51
|
Shaw SJ, Goff DA, Lin N, Singh R, Li W, McLaughlin J, Baltgalvis KA, Payan DG, Kinsella TM. Developing DYRK inhibitors derived from the meridianins as a means of increasing levels of NFAT in the nucleus. Bioorg Med Chem Lett 2017; 27:2617-2621. [PMID: 28408219 DOI: 10.1016/j.bmcl.2017.03.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 12/24/2022]
Abstract
A structure-activity relationship has been developed around the meridianin scaffold for inhibition of Dyrk1a. The compounds have been focussed on the inhibition of kinase Dyrk1a, as a means to retain the transcription factor NFAT in the nucleus. NFAT is responsible for up-regulation of genes responsible for the induction of a slow, oxidative skeletal muscle phenotype, which may be an effective treatment for diseases where exercise capacity is compromised. The SAR showed that while strong Dyrk1a binding was possible with the meridianin scaffold the compounds have no effect on NFAT localisation, however, by moving from the indole to a 6-azaindole scaffold both potent Dyrk1a binding and increased NFAT residence time in the nucleus were obtained - properties not observed with the reported Dyrk1a inhibitors. One compound was shown to be effective in an ex vivo muscle fiber assay. The increased biological activity is thought to arise from the added interaction between the azaindole nitrogen and the lysine residue in the back pocket.
Collapse
Affiliation(s)
- Simon J Shaw
- Rigel Pharmaceuticals, Inc., 1180, Veterans Boulevard, South San Francisco, CA 94080, USA.
| | - Dane A Goff
- Rigel Pharmaceuticals, Inc., 1180, Veterans Boulevard, South San Francisco, CA 94080, USA
| | - Nan Lin
- Rigel Pharmaceuticals, Inc., 1180, Veterans Boulevard, South San Francisco, CA 94080, USA
| | - Rajinder Singh
- Rigel Pharmaceuticals, Inc., 1180, Veterans Boulevard, South San Francisco, CA 94080, USA
| | - Wei Li
- Rigel Pharmaceuticals, Inc., 1180, Veterans Boulevard, South San Francisco, CA 94080, USA
| | - John McLaughlin
- Rigel Pharmaceuticals, Inc., 1180, Veterans Boulevard, South San Francisco, CA 94080, USA
| | - Kristen A Baltgalvis
- Rigel Pharmaceuticals, Inc., 1180, Veterans Boulevard, South San Francisco, CA 94080, USA
| | - Donald G Payan
- Rigel Pharmaceuticals, Inc., 1180, Veterans Boulevard, South San Francisco, CA 94080, USA
| | - Todd M Kinsella
- Rigel Pharmaceuticals, Inc., 1180, Veterans Boulevard, South San Francisco, CA 94080, USA
| |
Collapse
|
52
|
Zhou Q, Phoa AF, Abbassi RH, Hoque M, Reekie TA, Font JS, Ryan RM, Stringer BW, Day BW, Johns TG, Munoz L, Kassiou M. Structural Optimization and Pharmacological Evaluation of Inhibitors Targeting Dual-Specificity Tyrosine Phosphorylation-Regulated Kinases (DYRK) and CDC-like kinases (CLK) in Glioblastoma. J Med Chem 2017; 60:2052-2070. [DOI: 10.1021/acs.jmedchem.6b01840] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Brett W. Stringer
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4006, Australia
| | - Bryan W. Day
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Queensland 4006, Australia
| | - Terrance G. Johns
- Oncogenic
Signaling Laboratory, Centre for Cancer Research, Hudson Institute of Medical Research, 27 Wright Street, Clayton, Victoria 3168, Australia
| | | | | |
Collapse
|
53
|
Exploration of the imidazo[1,2-b]pyridazine scaffold as a protein kinase inhibitor. Eur J Med Chem 2017; 125:696-709. [DOI: 10.1016/j.ejmech.2016.09.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 12/21/2022]
|
54
|
Chemical Synthesis of Meridianins and Related Derivatives. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/b978-0-444-63930-1.00005-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
55
|
Labrière C, Lozach O, Blairvacq M, Meijer L, Guillou C. Further investigation of Paprotrain: Towards the conception of selective and multi-targeted CNS kinase inhibitors. Eur J Med Chem 2016; 124:920-934. [DOI: 10.1016/j.ejmech.2016.08.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
|
56
|
Discovery of pyrido[3,4-g]quinazoline derivatives as CMGC family protein kinase inhibitors: Design, synthesis, inhibitory potency and X-ray co–crystal structure. Eur J Med Chem 2016; 118:170-7. [DOI: 10.1016/j.ejmech.2016.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 03/31/2016] [Accepted: 04/02/2016] [Indexed: 11/18/2022]
|
57
|
Hédou D, Dubouilh-Benard C, Loaëc N, Meijer L, Fruit C, Besson T. Synthesis of Bioactive 2-(Arylamino)thiazolo[5,4-f]-quinazolin-9-ones via the Hügershoff Reaction or Cu- Catalyzed Intramolecular C-S Bond Formation. Molecules 2016; 21:molecules21060794. [PMID: 27322235 PMCID: PMC6272913 DOI: 10.3390/molecules21060794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/12/2016] [Accepted: 06/13/2016] [Indexed: 11/16/2022] Open
Abstract
A library of thirty eight novel thiazolo[5,4-f]quinazolin-9(8H)-one derivatives (series 8, 10, 14 and 17) was prepared via the Hügershoff reaction and a Cu catalyzed intramolecular C-S bond formation, helped by microwave-assisted technology when required. The efficient multistep synthesis of the key 6-amino-3-cyclopropylquinazolin-4(3H)-one (3) has been reinvestigated and performed on a multigram scale from the starting 5-nitroanthranilic acid. The inhibitory potency of the final products was evaluated against five kinases involved in Alzheimer's disease and showed that some molecules of the 17 series described in this paper are particularly promising for the development of novel multi-target inhibitors of kinases.
Collapse
Affiliation(s)
- Damien Hédou
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | | | - Nadège Loaëc
- Protein Phosphorylation & Human Disease group, Station Biologique, 29680 Roscoff, France.
