51
|
Abstract
Positional analogue scanning (PAS) is an accepted strategy for multiparameter lead optimization (MPO) in drug discovery. Small structural changes as introduced by PAS can lead to 10-fold changes in binding potency in ∼10-20% of cases, a significant parameter shift irrespective of other MPO objectives. Sometimes performing a complete PAS is challenging due to resource and time constraints, building block availability, or difficulty in synthesis. Calculating relative binding free energies (RBFEs) for all positions can contribute to prioritizing the most promising analogues for synthesis. We tested a well-established RBFE calculation method, Amber GPU-TI, for 20 positional analogue scans in 14 test systems (cyclin-dependent kinase 8 (CDK8), hepatitis C virus nonstructural protein 5B (HCV NS5B), tankyrase, RAC-α serine/threonine-protein kinase (Akt), phosphodiesterase 1B (PDE1B), orexin/hypocretin receptor type 1 (OX1R), orexin/hypocretin receptor type 2 (OX2R), histone acetyltransferase K (lysine) acetyltransferase 6A (KAT6A), peroxisome proliferator-activated receptor γ (PPARγ), extracellular signal-regulated kinases (ERK1/2), coactivator-associated arginine methyltransferase 1 (PRMT4), αvβ6, bromodomain 1 (BD1), human immunodeficiency virus-1 (HIV-1) entry) involving nitrogen, methyl, halogen, methoxy, and hydroxyl scans with at least four analogues per set. Among the 66 analogue positions explored, we found that in 18 cases Amber GPU-TI calculations predicted a more than 10-fold change in potency. In all of these cases, the experimentally observed direction of potency changes agreed with the predictions. In 16 cases, more than 10-fold changes in experimental potency were observed. Again, in all of these cases, Amber GPU-TI predicted the direction of the potency changes correctly. In none of these cases would a decision made for or against synthesis based on a 10-fold change in potency have resulted in missing an important analogue. Therefore, in silico RBFE calculations using Amber GPU-TI can meaningfully contribute to the prioritization of positional analogues before synthesis.
Collapse
Affiliation(s)
- Yuan Hu
- Alkermes, Inc., 852 Winter Street, Waltham, Massachusetts 02451-1420, United States
| | - Ingo Muegge
- Alkermes, Inc., 852 Winter Street, Waltham, Massachusetts 02451-1420, United States
| |
Collapse
|
52
|
Improved flotation separation of sulfide minerals by synthesized surfactant based on para-position methyl effect. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
53
|
Wu MC, Li MZ, Chen YX, Liu F, Xiao JA, Chen K, Xiang HY, Yang H. Photoredox-Catalyzed C–H Trideuteromethylation of Quinoxalin-2(1 H)-ones with CDCl 3 as the “CD 3” source. Org Lett 2022; 24:6412-6416. [DOI: 10.1021/acs.orglett.2c02439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mei-Chun Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- College of Chemistry and Chemical Engineering, Huaihua University, Huaihua 418008, P. R. China
| | - Ming-Zhi Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yi-Xuan Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Fang Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jun-An Xiao
- College of Chemistry and Materials Science, Nanning Normal University, Nanning 530001, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
54
|
Kwapien K, Nittinger E, He J, Margreitter C, Voronov A, Tyrchan C. Implications of Additivity and Nonadditivity for Machine Learning and Deep Learning Models in Drug Design. ACS OMEGA 2022; 7:26573-26581. [PMID: 35936431 PMCID: PMC9352238 DOI: 10.1021/acsomega.2c02738] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/08/2022] [Indexed: 05/20/2023]
Abstract
Matched molecular pairs (MMPs) are nowadays a commonly applied concept in drug design. They are used in many computational tools for structure-activity relationship analysis, biological activity prediction, or optimization of physicochemical properties. However, until now it has not been shown in a rigorous way that MMPs, that is, changing only one substituent between two molecules, can be predicted with higher accuracy and precision in contrast to any other chemical compound pair. It is expected that any model should be able to predict such a defined change with high accuracy and reasonable precision. In this study, we examine the predictability of four classical properties relevant for drug design ranging from simple physicochemical parameters (log D and solubility) to more complex cell-based ones (permeability and clearance), using different data sets and machine learning algorithms. Our study confirms that additive data are the easiest to predict, which highlights the importance of recognition of nonadditivity events and the challenging complexity of predicting properties in case of scaffold hopping. Despite deep learning being well suited to model nonlinear events, these methods do not seem to be an exception of this observation. Though they are in general performing better than classical machine learning methods, this leaves the field with a still standing challenge.
Collapse
Affiliation(s)
- Karolina Kwapien
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology
(R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Eva Nittinger
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology
(R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Jiazhen He
- Molecular
AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | | | - Alexey Voronov
- Molecular
AI, Discovery Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Christian Tyrchan
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology
(R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg 431 83, Sweden
| |
Collapse
|
55
|
Surprising lipophilicity observations identify unexpected conformational effects. Bioorg Med Chem Lett 2022; 69:128786. [PMID: 35569689 DOI: 10.1016/j.bmcl.2022.128786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022]
Abstract
Contrary to expectation N-aryl pyrrolidinones (and isosteric imidazolinones and oxazolinones) are more lipophilic and less soluble than the corresponding piperidinones (tetrahydropyrimidinones and oxazinones). Exploration of the basis for these results uncovered a subtle interplay of steric and electronic effects that result in different conformations for the two classes of compounds which drive the observed effects.
Collapse
|
56
|
Ring replacement recommender: Ring modifications for improving biological activity. Eur J Med Chem 2022; 238:114483. [DOI: 10.1016/j.ejmech.2022.114483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/19/2022]
|
57
|
Xu G, Liu Z, Wang X, Lu T, DesJarlais RL, Thieu T, Zhang J, Devine ZH, Du F, Li Q, Milligan CM, Shaffer P, Cedervall PE, Spurlino JC, Stratton CF, Pietrak B, Szewczuk LM, Wong V, Steele RA, Bruinzeel W, Chintala M, Silva J, Gaul MD, Macielag MJ, Nargund R. Discovery of Potent and Orally Bioavailable Pyridine N-Oxide-Based Factor XIa Inhibitors through Exploiting Nonclassical Interactions. J Med Chem 2022; 65:10419-10440. [PMID: 35862732 DOI: 10.1021/acs.jmedchem.2c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Activated factor XI (FXIa) inhibitors are promising novel anticoagulants with low bleeding risk compared with current anticoagulants. The discovery of potent FXIa inhibitors with good oral bioavailability has been challenging. Herein, we describe our discovery effort, utilizing nonclassical interactions to improve potency, cellular permeability, and oral bioavailability by enhancing the binding while reducing polar atoms. Beginning with literature-inspired pyridine N-oxide-based FXIa inhibitor 1, the imidazole linker was first replaced with a pyrazole moiety to establish a polar C-H···water hydrogen-bonding interaction. Then, structure-based drug design was employed to modify lead molecule 2d in the P1' and P2' regions, with substituents interacting with key residues through various nonclassical interactions. As a result, a potent FXIa inhibitor 3f (Ki = 0.17 nM) was discovered. This compound demonstrated oral bioavailability in preclinical species (rat 36.4%, dog 80.5%, and monkey 43.0%) and displayed a dose-dependent antithrombotic effect in a rabbit arteriovenous shunt model of thrombosis.
