51
|
Blagojevic V, Chramow A, Schneider BB, Covey TR, Bohme DK. Differential Mobility Spectrometry of Isomeric Protonated Dipeptides: Modifier and Field Effects on Ion Mobility and Stability. Anal Chem 2011; 83:3470-6. [DOI: 10.1021/ac200100s] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Voislav Blagojevic
- Department of Chemistry, Centre for Research in Mass Spectrometry, York University, Toronto, Ontario, Canada M3J 1P3
| | - Alexander Chramow
- Department of Chemistry, Centre for Research in Mass Spectrometry, York University, Toronto, Ontario, Canada M3J 1P3
| | | | | | - Diethard K. Bohme
- Department of Chemistry, Centre for Research in Mass Spectrometry, York University, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
52
|
Mäkinen M, Sillanpää M, Viitanen AK, Knap A, Mäkelä J, Puton J. The effect of humidity on sensitivity of amine detection in ion mobility spectrometry. Talanta 2011; 84:116-21. [DOI: 10.1016/j.talanta.2010.12.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/08/2010] [Accepted: 12/19/2010] [Indexed: 10/18/2022]
|
53
|
Mäkinen MA, Anttalainen OA, Sillanpää MET. Ion mobility spectrometry and its applications in detection of chemical warfare agents. Anal Chem 2010; 82:9594-600. [PMID: 20979419 DOI: 10.1021/ac100931n] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
When fast detection of chemical warfare agents in the field is required, the ion mobility spectrometer may be the only suitable option. This article provides an essential survey of the different ion mobility spectrometry detection technologies. (To listen to a podcast about this feature, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html.).
Collapse
Affiliation(s)
- Marko A Mäkinen
- Laboratory of Applied Environmental Chemistry, Department of Environmental Science, University of Eastern Finland, Mikkeli, Finland.
| | | | | |
Collapse
|
54
|
Electric field dependence of ion mobilities of aromatic compounds with different ionic mass and different functional groups. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s12127-010-0047-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
55
|
Roetering S, Nazarov EG, Borsdorf H, Weickhardt C. Effect of dopants on the analysis of pesticides by means of differential mobility spectrometry with atmospheric pressure photoionization. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s12127-010-0043-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
56
|
Schneider BB, Covey TR, Coy SL, Krylov EV, Nazarov EG. Chemical effects in the separation process of a differential mobility/mass spectrometer system. Anal Chem 2010; 82:1867-80. [PMID: 20121077 PMCID: PMC3703922 DOI: 10.1021/ac902571u] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In differential mobility spectrometry (also referred to as high-field asymmetric waveform ion mobility spectrometry), ions are separated on the basis of the difference in their mobility under high and low electric fields. The addition of polar modifiers to the gas transporting the ions through a differential mobility spectrometer enhances the formation of clusters in a field-dependent way and thus amplifies the high- and low-field mobility difference, resulting in increased peak capacity and separation power. Observations of the increase in mobility field dependence are consistent with a cluster formation model, also referred to as the dynamic cluster-decluster model. The uniqueness of chemical interactions that occur between an ion and cluster-forming neutrals increases the selectivity of the separation, and the depression of low-field mobility relative to high-field mobility increases the compensation voltage and peak capacity. The effect of a polar modifier on the peak capacity across a broad range of chemicals has been investigated. We discuss the theoretical underpinnings which explain the observed effects. In contrast to the result with a polar modifier, we find that using mixtures of inert gases as the transport gas improves the resolution by reducing the peak width but has very little effect on the peak capacity or selectivity. The inert gas helium does not cluster and thus does not reduce low-field mobility relative to high-field mobility. The observed changes in the differential mobility alpha parameter exhibited by different classes of compounds when the transport gas contains a polar modifier or has a significant fraction of inert gas can be explained on the basis of the physical mechanisms involved in the separation processes.
Collapse
Affiliation(s)
- Bradley B Schneider
- MDS Analytical Technologies, 71 Four Valley Drive, Concord, Ontario, Canada L4K 4V8.
| | | | | | | | | |
Collapse
|
57
|
Krylov EV, Coy SL, Vandermey J, Schneider BB, Covey TR, Nazarov EG. Selection and generation of waveforms for differential mobility spectrometry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2010; 81:024101. [PMID: 20192506 PMCID: PMC2830256 DOI: 10.1063/1.3284507] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Devices based on differential mobility spectrometry (DMS) are used in a number of ways, including applications as ion prefilters for API-MS systems, as detectors or selectors in hybrid instruments (GC-DMS, DMS-IMS), and in standalone systems for chemical detection and identification. DMS ion separation is based on the relative difference between high field and low field ion mobility known as the alpha dependence, and requires the application of an intense asymmetric electric field known as the DMS separation field, typically in the megahertz frequency range. DMS performance depends on the waveform and on the magnitude of this separation field. In this paper, we analyze the relationship between separation waveform and DMS resolution and consider feasible separation field generators. We examine ideal and practical DMS separation field waveforms and discuss separation field generator circuit types and their implementations. To facilitate optimization of the generator designs, we present a set of relations that connect ion alpha dependence to DMS separation fields. Using these relationships we evaluate the DMS separation power of common generator types as a function of their waveform parameters. Optimal waveforms for the major types of DMS separation generators are determined for ions with various alpha dependences. These calculations are validated by comparison with experimental data.