- Manros Therapeutics, Centre de Perharidy, 29680 Roscoff, France.
| | - Laurent Meijer
- Manros Therapeutics, Centre de Perharidy, 29680 Roscoff, France.
| | - Corinne Fruit
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| | - Thierry Besson
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, COBRA, 76000 Rouen, France.
| |
Collapse
|
58
|
Duchon A, Herault Y. DYRK1A, a Dosage-Sensitive Gene Involved in Neurodevelopmental Disorders, Is a Target for Drug Development in Down Syndrome. Front Behav Neurosci 2016; 10:104. [PMID: 27375444 PMCID: PMC4891327 DOI: 10.3389/fnbeh.2016.00104] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 05/17/2016] [Indexed: 01/12/2023] Open
Abstract
Down syndrome (DS) is one of the leading causes of intellectual disability, and patients with DS face various health issues, including learning and memory deficits, congenital heart disease, Alzheimer's disease (AD), leukemia, and cancer, leading to huge medical and social costs. Remarkable advances on DS research have been made in improving cognitive function in mouse models for future therapeutic approaches in patients. Among the different approaches, DYRK1A inhibitors have emerged as promising therapeutics to reduce DS cognitive deficits. DYRK1A is a dual-specificity kinase that is overexpressed in DS and plays a key role in neurogenesis, outgrowth of axons and dendrites, neuronal trafficking and aging. Its pivotal role in the DS phenotype makes it a prime target for the development of therapeutics. Recently, disruption of DYRK1A has been found in Autosomal Dominant Mental Retardation 7 (MRD7), resulting in severe mental deficiency. Recent advances in the development of kinase inhibitors are expected, in the near future, to remove DS from the list of incurable diseases, providing certain conditions such as drug dosage and correct timing for the optimum long-term treatment. In addition the exact molecular and cellular mechanisms that are targeted by the inhibition of DYRK1A are still to be discovered.
Collapse
Affiliation(s)
- Arnaud Duchon
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirch, France; UMR7104, Centre National de la Recherche ScientifiqueIllkirch, France; U964, Institut National de la Santé et de la Recherche MédicaleIllkirch, France; Université de StrasbourgIllkirch, France
| | - Yann Herault
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirch, France; UMR7104, Centre National de la Recherche ScientifiqueIllkirch, France; U964, Institut National de la Santé et de la Recherche MédicaleIllkirch, France; Université de StrasbourgIllkirch, France; PHENOMIN, Institut Clinique de la Souris, Groupement d'Intérêt Économique-Centre Européen de Recherche en Biologie et en Médecine, CNRS, INSERMIllkirch-Graffenstaden, France
| |
Collapse
|
59
|
Current pharmacotherapy and putative disease-modifying therapy for Alzheimer's disease. Neurol Sci 2016; 37:1403-35. [PMID: 27250365 DOI: 10.1007/s10072-016-2625-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/24/2016] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease of the central nervous system correlated with the progressive loss of cognition and memory. β-Amyloid plaques, neurofibrillary tangles and the deficiency in cholinergic neurotransmission constitute the major hallmarks of the AD. Two major hypotheses have been implicated in the pathogenesis of AD namely the cholinergic hypothesis which ascribed the clinical features of dementia to the deficit cholinergic neurotransmission and the amyloid cascade hypothesis which emphasized on the deposition of insoluble peptides formed due to the faulty cleavage of the amyloid precursor protein. Current pharmacotherapy includes mainly the acetylcholinesterase inhibitors and N-methyl-D-aspartate receptor agonist which offer symptomatic therapy and does not address the underlying cause of the disease. The disease-modifying therapy has garnered a lot of research interest for the development of effective pharmacotherapy for AD. β and γ-Secretase constitute attractive targets that are focussed in the disease-modifying approach. Potentiation of α-secretase also seems to be a promising approach towards the development of an effective anti-Alzheimer therapy. Additionally, the ameliorative agents that prevent aggregation of amyloid peptide and also the ones that modulate inflammation and oxidative damage associated with the disease are focussed upon. Development in the area of the vaccines is in progress to combat the characteristic hallmarks of the disease. Use of cholesterol-lowering agents also is a fruitful strategy for the alleviation of the disease as a close association between the cholesterol and AD has been cited. The present review underlines the major therapeutic strategies for AD with focus on the new developments that are on their way to amend the current therapeutic scenario of the disease.
Collapse
|
60
|
Synthesis of Thiazolo[5,4-f]quinazolin-9(8H)-ones as Multi-Target Directed Ligands of Ser/Thr Kinases. Molecules 2016; 21:molecules21050578. [PMID: 27144552 PMCID: PMC6273584 DOI: 10.3390/molecules21050578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 11/17/2022] Open
Abstract
A library of thirty novel thiazolo[5,4-f]quinazolin-9(8H)-one derivatives belonging to four series designated as 12, 13, 14 and 15 was efficiently prepared, helped by microwave-assisted technology when required. The efficient multistep synthesis of methyl 6-amino-2-cyano- benzo[d]thiazole-7-carboxylate (1) has been reinvestigated and performed on a multigram scale. The inhibitory potency of the final products against five kinases involved in Alzheimer's disease was evaluated. This study demonstrates that some molecules of the 12 and 13 series described in this paper are particularly promising for the development of new multi-target inhibitors of kinases.
Collapse
|
61
|
Stotani S, Giordanetto F, Medda F. DYRK1A inhibition as potential treatment for Alzheimer's disease. Future Med Chem 2016; 8:681-96. [PMID: 27073990 DOI: 10.4155/fmc-2016-0013] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
In total, 47,500,000 people worldwide are affected by dementia and this number is estimated to double by 2030 and triple within 2050 resulting in a huge burden on public health. Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the most common cause of dementia, accounting for 60-70% of all the cases. The cause of AD is still poorly understood but several brain abnormalities (e.g., loss of neuronal connections and neuronal death) have been identified in affected patients. In addition to the accumulation of β-amyloid plaques in the brain tissue, aberrant phosphorylation of tau proteins has proved to increase neuronal death. DYRK1A phosphorylates tau on 11 different Ser/Thr residues, resulting in the formation of aggregates called 'neurofibrillary tangles' which, together with amyloid plaques, could be responsible for dementia, neuronal degeneration and cell death. Small molecule inhibition of DYRK1A could thus represent an interesting approach toward the treatment of Alzheimer's and other neurodegenerative diseases. Herein we review the current progress in the identification and development of DYRK1A inhibitors.