Collapse
Affiliation(s)
- Guozhang Xu
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| | - Zhijie Liu
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| | - Xinkang Wang
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| | - Tianbao Lu
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| | - Renee L DesJarlais
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| | - Tho Thieu
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| | - Jing Zhang
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| | - Zheng Huang Devine
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| | - Fuyong Du
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| | - Qiu Li
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| | - Cynthia M Milligan
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| | - Paul Shaffer
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| | - Peder E Cedervall
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| | - John C Spurlino
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| | - Christopher F Stratton
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| | - Beth Pietrak
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| | - Lawrence M Szewczuk
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| | - Victoria Wong
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| | - Ruth A Steele
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| | - Wouter Bruinzeel
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| | - Madhu Chintala
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| | - Jose Silva
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| | - Michael D Gaul
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| | - Mark J Macielag
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| | - Ravi Nargund
- Janssen Research & Development, L.L.C., 1400 McKean Road, Spring House, Pennsylvania 19477-0776, United States
| |
Collapse
|
58
|
Abstract
Many enzymes that show a large specificity in binding the enzymatic transition state with a higher affinity than the substrate utilize substrate binding energy to drive protein conformational changes to form caged substrate complexes. These protein cages provide strong stabilization of enzymatic transition states. Using part of the substrate binding energy to drive the protein conformational change avoids a similar strong stabilization of the Michaelis complex and irreversible ligand binding. A seminal step in the development of modern enzyme catalysts was the evolution of enzymes that couple substrate binding to a conformational change. These include enzymes that function in glycolysis (triosephosphate isomerase), the biosynthesis of lipids (glycerol phosphate dehydrogenase), the hexose monophosphate shunt (6-phosphogluconate dehydrogenase), and the mevalonate pathway (isopentenyl diphosphate isomerase), catalyze the final step in the biosynthesis of pyrimidine nucleotides (orotidine monophosphate decarboxylase), and regulate the cellular levels of adenine nucleotides (adenylate kinase). The evolution of enzymes that undergo ligand-driven conformational changes to form active protein-substrate cages is proposed to proceed by selection of variants, in which the selected side chain substitutions destabilize a second protein conformer that shows compensating enhanced binding interactions with the substrate. The advantages inherent to enzymes that incorporate a conformational change into the catalytic cycle provide a strong driving force for the evolution of flexible protein folds such as the TIM barrel. The appearance of these folds represented a watershed event in enzyme evolution that enabled the rapid propagation of enzyme activities within enzyme superfamilies.
Collapse
Affiliation(s)
- John P Richard
- Department of Chemistry, University at Buffalo, the State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
59
|
van der Westhuizen L, Weisner J, Taher A, Landel I, Quambusch L, Lindemann M, Uhlenbrock N, Müller MP, Green IR, Pelly SC, Rauh D, van Otterlo WAL. Covalent Allosteric Inhibitors of Akt Generated Using a Click Fragment Approach. ChemMedChem 2022; 17:e202100776. [PMID: 35170857 PMCID: PMC9311865 DOI: 10.1002/cmdc.202100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/14/2022] [Indexed: 11/30/2022]
Abstract
Akt is a protein kinase that has been implicated in the progression of cancerous tumours. A number of covalent allosteric Akt inhibitors are known, and based on these scaffolds, a small library of novel potential covalent allosteric imidazopyridine-based inhibitors was designed. The envisaged compounds were synthesised, with click chemistry enabling a modular approach to a number of the target compounds. The binding modes, potencies and antiproliferative activities of these synthesised compounds were explored, thereby furthering the structure activity relationship knowledge of this class of Akt inhibitors. Three novel covalent inhibitors were identified, exhibiting moderate activity against Akt1 and various cancer cell lines, potentially paving the way for future covalent allosteric inhibitors with improved properties.
Collapse
Affiliation(s)
| | - Jörn Weisner
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 4a44227DortmundGermany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW)44227DortmundGermany
| | - Abu Taher
- Department of Chemistry and Polymer ScienceStellenbosch UniversityMatieland7602South Africa
| | - Ina Landel
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 4a44227DortmundGermany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW)44227DortmundGermany
| | - Lena Quambusch
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 4a44227DortmundGermany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW)44227DortmundGermany
| | - Marius Lindemann
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 4a44227DortmundGermany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW)44227DortmundGermany
| | - Niklas Uhlenbrock
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 4a44227DortmundGermany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW)44227DortmundGermany
| | - Matthias P. Müller
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 4a44227DortmundGermany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW)44227DortmundGermany
| | - Ivan R. Green
- Department of Chemistry and Polymer ScienceStellenbosch UniversityMatieland7602South Africa
| | - Stephen C. Pelly
- Department of Chemistry and Polymer ScienceStellenbosch UniversityMatieland7602South Africa
- Department of ChemistryEmory University1515 Dickey DriveAtlantaGA 30322USA
| | - Daniel Rauh
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 4a44227DortmundGermany
- Drug Discovery Hub Dortmund (DDHD) am Zentrum für Integrierte Wirkstoffforschung (ZIW)44227DortmundGermany
| | | |
Collapse
|
60
|
Wang X, Wu S, Zhong Y, Wang Y, Pan Y, Tang H. Electrochemically mediated decarboxylative acylation of N-nitrosoanilines with α-oxocarboxylic acids. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
61
|
The quest for magic: recent advances in C(sp 3)–H methylation. PURE APPL CHEM 2022. [DOI: 10.1515/pac-2021-1203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Frequently referred to as the “magic methyl” effect, the introduction of a methyl group into a biologically active molecule has the potential to drastically alter its physical and biological properties and significantly increase potency. This effect is most pronounced when the methyl group is added at the α-position of an aliphatic heterocycle or ortho to a large rotatable group on an aromatic ring. Although seminal developments in C–H activation strategies offered solutions to the latter, until recent years there had been no selective and functional-group-tolerant method for C(sp3)–H methylation at late stages of synthesis. For many years, the lack of a generally applicable methylation strategy necessitated arduous de novo synthesis approaches to access methylated drug candidates, and discouraged further investigation and understandings of the magic methyl effect. This review will provide a summary of the most recent advances that enabled non-directed late-stage C(sp3)–H methylation, including through hydride transfer, chemical or anodic oxidation, and photocatalytic hydrogen atom transfer.
Collapse
|
62
|
Yang QL, Liu Y, Liang L, Li ZH, Qu GR, Guo HM. Facilitating Rh-Catalyzed C-H Alkylation of (Hetero)arenes and 6-Arylpurine Nucleosides (Nucleotides) with Electrochemistry. J Org Chem 2022; 87:6161-6178. [PMID: 35438486 DOI: 10.1021/acs.joc.2c00391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An electrochemical approach to promote the ortho-C-H alkylation of (hetero)arenes via rhodium catalysis under mild conditions is described. This approach features mild conditions with high levels of regio- and monoselectivity that tolerate a variety of aromatic and heteroaromatic groups and offers a widely applicable method for late-stage diversification of complex molecular architectures including tryptophan, estrone, diazepam, nucleosides, and nucleotides. Alkyl boronic acids and esters and alkyl trifluoroborates are demonstrated as suitable coupling partners. The isolation of key rhodium intermediates and mechanistic studies provided strong support for a rhodium(III/IV or V) regime.
Collapse
Affiliation(s)
- Qi-Liang Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ying Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Lei Liang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Zhi-Hao Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gui-Rong Qu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
63
|
Bos PH, Houang EM, Ranalli F, Leffler AE, Boyles NA, Eyrich VA, Luria Y, Katz D, Tang H, Abel R, Bhat S. AutoDesigner, a De Novo Design Algorithm for Rapidly Exploring Large Chemical Space for Lead Optimization: Application to the Design and Synthesis of d-Amino Acid Oxidase Inhibitors. J Chem Inf Model 2022; 62:1905-1915. [PMID: 35417149 DOI: 10.1021/acs.jcim.2c00072] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The lead optimization stage of a drug discovery program generally involves the design, synthesis, and assaying of hundreds to thousands of compounds. The design phase is usually carried out via traditional medicinal chemistry approaches and/or structure-based drug design (SBDD) when suitable structural information is available. Two of the major limitations of this approach are (1) difficulty in rapidly designing potent molecules that adhere to myriad project criteria, or the multiparameter optimization (MPO) problem, and (2) the relatively small number of molecules explored compared to the vast size of chemical space. To address these limitations, we have developed AutoDesigner, a de novo design algorithm. AutoDesigner employs a cloud-native, multistage search algorithm to carry out successive rounds of chemical space exploration and filtering. Millions to billions of virtual molecules are explored and optimized while adhering to a customizable set of project criteria such as physicochemical properties and potency. Additionally, the algorithm only requires a single ligand with measurable affinity and a putative binding model as a starting point, making it amenable to the early stages of an SBDD project where limited data are available. To assess the effectiveness of AutoDesigner, we applied it to the design of novel inhibitors of d-amino acid oxidase (DAO), a target for the treatment of schizophrenia. AutoDesigner was able to generate and efficiently explore over 1 billion molecules to successfully address a variety of project goals. The compounds generated by AutoDesigner that were synthesized and assayed (1) simultaneously met not only physicochemical criteria, clearance, and central nervous system (CNS) penetration (Kp,uu) cutoffs but also potency thresholds and (2) fully utilize structural data to discover and explore novel interactions and a previously unexplored subpocket in the DAO active site. The reported data demonstrate that AutoDesigner can play a key role in accelerating the discovery of novel, potent chemical matter within the constraints of a given drug discovery lead optimization campaign.
