51
|
Collier MA, Peine KJ, Gautam S, Oghumu S, Varikuti S, Borteh H, Papenfuss TL, Sataoskar AR, Bachelder EM, Ainslie KM. Host-mediated Leishmania donovani treatment using AR-12 encapsulated in acetalated dextran microparticles. Int J Pharm 2016; 499:186-194. [PMID: 26768723 DOI: 10.1016/j.ijpharm.2016.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/29/2015] [Accepted: 01/04/2016] [Indexed: 12/15/2022]
Abstract
Leishmaniasis is a disease caused by parasites of Leishmania sp., which effects nearly 12 million people worldwide and is associated with treatment complications due to widespread parasite resistance toward pathogen-directed therapeutics. The current treatments for visceral leishmaniasis (VL), the systemic form of the disease, involve pathogen-mediated drugs and have long treatment regimens, increasing the risk of forming resistant strains. One way to limit emergence of resistant pathogens is through the use of host-mediated therapeutics. The host-mediated therapeutic AR-12, which is FDA IND-approved for cancer treatment, has shown activity against a broad spectrum of intracellular pathogens; however, due to hydrophobicity and toxicity, it is difficult to reach therapeutic doses. We have formulated AR-12 into microparticles (AR-12/MPs) using the novel biodegradable polymer acetalated dextran (Ace-DEX) and used this formulation for the systemic treatment of VL. Treatment with AR-12/MPs significantly reduced liver, spleen, and bone marrow parasite loads in infected mice, while combinatorial therapies with amphotericin B had an even more significant effect. Overall, AR-12/MPs offer a unique, host-mediated therapy that could significantly reduce the emergence of drug resistance in the treatment of VL.
Collapse
Affiliation(s)
- M A Collier
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - K J Peine
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - S Gautam
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - S Oghumu
- Department of Pathology, The Ohio State's Wexner Medical Center, The Ohio State University, Columbus, OH 43210, United States
| | - S Varikuti
- Department of Pathology, The Ohio State's Wexner Medical Center, The Ohio State University, Columbus, OH 43210, United States
| | - H Borteh
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - T L Papenfuss
- Department of Pathology, The Ohio State's Wexner Medical Center, The Ohio State University, Columbus, OH 43210, United States
| | - A R Sataoskar
- College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - E M Bachelder
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - K M Ainslie
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
52
|
Suarez SL, Muñoz A, Mitchell A, Braden RL, Luo C, Cochran JR, Almutairi A, Christman KL. Degradable acetalated dextran microparticles for tunable release of an engineered hepatocyte growth factor fragment. ACS Biomater Sci Eng 2015; 2:197-204. [PMID: 29333489 DOI: 10.1021/acsbiomaterials.5b00335] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Injectable biomaterials are promising as new therapies to treat myocardial infarction (MI). One useful property of biomaterials is the ability to protect and sustain release of therapeutic payloads. In order to create a platform for optimizing the release rate of cardioprotective molecules we utilized the tunable degradation of acetalated dextran (AcDex). We created microparticles with three distinct degradation profiles and showed that the consequent protein release profiles could be modulated within the infarcted heart. This enabled us to determine how delivery rate impacted the efficacy of a model therapeutic, an engineered hepatocyte growth factor fragment (HGF-f). Our results showed that the cardioprotective efficacy of HGF-f was optimal when delivered over three days post-intramyocardial injection, yielding the largest arterioles, fewest apoptotic cardiomyocytes bordering the infarct and the smallest infarcts compared to empty particle treatment four weeks after injection. This work demonstrates the potential of using AcDex particles as a delivery platform to optimize the time frame for delivering therapeutic proteins to the heart.