Collapse
Affiliation(s)
- Silvia Stotani
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, 44227 Dortmund, Germany
| | - Fabrizio Giordanetto
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, 44227 Dortmund, Germany
- DE Shaw Research, 120W 45th Street, New York, NY 10036, USA
| | - Federico Medda
- Medicinal Chemistry, Taros Chemicals GmbH & Co. KG, Emil-Figge-Str. 76a, 44227 Dortmund, Germany
| |
Collapse
|
62
|
Yadav RR, Sharma S, Joshi P, Wani A, Vishwakarma RA, Kumar A, Bharate SB. Meridianin derivatives as potent Dyrk1A inhibitors and neuroprotective agents. Bioorg Med Chem Lett 2015; 25:2948-52. [PMID: 26048785 DOI: 10.1016/j.bmcl.2015.05.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 04/17/2015] [Accepted: 05/14/2015] [Indexed: 11/16/2022]
Abstract
Meridianins are a group of marine-derived indole alkaloids which are reported to possess kinase inhibitory activities. In the present Letter, we report synthesis of N1-substituted and C-ring modified meridianin derivatives and their evaluation as Dyrk1A inhibitors and neuroprotective agents. Among the library of 52 compounds screened, morpholinoyl linked derivative 26b and 2-nitro-4-trifluoromethyl phenyl sulfonyl derivative 29v displayed potent inhibition of Dyrk1A with IC50 values of 0.5 and 0.53 μM, respectively. The derivative 26b also inhibited Dyrk2 and Dyrk3 with IC50 values of 1.4 and 2.2 μM, respectively showing 2.2 and 4.4 fold selectivity for Dyrk1A with respect to Dyrk2 and Dyrk3. The compound 26b was not cytotoxic to human neuroblastoma SH-SY5Y cells (IC50>100 μM) and it displayed significant neuroprotection against glutamate-induced neurotoxicity in these cells at 10 μM. Molecular modelling studies of compound 26b led to identification of key interactions in the binding site of Dyrk1A and the possible reasons for observed Dyrk1A selectivity over Dyrk2.
Collapse
Affiliation(s)
- Rammohan R Yadav
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sadhana Sharma
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Prashant Joshi
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Abubakar Wani
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ram A Vishwakarma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ajay Kumar
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sandip B Bharate
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India; Academy of Scientific & Innovative Research (AcSIR), CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
63
|
Abbassi R, Johns TG, Kassiou M, Munoz L. DYRK1A in neurodegeneration and cancer: Molecular basis and clinical implications. Pharmacol Ther 2015; 151:87-98. [PMID: 25795597 DOI: 10.1016/j.pharmthera.2015.03.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 01/10/2023]
Abstract
Protein kinases are one of the most studied drug targets in current pharmacological research, as evidenced by the vast number of kinase-targeting agents enrolled in active clinical trials. Dual-specificity Tyrosine phosphorylation-Regulated Kinase 1A (DYRK1A) has been much less studied compared to many other kinases. DYRK1A primary function occurs during early development, where this protein regulates cellular processes related to proliferation and differentiation of neuronal progenitor cells. Although most extensively characterised for its role in brain development, DYRK1A is over-expressed in a variety of diseases including a number of human malignancies, such as haematological and brain cancers. Here we review the accumulating molecular studies that support our understanding of how DYRK1A signalling could underlie these pathological functions. The relevance of DYRK1A in a number of diseases is also substantiated with intensive drug discovery efforts to develop potent and selective inhibitors of DYRK1A. Several classes of DYRK1A inhibitors have recently been disclosed and some molecules are promising leads to develop DYRK1A inhibitors as drugs for DYRK1A-dependent diseases.
Collapse
Affiliation(s)
- Ramzi Abbassi
- Department of Pharmacology, School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Terrance G Johns
- MIMR-PHI Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia; Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Michael Kassiou
- School of Chemistry and Faculty of Health Sciences, University of Sydney, NSW 2006, Australia
| | - Lenka Munoz
- Department of Pharmacology, School of Medical Sciences, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
64
|
Falke H, Chaikuad A, Becker A, Loaëc N, Lozach O, Abu Jhaisha S, Becker W, Jones P, Preu L, Baumann K, Knapp S, Meijer L, Kunick C. 10-iodo-11H-indolo[3,2-c]quinoline-6-carboxylic acids are selective inhibitors of DYRK1A. J Med Chem 2015; 58:3131-43. [PMID: 25730262 PMCID: PMC4506206 DOI: 10.1021/jm501994d] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Indexed: 01/18/2023]
Abstract
The protein kinase DYRK1A has been suggested to act as one of the intracellular regulators contributing to neurological alterations found in individuals with Down syndrome. For an assessment of the role of DYRK1A, selective synthetic inhibitors are valuable pharmacological tools. However, the DYRK1A inhibitors described in the literature so far either are not sufficiently selective or have not been tested against closely related kinases from the DYRK and the CLK protein kinase families. The aim of this study was the identification of DYRK1A inhibitors exhibiting selectivity versus the structurally and functionally closely related DYRK and CLK isoforms. Structure modification of the screening hit 11H-indolo[3,2-c]quinoline-6-carboxylic acid revealed structure-activity relationships for kinase inhibition and enabled the design of 10-iodo-substituted derivatives as very potent DYRK1A inhibitors with considerable selectivity against CLKs. X-ray structure determination of three 11H-indolo[3,2-c]quinoline-6-carboxylic acids cocrystallized with DYRK1A confirmed the predicted binding mode within the ATP binding site.
Collapse
Affiliation(s)
- Hannes Falke
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Apirat Chaikuad
- Nuffield
Department
of Clinical Medicine, Structural Genomics Consortium, University of
Oxford, Old Road Campus Research Building,
Roosevelt Drive, Headington, Oxford OX3 7DQ, U.K.
| | - Anja Becker
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Nadège Loaëc
- ManRos
Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France
- “Protein
Phosphorylation and Human Disease” Group, Station Biologique
de Roscoff, CNRS, 29680 Roscoff, France
| | - Olivier Lozach
- “Protein
Phosphorylation and Human Disease” Group, Station Biologique
de Roscoff, CNRS, 29680 Roscoff, France
| | - Samira Abu Jhaisha
- Institute
of Pharmacology and Toxicology, RWTH Aachen
University, Wendlingweg
2, 52074 Aachen, Germany
| | - Walter Becker
- Institute
of Pharmacology and Toxicology, RWTH Aachen
University, Wendlingweg
2, 52074 Aachen, Germany
| | - Peter
G. Jones
- Institut
für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Lutz Preu
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Knut Baumann
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Stefan Knapp
- Nuffield
Department
of Clinical Medicine, Structural Genomics Consortium, University of
Oxford, Old Road Campus Research Building,
Roosevelt Drive, Headington, Oxford OX3 7DQ, U.K.