Collapse
Affiliation(s)
- Evgeny V Krylov
- Sionex Corporation, 8-A Preston Ct., Bedford, Massachusetts 01730, USA.
| | | | | | | | | | | |
Collapse
|
58
|
Schneider BB, Covey TR, Coy SL, Krylov EV, Nazarov EG. Control of chemical effects in the separation process of a differential mobility mass spectrometer system. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2010; 16:57-71. [PMID: 20065515 PMCID: PMC3672227 DOI: 10.1255/ejms.1025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Differential mobility spectrometry (DMS) separates ions on the basis of the difference in their migration rates under high versus low electric fields. Several models describing the physical nature of this field mobility dependence have been proposed but emerging as a dominant effect is the clusterization model sometimes referred to as the dynamic cluster-decluster model. DMS resolution and peak capacity is strongly influenced by the addition of modifiers which results in the formation and dissociation of clusters. This process increases selectivity due to the unique chemical interactions that occur between an ion and neutral gas-phase molecules. It is thus imperative to bring the parameters influencing the chemical interactions under control and find ways to exploit them in order to improve the analytical utility of the device. In this paper, we describe three important areas that need consideration in order to stabilize and capitalize on the chemical processes that dominate a DMS separation. The first involves means of controlling the dynamic equilibrium of the clustering reactions with high concentrations of specific reagents. The second area involves a means to deal with the unwanted heterogeneous cluster ion populations emitted from the electrospray ionization process that degrade resolution and sensitivity. The third involves fine control of parameters that affect the fundamental collision processes, temperature and pressure.
Collapse
Affiliation(s)
- Bradley B Schneider
- MDS Analytical Technologies, 71 Four Valley Drive, Concord, Ontario, L4K 4V8 Canada
| | | | | | | | | |
Collapse
|
59
|
Shvartsburg AA, Smith RD, Wilks A, Koehl A, Ruiz-Alonso D, Boyle B. Ultrafast differential ion mobility spectrometry at extreme electric fields in multichannel microchips. Anal Chem 2009; 81:6489-95. [PMID: 19583243 PMCID: PMC2947943 DOI: 10.1021/ac900892u] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The maximum electric field intensity (E) in field asymmetric waveform ion mobility spectrometry (FAIMS) analyses was doubled to E > 60 kV/cm. In earlier devices with >0.5 mm gaps, such strong fields cause electrical breakdown for nearly all gases at ambient pressure. As the Paschen curves are sublinear, thinner gaps permit higher E: here, we established 61 kV/cm in N(2) using microchips with 35 microm gaps. As FAIMS efficiency is exceptionally sensitive to E, such values can in theory accelerate analyses at equal resolution by over an order of magnitude. Here we demonstrate FAIMS filtering in approximately 20 micros or approximately 1% of the previously needed time, with a resolving power of about half that for "macroscopic" units but sufficing for many applications. Microscopic gaps enable concurrent ion processing in multiple (here, 47) channels, which greatly relaxes the charge capacity constraints of planar FAIMS designs. These chips were integrated with a beta-radiation ion source and charge detector. The separation performance is in line with first-principles modeling that accounts for high-field and anisotropic ion diffusion. By extending FAIMS operation into the previously inaccessible field range, the present instrument advances the capabilities for research into ion transport and expands options for separation of hard-to-resolve species.
Collapse
Affiliation(s)
- Alexandre A Shvartsburg
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | | | | | | | | | | |
Collapse
|
60
|
Nazarov EG, Miller RA, Krylov EV, Stone JA, Eiceman GA. Quantitative determination of n-alkanethiols in air and in a blended gas mixture of methane with air by gas chromatography/differential mobility spectrometry. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s12127-009-0020-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
61
|
Shvartsburg AA, Smith RD. Optimum waveforms for differential ion mobility spectrometry (FAIMS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2008; 19:1286-95. [PMID: 18585054 PMCID: PMC2754162 DOI: 10.1016/j.jasms.2008.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 05/02/2008] [Accepted: 05/11/2008] [Indexed: 05/10/2023]
Abstract
Differential mobility spectrometry or field asymmetric waveform ion mobility spectrometry (FAIMS) is a new tool for separation and identification of gas-phase ions, particularly in conjunction with mass spectrometry. In FAIMS, ions are filtered by the difference between mobilities in gases (K) at high and low electric field intensity (E) using asymmetric waveforms. An infinite number of possible waveform profiles make maximizing the performance within engineering constraints a major issue for FAIMS technology refinement. Earlier optimizations assumed the non-constant component of mobility to scale as E(2), producing the same result for all ions. Here we show that the optimum profiles are defined by the full series expansion of K(E) that includes terms beyond the first that is proportional to E(2). For many ion/gas pairs, the first two terms have different signs, and the optimum profiles at sufficiently high E in FAIMS may differ substantially from those previously reported, improving the resolving power by up to 2.2 times. This situation arises for some ions in all FAIMS systems, but becomes more common in recent miniaturized devices that employ higher E. With realistic K(E) dependences, the maximum waveform amplitude is not necessarily optimum, and reducing it by up to approximately 20% to 30% is beneficial in some cases. The present findings are particularly relevant to targeted analyses where separation depends on the difference between K(E) functions for specific ions.
