: 11/29/2022]
Abstract
The current work deals with a time-dependent study to track the antibacterial action of electrodeposited Cu, Cu-SiC functionally graded coating (FGC) against Escherichia coli NCIM 2931 (Gram-negative) and Bacillus subtilis NCIM 2063 (Gram-positive). After 24 h of incubation, the Cu, Cu-SiC FGC causes 7 Escherichia coli NCIM 2931 and 10 Bacillus subtilis NCIM 2063 log reduction of planktonic cells. The outer membrane permeabilization experiment proves that the intake of excessive Cu ions leads to the damage of bacterial cell membrane followed by lipid degradation. The thiobarbituric acid reactive substances assay reveals that Cu ions released from the surface of Cu, Cu-SiC FGC triggers the oxidative degeneration of phospholipids (most abundant constituent of bacterial cell membrane). This was further cross-verified using atomic absorption spectroscopy. From 0 to 24 h, the bacterial morphology is characterized using transmission electron microscope and scanning electron microscope which shows the cytoplasmic leakage and cell death. The Cu, Cu-SiC FGC also exhibits hydrophobic surface (contact angle of 144°) which prevents the bacterial adherence to the surface and thus, inhibits them to penetrate into its bulk. The observed results of antibacterial and anti-adhesion properties of Cu, Cu-SiC FGC are compared with single-layered metallic Cu and Cu-SiC nanocomposite coatings. Hence, the electrodeposited Cu, Cu-SiC FGC has the potential to serve as an inexpensive touch surface alternative for the healthcare industries.
Collapse
Affiliation(s)
- Swastika Banthia
- School of Nanoscience and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Chinmay Hazra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Siddhartha Das
- School of Nanoscience and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Karabi Das
- School of Nanoscience and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Department of Metallurgical and Materials Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
80
|
Wu C, Li Y, Du Y, Wang L, Tong C, Hu Y, Pang J, Yan Z. Preparation and characterization of konjac glucomannan-based bionanocomposite film for active food packaging. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.11.001] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
81
|
Modification of Chitosan for the Generation of Functional Derivatives. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071321] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Today, chitosan (CS) is probably considered as a biofunctional polysaccharide with the most notable growth and potential for applications in various fields. The progress in chitin chemistry and the need to replace additives and non-natural polymers with functional natural-based polymers have opened many new opportunities for CS and its derivatives. Thanks to the specific reactive groups of CS and easy chemical modifications, a wide range of physico-chemical and biological properties can be obtained from this ubiquitous polysaccharide that is composed of β-(1,4)-2-acetamido-2-deoxy-d-glucose repeating units. This review is presented to share insights into multiple native/modified CSs and chitooligosaccharides (COS) associated with their functional properties. An overview will be given on bioadhesive applications, antimicrobial activities, adsorption, and chelation in the wine industry, as well as developments in medical fields or biodegradability.
Collapse
|
82
|
Nizioł J, Misiorek M, Ruman T. Mass spectrometry imaging of low molecular weight metabolites in strawberry fruit (Fragaria x ananassa Duch.) cv. Primoris with 109Ag nanoparticle enhanced target. PHYTOCHEMISTRY 2019; 159:11-19. [PMID: 30551117 DOI: 10.1016/j.phytochem.2018.11.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 11/09/2018] [Accepted: 11/18/2018] [Indexed: 06/09/2023]
Abstract
Strawberry (Fragaria x ananassa Duch., Rosaceae) is the subject of many research studies due to its numerous features such as unique taste, aroma and health qualities. The distribution of low molecular weight metabolites belonging to aldehydes, ketones, alcohols, esters, organic acids, phenolics, amino acids and sugars classes within strawberry fruit cross-section was studied using mass spectrometry imaging (MSI) method with 109Ag nanoparticle enhanced target (109AgNPET). Correlation of distribution of over thirty compounds found in cross-section of strawberry with their biological function is also included.