| | - Laurent Meijer
- ManRos
Therapeutics, Perharidy Research Center, 29680 Roscoff, Bretagne, France
| | - Conrad Kunick
- Institut
für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| |
Collapse
|
65
|
Leal FD, da Silva Lima CH, de Alencastro RB, Castro HC, Rodrigues CR, Albuquerque MG. Hologram QSAR models of a series of 6-arylquinazolin-4-amine inhibitors of a new Alzheimer's disease target: dual specificity tyrosine-phosphorylation-regulated kinase-1A enzyme. Int J Mol Sci 2015; 16:5235-53. [PMID: 25756379 PMCID: PMC4394473 DOI: 10.3390/ijms16035235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/05/2015] [Accepted: 02/10/2015] [Indexed: 12/29/2022] Open
Abstract
Dual specificity tyrosine-phosphorylation-regulated kinase-1A (DYRK1A) is an enzyme directly involved in Alzheimer's disease, since its increased expression leads to β-amyloidosis, Tau protein aggregation, and subsequent formation of neurofibrillary tangles. Hologram quantitative structure-activity relationship (HQSAR, 2D fragment-based) models were developed for a series of 6-arylquinazolin-4-amine inhibitors (36 training, 10 test) of DYRK1A. The best HQSAR model (q2 = 0.757; SEcv = 0.493; R2 = 0.937; SE = 0.251; R2pred = 0.659) presents high goodness-of-fit (R2 > 0.9), as well as high internal (q2 > 0.7) and external (R2pred > 0.5) predictive power. The fragments that increase and decrease the biological activity values were addressed using the colored atomic contribution maps provided by the method. The HQSAR contribution map of the best model is an important tool to understand the activity profiles of new derivatives and may provide information for further design of novel DYRK1A inhibitors.
Collapse
Affiliation(s)
- Felipe Dias Leal
- Instituto de Química, Laboratório de Modelagem Molecular (LabMMol), Universidade Federal do Rio de Janeiro (UFRJ), 21949-900 Rio de Janeiro, RJ, Brazil.
| | - Camilo Henrique da Silva Lima
- Instituto de Química, Laboratório de Modelagem Molecular (LabMMol), Universidade Federal do Rio de Janeiro (UFRJ), 21949-900 Rio de Janeiro, RJ, Brazil.
| | - Ricardo Bicca de Alencastro
- Instituto de Química, Laboratório de Modelagem Molecular (LabMMol), Universidade Federal do Rio de Janeiro (UFRJ), 21949-900 Rio de Janeiro, RJ, Brazil.
| | - Helena Carla Castro
- Instituto de Biologia, Laboratório de Antibióticos, Bioquímica, Ensino e Modelagem Molecular (LABiEMol), Universidade Federal Fluminense (UFF), 24210-130 Niterói, RJ, Brazil.
| | - Carlos Rangel Rodrigues
- Faculdade de Farmácia, Laboratório de Modelagem Molecular & 3D-QSAR (ModMolQSAR), Universidade Federal do Rio de Janeiro (UFRJ), 21941-590 Rio de Janeiro, RJ, Brazil.
| | - Magaly Girão Albuquerque
- Instituto de Química, Laboratório de Modelagem Molecular (LabMMol), Universidade Federal do Rio de Janeiro (UFRJ), 21949-900 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
66
|
Fernández-Martínez P, Zahonero C, Sánchez-Gómez P. DYRK1A: the double-edged kinase as a protagonist in cell growth and tumorigenesis. Mol Cell Oncol 2015; 2:e970048. [PMID: 27308401 PMCID: PMC4905233 DOI: 10.4161/23723548.2014.970048] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 01/12/2023]
Abstract
DYRK1A (dual-specificity tyrosine-regulated kinase 1A) is a kinase with multiple implications for embryonic development, especially in the nervous system where it regulates the balance between proliferation and differentiation of neural progenitors. The DYRK1A gene is located in the Down syndrome critical region and may play a significant role in the developmental brain defects, early neurodegeneration, and cancer susceptibility of individuals with this syndrome. DYRK1A is also expressed in adults, where it might participate in the regulation of cell cycle, survival, and tumorigenesis, thus representing a potential therapeutic target for certain types of cancer. However, the final readout of DYRK1A overexpression or inhibition depends strongly on the cellular context, as it has both tumor suppressor and oncogenic activities. Here, we will discuss the functions and substrates of DYRK1A associated with the control of cell growth and tumorigenesis with a focus on the potential use of DYRK1A inhibitors in cancer therapy.
Collapse
Affiliation(s)
- P Fernández-Martínez
- Instituto de Medicina Molecular Aplicada; Universidad CEU-San Pablo ; Madrid, Spain
| | - C Zahonero
- Neuro-oncology Unit; Instituto de Salud Carlos III-UFIEC ; Madrid, Spain
| | - P Sánchez-Gómez
- Neuro-oncology Unit; Instituto de Salud Carlos III-UFIEC ; Madrid, Spain
| |
Collapse
|
67
|
Dommaraju Y, Borthakur S, Rajesh N, Prajapati D. An efficient catalyst-free chemoselective multicomponent reaction for the synthesis of pyrimidine functionalized pyrrolo-annelated derivatives. RSC Adv 2015. [DOI: 10.1039/c5ra00796h] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
An efficient catalyst-free, one-pot multicomponent reaction has been developed for the synthesis of pyrimidine functionalized pyrrolo-annelated derivatives. The method offers easy and column free separation, mild reaction conditions and high yields.
Collapse
Affiliation(s)
- Yuvaraj Dommaraju
- Medicinal Chemistry Division
- CSIR-North-East Institute of Science and Technology
- Jorhat
- India
| | - Somadrita Borthakur
- Medicinal Chemistry Division
- CSIR-North-East Institute of Science and Technology
- Jorhat
- India
| | - Nimmakuri Rajesh
- Medicinal Chemistry Division
- CSIR-North-East Institute of Science and Technology
- Jorhat
- India
| | - Dipak Prajapati
- Medicinal Chemistry Division
- CSIR-North-East Institute of Science and Technology
- Jorhat
- India
| |
Collapse
|
68
|
Loidreau Y, Deau E, Marchand P, Nourrisson MR, Logé C, Coadou G, Loaëc N, Meijer L, Besson T. Synthesis and molecular modelling studies of 8-arylpyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amines as multitarget Ser/Thr kinases inhibitors. Eur J Med Chem 2014; 92:124-34. [PMID: 25549552 DOI: 10.1016/j.ejmech.2014.12.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/10/2014] [Accepted: 12/21/2014] [Indexed: 02/07/2023]
Abstract
This paper reports the design and synthesis of a novel series of 8-arylpyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amines via microwave-assisted multi-step synthesis. A common precursor of the whole series, 3-amino-5-bromothieno[2,3-b]pyridine-2-carbonitrile, was rapidly synthesized in one step from commercially-available 5-bromo-2-chloronicotinonitrile. Formylation with DMF-DMA led to (E)-N'-(5-bromo-2-cyanothieno[2,3-b]pyridin-3-yl)-N,N-dimethylformimidamide (4) which was conveniently functionalized at position 8 by palladium-catalyzed Suzuki-Miyaura cross-coupling to introduce a heteroaromatic ring. High-temperature formamide-mediated cyclization of the cyanoamidine intermediate gave seventeen 8-arylpyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amines. The inhibitory potency of the final products was evaluated against five protein kinases (CDK5/p25, CK1δ/ε, GSK3α/β, DYRK1A and CLK1) and revealed that 8-(2,4-dichlorophenyl)pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amine 1g specifically inhibits CK1δ/ε and CLK1 (220 and 88 nM, respectively) while its 7-(2,4-dichlorophenyl)pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amine isomer 10 showed no activity on the panel of tested kinases. Molecular modelling of 10 and 1g in the ATP binding sites of CK1δ/ε and CLK1 showed that functionalization at position 7 of pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amines is likely to induce a steric clash on the CK1δ/ε P-loop and thus a complete loss of inhibitory activity.