Collapse
Affiliation(s)
- Pieter H Bos
- Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| | - Evelyne M Houang
- Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| | - Fabio Ranalli
- Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| | - Abba E Leffler
- Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| | - Nicholas A Boyles
- Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| | - Volker A Eyrich
- Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| | - Yuval Luria
- Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| | - Dana Katz
- Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| | - Haifeng Tang
- Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| | - Robert Abel
- Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| | - Sathesh Bhat
- Schrödinger, Inc., 1540 Broadway, 24th Floor, New York, New York 10036, United States
| |
Collapse
|
64
|
Restrepo-Acevedo A, Osorio N, Giraldo-López LE, D'Vries RF, Zacchino S, Abonia R, Le Lagadec R, Cuenú-Cabezas F. Synthesis and antifungal activity of nitrophenyl-pyrazole substituted Schiff bases. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132289] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
65
|
Yoon HR, Chai CC, Kim CH, Kang NS. A Study on the Effect of the Substituent against PAK4 Inhibition Using In Silico Methods. Int J Mol Sci 2022; 23:ijms23063337. [PMID: 35328758 PMCID: PMC8953563 DOI: 10.3390/ijms23063337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
The intrinsic inductive properties of atoms or functional groups depend on the chemical properties of either electron-withdrawing groups (EWGs) or electron-donating groups (EDGs). This study aimed to evaluate in silico methods to determine whether changes in chemical properties of the compound by single atomic substitution affect the biological activity of target proteins and whether the results depend on the properties of the functional groups. We found an imidazo[4,5-b]pyridine-based PAK4 inhibitor, compound 1, as an initial hit compound with the well-defined binding mode for PAK4. In this study, we used both experimental and in silico methods to investigate the effect of atomic substitution on biological activity to optimize the initial hit compound. In biological assays, in the case of EWG, as the size of the halogen atom became smaller and the electronegativity increased, the biological activity IC50 value ranged from 5150 nM to inactive; in the case of EDG, biological activity was inactive. Furthermore, we analyzed the interactions of PAK4 with compounds, focusing on the hinge region residues, L398 and E399, and gatekeeper residues, M395 and K350, of the PAK4 protein using molecular docking studies and fragment molecular orbital (FMO) methods to determine the differences between the effect of EWG and EDG on the activity of target proteins. These results of the docking score and binding energy did not explain the differences in biological activity. However, the pair-interaction energy obtained from the results of the FMO method indicated that there was a difference in the interaction energy between the EWG and EDG in the hinge region residues, L398 and E399, as well as in M395 and K350. The two groups with different properties exhibited opposite electrostatic energy and charge transfer energy between L398 and E399. Additionally, we investigated the electron distribution of the parts interacting with the hinge region by visualizing the molecular electrostatic potential (MEP) surface of the compounds. In conclusion, we described the properties of functional groups that affect biological activity using an in silico method, FMO.
Collapse
Affiliation(s)
- Hye Ree Yoon
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
| | - Chong Chul Chai
- Pharos iBio Co., Ltd. #1408, 38 Heungan-daero 427, Dongan-gu, Anyang-si 14059, Korea; (C.C.C.); (C.H.K.)
| | - Cheol Hee Kim
- Pharos iBio Co., Ltd. #1408, 38 Heungan-daero 427, Dongan-gu, Anyang-si 14059, Korea; (C.C.C.); (C.H.K.)
| | - Nam Sook Kang
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
- Correspondence: ; Tel.: +82-42-821-8626
| |
Collapse
|
66
|
Kranthikumar R. Recent Advances in C(sp 3)–C(sp 3) Cross-Coupling Chemistry: A Dominant Performance of Nickel Catalysts. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ramagonolla Kranthikumar
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
67
|
Nguyen TD, Le L, Vo TB, Vo KL, Le HM, Vu HT. Evaluation of Colorectal Cancer Inhibition Ability of Rosmarinus officinalis L. via Molecular Docking and Pharmacophore Analysis. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.262.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
68
|
Facile synthesis of 5-Isopropyl-2,3-dimethylbenzene-1,4-diol by Friedel-Crafts and Determination of Partition Coefficient in n- Octanol/Water. JURNAL KIMIA SAINS DAN APLIKASI 2022. [DOI: 10.14710/jksa.25.1.7-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The wide therapeutic effect of quinone-based drugs has received considerable interest for a long time. In this research, Friedel-Crafts performed a facile synthesis of quinone derivatives using the mixture of Brønsted acid. Reflux of 2,3-dimethylhydroquinone (1), isopropanol, glacial acetic acid, and H2SO4 for 15 minutes gave yellow oil product of 5-isopropyl-2,3-dimethylbenzene-1,4-diol (2) as a major product. Characterization using Nuclear Magnetic Resonance (NMR) revealed the methine proton splitting for isopropyl at δ 3.13 ppm, which has a cross-coupling with aromatic carbon at δ 119.6 ppm suggested the substitution of a proton on quinone ring with isopropyl group. Analysis Fourier Transform Infra-Red (FT-IR) showed the broad spectrum of –OH, the vibration of CH sp3, and isopropyl groups. The minor products identified as 5-isopropyl-2,3-dimethylcyclohexa-2,5-diene-1,4-dione (3), 5-isopropyl-2,3-dimethyl-1,4 phenylene diacetate (4), and 2,3-dimethylbenzene-5,6-isopropyl-1,4-diol (5) confirmed from 2D HETCOR and MS analysis. The partition coefficient (log P) of compound 2 showed a higher solubility by 1.9-fold compared to hydroquinone 1. It is suggested that an additional methyl group increased the partition into the organic phase.
Collapse
|
69
|
Wróbel TM, Rogova O, Sharma K, Rojas Velazquez MN, Pandey AV, Jørgensen FS, Arendrup FS, Andersen KL, Björkling F. Synthesis and Structure–Activity Relationships of Novel Non-Steroidal CYP17A1 Inhibitors as Potential Prostate Cancer Agents. Biomolecules 2022; 12:biom12020165. [PMID: 35204665 PMCID: PMC8961587 DOI: 10.3390/biom12020165] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
Twenty new compounds, targeting CYP17A1, were synthesized, based on our previous work on a benzimidazole scaffold, and their biological activity evaluated. Inhibition of CYP17A1 is an important modality in the treatment of prostate cancer, which remains the most abundant cancer type in men. The biological assessment included CYP17A1 hydroxylase and lyase inhibition, CYP3A4 and P450 oxidoreductase (POR) inhibition, as well as antiproliferative activity in PC3 prostate cancer cells. The most potent compounds were selected for further analyses including in silico modeling. This combined effort resulted in a compound (comp 2, IC50 1.2 µM, in CYP17A1) with a potency comparable to abiraterone and selectivity towards the other targets tested. In addition, the data provided an understanding of the structure–activity relationship of this novel non-steroidal compound class.
Collapse
Affiliation(s)
- Tomasz M. Wróbel
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (O.R.); (F.S.J.); (F.B.)
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
- Correspondence: ; Tel.: +48-814487273
| | - Oksana Rogova
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (O.R.); (F.S.J.); (F.B.)
| | - Katyayani Sharma
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children’s Hospital Bern, 3010 Bern, Switzerland; (K.S.); (M.N.R.V.); (A.V.P.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Maria Natalia Rojas Velazquez
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children’s Hospital Bern, 3010 Bern, Switzerland; (K.S.); (M.N.R.V.); (A.V.P.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Amit V. Pandey
- Division of Pediatric Endocrinology, Department of Pediatrics, University Children’s Hospital Bern, 3010 Bern, Switzerland; (K.S.); (M.N.R.V.); (A.V.P.)
- Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (O.R.); (F.S.J.); (F.B.)
| | - Frederic S. Arendrup
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (F.S.A.); (K.L.A.)
| | - Kasper L. Andersen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark; (F.S.A.); (K.L.A.)
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark; (O.R.); (F.S.J.); (F.B.)
| |
Collapse
|
70
|
Yang X, Wang G, Ye ZS. Palladium-catalyzed nucleomethylation of alkynes for synthesis of methylated heteroaromatic compounds. Chem Sci 2022; 13:10095-10102. [PMID: 36128232 PMCID: PMC9430495 DOI: 10.1039/d2sc03294e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Herein, we disclosed a novel and efficient palladium-catalyzed nucleomethylation of alkynes for the simultaneous construction of the heteroaromatic ring and methyl group. The 3-methylindoles, 3-methylbenzofurans and 4-methylisoquinolines were obtained in moderate to excellent yields. Notably, this methodology was employed as a key step for synthesis of a pregnane X receptor antagonist, zindoxifene, bazedoxifene and AFN-1252. The kinetic studies revealed that reductive elimination might be the rate-determining step. A novel palladium-catalyzed nucleomethylation of alkynes is developed, affording 3-methylindoles, 3-methylbenzofurans and 4-methylisoquinolines in moderate to excellent yields.![]()
Collapse
Affiliation(s)
- Xi Yang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Gang Wang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhi-Shi Ye
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
71
|
Barbaro L, Rodriguez AL, Blevins AN, Dickerson JW, Billard N, Boutaud O, Rook JL, Niswender CM, Conn P, Engers DW, Lindsley CW. Discovery of "Molecular Switches" within a Series of mGlu 5 Allosteric Ligands Driven by a "Magic Methyl" Effect Affording Both PAMs and NAMs with In Vivo Activity, Derived from an M 1 PAM Chemotype. ACS BIO & MED CHEM AU 2021; 1:21-30. [PMID: 37101980 PMCID: PMC10114714 DOI: 10.1021/acsbiomedchemau.1c00024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
In the course of optimizing an M1 PAM chemotype, introduction of an ether moiety unexpectedly abolished M1 PAM activity while engendering a "molecular switch" to afford a weak, pure mGlu5 PAM. Further optimization was able to deliver a potent (mGlu5 EC50 = 520 nM, 63% Glu Max), centrally penetrant (Kp = 0.83), MPEP-site binding mGlu5 PAM 17a (VU6036486) that reversed amphetamine-induced hyperlocomotion. A pronounced "magic methyl" effect was noted with a regioisomeric methyl congener, leading to a change in pharmacology to afford a potent (mGlu5 IC50 = 110 nM, 3% Glu Min), centrally penetrant (Kp = 0.94), MPEP-site binding NAM 28d (VU6044766) that displayed anxiolytic activity in a mouse marble burying assay. These data further support the growing body of literature concerning the existence of G protein-coupled receptor (GPCR) allosteric privileged structures, and the value and impact of subtle methyl group walks, as well as the highly productive fluorine walk, around allosteric ligand cores to stabilize unique GPCR conformations.
Collapse
Affiliation(s)
- Lisa Barbaro
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Alice L. Rodriguez
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Ashlyn N. Blevins
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jonathan W. Dickerson
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Natasha Billard
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Olivier Boutaud
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jerri L. Rook
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Colleen M. Niswender
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Brain Institute, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - P.Jeffrey Conn
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University Medical
Center, Nashville, Tennessee 37232, United States
| | - Darren W. Engers
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Warren
Center for Neuroscience Drug Discovery, Department of Pharmacology, Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Vanderbilt
Institute of Chemical Biology, Vanderbilt
University, Nashville, Tennessee 37232, United States
- Phone: 615-322-8700. Fax: 615-343-3088.
| |
Collapse
|
72
|
Hu H, Bajorath J. Systematic identification of activity cliffs with dual-atom replacements and their rationalization on the basis of single-atom replacement analogs and X-ray structures. Chem Biol Drug Des 2021; 99:308-319. [PMID: 34806310 DOI: 10.1111/cbdd.13985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/31/2021] [Accepted: 11/14/2021] [Indexed: 12/01/2022]
Abstract
Very small chemical changes in active compounds causing large potency effects are of particular interest in medicinal chemistry and drug design. We have systematically searched active compounds with available high-confidence activity data for pairs of structural analogs with dual-atom replacements and additional analogs with corresponding single-atom replacements. From ~287,000 unique qualifying compounds with activity against nearly 1900 unique targets, ~3500 target-based analog pairs with dual-atom replacements were identified. These included 852 pairs with significant differences in compound potency, representing a set of previously unobserved activity cliffs. Comparing these pairs with corresponding single-atom replacement analogs, which were frequently identified, made it possible to systematically analyze how potency changes propagated from single- to dual-atom replacements. The analysis uncovered different potency effects and revealed that individual atom replacements were often decisive for activity cliff formation. For a limited number of activity cliffs, X-ray structures of targets in complex with cliff compounds were available, which aided in rationalizing potency alterations among analogs with single- or dual-atom replacements. The analog pairs identified herein provide a rich resource of structure-activity relationship information and attractive test cases for calibrating computational methods.
Collapse
Affiliation(s)
- Huabin Hu
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Jürgen Bajorath
- Department of Life Science Informatics, B-IT, LIMES Program Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| |
Collapse
|
73
|
Kolos JM, Pomplun S, Jung S, Rieß B, Purder PL, Voll AM, Merz S, Gnatzy M, Geiger TM, Quist-Løkken I, Jatzlau J, Knaus P, Holien T, Bracher A, Meyners C, Czodrowski P, Krewald V, Hausch F. Picomolar FKBP inhibitors enabled by a single water-displacing methyl group in bicyclic [4.3.1] aza-amides. Chem Sci 2021; 12:14758-14765. [PMID: 34820091 PMCID: PMC8597852 DOI: 10.1039/d1sc04638a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/22/2021] [Indexed: 01/30/2023] Open
Abstract
Methyl groups can have profound effects in drug discovery but the underlying mechanisms are diverse and incompletely understood. Here we report the stereospecific effect of a single, solvent-exposed methyl group in bicyclic [4.3.1] aza-amides, robustly leading to a 2 to 10-fold increase in binding affinity for FK506-binding proteins (FKBPs). This resulted in the most potent and efficient FKBP ligands known to date. By a combination of co-crystal structures, isothermal titration calorimetry (ITC), density-functional theory (DFT), and 3D reference interaction site model (3D-RISM) calculations we elucidated the origin of the observed affinity boost, which was purely entropically driven and relied on the displacement of a water molecule at the protein-ligand-bulk solvent interface. The best compounds potently occupied FKBPs in cells and enhanced bone morphogenic protein (BMP) signaling. Our results show how subtle manipulation of the solvent network can be used to design atom-efficient ligands for difficult, solvent-exposed binding pockets.