Collapse
Affiliation(s)
- Alexandre A Shvartsburg
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | | |
Collapse
|
62
|
Kolakowski BM, D'Agostino PA, Chenier C, Mester Z. Analysis of Chemical Warfare Agents in Food Products by Atmospheric Pressure Ionization-High Field Asymmetric Waveform Ion Mobility Spectrometry-Mass Spectrometry. Anal Chem 2007; 79:8257-65. [PMID: 17896827 DOI: 10.1021/ac070816j] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Flow injection high field asymmetric waveform ion mobility spectrometry (FAIMS)-mass spectrometry (MS) methodology was developed for the detection and identification of chemical warfare (CW) agents in spiked food products. The CW agents, soman (GD), sarin (GB), tabun (GA), cyclohexyl sarin (GF), and four hydrolysis products, ethylphosphonic acid (EPA), methylphosphonic acid (MPA), pinacolyl methylphosphonic acid (Pin MPA), and isopropyl methylphosphonic acid (IMPA) were separated and detected by positive ion and negative ion atmospheric pressure ionization-FAIMS-MS. Under optimized conditions, the compensation voltages were 7.2 V for GD, 8.0 V for GA, 7.2 V for GF, 7.6 V for GB, 18.2 V for EPA, 25.9 V for MPA, -1.9 V for PinMPA, and +6.8 V for IMPA. Sample preparation was kept to a minimum, resulting in analysis times of 3 min or less per sample. The developed methodology was evaluated by spiking bottled water, canola oil, cornmeal, and honey samples at low microgram per gram (or microg/mL) levels with the CW agents or CW agent hydrolysis products. The detection limits observed for the CW agents in the spiked food samples ranged from 3 to 15 ng/mL in bottled water, 1-33 ng/mL in canola oil, 1-34 ng/g in cornmeal, and 13-18 ng/g in honey. Detection limits were much higher for the CW agent hydrolysis products, with only MPA being detected in spiked honey samples.
Collapse
Affiliation(s)
- Beata M Kolakowski
- NRC Institute for National Measurement Standards, 1200 Montreal Road, Ottawa, ON, Canada
| | | | | | | |
Collapse
|
63
|
Kolakowski BM, Mester Z. Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS). Analyst 2007; 132:842-64. [PMID: 17710259 DOI: 10.1039/b706039d] [Citation(s) in RCA: 220] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) and Differential Mobility Spectrometry (DMS) harness differences in ion mobility in low and high electric fields to achieve a gas-phase separation of ions at atmospheric pressure. This separation is orthogonal to either chromatographic or mass spectrometric separation, thereby increasing the selectivity and specificity of analysis. The orthogonality of separation, which in some cases may obviate chromatographic separation, can be used to differentiate isomers, to reduce background, to resolve isobaric species, and to improve signal-to-noise ratios by selective ion transmission. This review will focus on the applications of these techniques to the separation of various classes of analytes, including chemical weapons, explosives, biologically active molecules, pharmaceuticals and pollutants. These papers cover the period up to January 2007.
Collapse
Affiliation(s)
- Beata M Kolakowski
- Institute for National Measurement Standards, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, Canada
| | | |
Collapse
|
64
|
Levin DS, Vouros P, Miller RA, Nazarov EG, Morris JC. Characterization of gas-phase molecular interactions on differential mobility ion behavior utilizing an electrospray ionization-differential mobility-mass spectrometer system. Anal Chem 2007; 78:96-106. [PMID: 16383315 DOI: 10.1021/ac051217k] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Differential mobility spectrometry (DMS) is a rapidly advancing technology for gas-phase ion separation. The interfacing of DMS with mass spectrometry (MS) offers potential advantages over the use of mass spectrometry alone. Such advantages include improvements to mass spectral signal/noise ratios, orthogonal/complementary ion separation to mass spectrometry, enhanced ion and complexation structural analysis, and potential for rapid analyte quantitation. The introduction of a new ESI-DMS-MS system and its utilization to aid in the understanding of DMS separation theory is described. A current contribution to DMS separation theory is one of an association/dissociation process between ions/molecules in the gas phase during the differential mobility separation. A model study was designed to investigate the molecular dynamics and chemical factors influencing the theorized association/dissociation process, and the mechanisms by which these gas-phase interactions affect an ion's DM behavior. Five piperidine analogues were selected as model analytes, and three alcohol drift gas dopants/modifiers were used to interrogate the analyte ions in the gas phase. Two proposed DMS separation mechanisms, introduced as Core and Façade, corresponding to strong and weak attractions between ions/molecules in the gas phase, are detailed. The proposed mechanisms provide explanation for the observed changes in analyte separation by the various drift gas modifiers. Molecular modeling of the proposed mechanisms provides supportive data and demonstrates the potential for predictive optimization of analyte separation based on drift gas modifier effects.
Collapse
Affiliation(s)
- Daren S Levin
- Department of Chemistry and Chemical Biology and the Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
65
|
Prasad S, Pierce KM, Schmidt H, Rao JV, Güth R, Bader S, Synovec RE, Smith GB, Eiceman GA. Analysis of bacteria by pyrolysis gas chromatography–differential mobility spectrometry and isolation of chemical components with a dependence on growth temperature. Analyst 2007; 132:1031-9. [PMID: 17893807 DOI: 10.1039/b705929a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyrolysis gas chromatography-differential mobility spectrometry (py-GC-DMS) analysis of E. coli, P. aeruginosa, S. warneri and M. luteus, grown at temperatures of 23, 30, and 37 degrees C, provided data sets of ion intensity, retention time, and compensation voltage for principal component analysis. Misaligned chromatographic axes were treated using piecewise alignment, the impact on the degree of class separation (DCS) of clusters was minor. The DCS, however, was improved between 21 to 527% by analysis of variance with Fisher ratios to remove chemical components independent of growth temperature. The temperature dependent components comprised 84% of all peaks in the py-GC-DMS analysis of E. coli and were attributed to the pyrolytic decomposition of proteins rather than lipids, as anticipated. Components were also isolated in other bacteria at differing amounts: 41% for M. luteus, 14% for P. aeruginosa, and 4% for S. warneri, and differing patterns suggested characteristic dependence on temperature of growth for these bacteria. These components are anticipated to have masses from 100 to 200 Da by inference from differential mobility spectra.