Collapse
Affiliation(s)
- Joanna Nizioł
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| | - Maria Misiorek
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland.
| | - Tomasz Ruman
- Rzeszów University of Technology, Faculty of Chemistry, 6 Powstańców Warszawy Ave., 35-959, Rzeszów, Poland
| |
Collapse
|
83
|
Antibacterial activity and mechanism of a laccase-catalyzed chitosan–gallic acid derivative against Escherichia coli and Staphylococcus aureus. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.09.021] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
84
|
Dimassi S, Tabary N, Chai F, Blanchemain N, Martel B. Sulfonated and sulfated chitosan derivatives for biomedical applications: A review. Carbohydr Polym 2018; 202:382-396. [DOI: 10.1016/j.carbpol.2018.09.011] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 12/20/2022]
|
85
|
Zarayneh S, Sepahi AA, Jonoobi M, Rasouli H. Comparative antibacterial effects of cellulose nanofiber, chitosan nanofiber, chitosan/cellulose combination and chitosan alone against bacterial contamination of Iranian banknotes. Int J Biol Macromol 2018; 118:1045-1054. [DOI: 10.1016/j.ijbiomac.2018.06.160] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/18/2018] [Accepted: 06/27/2018] [Indexed: 11/27/2022]
|
86
|
Kim G, Dasagrandhi C, Kang EH, Eom SH, Kim YM. In vitro antibacterial and early stage biofilm inhibitory potential of an edible chitosan and its phenolic conjugates against Pseudomonas aeruginosa and Listeria monocytogenes. 3 Biotech 2018; 8:439. [PMID: 30306008 PMCID: PMC6172176 DOI: 10.1007/s13205-018-1451-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 09/24/2018] [Indexed: 11/29/2022] Open
Abstract
In the present study, the antibacterial potential of chitosan grafted with phenolics (CPCs) such as caffeic acid (CCA), ferulic (CFA), and sinapic acid (CSA) were evaluated against foodborne pathogens like Pseudomonas aeruginosa (PA) and Listeria monocytogenes (LM). The geometric means of minimum inhibitory concentration (MIC range 0.05-0.33 mg/ml), bactericidal concentration (MBC range 0.30-0.45 mg/ml), biofilm inhibitory concentration (BIC range 0.42-0.83 mg/ml), and biofilm eradication concentration (BEC range 1.71-3.70 mg/ml) of CPCs were found to be lower than the MIC (0.12-1.08 mg/ml), MBC (0.17-1.84 mg/ml), BIC (4.0-4.50 mg/ml), and BEC (17.4-23.0 mg/ml) of unmodified chitosan against PA and LM. CPCs attenuated the biofilms of PA and LM by increasing the membrane permeability of bacteria embedded within the biofilms. Further, sub MIC of CPCs (0.5 × MIC) significantly reduced the biofilm adhesion (p < 0.001) by representative strains of LM (CCA: 72.2 ± 3.5, CFA: 79.3 ± 0.9, and CSA: 74.9 ± 1.5%) and PA (CCA: 64 ± 1.1, CFA: 67.8 ± 0.8, and CSA: 65.7 ± 4.9%). These results suggested the antibacterial and anti-biofilm potential of CPCs that can be exploited to control foodborne pathogenic infections.