Collapse
Affiliation(s)
- Jürgen M Kolos
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Straße 4 64293 Darmstadt Germany .,Max Planck Institute of Psychiatry Kraepelinstr. 2-10 80804 München Germany
| | - Sebastian Pomplun
- Max Planck Institute of Psychiatry Kraepelinstr. 2-10 80804 München Germany
| | - Sascha Jung
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Benedikt Rieß
- Max Planck Institute of Psychiatry Kraepelinstr. 2-10 80804 München Germany
| | - Patrick L Purder
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Straße 4 64293 Darmstadt Germany
| | - Andreas M Voll
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Straße 4 64293 Darmstadt Germany
| | - Stephanie Merz
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Straße 4 64293 Darmstadt Germany
| | - Monika Gnatzy
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Straße 4 64293 Darmstadt Germany
| | - Thomas M Geiger
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Straße 4 64293 Darmstadt Germany
| | - Ingrid Quist-Løkken
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology 7491 Trondheim Norway.,Department of Immunology and Transfusion Medicine, St. Olav's University Hospital 7030 Trondheim Norway.,Department of Hematology, St. Olav's University Hospital 7030 Trondheim Norway
| | - Jerome Jatzlau
- Institute for Chemistry and Biochemistry, Freie Universität Berlin 14195 Berlin Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin 14195 Berlin Germany
| | - Toril Holien
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology 7491 Trondheim Norway.,Department of Immunology and Transfusion Medicine, St. Olav's University Hospital 7030 Trondheim Norway.,Department of Hematology, St. Olav's University Hospital 7030 Trondheim Norway
| | - Andreas Bracher
- Research Department Cellular Biochemistry, Max Planck Institute of Biochemistry Am Klopferspitz 18, 82152 Planegg Germany
| | - Christian Meyners
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Straße 4 64293 Darmstadt Germany
| | - Paul Czodrowski
- Technische Universität Dortmund, Fakultät für Chemie und Chemische Biologie Otto-Hahn-Straße 6 44227 Dortmund Germany
| | - Vera Krewald
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Straße 4 64293 Darmstadt Germany
| | - Felix Hausch
- Department of Chemistry, Technical University of Darmstadt Alarich-Weiss-Straße 4 64293 Darmstadt Germany
| |
Collapse
|
74
|
Structural Optimization and Biological Activity of Pyrazole Derivatives: Virtual Computational Analysis, Recovery Assay and 3D Culture Model as Potential Predictive Tools of Effectiveness against Trypanosoma cruzi. Molecules 2021; 26:molecules26216742. [PMID: 34771151 PMCID: PMC8587750 DOI: 10.3390/molecules26216742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 12/18/2022] Open
Abstract
Chagas disease, a chronic and silent disease caused by Trypanosoma cruzi, is currently a global public health problem. The treatment of this neglected disease relies on benznidazole and nifurtimox, two nitroheterocyclic drugs that show limited efficacy and severe side effects. The failure of potential drug candidates in Chagas disease clinical trials highlighted the urgent need to identify new effective chemical entities and more predictive tools to improve translational success in the drug development pipeline. In this study, we designed a small library of pyrazole derivatives (44 analogs) based on a hit compound, previously identified as a T. cruzi cysteine protease inhibitor. The in vitro phenotypic screening revealed compounds 3g, 3j, and 3m as promising candidates, with IC50 values of 6.09 ± 0.52, 2.75 ± 0.62, and 3.58 ± 0.25 µM, respectively, against intracellular amastigotes. All pyrazole derivatives have good oral bioavailability prediction. The structure–activity relationship (SAR) analysis revealed increased potency of 1-aryl-1H-pyrazole-imidazoline derivatives with the Br, Cl, and methyl substituents in the para-position. The 3m compound stands out for its trypanocidal efficacy in 3D microtissue, which mimics tissue microarchitecture and physiology, and abolishment of parasite recrudescence in vitro. Our findings encourage the progression of the promising candidate for preclinical in vivo studies.
Collapse
|
75
|
Li X, Wu J, Jaffrey SR. Engineering Fluorophore Recycling in a Fluorogenic RNA Aptamer. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xing Li
- Beijing Institutes of Life Science Chinese Academy of Sciences Beijing 100101 P. R. China
- Department of Pharmacology Weill Cornell Medicine Cornell University New York NY 10065 USA
| | - Jiahui Wu
- Department of Pharmacology Weill Cornell Medicine Cornell University New York NY 10065 USA
| | - Samie R. Jaffrey
- Department of Pharmacology Weill Cornell Medicine Cornell University New York NY 10065 USA
| |
Collapse
|
76
|
Li X, Wu J, Jaffrey SR. Engineering Fluorophore Recycling in a Fluorogenic RNA Aptamer. Angew Chem Int Ed Engl 2021; 60:24153-24161. [PMID: 34490956 PMCID: PMC8661118 DOI: 10.1002/anie.202108338] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Fluorogenic aptamers can potentially show minimal photobleaching during continuous irradiation since any photobleached fluorophore can exchange with fluorescent dyes in the media. However, fluorophores have not been designed to maximize "fluorophore recycling." Here we describe TBI, a novel fluorophore for the Broccoli fluorogenic aptamer. Previous fluorophores either fail to rapidly dissociate when they undergo photobleaching via cis-trans isomerization, or bind slowly, resulting in extended periods after dissociation of the photobleached fluorophore when no fluorophore is bound. By contrast, photobleached TBI dissociates rapidly from Broccoli, and TBI from the media rapidly replaces dissociated photobleached fluorophore. Using TBI, Broccoli exhibits markedly enhanced fluorescence in cells during continuous imaging. These data show that designing fluorophores to optimize fluorophore recycling can lead to enhanced fluorescence of fluorogenic aptamers.
Collapse
Affiliation(s)
- Xing Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
| | - Jiahui Wu
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, 10065, USA
| |
Collapse
|
77
|
Pulcinella A, Mazzarella D, Noël T. Homogeneous catalytic C(sp 3)-H functionalization of gaseous alkanes. Chem Commun (Camb) 2021; 57:9956-9967. [PMID: 34495026 DOI: 10.1039/d1cc04073a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The conversion of light alkanes into bulk chemicals is becoming an important challenge as it effectively avoids the use of prefunctionalized alkylating reagents. The implementation of such processes is, however, hampered by their gaseous nature and low solubility, as well as the low reactivity of the C-H bonds. Efforts have been made to enable both polar and radical processes to activate these inert compounds. In addition, these methodologies also benefit significantly from the development of a suitable reactor technology that intensifies gas-liquid mass transfer. In this review, we critically highlight these developments, both from a conceptual and a practical point of view. The recent expansion of these mechanistically-different methods have enabled the use of various gaseous alkanes for the development of different bond-forming reactions, including C-C, C-B, C-N, C-Si and C-S bonds.
Collapse
Affiliation(s)
- Antonio Pulcinella
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Daniele Mazzarella
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
78
|
Pirrone MG, Hobbie SN, Vasella A, Böttger EC, Crich D. Influence of ring size in conformationally restricted ring I analogs of paromomycin on antiribosomal and antibacterial activity. RSC Med Chem 2021; 12:1585-1591. [PMID: 34671740 DOI: 10.1039/d1md00214g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/03/2021] [Indexed: 11/21/2022] Open
Abstract
In order to further investigate the importance of the conformation of the ring I side chain in aminoglycoside antibiotic binding to the ribosomal target several derivatives of paromomycin were designed with conformationally locked side chains. By changing the size of the appended ring between O-4' and C-6' used to restrict the motion of the side chain, the position of the C-6' hydroxy group was fine tuned to probe for the optimal conformation for inhibition of the ribosome. While the changes in orientation of the 6'-hydroxy group cannot be completely dissociated from the size and hydrophobicity of the conformation-restricting ring, overall, it is apparent that the preferred conformation of the ring I side chain for interaction with A1408 in the decoding A site of the bacterial ribosome is an ideal gt conformation, which results in the highest antimicrobial activity as well as increased selectivity for bacterial over eukaryotic ribosomes.
Collapse
Affiliation(s)
- Michael G Pirrone
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia 250 West Green Street Athens GA 30602 USA .,Complex Carbohydrate Research Center, University of Georgia 315 Riverbend Road Athens GA 30602 USA.,Department of Chemistry, Wayne State University 5101 Cass Avenue Detroit MI 48202 USA
| | - Sven N Hobbie
- Institute of Medical Microbiology, University of Zurich Gloriastrasse 28 8006 Zürich Switzerland
| | - Andrea Vasella
- Organic Chemistry Laboratory, ETH Zürich Vladimir-Prelog-Weg 1-5/10 8093 Zürich Switzerland
| | - Erik C Böttger
- Institute of Medical Microbiology, University of Zurich Gloriastrasse 28 8006 Zürich Switzerland
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia 250 West Green Street Athens GA 30602 USA .,Complex Carbohydrate Research Center, University of Georgia 315 Riverbend Road Athens GA 30602 USA.,Department of Chemistry, University of Georgia 140 Cedar Street Athens GA 30602 USA
| |
Collapse
|
79
|
Bercher OP, Plunkett S, Mortimer TE, Watson MP. Deaminative Reductive Methylation of Alkylpyridinium Salts. Org Lett 2021; 23:7059-7063. [PMID: 34464140 PMCID: PMC8448964 DOI: 10.1021/acs.orglett.1c02458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Methyl groups can imbue valuable properties in organic molecules, often leading to enhanced bioactivity. To enable efficient installation of methyl groups on simple building blocks and in late-stage functionalization, a nickel-catalyzed reductive coupling of secondary Katritzky alkylpyridinium salts with methyl iodide was developed. When coupled with formation of the pyridinium salt from an alkyl amine, this method allows amino groups to be readily transformed to methyl groups with broad functional group and heterocycle tolerance.