Collapse
Affiliation(s)
- Satendra Prasad
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Elistratov AA, Sherbakov LA. Space charge effect in spectrometers of ion mobility increment with planar drift chamber. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2007; 13:115-23. [PMID: 17881778 DOI: 10.1255/ejms.851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The effect of space charge on the ion beam in a spectrometer of ion mobility increment with the planar drift chamber has been investigated. A model for the drift of ions under a non-uniform high-frequency electric field(1-3) has been developed recently. We have amplified this model by taking space charge effect into account. The ion peak shape taking into consideration the space charge effect is obtained. The output current saturation effect limiting the rise of the ion peak with increasing ion density at the input of the drift chamber of a spectrometer is observed. We show that the saturation effect is caused by the following phenomenon. The maximum possible output ion density exists, depending on the ion type (constant ion mobility, k(0)) and the time of the motion of ions through the drift chamber. At the same time, the ion density does not depend on the parameters of the drift chamber.
Collapse
Affiliation(s)
- A A Elistratov
- The Institute for Cryptosystems, Communication and Informatics, Moscow, Russian Federation
| | | |
Collapse
|
67
|
Shvartsburg AA, Bryskiewicz T, Purves RW, Tang K, Guevremont R, Smith RD. Field Asymmetric Waveform Ion Mobility Spectrometry Studies of Proteins: Dipole Alignment in Ion Mobility Spectrometry? J Phys Chem B 2006; 110:21966-80. [PMID: 17064166 DOI: 10.1021/jp062573p] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Approaches to separation and characterization of ions based on their mobilities in gases date back to the 1960s. Conventional ion mobility spectrometry (IMS) measures the absolute mobility, and field asymmetric waveform IMS (FAIMS) exploits the difference between mobilities at high and low electric fields. However, in all previous IMS and FAIMS experiments ions experienced an essentially free rotation; thus the separation was based on the orientationally averaged cross-sections Omega(avg) between ions and buffer gas molecules. Virtually all large ions are permanent electric dipoles that will be oriented by a sufficiently strong electric field. Under typical FAIMS conditions this will occur for dipole moments >400 D, found for many macroions including most proteins above approximately 30 kDa. Mobilities of aligned dipoles depend on directional cross-sections Omega(dir) (rather than Omega(avg)), which should have a major effect on FAIMS separation parameters. Here we report the FAIMS behavior of electrospray-ionization-generated ions for 10 proteins up to approximately 70 kDa. Those above 29 kDa exhibit a strong increase of mobility at high field, which is consistent with predicted ion dipole alignment. This effect expands the useful FAIMS separation power by an order of magnitude, allowing separation of up to approximately 10(2) distinct protein conformers and potentially revealing information about Omega(dir) and ion dipole moment that is of utility for structural characterization. Possible approaches to extending dipole alignment to smaller ions are discussed.
Collapse
Affiliation(s)
- Alexandre A Shvartsburg
- Biological Sciences Division, Pacific Northwest National Laboratory, PO Box 999, Richland, Washington 99352, USA.
| | | | | | | | | | | |
Collapse
|
68
|
Nazarov EG, Coy SL, Krylov EV, Miller RA, Eiceman GA. Pressure Effects in Differential Mobility Spectrometry. Anal Chem 2006; 78:7697-706. [PMID: 17105161 DOI: 10.1021/ac061092z] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A microfabricated planar differential ion mobility spectrometer operating from 0.4 to 1.55 atm in a supporting atmosphere of purified air was used to characterize the effects of pressure and electric field strength on compensation voltage, ion transmission, peak width, and peak intensity in differential mobility spectra. Peak positions, in compensation voltage as a function of separating rf voltage, were found to vary with pressure in a way that can be simplified by expressing both compensation and separation fields in Townsend units for E/N. The separation voltage providing the greatest compensation voltage and the greatest resolution is ion-specific but often occurs at E/N values that are unreachable at elevated pressure because of electrical breakdown. The pressure dependence of air breakdown voltage near 1 atm is sublinear, allowing higher E/N values to be reached at reduced pressure, usually resulting in greater instrumental resolution. Lower voltage requirements at reduced pressure also reduce device power consumption.