Collapse
Affiliation(s)
- Gabjin Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48547 South Korea
| | - Chakradhar Dasagrandhi
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513 South Korea
| | - Eun-Hye Kang
- Department of Food Science and Technology, Pukyong National University, Busan, 48547 South Korea
| | - Sung-Hwan Eom
- Department of Food Science and Technology, Dongeui University, Busan, 47340 South Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48547 South Korea
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan, 48513 South Korea
| |
Collapse
|
87
|
Dasagrandhi C, Park S, Jung WK, Kim YM. Antibacterial and Biofilm Modulating Potential of Ferulic Acid-Grafted Chitosan against Human Pathogenic Bacteria. Int J Mol Sci 2018; 19:E2157. [PMID: 30042337 PMCID: PMC6121546 DOI: 10.3390/ijms19082157] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 01/19/2023] Open
Abstract
The emergence of more virulent forms of human pathogenic bacteria with multi-drug resistance is a serious global issue and requires alternative control strategies. The current study focused on investigating the antibacterial and antibiofilm potential of ferulic acid-grafted chitosan (CFA) against Listeria monocytogenes (LM), Pseudomonas aeruginosa (PA), and Staphylococcus aureus (SA). The result showed that CFA at 64 µg/mL concentration exhibits bactericidal action against LM and SA (>4 log reduction) and bacteriostatic action against PA (<2 log colony forming units/mL reduction) within 24 h of incubation. Further studies based on propidium iodide uptake assay, measurement of material released from the cell, and electron microscopic analysis revealed that the bactericidal action of CFA was due to altered membrane integrity and permeability. CFA dose dependently inhibited biofilm formation (52⁻89% range), metabolic activity (30.8⁻75.1% range) and eradicated mature biofilms, and reduced viability (71⁻82% range) of the test bacteria. Also, the swarming motility of LM was differentially affected at sub-minimum inhibitory concentration (MIC) concentrations of CFA. In the present study, the ability of CFA to kill and alter the virulence production in human pathogenic bacteria will offer insights into a new scope for the application of these biomaterials in healthcare to effectively treat bacterial infections.
Collapse
Affiliation(s)
- Chakradhar Dasagrandhi
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.
| | - Seulki Park
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea.
| | - Won-Kyo Jung
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea.
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
88
|
Liang S, Dang Q, Liu C, Zhang Y, Wang Y, Zhu W, Chang G, Sun H, Cha D, Fan B. Characterization and antibacterial mechanism of poly(aminoethyl) modified chitin synthesized via a facile one-step pathway. Carbohydr Polym 2018; 195:275-287. [PMID: 29804977 DOI: 10.1016/j.carbpol.2018.04.109] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 01/22/2023]
Abstract
This work aims to synthesize poly(aminoethyl) modified chitin (PAEMC) and ascertain its antibacterial activity and mechanism. FTIR and 1H NMR results proved aminoethyl moieties were grafted to C6OH and C3OH on chitin backbone in the form of polymerization. XRD and TG/DTG analyses manifested its well-defined crystallinity and thermostability. PAEMC, with average molecular weight (MW) of 851.0 kDa, degree of deacetylation (DD) of 27.95%, and degree of substitution (DS) of 1.77, had good solubility in aqueous solutions over the pH range of 3-12, and also possessed high antimicrobial activity against Staphylococcus epidermidis, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Bacillus proteus, and Klebsiella pneumoniae, commonly causing chronic wound infections. Nucleic acid release, protein leakage, increased inner membrane permeability, and decreased cell surface hydrophobicity implied bacterial cytomembranes were substantially compromised in the presence of PAEMC. Microscopically, PAEMC visually perturbed bacteria, illustrating deformed and even collapsed morphologies. Overall, PAEMC possessed good solubility, effectively destroyed bacteria via a membrane damage mechanism, and might serve as an antibacterial agent for treatments of chronic wound infections.
Collapse
Affiliation(s)
- Shengnan Liang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qifeng Dang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Chengsheng Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China.
| | - Yubei Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Yan Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Wenjing Zhu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Guozhu Chang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Hantian Sun
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Dongsu Cha
- The Graduate School of Biotechnology, Korea University, Seoul 136-701, South Korea
| | - Bing Fan
- Qingdao Aorun Biotechnology Co., Ltd., Room 602, Century Mansion, 39 Donghaixi Road, Qingdao 266071, PR China
| |
Collapse
|
89
|
Fang Z, Lin D, Warner RD, Ha M. Effect of gallic acid/chitosan coating on fresh pork quality in modified atmosphere packaging. Food Chem 2018; 260:90-96. [PMID: 29699687 DOI: 10.1016/j.foodchem.2018.04.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/06/2018] [Accepted: 04/03/2018] [Indexed: 11/16/2022]
Abstract
Fresh meat safety and quality is a major concern of consumers in the current food market. The objective of this research was to investigate a newly developed gallic acid/chitosan edible coating on the preservation of fresh pork quality in modified atmosphere package (MAP) stored at 4 °C. The pork loins were coated with 2% chitosan (CHI), 0.2% gallic acid in 2% chitosan (CHI/0.2G), or 0.4% gallic acid in 2% chitosan (CHI/0.4G). Results showed that the antimicrobial activity of the chitosan coating was increased with the incorporation of gallic acid. The CHI/0.2G and CHI/0.4G pork loins also had lower lipid oxidation and myoglobin oxidation. However, the CHI/0.4G sample exhibited a pro-protein oxidation effect, suggesting an optimal concentration of gallic acid should be incorporated. This research provides a practical method in application of gallic acid/chitosan coatings on preservation of fresh pork to improve the safety and quality in MAP environment.