Collapse
Affiliation(s)
- Yvonnick Loidreau
- Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, Bâtiment IRCOF, 1 rue Tesnière, 76821 Mont St Aignan Cedex, France
| | - Emmanuel Deau
- Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, Bâtiment IRCOF, 1 rue Tesnière, 76821 Mont St Aignan Cedex, France
| | - Pascal Marchand
- Université de Nantes, Nantes Atlantique Universités, Laboratoire de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer, IICiMed UPRES EA 1155, UFR des Sciences Pharmaceutiques et Biologiques, 1 rue Gaston Veil, 44035 Nantes, France
| | - Marie-Renée Nourrisson
- Université de Nantes, Nantes Atlantique Universités, Laboratoire de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer, IICiMed UPRES EA 1155, UFR des Sciences Pharmaceutiques et Biologiques, 1 rue Gaston Veil, 44035 Nantes, France
| | - Cédric Logé
- Université de Nantes, Nantes Atlantique Universités, Laboratoire de Chimie Thérapeutique, Cibles et Médicaments des Infections et du Cancer, IICiMed UPRES EA 1155, UFR des Sciences Pharmaceutiques et Biologiques, 1 rue Gaston Veil, 44035 Nantes, France
| | - Gaël Coadou
- Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, Bâtiment IRCOF, 1 rue Tesnière, 76821 Mont St Aignan Cedex, France
| | - Nadège Loaëc
- Protein Phosphorylation & Human Disease Group, Station Biologique, 29680 Roscoff, France; Manros Therapeutics, Centre de Perharidy, 29680 Roscoff, France
| | - Laurent Meijer
- Manros Therapeutics, Centre de Perharidy, 29680 Roscoff, France
| | - Thierry Besson
- Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, Bâtiment IRCOF, 1 rue Tesnière, 76821 Mont St Aignan Cedex, France.
| |
Collapse
|
69
|
Miambo RF, Laronze-Cochard M, Lawson AM, Guillot R, Baldeyrou B, Lansiaux A, Supuran CT, Sapi J. Synthesis of new biologically active isothiazolo[4,5-b]carbazole-type tetracyclic derivatives via an indole-2,3-quinodimethane approach. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
70
|
Drung B, Scholz C, Barbosa VA, Nazari A, Sarragiotto MH, Schmidt B. Computational & experimental evaluation of the structure/activity relationship of β-carbolines as DYRK1A inhibitors. Bioorg Med Chem Lett 2014; 24:4854-60. [PMID: 25240617 DOI: 10.1016/j.bmcl.2014.08.054] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
Abstract
DYRK1A has been associated with Down's syndrome and neurodegenerative diseases, therefore it is an important target for novel pharmacological interventions. We combined a ligand-based pharmacophore design with a structure-based protein/ligand docking using the software MOE in order to evaluate the underlying structure/activity relationship. Based on this knowledge we synthesized several novel β-carboline derivatives to validate the theoretical model. Furthermore we identified a modified lead structure as a potent DYRK1A inhibitor (IC50=130 nM) with significant selectivity against MAO-A, DYRK2, DYRK3, DYRK4 & CLK2.
Collapse
Affiliation(s)
- Binia Drung
- Clemens Schöpf-Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
| | - Christoph Scholz
- Clemens Schöpf-Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
| | - Valéria A Barbosa
- Departamento de Química, Universidade Estadual de Maringá, Avenida Colombo 53790, PR 87020-900 Maringá, Brazil
| | - Azadeh Nazari
- Clemens Schöpf-Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
| | - Maria H Sarragiotto
- Departamento de Química, Universidade Estadual de Maringá, Avenida Colombo 53790, PR 87020-900 Maringá, Brazil
| | - Boris Schmidt
- Clemens Schöpf-Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany.
| |
Collapse
|
71
|
Inhibition of adipogenesis and leptin production in 3T3-L1 adipocytes by a derivative of meridianin C. Biochem Biophys Res Commun 2014; 452:1078-83. [DOI: 10.1016/j.bbrc.2014.09.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 09/12/2014] [Indexed: 01/24/2023]
|
72
|
Foucourt A, Hédou D, Dubouilh-Benard C, Désiré L, Casagrande AS, Leblond B, Loäec N, Meijer L, Besson T. Design and synthesis of thiazolo[5,4-f]quinazolines as DYRK1A inhibitors, part I. Molecules 2014; 19:15546-71. [PMID: 25268714 PMCID: PMC6270991 DOI: 10.3390/molecules191015546] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/16/2022] Open
Abstract
The convenient synthesis of a library of novel 6,6,5-tricyclic thiazolo[5,4-f] quinazolines (forty molecules) was achieved mainly under microwave irradiation. Dimroth rearrangement and 4,5-dichloro-1,2,3,-dithiazolium chloride (Appel salt) chemistry were associated for the synthesis of a novel 6-aminobenzo[d]thiazole-2,7-dicarbonitrile (16) a versatile molecular platform for the synthesis of various bioactive derivatives. Kinase inhibition of the final compounds was evaluated on a panel of four Ser/Thr kinases (DYRK1A, CDK5, CK1 and GSK3) chosen for their strong implications in various regulation processes, especially Alzheimer's disease (AD). In view of the results of this preliminary screening, thiazolo[5,4-f]quinazoline scaffolds constitutes a promising source of inspiration for the synthesis of novel bioactive molecules. Among the compounds of this novel chemolibrary, 7i, 8i and 9i inhibited DYRK1A with IC50 values ranging in the double-digit nanomolar range (40, 47 and 50 nM, respectively).
