51
|
Abstract
Glutamic acid (Glu) is the major excitatory neurotransmitter in the mammalian central nervous system (CNS) where it is involved in the physiological regulation of different processes. It has been well established that excessive endogenous Glu is associated with many acute and chronic neurodegenerative disorders such as cerebral ischaemia, epilepsy, amiotrophic lateral sclerosis, Parkinson's, and Alzheimer's disease. These data have consequently added great impetus to the research in this field. In fact, many Glu receptor antagonists acting at the N-methyl-D-aspartic acid (NMDA), 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA), and/or kainic acid (KA) receptors have been developed as research tools and potential therapeutic agents. Ligands showing competitive antagonistic action at the AMPA type of Glu receptors were first reported in 1988, and the systemically active 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo[f]quinoxaline (NBQX) was first shown to have useful therapeutic effects in animal models of neurological disease in 1990. Since then, the quinoxaline template has represented the backbone of various competitive AMPA receptor antagonists belonging to different classes which had been developed in order to increase potency, selectivity and water solubility, but also to prolong the "in vivo" action. Compounds that present better pharmacokinetic properties and less serious adverse effects with respect to the others previously developed are undergoing clinical evaluation. In the near future, the most important clinical application for the AMPA receptor antagonists will probably be as neuroprotectant in neurodegenerative diseases, such as epilepsy, for the treatment of patients not responding to current therapies. The present review reports the history of competitive AMPA receptor antagonists from 1988 up to today, providing a systematic coverage of both the open and patent literature.
Collapse
Affiliation(s)
- Daniela Catarzi
- Dipartimento di Scienze Farmaceutiche, Universita' degli Studi di Firenze, Polo Scientifico, Via U. Schiff, 6-50019 Sesto Fiorentino (Firenze), Italy.
| | | | | |
Collapse
|
52
|
Jung JC, Jung YJ, Park OS. A CONVENIENT ONE-POT SYNTHESIS OF 4-HYDROXYCOUMARIN, 4-HYDROXYTHIOCOUMARIN, AND 4-HYDROXYQUINOLIN-2(1H)-ONE. SYNTHETIC COMMUN 2006. [DOI: 10.1081/scc-100104003] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jae-Chul Jung
- a Department of Chemistry , College of Natural Sciences, Chungbuk National University , Cheongju, Chungbuk, 361-763, Korea
| | - Young-Jo Jung
- a Department of Chemistry , College of Natural Sciences, Chungbuk National University , Cheongju, Chungbuk, 361-763, Korea
| | - Oee-Sook Park
- b Department of Chemistry , College of Natural Sciences, Chungbuk National University , Cheongju, Chungbuk, 361-763, Korea
| |
Collapse
|
53
|
Hogan AML, O'Shea DF. Regioselective Carbolithiation of o-Amino-(E)-Stilbenes: Cascade Route to the Quinoline Scaffold. Org Lett 2006; 8:3769-72. [PMID: 16898813 DOI: 10.1021/ol061348n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] The regioselective carbolithiation of substituted ortho-amino-(E)-stilbenes can be exploited to initiate cascade reaction sequences that can be utilized as new routes to substituted 3,4-dihydro-1H-quinolin-2-ones, 1,2,3,4-tetrahydroquinolines, 1,4-dihydroquinolines, and quinolines.
Collapse
Affiliation(s)
- Anne-Marie L Hogan
- Centre for Synthesis and Chemical Biology, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | | |
Collapse
|
54
|
McAllister LA, Turner KL, Brand S, Stefaniak M, Procter DJ. Solid Phase Approaches to N-Heterocycles Using a Sulfur Linker Cleaved by SmI2. J Org Chem 2006; 71:6497-507. [PMID: 16901135 DOI: 10.1021/jo060940n] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A sulfur HASC (alpha-hetero-atom substituted carbonyl) linker has been utilized in solid-phase approaches to oxindoles and tetrahydroquinolones. The route to oxindoles employs the first Pummerer cyclizations on solid phase, whereas the route to tetrahydroquinolones involves a microwave-assisted Heck reaction followed by a Michael cyclization. In both cases, the linker is cleaved in a traceless fashion by electron transfer from samarium(II) iodide. The routes illustrate the compatibility of the linker system with a number of reaction types and its utility for library synthesis.