Collapse
Affiliation(s)
- Erkinjon G Nazarov
- Sionex Corporation, 8-A Preston Court, Bedford, Massachusetts 01730, USA.
| | | | | | | | | |
Collapse
|
69
|
Prasad S, Schmidt H, Lampen P, Wang M, Güth R, Rao JV, Smith GB, Eiceman GA. Analysis of bacterial strains with pyrolysis-gas chromatography/differential mobility spectrometry. Analyst 2006; 131:1216-25. [PMID: 17066190 DOI: 10.1039/b608127d] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eight vegetative bacterial strains and two spores were characterized by pyrolysis-gas chromatography with differential mobility spectrometry (py-GC/DMS) yielding topographic plots of ion intensity, retention time, and compensation voltage simultaneously for ions in positive and negative polarity. Biomarkers were found in the pyrolysate at characteristic retention times and compensation voltages and were confirmed by standard addition with GC/MS analyses providing discrimination between Gram negative and Gram positive bacterial types, but no recognition of individual strains within the Gram negative bacteria. Principal component analysis was applied using two dimensional data sets of ion intensity versus retention time at five compensation voltages including the reactant ion peaks all in positive and negative ion polarity. Clustering was observed with compensation voltage (CV) chromatograms associated with ion separation in the DMS detector and little or no clustering was observed with the reactant ion peaks or CV chromatograms where ion separation is poor. Consistent clustering of Gram positive B. odysseyi and Gram negative E. coli in both positive and negative polarities with the reactant ion peak chromatograms and key CV chromatograms suggests common but unknown common chemical compositions in the pyrolysate.
Collapse
Affiliation(s)
- Satendra Prasad
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Eiceman GA, Wang M, Prasad S, Schmidt H, Tadjimukhamedov FK, Lavine BK, Mirjankar N. Pattern recognition analysis of differential mobility spectra with classification by chemical family. Anal Chim Acta 2006; 579:1-10. [PMID: 17723720 DOI: 10.1016/j.aca.2006.07.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 06/30/2006] [Accepted: 07/09/2006] [Indexed: 11/19/2022]
Abstract
Differential mobility spectra for alkanes, alcohols, ketones, cycloalkanes, substituted ketones, and substituted benzenes with carbon numbers between 3 and 10 were obtained from gas chromatography-differential mobility spectrometry (GC-DMS) analyses of mixtures in dilute solution. Spectra were produced in a supporting atmosphere of purified air with 0.6-0.8 ppm moisture, gas temperature of 120 degrees C, sample concentrations of approximately 0.2-5 ppm, and ion source of 5 mCi (185 MBq) 63Ni. Multiple spectra were extracted from chromatographic elution profiles for each chemical providing a library of 390 spectra from 39 chemicals. The spectra were analyzed for structural content by chemical family using two different approaches. In the one approach, the wavelet packet transform was used to denoise and deconvolute the DMS data by decomposing each spectrum into its wavelet coefficients, which represent the sample's constituent frequencies. The wavelet coefficients characteristic of the compound's structural class were identified using a genetic algorithm (GA) for pattern recognition analysis. The pattern recognition GA uses both supervised and unsupervised learning to identify coefficients which optimize clustering of the spectra in a plot of the two or three largest principal components of the data. Because principal components maximize variance, the bulk of the information encoded by the selected coefficients is about differences between chemical families in the data set. The principal component analysis routine embedded in the fitness function of the pattern recognition GA acts as an information filter, significantly reducing the size of the search space since it restricts the search to coefficients whose principal component plots show clustering on the basis of chemical family. In a second approach, a back propagation neural network was trained to categorize spectra by chemical families and the network was successfully tested using familiar and unfamiliar chemicals. Performance of the network was associated with a region of the spectrum associated with fragment ions which could be extracted from spectra and were class specific.
Collapse
Affiliation(s)
- G A Eiceman
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, United States.
| | | | | | | | | | | | | |
Collapse
|
71
|
Eiceman GA, Krylov EV, Krylova NS, Nazarov EG, Miller RA. Separation of ions from explosives in differential mobility spectrometry by vapor-modified drift gas. Anal Chem 2006; 76:4937-44. [PMID: 15373426 DOI: 10.1021/ac035502k] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Differential mobility spectrometry (DMS) of nitro-organic explosives and related compounds exhibited the expected product ions of M- or M x NO2- from atmospheric pressure chemical ionization reactions in purified air at 100 degrees C. Peaks in the differential mobility spectra for these ions were confined to a narrow range of compensation voltages between -1 to +3 V which arose through a low dependence of mobility for the ions in electric fields at E/N values between 0 and 120 Td (1 Td = 10(-17) V cm2). The field dependence of ions, described as an alpha parameter, ranged from -0.005 to 0.02 at a separation field of 100 Td. The alpha parameter could be controlled through the addition of organic vapors into the drift gas and was increased to 0.08-0.24 with 1000 ppm of methylene chloride in the drift gas. This modification of the drift gas resulted in compensation voltages of +3 to +21 V for peaks. The improved separation of peaks was consistent with a model of ion characterization by DeltaK or Kl - Kh, where Kl is the mobility coefficient of ions clustered with vapor neutrals during the low-field portion of the separation field waveform and Kh is for the same core ion when heated and declustered during the high-field portion of waveform.
Collapse
Affiliation(s)
- G A Eiceman
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, USA
| | | | | | | | | |
Collapse
|
72
|
Shvartsburg AA, Mashkevich SV, Smith RD. Feasibility of higher-order differential ion mobility separations using new asymmetric waveforms. J Phys Chem A 2006; 110:2663-73. [PMID: 16494377 PMCID: PMC3173260 DOI: 10.1021/jp055349t] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Technologies for separating and characterizing ions based on their transport properties in gases have been around for three decades. The early method of ion mobility spectrometry (IMS) distinguished ions by absolute mobility that depends on the collision cross section with buffer gas atoms. The more recent technique of field asymmetric waveform IMS (FAIMS) measures the difference between mobilities at high and low electric fields. Coupling IMS and FAIMS to soft ionization sources and mass spectrometry (MS) has greatly expanded their utility, enabling new applications in biomedical and nanomaterials research. Here, we show that time-dependent electric fields comprising more than two intensity levels could, in principle, effect an infinite number of distinct differential separations based on the higher-order terms of expression for ion mobility. These analyses could employ the hardware and operational procedures similar to those utilized in FAIMS. Methods up to the 4th or 5th order (where conventional IMS is 1st order and FAIMS is 2nd order) should be practical at field intensities accessible in ambient air, with still higher orders potentially achievable in insulating gases. Available experimental data suggest that higher-order separations should be largely orthogonal to each other and to FAIMS, IMS, and MS.