Collapse
Affiliation(s)
- Alicia Foucourt
- Normandie Université, Laboratoire C.O.B.R.A., UMR 6014 and FR 3038; Université de Rouen; INSA de Rouen; CNRS, Bâtiment I.R.C.O.F. rue Tesnière, Mont-Saint-Aignan F-76821, France.
| | - Damien Hédou
- Normandie Université, Laboratoire C.O.B.R.A., UMR 6014 and FR 3038; Université de Rouen; INSA de Rouen; CNRS, Bâtiment I.R.C.O.F. rue Tesnière, Mont-Saint-Aignan F-76821, France.
| | - Carole Dubouilh-Benard
- Normandie Université, Laboratoire C.O.B.R.A., UMR 6014 and FR 3038; Université de Rouen; INSA de Rouen; CNRS, Bâtiment I.R.C.O.F. rue Tesnière, Mont-Saint-Aignan F-76821, France.
| | | | | | | | - Nadège Loäec
- Protein Phosphorylation & Human Disease group, CNRS, Station Biologique, Roscoff F-29680, France.
| | - Laurent Meijer
- ManRos Therapeutics, Centre de Perharidy, Roscoff F-29680, France.
| | - Thierry Besson
- Normandie Université, Laboratoire C.O.B.R.A., UMR 6014 and FR 3038; Université de Rouen; INSA de Rouen; CNRS, Bâtiment I.R.C.O.F. rue Tesnière, Mont-Saint-Aignan F-76821, France.
| |
Collapse
|
73
|
Lee J, More KN, Yang SA, Hong VS. 3,5-Bis(aminopyrimidinyl)indole Derivatives: Synthesis and Evaluation of Pim Kinase Inhibitory Activities. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.7.2123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
74
|
Pim kinase inhibitory and antiproliferative activity of a novel series of meridianin C derivatives. Bioorg Med Chem Lett 2014; 24:2424-8. [PMID: 24775304 DOI: 10.1016/j.bmcl.2014.04.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/27/2014] [Accepted: 04/09/2014] [Indexed: 11/23/2022]
Abstract
A novel series of meridianin C derivatives substituted at C-5 position were prepared. These derivatives were tested for their kinase inhibitory potencies against all three family members of the pim kinases (Pim-1, Pim-2 and Pim-3). In addition, their antiproliferative activity towards three human leukemia cell lines as MV4-11, Jurkat clone E6-1 and K562 has been evaluated. Structure activity relationships at C-3 and C-5 positions of indole were performed to better understand the mechanism behind the enhanced potency. Compound 7f, the most active compound of the series showed a single-digit nanomolar IC50 with selectivity towards Pim-1 kinase.
Collapse
|
75
|
Schmitt C, Kail D, Mariano M, Empting M, Weber N, Paul T, Hartmann RW, Engel M. Design and synthesis of a library of lead-like 2,4-bisheterocyclic substituted thiophenes as selective Dyrk/Clk inhibitors. PLoS One 2014; 9:e87851. [PMID: 24676346 PMCID: PMC3968014 DOI: 10.1371/journal.pone.0087851] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 01/02/2014] [Indexed: 12/31/2022] Open
Abstract
The Dyrk family of protein kinases is implicated in the pathogenesis of several diseases, including cancer and neurodegeneration. Pharmacological inhibitors were mainly described for Dyrk1A so far, but in fewer cases for Dyrk1B, Dyrk2 or other isoforms. Herein, we report the development and optimization of 2,4-bisheterocyclic substituted thiophenes as a novel class of Dyrk inhibitors. The optimized hit compounds displayed favorable pharmacokinetic properties and high ligand efficiencies, and inhibited Dyrk1B in intact cells. In a larger selectivity screen, only Clk1 and Clk4 were identified as additional targets of compound 48, but no other kinases frequently reported as off-targets. Interestingly, Dyrk1A is implicated in the regulation of alternative splicing, a function shared with Clk1/Clk4; thus, some of the dual inhibitors might be useful as efficient splicing modulators. A further compound (29) inhibited Dyrk1A and 1B with an IC50 of 130 nM, showing a moderate selectivity over Dyrk2. Since penetration of the central nervous system (CNS) seems possible based on the physicochemical properties, this compound might serve as a lead for the development of potential therapeutic agents against glioblastoma. Furthermore, an inhibitor selective for Dyrk2 (24) was also identified, which might be are suitable as a pharmacological tool to dissect Dyrk2 isoform-mediated functions.
Collapse
Affiliation(s)
- Christian Schmitt
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | | | - Marica Mariano
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Martin Empting
- Department of Drug Design and Optimization, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Saarbrücken, Germany
| | - Nadja Weber
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Tamara Paul
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Rolf W. Hartmann
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
- Department of Drug Design and Optimization, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Saarbrücken, Germany
| | - Matthias Engel
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
76
|
Waiker DK, Karthikeyan C, Poongavanam V, Kongsted J, Lozach O, Meijer L, Trivedi P. Synthesis, biological evaluation and molecular modelling studies of 4-anilinoquinazoline derivatives as protein kinase inhibitors. Bioorg Med Chem 2014; 22:1909-15. [DOI: 10.1016/j.bmc.2014.01.044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 12/18/2022]
|
77
|
Walker SR, Czyz ML, Morris JC. Concise syntheses of meridianins and meriolins using a catalytic domino amino-palladation reaction. Org Lett 2014; 16:708-11. [PMID: 24437527 DOI: 10.1021/ol403390m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A synthesis of natural and synthetic members of the meridianin family of kinase inhibitory natural products has been developed. The sequence utilizes a variation of the Cacchi palladium-catalyzed domino reaction to efficiently construct the heterocyclic framework of the meridianins and meriolins from monocyclic precursors.
Collapse
Affiliation(s)
- Scott R Walker
- School of Chemistry and Physics, University of Adelaide , Adelaide, SA, Australia
| | | | | |
Collapse
|
78
|
Pereira E, Youssef A, El-Ghozzi M, Avignant D, Bain J, Prudhomme M, Anizon F, Moreau P. Synthesis of dipyrrolo[3,4-a:3,4-c]carbazoles: new kinase inhibitors. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2013.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
79
|
Gourdain S, Dairou J, Denhez C, Bui LC, Rodrigues-Lima F, Janel N, Delabar JM, Cariou K, Dodd RH. Development of DANDYs, new 3,5-diaryl-7-azaindoles demonstrating potent DYRK1A kinase inhibitory activity. J Med Chem 2013; 56:9569-85. [PMID: 24188002 DOI: 10.1021/jm401049v] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A series of 3,5-diaryl-1H-pyrrolo[2,3-b]pyridines were synthesized and evaluated for inhibition of DYRKIA kinase in vitro. Derivatives having hydroxy groups on the aryl moieties (2c, 2j-l) demonstrated high inhibitory potencies with Kis in the low nanomolar range. Their methoxy analogues were up to 100 times less active. Docking studies at the ATP binding site suggested that these compounds bind tightly to this site via a network of multiple H-bonds with the peptide backbone. None of the active compounds were cytotoxic to KB cells at 10(-6) M. Kinase profiling revealed that compound 2j showed 2-fold selectivity for DYRK1A with respect to DYRK2 and DYRK3.