Collapse
Affiliation(s)
- Laura A McAllister
- Department of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | | | | | |
Collapse
|
55
|
Turner KL, Baker TM, Islam S, Procter DJ, Stefaniak M. Solid-Phase Approach to Tetrahydroquinolones Using a Sulfur Linker Cleaved by SmI2. Org Lett 2005; 8:329-32. [PMID: 16408907 DOI: 10.1021/ol052730n] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
[reaction: see text] A sulfur alpha-heteroatom-substituted carbonyl (HASC) linker has been utilized in a solid-phase approach to tetrahydroquinolones. The route illustrates the compatibility of the linker system with palladium-catalyzed transformations and its utility for library synthesis. The linker is cleaved by electron transfer from samarium(II) iodide.
Collapse
|
56
|
Lewis acid catalyzed intramolecular halo-arylation of tethered alkenes using N-halosuccinimide (NXS) as the halogen source: a general method for the synthesis of chromanones, chromans, quinolones, tetrahydroquinolines and tetralins. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.09.170] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
57
|
Huang WH, Lee AR, Chien PY, Chou TC. Synthesis of baicalein derivatives as potential anti-aggregatory and anti-inflammatory agents. J Pharm Pharmacol 2005; 57:219-25. [PMID: 15720786 DOI: 10.1211/0022357055371] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The direct acylation of trimethoxyphenol (1) with substituted cinnamoyl chlorides followed by Fries rearrangement and cyclization afforded a practical route for the synthesis of novel baicalein derivatives 4 functionalized on the B-ring in good overall yields. In the methylthiazoletetrazolium bromide (MTT) assay, none of the synthetic polyhydroxyflavonoids were cytotoxic at concentrations up to 200 microM on lipopolysaccharide (LPS)-activated murine RAW 264.7 macrophages over 24 h, while in the same cells they significantly inhibited NO production. Among the derivatives, 4d (IC50=46.1 +/- 0.3 microM) was found to exhibit the most potent activity compared with N-nitro-(L)-arginine methyl ester (L-NAME, IC50 >300 microM). Compounds 4b, 4e, 4f, 4h and 4i remarkably inhibited platelet aggregation induced by arachidonic acid and collagen in rabbit washed platelets compared with aspirin. Analysis of their structure-activity relationships indicated that, in the structural modification on the B-ring of baicalein (4a), introduction of appropriate electro-withdrawing substituents such as 2-Cl (4b), 4-Cl (4d), and 4-phenyl (4i) notably increased the potency on the inhibition of LPS-activated NO production and arachidonic acid- and collagen-induced aggregation. Baicalein itself was equally effective in the inhibition of LPS-activated NO production and collagen-induced aggregation but less active against arachidonic acid-induced aggregation. Our in-vitro results suggested that by appropriate structural modification of baicalein it may be possible to develop novel therapeutic agents against platelet-aggregation and inflammation.
Collapse
Affiliation(s)
- Wen-Hsin Huang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.
| | | | | | | |
Collapse
|
58
|
Valgeirsson J, Nielsen EO, Peters D, Mathiesen C, Kristensen AS, Madsen U. Bioisosteric Modifications of 2-Arylureidobenzoic Acids: Selective Noncompetitive Antagonists for the Homomeric Kainate Receptor Subtype GluR5. J Med Chem 2004; 47:6948-57. [PMID: 15615543 DOI: 10.1021/jm030638w] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
2-Arylureidobenzoic acids (AUBAs) have recently been presented as the first series of selective noncompetitive GluR5 antagonists. In this paper we have modified the acidic moiety of the AUBAs by introducing different acidic and neutral groups, and similarly, we have replaced the urea linker of the AUBAs with other structurally related linkers. Replacing the acid with neutral substituents led to inactive compounds in all instances, showing that an acidic moiety is necessary for activity. Replacing the carboxylic moiety in 2a with a sulfonic acid (5c) or a tetrazole ring (5d) improved the potency at GluR5 receptors (compounds 5c and 5d showed IC(50) values of 1.5 and 2.0 muM, respectively, compared to compound 2a with IC(50) = 4.8 muM). Compound 5c did not show improved in vivo activity in the ATPA rigidity test compared to 2a, whereas compound 5d was 4 times more potent than 2a. All compounds wherein the urea linker had been replaced showed lower or no activity. The results described extend the knowledge of structure-activity relationships for the AUBAs, and compound 5d may prove to be a good candidate for studying GluR5 receptors in vitro and in vivo.