Collapse
Affiliation(s)
- Zhongxiang Fang
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Daniel Lin
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Robyn Dorothy Warner
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Minh Ha
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
90
|
Kosuru RY, Aashique M, Fathima A, Roy A, Bera S. Revealing the dual role of gallic acid in modulating ampicillin sensitivity of Pseudomonas aeruginosa biofilms. Future Microbiol 2018; 13:297-312. [DOI: 10.2217/fmb-2017-0132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aim: To understand the effects of gallic acid (GA) on ampicillin (Amp) sensitive or resistant strain of Pseudomonas sp. and also in modulating the corresponding biofilms. Methodology: The cell viability was determined by broth dilution, dry weight and CFU assays. Biofilm formation was measured by crystal violet assay while oxygen consumption rate was measured to verify the metabolic status of the cells. The membrane damage and drug efflux/accumulation were studied by fluorimetric assays. Results: GA transformed the Amp resistant cells, both planktonic and biofilms, into highly sensitive one by inducing membrane damage and enhancing accumulation of drug, whereas the Amp sensitive cells gained resistance against Amp. Conclusion: Use of GA as an antimicrobial compound should be analyzed more critically depending on the drug dosages, drug sensitivity as well as types of bacterial strains being studied.
Collapse
Affiliation(s)
- Rekha Yamini Kosuru
- School of Life Sciences, BS Abdur Rahman University, Vandalur, Chennai, Tamil Nadu 600048, India
| | - Md Aashique
- School of Life Sciences, BS Abdur Rahman University, Vandalur, Chennai, Tamil Nadu 600048, India
| | - Aisha Fathima
- School of Life Sciences, BS Abdur Rahman University, Vandalur, Chennai, Tamil Nadu 600048, India
| | - Amrita Roy
- School of Life Sciences, BS Abdur Rahman University, Vandalur, Chennai, Tamil Nadu 600048, India
| | - Soumen Bera
- School of Life Sciences, BS Abdur Rahman University, Vandalur, Chennai, Tamil Nadu 600048, India
| |
Collapse
|
91
|
Rizwan M, Yahya R, Hassan A, Yar M, Anita Omar R, Azari P, Danial Azzahari A, Selvanathan V, Rageh Al-Maleki A, Venkatraman G. Synthesis of a novel organosoluble, biocompatible, and antibacterial chitosan derivative for biomedical applications. J Appl Polym Sci 2017. [DOI: 10.1002/app.45905] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Muhammad Rizwan
- Department of Chemistry; Universiti Malaya; 50603 Kuala Lumpur Malaysia
| | - Rosiyah Yahya
- Department of Chemistry; Universiti Malaya; 50603 Kuala Lumpur Malaysia
| | - Aziz Hassan
- Department of Chemistry; Universiti Malaya; 50603 Kuala Lumpur Malaysia
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology; 54000 Lahore Pakistan
| | - Ros Anita Omar
- Department of Restorative Dentistry, Faculty of Dentistry; Universiti Malaya; 50603 Kuala Lumpur Malaysia
| | - Pedram Azari
- Department of Biomedical Engineering, Faculty of Engineering; University of Malaya; 50603 Kuala Lumpur Malaysia
| | | | | | - Anis Rageh Al-Maleki
- Department of Medical Microbiology, Faculty of Medicine; Universiti Malaya; 50603 Kuala Lumpur Malaysia
| | - Gopinath Venkatraman
- Department of Medical Microbiology, Faculty of Medicine; Universiti Malaya; 50603 Kuala Lumpur Malaysia
| |
Collapse
|
92
|
Yoon SD, Kim YM, Kim BI, Je JY. Preparation and antibacterial activities of chitosan-gallic acid/polyvinyl alcohol blend film by LED-UV irradiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 176:145-149. [DOI: 10.1016/j.jphotobiol.2017.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/25/2017] [Accepted: 09/28/2017] [Indexed: 12/29/2022]
|
93
|