Collapse
Affiliation(s)
- Alexandre A Shvartsburg
- Biological Sciences Division, Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, MS K8-98, 3335 Q Avenue, Richland, Washington 99352, USA.
| | | | | |
Collapse
|
73
|
Krebs MD, Mansfield B, Yip P, Cohen SJ, Sonenshein AL, Hitt BA, Davis CE. Novel technology for rapid species-specific detection of Bacillus spores. ACTA ACUST UNITED AC 2006; 23:119-27. [PMID: 16542873 DOI: 10.1016/j.bioeng.2005.12.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/08/2005] [Accepted: 12/14/2005] [Indexed: 11/22/2022]
Abstract
There is an urgent need for a small, inexpensive sensor that can rapidly detect bio-warfare agents with high specificity. Bacillus anthracis, the causative agent of anthrax, would be a perilous disease-causing organism in the event of a release. Currently, most anthrax detection research is based on nucleic acid detection, immunoassays and mass spectrometry, with few detection levels reported below 10(5) spores. Here, we show the ability to distinguish Bacillus spores to a level approaching 10(3) spores, below the reported median infectious dose of B. anthracis, using pyrolysis--micromachined differential mobility spectrometry and novel pattern recognition algorithms that combine lead cluster mapping with genetic algorithms.
Collapse
Affiliation(s)
- Melissa D Krebs
- The Charles Stark Draper Laboratory, Mechanical and Instruments Division, Bioengineering Group, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Kolakowski BM, McCooeye MA, Mester Z. Compensation voltage shifting in high-field asymmetric waveform ion mobility spectrometry-mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2006; 20:3319-29. [PMID: 17044119 DOI: 10.1002/rcm.2739] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The separation and ion focusing properties of High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) depend on desolvated ions entering the device, leading to a compound-specific, reproducible compensation voltage (CV) for each ion. This study shows that the conditions identified for stable spray and satisfactory ion desolvation in normal electrospray ionization mass spectrometry (ESI-MS) operation might significantly differ from those required for FAIMS-MS. In a typical setup with high-flow electrospray conditions, ions could be incompletely desolvated, resulting in the formation of unidentified clusters with differing behavior in a FAIMS environment. This causes compound-specific shifts of as much as 10 V in CV values when the mobile phase composition and/or flow rate are varied. The shifts diminish and finally disappear when the flow rate of methanol, used as mobile phase, is reduced to 40 microL/min and that of acetonitrile to 20 microL/min. The reproducibility of the observed CV was determined by scanning the CV while infusing a five-component mixture into a 400 microL/min flow of methanol or 50:50 acetonitrile/water. The relative standard deviation (RSD) for these multiple scans ranged from 0.7% to 6%. Therefore, under a constant set of experimental parameters, the CV does not shift appreciably. These observations have an impact on method development strategies. High flow rates can be used with the FAIMS device, since the CV values are reproducible, but it is likely that clusters are forming. Therefore, CV scans should be performed under conditions which mimic the chromatographic elution or flow injection analysis conditions, including matrix composition, to minimize errors in CV determination. An alternative approach is to determine the liquid flow rate at which the CV becomes compound-specific and to split the mobile phase stream accordingly. These experimental results may be specific to the setup used for this study and may not be directly applicable to other instrument FAIMS devices.
Collapse
Affiliation(s)
- Beata M Kolakowski
- NRC, Institute for National Measurement Standards, Building M-12, 1200 Montreal Road, Ottawa, ON, Canada.
| | | | | |
Collapse
|
75
|
Kanu AB, Thomas CLP. The presumptive detection of benzene in water in the presence of phenol with an active membrane-UV photo-ionisation differential mobility spectrometer. Analyst 2006; 131:990-9. [PMID: 17047798 DOI: 10.1039/b607077a] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Studies with a new technique, active membrane-differential mobility spectrometry, with aqueous standards of benzene and phenol are described. The atmospheric pressure photo-ionisation chemistries of benzene and phenol in the presence of oxygen are similar in that benzene forms phenol radicals that subsequently react to yield diphenylether and 4-phenoxyphenol products. Further phenol sequesters charge from benzene ions leading to a significant loss of sensitivity. This is an important consideration in the development of screening techniques for the presence of benzene in environmental water samples. This challenge was addressed by including a pre-separation stage prior to photo-ionisation, and a 10 cm long polydimethylsiloxane active membrane inlet using nitrogen as a carrier gas was used to sample, concentrate and deliver low resolution separations to the 10.6 eV UV-ionisation region of a differential mobility spectrometer. Acetone was also proposed as a charge carrier for the UV photo-ionisation source; to promote phenol protonation and inhibit charge sequestration from benzene. The responses of the system to aqueous standards of benzene and phenol with and without acetone doping at 10.2 mg m(-3) were evaluated and four to five-fold increases in sensitivity were obtained with acetone doping. With a sampling time of 60 s and a total measurement cycle of 180 s it was possible to obtain quantitative responses to single standards over the concentration range 6 to 177 microg cm(-3) with linear correlations with R(2) values ranging from 0.97 to 0.99. The effects of the heating rate of the membrane and the dispersion field strength of the differential mobility spectrometer on sensitivity and the differentiation of benzene from phenol responses were optimised, leading to a configuration where a voltage heating programme of 4.75 V s(-1) was applied to a 124 microm stainless steel wire heating element within the active membrane, and a dispersion field strength of 22 kV cm(-1) was used to test a mixture of benzene (14 microg cm(-3)) and phenol (6 microg cm(-3)) in water. The presence of benzene was identified through the presence of a peak corresponding to a benzene response, V(C) = -9 V FWHM = 1 V, that followed the thermal desorption profile of benzene.