Collapse
Affiliation(s)
- Jon Valgeirsson
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, 2 Universitetsparken, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
59
|
|
60
|
Caron S, Vazquez E, Stevens RW, Nakao K, Koike H, Murata Y. Efficient synthesis of [6-chloro-2-(4-chlorobenzoyl)-1H-indol-3-yl]-acetic acid, a novel COX-2 inhibitor. J Org Chem 2003; 68:4104-7. [PMID: 12737602 DOI: 10.1021/jo034274r] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis of 6-chloro-2-(4-chlorobenzoyl)-1H-indol-3-ylacetic acid (1), a selective cyclooxygenase 2 (COX-2) inhibitor, is described. The synthesis relied on a novel indole formation that involved an alkylation/1,4-addition/elimination/isomerization cascade. It was demonstrated that the entire sequence from sulfonamide 13 and bromoketone 14 to the desired indole (1) could be executed in a single pot.
Collapse
Affiliation(s)
- Stéphane Caron
- Chemical R&D, Pfizer Global Research & Development, Groton, Connecticut 06340-8118, USA.
| | | | | | | | | | | |
Collapse
|
61
|
Abstract
In just under 20 years the kynurenine family of compounds has developed from a group of obscure metabolites of the essential amino acid tryptophan into a source of intensive research, with postulated roles for quinolinic acid in neurodegenerative disorders, most especially the AIDS-dementia complex and Huntington's disease. One of the kynurenines, kynurenic acid, has become a standard tool for use in the identification of glutamate-releasing synapses, and has been used as the parent for several groups of compounds now being developed as drugs for the treatment of epilepsy and stroke. The kynurenines represent a major success in translating a basic discovery into a source of clinical understanding and therapeutic application, with around 3000 papers published on quinolinic acid or kynurenic acid since the discovery of their effects in 1981 and 1982. This review concentrates on some of the recent work most directly relevant to the understanding and applications of kynurenines in medicine.
Collapse
Affiliation(s)
- T W Stone
- Institute of Biomedical and Life Sciences, University West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
62
|
Varano F, Catarzi D, Colotta V, Cecchi L, Filacchioni G, Galli A, Costagli C. Synthesis of a set of ethyl 1-carbamoyl-3-oxoquinoxaline-2-carboxylates and of their constrained analogue imidazo. Eur J Med Chem 2001; 36:203-9. [PMID: 11311751 DOI: 10.1016/s0223-5234(00)01203-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The synthesis and glycine/NMDA and AMPA receptor affinities of a set of ethyl (+/-) 1-N-carbamoyl-1,2,3,4-tetrahydro-3-oxoquinoxaline-2-carboxylates 1-11 and those of their constrained analogue (+/-) 1,2,3,3a,4,5-hexahydroimidazo[1,5-a]quinoxaline-1,3,4-triones 12-24 are reported. Compounds 1-11 bear a side-chain at position 1 which has been spatially constrained in compounds 12-24. Most of the reported tricyclic derivatives 12-24 showed glycine/NMDA binding activity comparable to that of their corresponding bicyclic analogues 1-11 providing further evidence that the spatial orientation of the side-chain is an important structural requirement for glycine/NMDA receptor antagonists.
Collapse
Affiliation(s)
- F Varano
- Dipartimento di Scienze Farmaceutiche, Universita' di Firenze, Via G. Capponi, 9, 50121, Firenze, Italy
| | | | | | | | | | | | | |
Collapse
|
63
|
Majumdar KC, Biswas P, Ghosh SK. Studies in [3, 3] Sigmatropic Rearrangement: Regioselective Cyclization of 5-(Cyclohex-2-Enyl)-6-Hydroxy-1-Methylquinolin-2(1H)-One. SYNTHETIC COMMUN 2000. [DOI: 10.1080/00397910008087028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
64
|
Stone TW. Development and therapeutic potential of kynurenic acid and kynurenine derivatives for neuroprotection. Trends Pharmacol Sci 2000; 21:149-54. [PMID: 10740291 DOI: 10.1016/s0165-6147(00)01451-6] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Manipulation of the kynurenine pathway of tryptophan metabolism has yielded a plethora of agents that are now being developed as neuroprotectants and anticonvulsants. This pathway is involved in the production of the excitotoxin quinolinic acid and the neuroprotectant kynurenic acid. Approaches used in the development of therapeutic agents include production of analogues or pro-drugs of kynurenic acid and inhibitors of the enzyme responsible for the synthesis of quinolinic acid. Indeed, analogues of the amino acid receptor antagonist kynurenic acid are now in, or are about to enter, clinical trials for stroke and related disorders. This review summarizes the mechanism of action of these various agents, the development of glutamate receptor antagonists from kynurenic acid and the range of their potential uses in neurology and psychiatry.