Park SY, Ahn G, Um JH, Han EJ, Ahn CB, Yoon NY, Je JY. Hepatoprotective effect of chitosan-caffeic acid conjugate against ethanol-treated mice. ACTA ACUST UNITED AC 2017; 69:618-624. [DOI: 10.1016/j.etp.2017.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 12/18/2022]
|
94
|
Rui L, Xie M, Hu B, Zhou L, Yin D, Zeng X. A comparative study on chitosan/gelatin composite films with conjugated or incorporated gallic acid. Carbohydr Polym 2017; 173:473-481. [DOI: 10.1016/j.carbpol.2017.05.072] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 01/05/2023]
|
95
|
Liu J, Pu H, Liu S, Kan J, Jin C. Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review. Carbohydr Polym 2017; 174:999-1017. [DOI: 10.1016/j.carbpol.2017.07.014] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/17/2022]
|
96
|
Antibacterial activity of phenyllactic acid against Listeria monocytogenes and Escherichia coli by dual mechanisms. Food Chem 2017; 228:533-540. [DOI: 10.1016/j.foodchem.2017.01.112] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/17/2016] [Accepted: 01/23/2017] [Indexed: 02/03/2023]
|
97
|
Chiu HF, Huang SR, Lu YY, Han YC, Shen YC, Venkatakrishnan K, Wang CK. Antimutagenicity, antibacteria, and water holding capacity of chitosan from Luffa aegyptiaca
Mill and Cucumis sativus
L. J Food Biochem 2017. [DOI: 10.1111/jfbc.12362] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hui-Fang Chiu
- Department of Chinese Medicine; Taichung Hospital, Ministry of Health and Well-being; Taichung Taiwan ROC
| | - Shin-Ru Huang
- School of Nutrition; Chung Shan Medical University; 110, Sec. 1, Jianguo North Road Taichung City Taiwan ROC
| | - Yan-Ying Lu
- Department of Neurology; Chung Shan Medical University; 110, Sec. 1, Jianguo North Road Taichung City Taiwan ROC
| | - Yi-Chun Han
- School of Nutrition; Chung Shan Medical University; 110, Sec. 1, Jianguo North Road Taichung City Taiwan ROC
| | - You-Cheng Shen
- School of Health Diet and Industry Management; Chung Shan Medical University; 110, Sec. 1, Jianguo North Road Taichung City Taiwan ROC
| | - Kamesh Venkatakrishnan
- School of Nutrition; Chung Shan Medical University; 110, Sec. 1, Jianguo North Road Taichung City Taiwan ROC
| | - Chin-Kun Wang
- School of Nutrition; Chung Shan Medical University; 110, Sec. 1, Jianguo North Road Taichung City Taiwan ROC
| |
Collapse
|
98
|
Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr Polym 2017; 164:268-283. [DOI: 10.1016/j.carbpol.2017.02.001] [Citation(s) in RCA: 496] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 01/10/2023]
|
99
|
Tejpal CS, Chatterjee NS, Elavarasan K, Lekshmi RGK, Anandan R, Asha KK, Ganesan B, Mathew S, Ravishankar CN. Dietary supplementation of thiamine and pyridoxine-loaded vanillic acid-grafted chitosan microspheres enhances growth performance, metabolic and immune responses in experimental rats. Int J Biol Macromol 2017; 104:1874-1881. [PMID: 28342754 DOI: 10.1016/j.ijbiomac.2017.03.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/07/2017] [Accepted: 03/21/2017] [Indexed: 12/25/2022]
Abstract
In the present investigation, the effect of dietary supplementation of thiamine and pyridoxine loaded vanillic acid-grafted chitosan microspheres (TPVGC) on growth, metabolic and immune responses in Wistar strain albino rats was studied. Eight experimental groups, namely four groups each for male and female rats were fed with 0, 0.4, 0.8 and 1.6% of TPVGC in the diet. At the end of 45days feeding trials, both male and female rats supplemented with TPVGC had higher weight gain% and specific growth rate than the control groups. Significantly (p<0.05) lower blood glucose level and higher respiratory burst activity were recorded in the treatment groups than the control groups of both male and female rats. Activity of metabolic enzymes (aspartate amino transferase, alanine aminotransferase, alkaline phosphatase and acid phosphatase) and antioxidant enzymes (superoxide dismutase, catalase and glutathione S-transferase) were significantly higher (p<0.05) in the control groups and a decreasing trend in the same was observed with a gradual increase in the inclusion level of TPVGC in the diet of the treatment groups. However, a reverse trend was observed for acetylcholine esterase. It was inferred that dietary supplementation of thiamine and pyridoxine loaded vanillic acid-grafted chitosan enhanced the growth performance, metabolic and immune responses in the animal-model.