Collapse
Affiliation(s)
- Abu B Kanu
- Department of Chemistry, Washington State University, Pullman, Washington 99164-4630, USA
| | | |
Collapse
|
76
|
Shnayderman M, Mansfield B, Yip P, Clark HA, Krebs MD, Cohen SJ, Zeskind JE, Ryan ET, Dorkin HL, Callahan MV, Stair TO, Gelfand JA, Gill CJ, Hitt B, Davis CE. Species-Specific Bacteria Identification Using Differential Mobility Spectrometry and Bioinformatics Pattern Recognition. Anal Chem 2005; 77:5930-7. [PMID: 16159124 DOI: 10.1021/ac050348i] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As bacteria grow and proliferate, they release a variety of volatile compounds that can be profiled and used for speciation, providing an approach amenable to disease diagnosis through quick analysis of clinical cultures as well as patient breath analysis. As a practical alternative to mass spectrometry detection and whole cell pyrolysis approaches, we have developed methodology that involves detection via a sensitive, micromachined differential mobility spectrometer (microDMx), for sampling headspace gases produced by bacteria growing in liquid culture. We have applied pattern discovery/recognition algorithms (ProteomeQuest) to analyze headspace gas spectra generated by microDMx to reliably discern multiple species of bacteria in vitro: Escherichia coli, Bacillus subtilis, Bacillus thuringiensis, and Mycobacterium smegmatis. The overall accuracy for identifying volatile profiles of a species within the 95% confidence interval for the two highest accuracy models evolved was between 70.4 and 89.3% based upon the coordinated expression of between 5 and 11 features. These encouraging in vitro results suggest that the microDMx technology, coupled with bioinformatics data analysis, has potential for diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Marianna Shnayderman
- Mechanical and Instruments Division, Bioengineering Group, Charles Stark Draper Laboratory, 555 Technology Square MS37, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Rainsberg MR, de Harrington PB. Thermal desorption solid-phase microextraction inlet for differential mobility spectrometry. APPLIED SPECTROSCOPY 2005; 59:754-62. [PMID: 16053541 DOI: 10.1366/0003702054280630] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A splitless thermal desorber unit that interfaces a differential mobility spectrometry (DMS) sensor has been devised. This device was characterized by the detection of benzene, toluene, and xylene (BTX) in water. The detection of BTX in water is important for environmental monitoring, and ion mobility measurements are traditionally difficult for hydrocarbons in water because water competes for charge and quenches the hydrocarbon signals. This paper reports the use of a DMS with a photoionization source that is directly coupled to a solid-phase microextraction (SPME) desorber. The separation and detection capabilities of the DMS were demonstrated using BTX components. Detection limits for benzene, toluene, and m-xylene were 75, 50, and 5 microg mL(-1), respectively.
Collapse
Affiliation(s)
- Matthew R Rainsberg
- Ohio University, Center for Intelligent Chemical Instrumentation, Department of Chemistry and Biochemistry, Clippinger Labs, Athens, Ohio 45701-2979, USA
| | | |
Collapse
|
78
|
Shvartsburg AA, Tang K, Smith RD. Understanding and designing field asymmetric waveform ion mobility spectrometry separations in gas mixtures. Anal Chem 2005; 76:7366-74. [PMID: 15595881 DOI: 10.1021/ac049299k] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Field asymmetric waveform ion mobility spectrometry (FAIMS) has significant potential for post-ionization separations in conjunction with MS analyses. FAIMS fractionates ion mixtures by exploiting the fact that ion mobilities in gases depend on the electric field in a manner specific to each ion. Nearly all previous work has used pure gases, for which FAIMS fundamentals are understood reasonably well; however, unexpected phenomena observed in some gas mixtures (e.g., N(2)/CO(2)) but not in others (N(2)/O(2)) remain unexplained. Here, we introduce and experimentally test a universal model for FAIMS separations in mixtures, derived from formalisms that determine high-field mobilities in heteromolecular gases. Overall, the theoretical findings are consistent with data for N(2)/CO(2) (although quantitative discrepancies remain), while results for N(2)/O(2) fit Blanc's law, in agreement with measurements. Calculations for He/N(2) and He/CO(2) are also consistent with observations and suggest why adding He to the working gas generally enhances FAIMS performance. As predicted, mixtures of gases with extremely disparate molecular masses and collision cross sections, such as He/SF(6), exhibit spectacular non-Blanc effects, which greatly improve the resolution and peak capacity of technique. Understanding FAIMS operation in gas mixtures is expected to enable the rational design of media for both targeted and global analyses.