Collapse
Affiliation(s)
- T W Stone
- Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow, UK.
| |
Collapse
|
65
|
Abstract
Strokes (intracranial thomboses or haemorrhaging) cause death and disability, but effective treatments are lacking. The metabolism of tryptophan leads to the generation of quinolinic acid, an agonist potentially neurotoxic at glutamate receptors, and kynurenic acid, an antagonist at the same population of receptors. The commercial development of the kynurenine pathway has included the use of analogues of kynurenic acid as antagonists at glutamate receptors. A second has been to use prodrugs of kynurenic acid or its analogues. Alternatively, it is proving possible to interfere directly with the kynurenine pathway to block the synthesis of quinolinic acid and promote the formation of kynurenic acid. This change yields neuroprotectant and anticonvulsant compounds.
Collapse
Affiliation(s)
- T W Stone
- Institute of Biomedical & Life Sciences, West Medical Building, University of Glasgow, Glasgow, UK.
| |
Collapse
|
66
|
Catarzi D, Colotta V, Varano F, Cecchi L, Filacchioni G, Galli A, Costagli C. 4,5-Dihydro-1,2,4-triazolo[1,5-a]quinoxalin-4-ones: excitatory amino acid antagonists with combined glycine/NMDA and AMPA receptor affinity. J Med Chem 1999; 42:2478-84. [PMID: 10395489 DOI: 10.1021/jm981102r] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of 4,5-dihydro-1,2,4-triazolo[1,5-a]quinoxalin-4-ones bearing different substituents on the benzo-fused ring and at position 2 were synthesized and biologically evaluated for their binding at glycine/NMDA and AMPA receptors. Most of the reported compounds show combined glycine/NMDA and AMPA receptor binding activity providing further evidences of the structural similarities of the binding pockets of both receptor recognition sites. Moreover, this study has pointed out some differences for the binding at each receptor type. In particular, for the glycine/NMDA receptor-ligand interaction, the presence of a free acidic function at position 2 and an electron-withdrawing substituent(s) nonbulkier than chlorine atom(s) on the benzo-fused moiety is required. Functional antagonism at the NMDA receptor-ion channel complex was also performed on some selected compounds.
Collapse
Affiliation(s)
- D Catarzi
- Dipartimento di Scienze Farmaceutiche, Universita' di Firenze, Via G. Capponi, 9, 50121 Firenze, Italy
| | | | | | | | | | | | | |
Collapse
|
67
|
Majumdar KC, Bhattacharyya T. Regioselective Synthesis of Heterocycles from 3-Cyclohex-2-enyl-4-hydroxy-1-methylquinolin-2-(1H)-one. SYNTHETIC COMMUN 1998. [DOI: 10.1080/00397919808004868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
68
|
Rowley M, Kulagowski JJ, Watt AP, Rathbone D, Stevenson GI, Carling RW, Baker R, Marshall GR, Kemp JA, Foster AC, Grimwood S, Hargreaves R, Hurley C, Saywell KL, Tricklebank MD, Leeson PD. Effect of plasma protein binding on in vivo activity and brain penetration of glycine/NMDA receptor antagonists. J Med Chem 1997; 40:4053-68. [PMID: 9406596 DOI: 10.1021/jm970417o] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A major issue in designing drugs as antagonists at the glycine site of the NMDA receptor has been to achieve good in vivo activity. A series of 4-hydroxyquinolone glycine antagonists was found to be active in the DBA/2 mouse anticonvulsant assay, but improvements in in vitro affinity were not mirrored by corresponding increases in anticonvulsant activity. Here we show that binding of the compounds to plasma protein limits their brain penetration. Relative binding to the major plasma protein, albumin, was measured in two different ways: by a radioligand binding experiment or using an HPLC assay, for a wide structural range of glycine/NMDA site ligands. These measures of plasma protein binding correlate well (r = 0.84), and the HPLC assay has been used extensively to quantify plasma protein binding. For the 4-hydroxyquinolone series, binding to plasma protein correlates (r = 0.92) with log P (octanol/pH 7.4 buffer) over a range of log P values from 0 to 5. The anticonvulsant activity increases with in vitro affinity, but the slope of a plot of pED50 versus pIC50 is low (0.40); taking plasma protein binding into account in this plot increases the slope to 0.60. This shows that binding to albumin in plasma reduces the amount of compound free to diffuse across the blood-brain barrier. Further evidence comes from three other experiments: (a) Direct measurements of brain/blood ratios for three compounds (2, 16, 26) show the ratio decreases with increasing log R. (b) Warfarin, which competes for albumin binding sites dose-dependently, decreased the ED50 of 26 for protection against seizures induced by NMDLA. (c) Direct measurements of brain penetration using an in situ brain perfusion model in rat to measure the amount of drug crossing the blood-brain barrier showed that compounds 2, 26, and 32 penetrate the brain well in the absence of plasma protein, but this is greatly reduced when the drug is delivered in plasma. In the 4-hydroxyquinolones glycine site binding affinity increases with lipophilicity of the 3-substituent up to a maximum at a log P around 3, then does not improve further. When combined with increasing protein binding, this gives a parabolic relationship between predicted in vivo activity and log P, with a maximum log P value of 2.39. Finally, the plasma protein binding studies have been extended to other series of glycine site antagonists, and its is shown that for a given log P these have similar protein binding to the 4-hydroxyquinolones, except for compounds that are not acidic. The results have implications for the design of novel glycine site antagonists, and it is suggested that it is necessary to either keep log P low or pKa high to obtain good central nervous system activity.