Collapse
Affiliation(s)
- C S Tejpal
- ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri post, Cochin, 682029, India.
| | - N S Chatterjee
- ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri post, Cochin, 682029, India
| | - K Elavarasan
- ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri post, Cochin, 682029, India
| | - R G K Lekshmi
- ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri post, Cochin, 682029, India
| | - R Anandan
- ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri post, Cochin, 682029, India
| | - K K Asha
- ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri post, Cochin, 682029, India
| | - B Ganesan
- ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri post, Cochin, 682029, India
| | - S Mathew
- ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri post, Cochin, 682029, India
| | - C N Ravishankar
- ICAR-Central Institute of Fisheries Technology, Willingdon Island, Matsyapuri post, Cochin, 682029, India
| |
Collapse
|
100
|
Yar M, Shahzad S, Shahzadi L, Shahzad SA, Mahmood N, Chaudhry AA, Rehman IU, MacNeil S. Heparin binding chitosan derivatives for production of pro-angiogenic hydrogels for promoting tissue healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 74:347-356. [PMID: 28254303 DOI: 10.1016/j.msec.2016.12.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/10/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022]
Abstract
Our aim was to develop a biocompatible hydrogel that could be soaked in heparin and placed on wound beds to improve the vasculature of poorly vascularized wound beds. In the current study, a methodology was developed for the synthesis of a new chitosan derivative (CSD-1). Hydrogels were synthesized by blending CSD-1 for either 4 or 24h with polyvinyl alcohol (PVA). The physical/chemical interactions and the presence of specific functional groups were confirmed by Fourier transform infrared (FT-IR) spectroscopy and proton nuclear magnetic resonance (1H NMR). The porous nature of the hydrogels was confirmed by scanning electron microscopy (SEM). Thermal gravimetric analysis (TGA) showed that these hydrogels have good thermal stability which was slightly increased as the blending time was increased. Hydrogels produced with 24h of blending supported cell attachment more and could be loaded with heparin to induce new blood vessel formation in a chick chorionic allantoic membrane assay.
Collapse
Affiliation(s)
- Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000, Pakistan.
| | - Sohail Shahzad
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000, Pakistan; Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Lubna Shahzadi
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan
| | - Nasir Mahmood
- Department of Allied Health Sciences and Chemical Pathology, University of Health Sciences, Lahore, Pakistan; Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore, Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000, Pakistan
| | - Ihtesham Ur Rehman
- Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000, Pakistan; Materials Science and Engineering, North Campus, University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK
| | - Sheila MacNeil
- Materials Science and Engineering, North Campus, University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK.
| |
Collapse
|