Collapse
Affiliation(s)
- Stéphanie Gourdain
- Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, UPR 2301, CNRS , Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Deau E, Loidreau Y, Marchand P, Nourrisson MR, Loaëc N, Meijer L, Levacher V, Besson T. Synthesis of novel 7-substituted pyrido[2',3':4,5]furo[3,2-d]pyrimidin-4-amines and their N-aryl analogues and evaluation of their inhibitory activity against Ser/Thr kinases. Bioorg Med Chem Lett 2013; 23:6784-8. [PMID: 24176400 DOI: 10.1016/j.bmcl.2013.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
Abstract
The efficient synthesis of 7-substituted pyrido[2',3':4,5]furo[3,2-d]pyrimidin-4-amines and their N-aryl analogues is described. 3,5-Dibromopyridine was converted into 3-amino-6-bromofuro[3,2-b]pyridine-2-carbonitrile intermediate which was formylated with DMFDMA. Functionalization at position 7 of the tricyclic scaffold was accomplished, before or after cyclisation step, by palladium-catalyzed Suzuki-Miyaura cross-coupling while the pyrimidin-4-amines and N-aryl counterparts were synthesized by microwave-assisted formamide degradation and Dimroth rearrangement, respectively. The final products were evaluated for their potent inhibition of a series of five Ser/Thr kinases (CDK5/p25, CK1δ/ε, CLK1, DYRK1A, GSK3α/β). Compound 35 showed the best inhibitory activity with an IC50 value of 49 nM and proved to be specific to CLK1 among the panel of tested kinases.
Collapse
Affiliation(s)
- Emmanuel Deau
- Normandie Univ, COBRA, UMR 6014 & FR 3038; Univ Rouen; INSA Rouen; CNRS, Bâtiment IRCOF, 1 rue Tesnière, 76821 Mont St Aignan Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Karthikeyan C, Solomon VR, Lee H, Trivedi P. Design, synthesis and biological evaluation of some isatin-linked chalcones as novel anti-breast cancer agents: A molecular hybridization approach. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.bionut.2013.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
82
|
Bharate SB, Sawant SD, Singh PP, Vishwakarma RA. Kinase inhibitors of marine origin. Chem Rev 2013; 113:6761-815. [PMID: 23679846 DOI: 10.1021/cr300410v] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sandip B Bharate
- Medicinal Chemistry Division, Indian Institute of Integrative Medicine (Council of Scientific and Industrial Research), Canal Road, Jammu-180001, India
| | | | | | | |
Collapse
|
83
|
Abstract
This review covers the literature published in 2011 for marine natural products, with 870 citations (558 for the period January to December 2011) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1152 for 2011), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
84
|
Loidreau Y, Marchand P, Dubouilh-Benard C, Nourrisson MR, Duflos M, Loaëc N, Meijer L, Besson T. Synthesis and biological evaluation of N-aryl-7-methoxybenzo[b]furo[3,2-d]pyrimidin-4-amines and their N-arylbenzo[b]thieno[3,2-d]pyrimidin-4-amine analogues as dual inhibitors of CLK1 and DYRK1A kinases. Eur J Med Chem 2013; 59:283-95. [PMID: 23237976 DOI: 10.1016/j.ejmech.2012.11.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/12/2012] [Accepted: 11/19/2012] [Indexed: 01/04/2023]
Abstract
Novel N-aryl-7-methoxybenzo[b]furo[3,2-d]pyrimidin-4-amines (1) and their N-arylbenzo[b]thieno[3,2-d]pyrimidin-4-amine analogues (2) were designed and prepared for the first time via microwave-accelerated multi-step synthesis. Various anilines were condensed with N'-(2-cyanaryl)-N,N-dimethylformimidamide intermediates obtained by reaction of 3-amino-6-methoxybenzofuran-2-carbonitrile (3) and 3-amino-6-methoxybenzothiophene-2-carbonitrile (4) precursors with dimethylformamide dimethylacetal. The inhibitory potency of the final products against five protein kinases (CDK5/p25, CK1δ/ε, GSK3α/β, DYRK1A and CLK1) was estimated. Compounds (2a-z) turned out to be particularly promising for the development of new pharmacological dual inhibitors of CLK1 and DYRK1A kinases.
Collapse
Affiliation(s)
- Yvonnick Loidreau
- Université de Rouen, Laboratoire de Chimie Organique et Bio-organique, Réactivité et Analyse (C.O.B.R.A.), CNRS UMR 6014 & FR3038, Institut de Recherche en Chimie Organique Fine (I.R.C.O.F.) rue Tesnière, 76130 Mont Saint-Aignan, France
| | | | | | | | | | | | | | | |
Collapse
|
85
|
|
86
|
Bharate SB, Yadav RR, Khan SI, Tekwani BL, Jacob MR, Khan IA, Vishwakarma RA. Meridianin G and its analogs as antimalarial agents. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00097d] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
87
|
Smith B, Medda F, Gokhale V, Dunckley T, Hulme C. Recent advances in the design, synthesis, and biological evaluation of selective DYRK1A inhibitors: a new avenue for a disease modifying treatment of Alzheimer's? ACS Chem Neurosci 2012; 3:857-72. [PMID: 23173067 PMCID: PMC3503344 DOI: 10.1021/cn300094k] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 08/28/2012] [Indexed: 12/11/2022] Open
Abstract
With 24.3 million people affected in 2005 and an estimated rise to 42.3 million in 2020, dementia is currently a leading unmet medical need and costly burden on public health. Seventy percent of these cases have been attributed to Alzheimer's disease (AD), a neurodegenerative pathology whose most evident symptom is a progressive decline in cognitive functions. Dual specificity tyrosine phosphorylation regulated kinase-1A (DYRK1A) is important in neuronal development and plays a variety of functional roles within the adult central nervous system. The DYRK1A gene is located within the Down syndrome critical region (DSCR) on human chromosome 21 and current research suggests that overexpression of DYRK1A may be a significant factor leading to cognitive deficits in people with Alzheimer's disease (AD) and Down syndrome (DS). Currently, treatment options for cognitive deficiencies associated with Down syndrome, as well as Alzheimer's disease, are extremely limited and represent a major unmet therapeutic need. Small molecule inhibition of DYRK1A activity in the brain may provide an avenue for pharmaceutical intervention of mental impairment associated with AD and other neurodegenerative diseases. We herein review the current state of the art in the development of DYRK1A inhibitors.