Collapse
Affiliation(s)
- M Rowley
- Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Harlow, Essex, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Affiliation(s)
- Z Lin
- K and K Biosciences, Inc., Lexington, Kentucky 40502-3330, USA
| | | |
Collapse
|
70
|
Cai SX, Huang JC, Espitia SA, Tran M, Ilyin VI, Hawkinson JE, Woodward RM, Weber E, Keana JF. 5-(N-oxyaza)-7-substituted-1,4-dihydroquinoxaline-2,3-diones: novel, systemically active and broad spectrum antagonists for NMDA/glycine, AMPA, and kainate receptors. J Med Chem 1997; 40:3679-86. [PMID: 9357535 DOI: 10.1021/jm970396y] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A group of 5-aza-7-substituted-1,4-dihydroquinoxaline-2,3-diones (QXs) and the corresponding 5-(N-oxyaza)-7-substituted QXs were prepared and evaluated as antagonists of ionotropic glutamate receptors. The in vitro potency of these QXs was determined by inhibition of [3H]-5,7-dichlorokynurenic acid ([3H]DCKA) binding to N-methyl-D-aspartate (NMDA)/glycine receptors, [3H]-(S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid ([3H]AMPA) binding to AMPA receptors, and [3H]kainate ([3H]KA) binding to KA receptors in rat brain membranes. 5-(N-Oxyaza)-QXs 12a-e all have low micromolar or submicromolar potency for NMDA/glycine receptors and low micromolar potencies for AMPA and KA receptors. QXs 12a-e display 2-12-fold selectivity for NMDA/glycine receptors compared to AMPA receptors, and approximately 2-fold difference between AMPA and KA potency. In contrast to other QXs that either show high selectivity for NMDA (such as ACEA 1021) or AMPA (such as NBQX) receptors, these molecules are broad spectrum antagonists of ionotropic glutamate receptors. 7-Nitro-5-(N-oxyaza)-QX (12e) is the most potent inhibitor among 12a-e, having IC50 values of 0.69, 1.3, and 2.4 microM at NMDA, AMPA, and KA receptors, respectively. In functional assays on glutamate receptors expressed in oocytes by rat cerebral cortex poly(A+) RNA, 7-chloro-5-(N-oxyaza)-QX (12a) and 7-nitro-5-(N-oxyaza)-QX (12e) have Kb values of 0.63 and 0.31 microM for NMDA/glycine receptors, and are 6- and 4-fold selective for NMDA over AMPA receptors, respectively. 5-(N-Oxyaza)-7-substituted-QXs 12a-e all have surprisingly high in vivo potency as anticonvulsants in a mouse maximal electroshock-induced seizure (MES) model. 7-Chloro-5-(N-oxyaza)-QX (12a), 7-bromo-5-(N-oxyaza)-QX (12b), and 7-methyl-5-(N-oxyaza)-QX (12c) have ED50 values of 0.82, 0.87, and 0.97 mg/kg i.v., respectively. The high in vivo potency of QXs 12a-e is particularly surprising given their low log P values (approximately -2.7). Separate studies indicate that QXs 12a and 12e are also active in vivo as neuroprotectants and also have antinociceptive activity in animal pain models. In terms of in vivo activity, these 5-(N-oxyaza)-7-substituted-QXs are among the most potent broad spectrum ionotropic glutamate antagonists reported.