Collapse
Affiliation(s)
- Alexandre A Shvartsburg
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, MS K8-98, 3335 Q Avenue, Richland, Washington 99352, USA
| | | | | |
Collapse
|
79
|
Ruotolo BT, McLean JA, Gillig KJ, Russell DH. The influence and utility of varying field strength for the separation of tryptic peptides by ion mobility-mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:158-165. [PMID: 15694766 DOI: 10.1016/j.jasms.2004.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 10/26/2004] [Accepted: 10/28/2004] [Indexed: 05/24/2023]
Abstract
The influence of field strength on the separation of tryptic peptides by drift tube-based ion mobility-mass spectrometry is reported. Operating the ion mobility drift tube at elevated field strengths (expressed in V cm(-1) torr(-1)) reduces separation times and increases ion transmission efficiencies. Several accounts in the literature suggest that performing ion mobility separation at elevated field strength can change the selectivity of ion separation. To evaluate the field strength dependant selectivity of ion mobility separation, we examined a data set of 65 singly charged tryptic peptide ion signals (mass range 500-2500 m/z) at six different field strengths and four different drift gas compositions (He, N2, Ar, and CH4). Our results clearly illustrate that changing the field strength from low field (15 V cm(-1) torr(-1)) to high field (66 V cm(-1) torr(-1)) does not significantly alter the selectivity or peak capacity of IM-MS. The implications of these results are discussed in the context of separation methodologies that rely on the field strength dependence of ion mobility for separation selectivity, e.g., high-field asymmetric ion mobility spectrometry (FAIMS).
Collapse
Affiliation(s)
- Brandon T Ruotolo
- Laboratory for Biological Mass Spectrometry, Department of Chemistry, Texas A&M University College Station, Texas 77843, USA
| | | | | | | |
Collapse
|
80
|
Shvartsburg AA, Tang K, Smith RD. Modeling the resolution and sensitivity of FAIMS analyses. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2004; 15:1487-1498. [PMID: 15465362 DOI: 10.1016/j.jasms.2004.06.018] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 06/24/2004] [Accepted: 06/28/2004] [Indexed: 05/24/2023]
Abstract
Field asymmetric waveform ion mobility spectrometry (FAIMS) is rapidly gaining acceptance as a robust, versatile tool for post-ionization separations prior to mass-spectrometric analyses. The separation is based on differences between ion mobilities at high and low electric fields, and proceeds at atmospheric pressure. Two major advantages of FAIMS over condensed-phase separations are its high speed and an ion focusing effect that often improves sensitivity. While selected aspects of FAIMS performance are understood empirically, no physical model rationalizing the resolving power and sensitivity of the method and revealing their dependence on instrumental variables has existed. Here we present a first-principles computational treatment capable of simulating the FAIMS analyzer for virtually any geometry (including the known cylindrical and planar designs) and arbitrary operational parameters. The approach involves propagating an ensemble of ion trajectories through the device in real time under the influence of applied asymmetric potential, diffusional motion incorporating the high-field and anisotropic phenomena, and mutual Coulomb repulsion of ionic charges. Calculations for both resolution and sensitivity are validated by excellent agreement with measurements in different FAIMS modes for ions representing diverse types and analyte classes.
Collapse
Affiliation(s)
- Alexandre A Shvartsburg
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Keqi Tang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Richard D Smith
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| |
Collapse
|
81
|
Schmidt H, Tadjimukhamedov F, Mohrenz IV, Smith GB, Eiceman GA. Microfabricated Differential Mobility Spectrometry with Pyrolysis Gas Chromatography for Chemical Characterization of Bacteria. Anal Chem 2004; 76:5208-17. [PMID: 15373463 DOI: 10.1021/ac0497611] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A microfabricated drift tube for differential mobility spectrometry (DMS) was used with pyrolysis-gas chromatography (py-GC) to chemically characterize bacteria through three-dimensional plots of ion intensity, compensation voltage from differential mobility spectra, and chromatographic retention time. The DMS analyzer provided chemical information for positive and negative ions simultaneously from chemical reactions between pyrolysis products in the GC effluent and reactant ions of H+(H2O)n and O2-(H2O)n in air at ambient pressure. Authentic standards for chemicals formed in the pyrolysis of bacteria showed favorable matches with plots from py-GC/DMS analysis and were supported by py-GC/MS results. These and other yet-unidentified constituents provided a means to distinguish Escherichia coli from Micrococcus luteus. A Gram-positive spore former (Bacillus megaterium) was distinguished by an abundant peak for crotonic acid evident in positive and negative ions and not observed with M. luteus. In contrast, plots from py-GC/DMS of lipid A and lipoteichoic acid showed poor matches to plots for a Gram-negative (E. coli) bacterium and a Gram-positive (M. luteus) bacterium and the differences were attributed to differences in genus sources of the biopolymers. A significant percentage of the chemical information available in py-GC/DMS is unidentified, and the analytical utility must be established. Precision in the chemical measurement was determined as +/- 0.2 V, 10% relative standard deviation (RSD), and +/- 0.05 min for compensation voltage, peak intensity, and retention time, respectively. The minimum number of total bacteria (cell forming units) detected was 6000 though detection limits and resolution could be varied by the magnitude of the separation voltage in the differential mobility spectrometer.
Collapse
Affiliation(s)
- Hartwig Schmidt
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, USA
| | | | | | | | | |
Collapse
|