Collapse
Affiliation(s)
- Olivia P. Bercher
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware, 19716, United States
| | - Shane Plunkett
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware, 19716, United States
| | - Thomas E. Mortimer
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware, 19716, United States
| | - Mary P. Watson
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware, 19716, United States
| |
Collapse
|
80
|
|
81
|
Steverlynck J, Sitdikov R, Rueping M. The Deuterated "Magic Methyl" Group: A Guide to Site-Selective Trideuteromethyl Incorporation and Labeling by Using CD 3 Reagents. Chemistry 2021; 27:11751-11772. [PMID: 34076925 PMCID: PMC8457246 DOI: 10.1002/chem.202101179] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Indexed: 12/12/2022]
Abstract
In the field of medicinal chemistry, the precise installation of a trideuteromethyl group is gaining ever-increasing attention. Site-selective incorporation of the deuterated "magic methyl" group can provide profound pharmacological benefits and can be considered an important tool for drug optimization and development. This review provides a structured overview, according to trideuteromethylation reagent, of currently established methods for site-selective trideuteromethylation of carbon atoms. In addition to CD3 , the selective introduction of CD2 H and CDH2 groups is also considered. For all methods, the corresponding mechanism and scope are discussed whenever reported. As such, this review can be a starting point for synthetic chemists to further advance trideuteromethylation methodologies. At the same time, this review aims to be a guide for medicinal chemists, offering them the available C-CD3 formation strategies for the preparation of new or modified drugs.
Collapse
Affiliation(s)
- Joost Steverlynck
- Kaust Catalysis Center (KCC)King Abdullah University Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Ruzal Sitdikov
- Kaust Catalysis Center (KCC)King Abdullah University Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
| | - Magnus Rueping
- Kaust Catalysis Center (KCC)King Abdullah University Science and Technology (KAUST)Thuwal23955-6900Saudi Arabia
- Institute for Experimental Molecular ImagingRWTH Aachen UniversityForckenbeckstrasse 5552074Aachen
| |
Collapse
|
82
|
Mamontov E, Cheng Y, Daemen LL, Kolesnikov AI, Ramirez-Cuesta AJ, Ryder MR, Stone MB. Low rotational barriers for the most dynamically active methyl groups in the proposed antiviral drugs for treatment of SARS-CoV-2, apilimod and tetrandrine. Chem Phys Lett 2021; 777:138727. [PMID: 33994552 PMCID: PMC8105138 DOI: 10.1016/j.cplett.2021.138727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/30/2022]
Abstract
A recent screening study highlighted a molecular compound, apilimod, for its efficacy against the SARS-CoV-2 virus, while another compound, tetrandrine, demonstrated a remarkable synergy with the benchmark antiviral drug, remdesivir. Here, we find that because of significantly reduced potential energy barriers, which also give rise to pronounced quantum effects, the rotational dynamics of the most dynamically active methyl groups in apilimod and tetrandrine are much faster than those in remdesivir. Because dynamics of methyl groups are essential for biochemical activity, screening studies based on the computed potential energy profiles may help identify promising candidates within a given class of drugs.
Collapse
Affiliation(s)
- Eugene Mamontov
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yongqiang Cheng
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Luke L Daemen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | | | | | - Matthew R Ryder
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Matthew B Stone
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
83
|
Son J. Sustainable manganese catalysis for late-stage C-H functionalization of bioactive structural motifs. Beilstein J Org Chem 2021; 17:1733-1751. [PMID: 34386100 PMCID: PMC8329386 DOI: 10.3762/bjoc.17.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/15/2021] [Indexed: 01/31/2023] Open
Abstract
The late-stage C–H functionalization of bioactive structural motifs is a powerful synthetic strategy for accessing advanced agrochemicals, bioimaging materials, and drug candidates, among other complex molecules. While traditional late-stage diversification relies on the use of precious transition metals, the utilization of 3d transition metals is an emerging approach in organic synthesis. Among the 3d metals, manganese catalysts have gained increasing attention for late-stage diversification due to the sustainability, cost-effectiveness, ease of operation, and reduced toxicity. Herein, we summarize recent manganese-catalyzed late-stage C–H functionalization reactions of biologically active small molecules and complex peptides.
Collapse
Affiliation(s)
- Jongwoo Son
- Department of Chemistry, Dong-A University, Busan 49315, South Korea.,Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University, Busan 49315, South Korea
| |
Collapse
|
84
|
Wu Z, Li L, Li W, Lu X, Xie Y, Schaefer HF. Carbonylic-Carbon-Centered Mechanism for Catalytic α-Methylation. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zeyu Wu
- College of Pharmacy, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Longfei Li
- College of Pharmacy, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Wan Li
- College of Pharmacy, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Xuena Lu
- College of Pharmacy, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Yaoming Xie
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Henry F. Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
85
|
Liu F, Ye ZP, Hu YZ, Gao J, Zheng L, Chen K, Xiang HY, Chen XQ, Yang H. N, N, N', N'-Tetramethylethylenediamine-Enabled Photoredox-Catalyzed C-H Methylation of N-Heteroarenes. J Org Chem 2021; 86:11905-11914. [PMID: 34344150 DOI: 10.1021/acs.joc.1c01325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Aiming at the valuable methylation process, readily available and inexpensive N,N,N',N'-tetramethylethylenediamine (TMEDA) was first identified as a new methyl source in photoredox-catalyzed transformation in this work. By virtue of this simple methylating reagent, a facile and practical protocol for the direct C-H methylation of N-heteroarenes was developed, featuring mild reaction conditions, broad substrate scope, and scalability. Mechanistic studies disclosed that a sequential photoredox, base-assisted proton shift, fragmentation, and tautomerization process was essentially involved.
Collapse
Affiliation(s)
- Fang Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Zhi-Peng Ye
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yuan-Zhuo Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Lan Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xiao-Qing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
86
|
Sunny S, John SE, Shankaraiah N. Exploration of C‐H Activation Strategies in Construction of Functionalized 2‐Aryl Benzoazoles: A Decisive Review. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Steeva Sunny
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Stephy Elza John
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
87
|
Chang Z, Huang J, Wang S, Chen G, Zhao H, Wang R, Zhao D. Copper catalyzed late-stage C(sp 3)-H functionalization of nitrogen heterocycles. Nat Commun 2021; 12:4342. [PMID: 34267229 PMCID: PMC8282657 DOI: 10.1038/s41467-021-24671-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/21/2021] [Indexed: 11/15/2022] Open
Abstract
Nitrogen heterocycle represents a ubiquitous skeleton in natural products and drugs. Late-stage C(sp3)-H bond functionalization of N-heterocycles with broad substrate scope remains a challenge and of particular significance to modern chemical synthesis and pharmaceutical chemistry. Here, we demonstrate copper-catalysed late-stage C(sp3)-H functionalizaion of N-heterocycles using commercially available catalysts under mild reaction conditions. We have investigated 8 types of N-heterocycles which are usually found as medicinally important skeletons. The scope and utility of this approach are demonstrated by late-stage C(sp3)-H modification of these heterocycles including a number of pharmaceuticals with a broad range of nucleophiles, e.g. methylation, arylation, azidination, mono-deuteration and glycoconjugation etc. Preliminary mechanistic studies reveal that the reaction undergoes a C-H fluorination process which is followed by a nucleophilic substitution.