Collapse
Affiliation(s)
- S X Cai
- CoCensys Inc., Irvine, California 92618, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Ohmori J, Shimizu-Sasamata M, Okada M, Sakamoto S. 8-(1H-imidazol-1-yl)-7-nitro-4(5H)-imidazo[1,2-alpha]quinoxalinone and related compounds: synthesis and structure-activity relationships for the AMPA-type non-NMDA receptor. J Med Chem 1997; 40:2053-63. [PMID: 9207947 DOI: 10.1021/jm960664c] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
As a part of our program to discover novel antagonists for the AMPA subtype of EAA receptors, we designed and synthesized a series of heterocyclic-fused imidazolylquinoxalinones 5a-c, 9, 11, 14a-e, and 18 which led from 6-(1H-imidazol-1-yl)-7-nitro-2,3(1H,4H)-quinoxalinedione hydrochloride (1a.HCl, YM90K) by replacement of its amide with the imidazole and triazole rings. Their activity was evaluated by inhibiting [3H]AMPA binding from rat whole brain. As a result, it appeared that 8-(1H-imidazol-1-yl)-7-nitro-4(5H)-imidazo[1,2-alpha]quinoxalinone (5a) and its [1,2,4]triazolo[4,3-alpha] analogue 14a possessed high affinity for AMPA receptors with Ki values of 0.057 and 0.19 microM, respectively, similar to the activity of 1a and NBQX (2) (1a, Ki = 0.084 microM; 2, Ki = 0.060 microM). In contrast, 8-(1H-imidazol-1-yl)-7-nitro-4(5H)-imidazo[1,5-alpha]quinoxalinone (5b) and 7-(1H-imidazol-1-yl)-8-nitro-4(5H)-[1,2,4]triazolo[4,3-alpha]quinoxalino ne (18) showed no or weak affinity for the receptors. Hence, we deduced that the nitrogen atom of the fused heterocycles at the 3-position of 5a and 14a plays an essential role as hydrogen bond acceptors in binding to AMPA receptors, whereas their amides act as proton donors. From the SAR on 1-alkyl derivatives of 5a and 14a, it was indicated that introduction of suitable 1-alkyl substituents led to a severalfold improved AMPA affinity. A computational study on a model of water-quinoxaline complexes, a mimic of the putative hydrogen-bonding interaction between the receptors and quinoxalines, indicated that the different affinities of 5a, 14a, 1a, and 19 for the AMPA receptor may depend on, at least in part, each stabilization energy for the interaction. On this basis, we propose a pharmacophore model of AMPA receptors for the binding of the imidazolylquinoxaline derivatives. The heterocyclic-fused quinoxalinones 5a,c and 9 showed potent inhibitory activity in KA-induced toxicity for hippocampal cell culture with IC50 values of 0.30, 0.32, and 0.30 microM, respectively (1a, 0.81 microM; 2, 0.38 microM). Moreover 5a possesses over 5000-fold AMPA selectivity against both the NMDA receptor and the glycine site on the NMDA receptor.
Collapse
Affiliation(s)
- J Ohmori
- Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Company Limited, Ibaraki, Japan
| | | | | | | |
Collapse
|
72
|
Carling RW, Leeson PD, Moore KW, Moyes CR, Duncton M, Hudson ML, Baker R, Foster AC, Grimwood S, Kemp JA, Marshall GR, Tricklebank MD, Saywell KL. 4-substituted-3-phenylquinolin-2(1H)-ones: acidic and nonacidic glycine site N-methyl-D-aspartate antagonists with in vivo activity. J Med Chem 1997; 40:754-65. [PMID: 9057862 DOI: 10.1021/jm9605492] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
4-Substituted-3-phenylquinolin-2(1H)-ones have been synthesized and evaluated in vitro for antagonist activity at the glycine site on the NMDA (N-methyl-D-aspartate) receptor and in vivo for anticonvulsant activity in the DBA/2 strain of mouse in an audiogenic seizure model. 4-Amino-3-phenylquinolin-2(1H)-one (3) is 40-fold lower in binding affinity but only 4-fold weaker as an anticonvulsant than the acidic 4-hydroxy compound 1. Methylsulfonylation at the 4-position of 3 gives an acidic compound (6, pKa = 6.0) where affinity is fully restored but in vivo potency is significantly reduced (Table 1). Methylation at the 4-position of 1 to give 18 results in the abolition of measurable affinity, but the attachment of neutral hydrogen bond-accepting groups to the methyl group of 18 produces compounds with comparable in vitro and in vivo activity to 1 (e.g., 23 and 28, Table 2). Replacement of the 4-hydroxy group of 1 with an ethyl group abolishes activity (42), but again, incorporation of neutral hydrogen bond acceptors to the terminal carbon atom restores affinity (e.g., 36, 39, and 40, Table 3). Replacement of the 4-hydroxy group of the high-affinity compound 2 with an amino group produces a compound with 200-fold reduced affinity (43; IC50 = 0.42 microM, Table 4) which is nevertheless still 10-fold higher in affinity than 3. The results in this paper indicate that anionic functionality is not an absolute requirement for good affinity at the glycine/NMDA site and provide compelling evidence for the existence of a ligand/receptor hydrogen bond interaction between an acceptor attached to the 4-position of the ligand and a hydrogen bond donor attached to the receptor.