Collapse
Affiliation(s)
- Breland Smith
- Department of Chemistry &
Biochemistry, the University of Arizona, Tucson, Arizona 85721, United States
- BIO5 Oro Valley, the University of Arizona, 1580 East Hanley Boulevard,
Oro Valley, Arizona 85737, United States
| | - Federico Medda
- BIO5 Oro Valley, the University of Arizona, 1580 East Hanley Boulevard,
Oro Valley, Arizona 85737, United States
| | - Vijay Gokhale
- Department of Pharmacology &
Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Travis Dunckley
- Neurogenomics Division, Translational
Genomics Research Institute, Phoenix,
Arizona 85013, United States
| | - Christopher Hulme
- Department of Chemistry &
Biochemistry, the University of Arizona, Tucson, Arizona 85721, United States
- BIO5 Oro Valley, the University of Arizona, 1580 East Hanley Boulevard,
Oro Valley, Arizona 85737, United States
- Department of Pharmacology &
Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
88
|
Demange L, Lozach O, Ferandin Y, Hoang NT, Meijer L, Galons H. Synthesis and evaluation of new potent inhibitors of CK1 and CDK5, two kinases involved in Alzheimer’s disease. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0334-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
89
|
Loidreau Y, Marchand P, Dubouilh-Benard C, Nourrisson MR, Duflos M, Lozach O, Loaëc N, Meijer L, Besson T. Synthesis and biological evaluation of N-arylbenzo[b]thieno[3,2-d]pyrimidin-4-amines and their pyrido and pyrazino analogues as Ser/Thr kinase inhibitors. Eur J Med Chem 2012; 58:171-83. [PMID: 23124214 DOI: 10.1016/j.ejmech.2012.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/03/2012] [Accepted: 10/04/2012] [Indexed: 10/27/2022]
Abstract
A useful and rapid access to libraries of N-arylbenzo[b]thieno[3,2-d]pyrimidin-4-amines and their pyrido and pyrazino analogues was designed and optimized for the first time via microwave-accelerated condensation and Dimroth rearrangement of the starting anilines with N'-(2-cyanoaryl)-N,N-dimethylformimidamides obtained by reaction of thiophene precursors with dimethylformamide dimethylacetal. The inhibitory potency of the final products against five protein kinases (CDK5/p25, CK1δ/ɛ, GSK3α/β, DYRK1A and CLK1) was estimated. N-arylpyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amine series of compounds (4a-j) turned out to be particularly promising for the development of new pharmacological inhibitors of CK1 and CLK1 kinases.
Collapse
Affiliation(s)
- Yvonnick Loidreau
- Université de Rouen, Laboratoire de Chimie Organique et Bio-organique, Réactivité et Analyse, CNRS UMR 6014 & FR3038, Institut de Recherche en Chimie Organique Fine rue Tesnière, 76130 Mont Saint-Aignan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Mao QX, Zhang CG, Li JF. 2-(4-Bromo-1 H-indol-3-yl)acetonitrile. Acta Crystallogr Sect E Struct Rep Online 2012; 68:o451. [PMID: 22347062 PMCID: PMC3275206 DOI: 10.1107/s1600536811054936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 12/21/2011] [Indexed: 11/10/2022]
Abstract
In the title compound, C10H7BrN2, the non-H atoms, except the N atom of the acetonitrile group and the C atom bonded to it, lie in the least-squares plane defined by the atoms of the indole ring system (r.m.s deviation = 0.019 Å), with the N and C atom of the cyano group displaced by 2.278 (1) and 1.289 (1) Å, respectively, out of that plane. In the crystal, N—H⋯N hydrogen bonds link the molecules into a C(7) chain along [100].
Collapse
|
91
|
Bardoni B, Abekhoukh S, Zongaro S, Melko M. Intellectual disabilities, neuronal posttranscriptional RNA metabolism, and RNA-binding proteins: three actors for a complex scenario. PROGRESS IN BRAIN RESEARCH 2012; 197:29-51. [PMID: 22541287 DOI: 10.1016/b978-0-444-54299-1.00003-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intellectual disability (ID) is the most frequent cause of serious handicap in children and young adults and interests 2-3% of worldwide population, representing a serious problem from the medical, social, and economic points of view. The causes are very heterogeneous. Genes involved in ID have various functions altering different pathways important in neuronal function. Regulation of mRNA metabolism is particularly important in neurons for synaptic structure and function. Here, we review ID due to alteration of mRNA metabolism. Functional absence of some RNA-binding proteins--namely, FMRP, FMR2P, PQBP1, UFP3B, VCX-A--causes different forms of ID. These proteins are involved in different steps of RNA metabolism and, even if a detailed analysis of their RNA targets has been performed so far only for FMRP, it appears clear that they modulate some aspects (translation, stability, transport, and sublocalization) of a subset of RNAs coding for proteins, whose function must be relevant for neurons. Two other proteins, DYRK1A and CDKL5, involved in Down syndrome and Rett syndrome, respectively, have been shown to have an impact on splicing efficiency of specific mRNAs. Both proteins are kinases and their effect is indirect. Interestingly, both are localized in nuclear speckles, the nuclear domains where splicing factors are assembled, stocked, and recycled and influence their biogenesis and/or their organization.
Collapse
Affiliation(s)
- Barbara Bardoni
- Institute of Molecular and Cellular Pharmacology, CNRS-UMR6097, Université de Nice Sophia-Antipolis,Valbonne, France.
| | | | | | | |
Collapse
|
92
|
Lebar MD, Hahn KN, Mutka T, Maignan P, McClintock JB, Amsler CD, van Olphen A, Kyle DE, Baker BJ. CNS and antimalarial activity of synthetic meridianin and psammopemmin analogs. Bioorg Med Chem 2011; 19:5756-62. [PMID: 21907583 DOI: 10.1016/j.bmc.2011.08.033] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 10/17/2022]
Abstract
The marine invertebrate-derived meridianin A, the originally proposed structure for psammopemmin A, and several related 3-pyrimidylindole analogs were synthesized and subsequently investigated for central nervous system, antimalarial, and cytotoxic activity. A Suzuki coupling of an indoleborate ester to the pyrimidine electrophile was utilized to form the natural product and derivatives thereof. The 3-pyrimidineindoles were found to prevent radioligand binding to several CNS receptors and transporters, most notably, serotonin receptors (<0.2 μM K(i) for 5HT(2B)). Two compounds also inhibited the human malaria parasite Plasmodium falciparum (IC(50) <50 μM). Only the natural product was cytotoxic toward A549 cells (IC(50)=15 μM).
Collapse
Affiliation(s)
- Matthew D Lebar
- Department of Chemistry and Center for Molecular Diversity in Drug Design, Discovery and Delivery, South Florida, Tampa, FL 33620, USA
| | | | | | | | | | | | | | | | | |
Collapse
|