Collapse
Affiliation(s)
- Zhe Chang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jialin Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Si Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Geshuyi Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Heng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
88
|
Stereodefined rhodium-catalysed 1,4-H/D delivery for modular syntheses and deuterium integration. Nat Catal 2021. [DOI: 10.1038/s41929-021-00643-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
89
|
Nonadditivity in public and inhouse data: implications for drug design. J Cheminform 2021; 13:47. [PMID: 34215341 PMCID: PMC8254291 DOI: 10.1186/s13321-021-00525-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
Numerous ligand-based drug discovery projects are based on structure-activity relationship (SAR) analysis, such as Free-Wilson (FW) or matched molecular pair (MMP) analysis. Intrinsically they assume linearity and additivity of substituent contributions. These techniques are challenged by nonadditivity (NA) in protein-ligand binding where the change of two functional groups in one molecule results in much higher or lower activity than expected from the respective single changes. Identifying nonlinear cases and possible underlying explanations is crucial for a drug design project since it might influence which lead to follow. By systematically analyzing all AstraZeneca (AZ) inhouse compound data and publicly available ChEMBL25 bioactivity data, we show significant NA events in almost every second assay among the inhouse and once in every third assay in public data sets. Furthermore, 9.4% of all compounds of the AZ database and 5.1% from public sources display significant additivity shifts indicating important SAR features or fundamental measurement errors. Using NA data in combination with machine learning showed that nonadditive data is challenging to predict and even the addition of nonadditive data into training did not result in an increase in predictivity. Overall, NA analysis should be applied on a regular basis in many areas of computational chemistry and can further improve rational drug design.
Collapse
|
90
|
Kirtani DU, Ghatpande NS, Suryavanshi KR, Kulkarni PP, Kumbhar AA. Fluorescent Copper(II) Complexes of Asymmetric Bis(Thiosemicarbazone)s: Electrochemistry, Cellular Uptake and Antiproliferative Activity. ChemistrySelect 2021. [DOI: 10.1002/slct.202101663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Deepti U. Kirtani
- Department of Chemistry Savitribai Phule Pune University Ganeshkhind Road Pune 411007 India
| | - Niraj S. Ghatpande
- Bioprospecting Group Agharkar Research Institute Gopal Ganesh Agarkar Road Pune 411004 India
| | - Komal R. Suryavanshi
- Bioprospecting Group Agharkar Research Institute Gopal Ganesh Agarkar Road Pune 411004 India
| | - Prasad P. Kulkarni
- Bioprospecting Group Agharkar Research Institute Gopal Ganesh Agarkar Road Pune 411004 India
| | - Anupa A. Kumbhar
- Department of Chemistry Savitribai Phule Pune University Ganeshkhind Road Pune 411007 India
| |
Collapse
|
91
|
Mancino V, Ceccarelli G, Carotti A, Goracci L, Sardella R, Passeri D, Pellicciari R, Gioiello A. Synthesis and biological activity of cyclopropyl Δ7-dafachronic acids as DAF-12 receptor ligands. Org Biomol Chem 2021; 19:5403-5412. [PMID: 34056641 DOI: 10.1039/d1ob00912e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The four cyclopropyl stereoisomers of Δ7-dafachronic acids were prepared from the bile acid hyodeoxycholic acid and employed as chemical tools to exploit the importance of the orientation and spatial disposition of the carboxyl tail and the C25-methyl group for the binding at the DAF-12 receptor. The synthesis route was based on (a) Walden inversion and stereoselective PtO2-hydrogenation to convert the L-shaped 5β-cholanoid scaffold into the planar 5α-sterol intermediate; (b) two-carbon homologation of the side chain by Wittig and cyclopropanation reaction; and (c) formation of the 3-keto group and Δ7 double bond. The synthesized isomers were isolated and tested for their activity as DAF-12 ligands by AlphaScreen assays. Results showed a significant loss of potency and efficacy for all the four stereoisomers when compared to the parent endogenous ligand. Computational analysis has evidenced the configurational and conformational arrangement of both the carboxylic and the C25-methyl group of dafachronic acids as key structural determinants for DAF-12 binding and activation.
Collapse
Affiliation(s)
- Valentina Mancino
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy. and TES Pharma S.r.l., Corso Vannucci 47, 06121, Perugia, Italy
| | - Giada Ceccarelli
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy.
| | - Andrea Carotti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy.
| | - Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via dell'Elce di Sotto 8, 06123, Perugia, Italy
| | - Roccaldo Sardella
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy.
| | | | | | - Antimo Gioiello
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123, Perugia, Italy.
| |
Collapse
|
92
|
Garai S, Leo LM, Szczesniak AM, Hurst DP, Schaffer PC, Zagzoog A, Black T, Deschamps JR, Miess E, Schulz S, Janero DR, Straiker A, Pertwee RG, Abood ME, Kelly MEM, Reggio PH, Laprairie RB, Thakur GA. Discovery of a Biased Allosteric Modulator for Cannabinoid 1 Receptor: Preclinical Anti-Glaucoma Efficacy. J Med Chem 2021; 64:8104-8126. [PMID: 33826336 DOI: 10.1021/acs.jmedchem.1c00040] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We apply the magic methyl effect to improve the potency/efficacy of GAT211, the prototypic 2-phenylindole-based cannabinoid type-1 receptor (CB1R) agonist-positive allosteric modulator (ago-PAM). Introducing a methyl group at the α-position of nitro group generated two diastereomers, the greater potency and efficacy of erythro, (±)-9 vs threo, (±)-10 constitutes the first demonstration of diastereoselective CB1R-allosteric modulator interaction. Of the (±)-9 enantiomers, (-)-(S,R)-13 evidenced improved potency over GAT211 as a CB1R ago-PAM, whereas (+)-(R,S)-14 was a CB1R allosteric agonist biased toward G protein- vs β-arrestin1/2-dependent signaling. (-)-(S,R)-13 and (+)-(R,S)-14 were devoid of undesirable side effects (triad test), and (+)-(R,S)-14 reduced intraocular pressure with an unprecedentedly long duration of action in a murine glaucoma model. (-)-(S,R)-13 docked into both a CB1R extracellular PAM and intracellular allosteric-agonist site(s), whereas (+)-(R,S)-14 preferentially engaged only the latter. Exploiting G-protein biased CB1R-allosteric modulation can offer safer therapeutic candidates for glaucoma and, potentially, other diseases.
Collapse
Affiliation(s)
- Sumanta Garai
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Luciana M Leo
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Anna-Maria Szczesniak
- Department of Pharmacology and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Dow P Hurst
- Center for Drug Discovery, University of North Carolina Greensboro, Greensboro, North Carolina 27402, United States
| | - Peter C Schaffer
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ayat Zagzoog
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Pl, Saskatoon, Saskatchewan S7N2Z4, Canada
| | - Tallan Black
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Pl, Saskatoon, Saskatchewan S7N2Z4, Canada
| | - Jeffrey R Deschamps
- Naval Research Laboratory, Code 6930, 4555 Overlook Avenue, Washington, District of Columbia 20375, United States
| | - Elke Miess
- Department of Pharmacology and Toxicology, Jena University Hospital-Friedrich Schiller University Jena, D-07747 Jena, Germany
| | - Stefan Schulz
- Department of Pharmacology and Toxicology, Jena University Hospital-Friedrich Schiller University Jena, D-07747 Jena, Germany
| | - David R Janero
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Alex Straiker
- The Gill Center and the Department of Psychological & Brain Sciences, Indiana University, 1101 E. 10th St, Bloomington, Indiana 47405, United States
| | - Roger G Pertwee
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, Scotland, U.K
| | - Mary E Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, United States
| | - Melanie E M Kelly
- Department of Pharmacology and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Patricia H Reggio
- Center for Drug Discovery, University of North Carolina Greensboro, Greensboro, North Carolina 27402, United States
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, 104 Clinic Pl, Saskatoon, Saskatchewan S7N2Z4, Canada
- Department of Pharmacology and Department of Ophthalmology and Visual Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
93
|
Dong J, Liu J, Song H, Liu Y, Wang Q. Metal-, Photocatalyst-, and Light-Free Minisci C-H Acetylation of N-Heteroarenes with Vinyl Ethers. Org Lett 2021; 23:4374-4378. [PMID: 34024106 DOI: 10.1021/acs.orglett.1c01310] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report a mild, operationally simple method for Minisci C-H acetylation of N-heteroarenes using vinyl ethers as robust, inexpensive acetyl sources. The reactions do not require a conventional photocatalysis, electrocatalysis, metal catalysis, light activation, or high temperature. This method is thus significantly more sustainable than previously reported methods in terms of cost, reagent toxicity, and waste generation. This protocol can be expected to obtain medically relevant molecules from abundant feedstock materials.