Collapse
Affiliation(s)
- R W Carling
- Department of Medicinal Chemistry, Merck Sharp and Dohme Research Laboratories, Harlow, Essex, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Cai SX, Zhou ZL, Huang JC, Whittemore ER, Egbuwoku ZO, Hawkinson JE, Woodward RM, Weber E, Keana JF. Structure-activity relationships of 4-hydroxy-3-nitroquinolin-2(1H)-ones as novel antagonists at the glycine site of N-methyl-D-aspartate receptors. J Med Chem 1996; 39:4682-6. [PMID: 8917657 DOI: 10.1021/jm960520y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A series of 4-hydroxy-3-nitroquinolin-2(1H)-ones (HNQs) was synthesized by nitration of the corresponding 2,4-quinolinediols. The HNQs were evaluated as antagonists at the glycine site of NMDA receptors by inhibition of [3H]DCKA binding to rat brain membranes. Selected HNQs were also tested for functional antagonism by electrophysiological assays in Xenopus oocytes expressing either 1a/2C subunits of NMDA receptors or rat brain AMPA receptors. The structure-activity relationships (SAR) of HNQs showed that substitutions in the 5-, 6-, and 7-positions in general increase potency while substitutions in the 8-position cause a sharp reduction in potency. Among the HNQs tested, 5,6,7-trichloro HNQ (8i) was the most potent antagonist with an IC50 of 220 nM in [3H]DCKA binding assay and a Kb of 79 nM from electrophysiological assays. Measured under steady-state conditions HNQ 8i is 240-fold selective for NMDA over AMPA receptors. The SAR of HNQs was compared with those of 1,4-dihydroquinoxaline-2,3-diones (QXs) and 1,2,3,4-tetrahydroquinoline-2,3,4-trione 3-oximes (QTOs). In general, HNQs have similar potencies to QXs with the same benzene ring substitution pattern but are about 10 times less active than the corresponding QTOs. HNQs are more selective for NMDA receptors than the corresponding QXs and QTOs. The similarity of the SAR of HNQs, QXs, and QTOs suggested that these three classes of antagonists might bind to the glycine site in a similar manner. With appropriate substitutions, HNQs represent a new class of potent and highly selective NMDA receptor glycine site antagonists.
Collapse
Affiliation(s)
- S X Cai
- CoCensys, Inc., Irvine, California 92618, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Desos P, Lepagnol JM, Morain P, Lestage P, Cordi AA. Structure-activity relationships in a series of 2(1H)-quinolones bearing different acidic function in the 3-position: 6,7-dichloro-2(1H)-oxoquinoline-3-phosphonic acid, a new potent and selective AMPA/kainate antagonist with neuroprotective properties. J Med Chem 1996; 39:197-206. [PMID: 8568808 DOI: 10.1021/jm950323j] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recently, we reported the synthesis of 3-(sulfonylamino)-2(1H)-quinolones, a new series of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate and N-methyl-D-aspartic acid (NMDA)/glycine antagonists. By exploring the structure-activity relationships (SAR) in this series, we were able to identify the 6,7-dinitro derivative 6 as a potent and balanced antagonist at both receptors. Unfortunately, compound 6 was devoid of in vivo activity in mice anticonvulsant testing. To overcome this critical limitation, new compounds bearing various acidic moieties at the 3-position of the quinolone skeleton were synthesized and evaluated. The SAR of these new analogues indicated that not all acidic groups are acceptable at the 3-position: A rank order of potency going from carboxylic approximately phosphonic > tetrazole > mercaptoacetic > hydroxamic >> other heterocyclic acids was defined. In addition, the selectivity between the AMPA/kainate and NMDA/glycine sites is dependent on the nature of the substitution (nitro > chloro for AMPA selectivity), its position (5,7- > 6,7-pattern for glycine selectivity), and the distance between the quinolone moiety and the heteroatom bearing the acidic hydrogen (the longer the distance the more AMPA selective the compound). Among these new AMPA antagonists, we have identified 6,7-dichloro-2(1H)-oxoquinoline-3-phosphonic acid (24c) as a water soluble and selective compound endowed with an appealing pharmacological profile. Compared with the reference AMPA antagonist NBQX, the phosphonic acid 24c is much less potent in vitro but almost equipotent in vivo in the audiogenic seizures model after intraperitoneal administration. Moreover, unlike NBQX, compound 24c is also active after oral administration. In the gerbil global ischemia model, compound 24c shows a neuroprotective effect at 10 mg/kg/ip, equivalent to the reference NBQX.
Collapse
Affiliation(s)
- P Desos
- Institut de Recherches Servier, Suresnes, France
| | | | | | | | | |
Collapse
|
75
|
|
76
|
Nagata R, Ae N, Tanno N. Structure-activity relationships of tricyclic quinoxalinediones as potent antagonists for the glycine binding site of the NMDA receptor 1. Bioorg Med Chem Lett 1995. [DOI: 10.1016/0960-894x(95)00243-m] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
77
|
Chapman AG, Dürmüller N, Harrison BL, Baron BM, Parvez N, Meldrum BS. Anticonvulsant activity of a novel NMDA/glycine site antagonist, MDL 104,653, against kindled and sound-induced seizures. Eur J Pharmacol 1995; 274:83-8. [PMID: 7768284 DOI: 10.1016/0014-2999(94)00713-h] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
MDL 104,653 (3-phenyl-4-hydroxy-7-chloro-quinolin-2(1H)-one), acts as an antagonist at the glycine site of the NMDA receptor. MDL 104,653 protects against sound-induced clonic seizures in DBA/2 mice following intracerebroventricular (ED50 = 19.1 nmol, 30 min), intraperitoneal (i.p.; ED50 = 6.1 mumol/kg, 45 min), or oral (ED50 = 23.0 mumol/kg, 2 h) administration. Optimal protection by MDL 104,653 was observed 15-60 min after i.p. administration, and the therapeutic index, as assessed by rotarod performance, was 4.0 at 45 min after i.p. administration. Fully amygdala-kindled motor seizures in rats were significantly reduced at 15, 30 and 60 min, and the duration of the after-discharge was significantly shortened at 30 min after the i.p. administration of 74 mumol/kg MDL 104,653. A lower dose of MDL 104,653 (37 mumol/kg) had no significant effect on either motor seizures or after-discharge duration. The rate of amygdala kindling was also significantly retarded following the daily administration of 56 mumol/kg MDL 104,653 (1 times daily for 6 days; i.p. 30 min before kindling stimulus).
Collapse
Affiliation(s)
- A G Chapman
- Department of Neurology, Institute of Psychiatry, London, UK
| | | | | | | | | | | |
Collapse
|
78
|
Cordi AA, Desos P, Randle JC, Lepagnol J. Structure-activity relationships in a series of 3-sulfonylamino-2-(1H)-quinolones, as new AMPA/kainate and glycine antagonists. Bioorg Med Chem 1995; 3:129-41. [PMID: 7540921 DOI: 10.1016/0968-0896(95)00007-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This paper describes the design and synthesis of a new class of molecules, the 3-sulfonylamino-2-(1H)-quinolones, which are potent and selective antagonists at both the AMPA/kainate site as well as at the NMDA-associated glycine site. The molecules were characterized by their binding affinities to rat cortical membranes and by electrophysiology on Xenopus oocytes injected with mRNA isolated from rat cerebral cortex. The most potent compound 61 has an IC50 of 0.09 microM for binding at the AMPA/kainate site, and 0.16 microM in oocyte electrophysiology.
Collapse
Affiliation(s)
- A A Cordi
- Institut de Recherches Servier, Suresnes, France
| | | | | | | |
Collapse
|
79
|
Saxena AK, Saxena M. Developments in anticonvulsants. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1995; 44:185-291. [PMID: 7644666 DOI: 10.1007/978-3-0348-7161-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- A K Saxena
- Division of Medicinal Chemistry, Central Drug Research Institute, Lucknow, India
| | | |
Collapse
|
80
|
Hamilton G, Bednar D, Borosky S, Huang Z, Zubrowski R, Ferkany J, Karbon E. Synthesis and glutamate antagonist activity of 4-phosphonoalkylquinoline derivatives: A novel class of non-NMDA antagonist. Bioorg Med Chem Lett 1994. [DOI: 10.1016/s0960-894x(01)80558-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
81
|
Chapter 6. Recent Progress in Excitatory Amino Acid Research. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1994. [DOI: 10.1016/s0065-7743(08)60719-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|