Collapse
Affiliation(s)
- Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianhua Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Hongjian Song
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People's Republic of China
| |
Collapse
|
94
|
Inhibition of CMP-sialic acid transport by endogenous 5-methyl CMP. PLoS One 2021; 16:e0249905. [PMID: 34081697 PMCID: PMC8174729 DOI: 10.1371/journal.pone.0249905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/26/2021] [Indexed: 12/03/2022] Open
Abstract
Nucleotide-sugar transporters (NSTs) transport nucleotide-sugar conjugates into the Golgi lumen where they are then used in the synthesis of glycans. We previously reported crystal structures of a mammalian NST, the CMP-sialic acid transporter (CST) (Ahuja and Whorton 2019). These structures elucidated many aspects of substrate recognition, selectivity, and transport; however, one fundamental unaddressed question is how the transport activity of NSTs might be physiologically regulated as a means to produce the vast diversity of observed glycan structures. Here, we describe the discovery that an endogenous methylated form of cytidine monophosphate (m5CMP) binds and inhibits CST. The presence of m5CMP in cells results from the degradation of RNA that has had its cytosine bases post-transcriptionally methylated through epigenetic processes. Therefore, this work not only demonstrates that m5CMP represents a novel physiological regulator of CST, but it also establishes a link between epigenetic control of gene expression and regulation of glycosylation.
Collapse
|
95
|
Mammoliti O, Palisse A, Joannesse C, El Bkassiny S, Allart B, Jaunet A, Menet C, Coornaert B, Sonck K, Duys I, Clément-Lacroix P, Oste L, Borgonovi M, Wakselman E, Christophe T, Houvenaghel N, Jans M, Heckmann B, Sanière L, Brys R. Discovery of the S1P2 Antagonist GLPG2938 (1-[2-Ethoxy-6-(trifluoromethyl)-4-pyridyl]-3-[[5-methyl-6-[1-methyl-3-(trifluoromethyl)pyrazol-4-yl]pyridazin-3-yl]methyl]urea), a Preclinical Candidate for the Treatment of Idiopathic Pulmonary Fibrosis. J Med Chem 2021; 64:6037-6058. [PMID: 33939425 DOI: 10.1021/acs.jmedchem.1c00138] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mounting evidence from the literature suggests that blocking S1P2 receptor (S1PR2) signaling could be effective for the treatment of idiopathic pulmonary fibrosis (IPF). However, only a few antagonists have been so far disclosed. A chemical enablement strategy led to the discovery of a pyridine series with good antagonist activity. A pyridazine series with improved lipophilic efficiency and with no CYP inhibition liability was identified by scaffold hopping. Further optimization led to the discovery of 40 (GLPG2938), a compound with exquisite potency on a phenotypic IL8 release assay, good pharmacokinetics, and good activity in a bleomycin-induced model of pulmonary fibrosis.
Collapse
Affiliation(s)
- Oscar Mammoliti
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Adeline Palisse
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | | | | | - Brigitte Allart
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Alex Jaunet
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Christel Menet
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | | | - Kathleen Sonck
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Inge Duys
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | | | - Line Oste
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Monica Borgonovi
- Galapagos SASU, 102 avenue Gaston Roussel, 93230 Romainville, France
| | | | | | | | - Mia Jans
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| | - Bertrand Heckmann
- Galapagos SASU, 102 avenue Gaston Roussel, 93230 Romainville, France
| | - Laurent Sanière
- Galapagos SASU, 102 avenue Gaston Roussel, 93230 Romainville, France
| | - Reginald Brys
- Galapagos NV, Generaal De Wittelaan L11 A3, 2800 Mechelen, Belgium
| |
Collapse
|
96
|
Pan C, Yuan C, Yu JT. Peroxide-mediated synthesis of benzimidazo[2,1- a]isoquinoline-6(5 H)-ones via cascade methylation/ethylation and intramolecular cyclization. Org Biomol Chem 2021; 19:619-626. [PMID: 33367428 DOI: 10.1039/d0ob02383c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A metal-free oxidative radical methylation/arylation of 2-arylbenzoimidazoles with DTBP as the oxidant and methyl radical source was developed. The reaction proceeds through a sequential methyl radical addition/cyclization pathway and affords a series of methyl functionalized benzimidazo[2,1-a]isoquinoline-6(5H)-ones in moderate to good yields. Besides, the ethylation/arylation of 2-arylbenzoimidazoles was also achieved with DTAP.
Collapse
Affiliation(s)
- Changduo Pan
- School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Cheng Yuan
- School of Chemical and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
97
|
Ni S, Hribersek M, Baddigam SK, Ingner FJL, Orthaber A, Gates PJ, Pilarski LT. Mechanochemical Solvent-Free Catalytic C-H Methylation. Angew Chem Int Ed Engl 2021; 60:6660-6666. [PMID: 33031646 PMCID: PMC7986365 DOI: 10.1002/anie.202010202] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 12/29/2022]
Abstract
The mechanochemical, solvent-free, highly regioselective, rhodium-catalyzed C-H methylation of (hetero)arenes is reported. The reaction shows excellent functional-group compatibility and is demonstrated to work for the late-stage C-H methylation of biologically active compounds. The method requires no external heating and benefits from considerably shorter reaction times than previous solution-based C-H methylation protocols. Additionally, the mechanochemical approach is shown to enable the efficient synthesis of organometallic complexes that are difficult to generate conventionally.
Collapse
Affiliation(s)
- Shengjun Ni
- Department of Chemistry—BMCUppsala UniversityBox 57675123UppsalaSweden
| | - Matic Hribersek
- Department of Chemistry—BMCUppsala UniversityBox 57675123UppsalaSweden
| | | | | | - Andreas Orthaber
- Department of Chemistry—Ångström LaboratoriesUppsala UniversityBox 52375120UppsalaSweden
| | - Paul J. Gates
- School of ChemistryUniversity of BristolCantock's Close, CliftonBristolBS8 1TSUK
| | | |
Collapse
|
98
|
Guo YQ, Chen F, Deng CL, Zhang XG. Iodine-promoted ring-opening methylation of benzothiazoles with dimethyl sulfite. Chem Commun (Camb) 2021; 57:1923-1926. [PMID: 33496694 DOI: 10.1039/d0cc08096a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A halogen-bond promoted ring-opening methylation of benzothiazoles has been developed using dimethyl sulphite as a methylating reagent in the presence of a base. This approach represents a simple and efficient synthesis of N-methyl-N-(o-methylthio)phenyl amides, and features direct construction of both N-Me and S-Me bonds in a one-pot reaction through the decomposition of easily prepared benzothiazoles.
Collapse
Affiliation(s)
- Ying-Qiong Guo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Fan Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Chen-Liang Deng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Xing-Guo Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China. and Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou 542899, China
| |
Collapse
|
99
|
Selected Thoughts on Hydrophobicity in Drug Design. Molecules 2021; 26:molecules26040875. [PMID: 33562230 PMCID: PMC7914489 DOI: 10.3390/molecules26040875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 12/27/2022] Open
Abstract
The fundamental aim of drug design in research and development is to invent molecules with selective affinity towards desired disease-associated targets. At the atomic loci of binding surfaces, systematic structural variations can define affinities between drug candidates and biomolecules, and thereby guide the optimization of safety, efficacy and pharmacologic properties. Hydrophobic interaction between biomolecules and drugs is integral to binding affinity and specificity. Examples of antiviral drug discovery are discussed.
Collapse
|
100
|
Wu QZ, Mao YJ, Zhou K, Hao HY, Chen L, Wang S, Xu ZY, Lou SJ, Xu DQ. Regioselective C(sp 3)-H fluorination of ketones: from methyl to the monofluoromethyl group. Chem Commun (Camb) 2021; 57:765-768. [PMID: 33355557 DOI: 10.1039/d0cc07093a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report a novel strategy to access CH2F-containing ketones through Pd-catalysed β-selective methyl C(sp3)-H fluorination. The reaction features high regioselectivity and a broad substrate scope, constituting a modular method for the late-stage transformation of the native methyl (CH3) into the monofluoromethyl (CH2F) group.
Collapse
Affiliation(s)
- Qiu-Zi Wu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yang-Jie Mao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Kun Zhou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Hong-Yan Hao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Lei Chen
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shuang Wang
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhen-Yuan Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shao-Jie Lou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|