Collapse
Affiliation(s)
- Sophia L Suarez
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093, USA
| | - Adam Muñoz
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Aaron Mitchell
- Department of Bioengineering, The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Rebecca L Braden
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Colin Luo
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jennifer R Cochran
- Department of Chemical Engineering, The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Department of Bioengineering, The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Adah Almutairi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093, USA
| | - Karen L Christman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
53
|
Liu P, Sun L, Zhou DS, Zhang P, Wang YH, Li D, Li QH, Feng RJ. Development of Alendronate-conjugated Poly (lactic-co-glycolic acid)-Dextran Nanoparticles for Active Targeting of Cisplatin in Osteosarcoma. Sci Rep 2015; 5:17387. [PMID: 26619950 PMCID: PMC4664968 DOI: 10.1038/srep17387] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/22/2015] [Indexed: 11/08/2022] Open
Abstract
In this study, we developed a novel poly (lactic-co-glycolic acid)-dextran (PLD)-based nanodelivery system to enhance the anticancer potential of cisplatin (CDDP) in osteosarcoma cells. A nanosized CDDP-loaded PLGA-DX nanoparticle (PLD/CDDP) controlled the release rate of CDDP up to 48 h. In vitro cytotoxicity assay showed a superior anticancer effect for PLD/CDDP and with an appreciable cellular uptake via endocytosis-mediated pathways. PLD/CDDP exhibited significant apoptosis of MG63 cancer cells compared to that of free CDDP. Approximately ~25% of cells were in early apoptosis phase after PLD/CDDP treatment comparing to ~15% for free CDDP after 48h incubation. Similarly, PLD/CDDP exhibited ~30% of late apoptosis cells comparing to only ~8% for free drug treatment. PLD/CDDP exhibited significantly higher G2/M phase arrest in MG63 cells than compared to free CDDP with a nearly 2-fold higher arrest in case of PLD/CDDP treated group (~60%). Importantly, PLD/CDDP exhibited a most significant anti-tumor activity with maximum tumor growth inhibition. The superior inhibitory effect was further confirmed by a marked reduction in the number of CD31 stained tumor blood vessels and decrease in the Ki67 staining intensity for PLD/CDDP treated animal group. Overall, CDDP formulations could provide a promising and most effective platform in the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Ping Liu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Liang Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Dong-sheng Zhou
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Peng Zhang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Yong-hui Wang
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Dong Li
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Qing-hu Li
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| | - Rong-jie Feng
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China
| |
Collapse
|
54
|
Duong AD, Collier MA, Bachelder EM, Wyslouzil BE, Ainslie KM. One Step Encapsulation of Small Molecule Drugs in Liposomes via Electrospray-Remote Loading. Mol Pharm 2015; 13:92-9. [PMID: 26568143 PMCID: PMC10372480 DOI: 10.1021/acs.molpharmaceut.5b00528] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Resiquimod is a Toll-like receptor (TLR) 7/8 agonist that has previously been used as a vaccine adjuvant, as a topical treatment of viral lesions and skin cancer, and as an antiviral treatment. We report on the combined application of remote loading and electrospray to produce liposomal resiquimod, with the broader goals of improving drug encapsulation efficiency and scalability of liposome production methods. Drug loading in liposomes increased from less than 1% to greater that 3% by mass when remote loading was used, whether the liposomes were generated by thin-film hydration or electrospray methods. Dynamic light scattering (DLS) determined mean vesicle diameters of 137 ± 11 nm and 103 ± 4 for the thin-film and electrospray methods, respectively. Transmission electron microscopy (TEM) images showed spherical vesicles with sizes consistent with the DLS measurements. In vitro drug release profiles found that most of the drug remained within the liposomes at both pH 5.5 and 7.4. The in vitro bioactivity of the liposomal drug was also demonstrated by the increase in nitrite production when RAW macrophages were exposed to the drug. Our findings indicate that the remotely loaded liposomes formed via the scalable electrospray method have characteristics comparable to those produced via conventional batch methods. The methods discussed here are not limited to the enhanced delivery of resiquimod. Rather, they should be readily adaptable to other compounds compatible with remote loading.
Collapse
Affiliation(s)
- Anthony D Duong
- William G. Lowrie Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University , Columbus, Ohio 43210, United States
| | - Michael A Collier
- Division of Molecular Pharmaceutics, College of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Eric M Bachelder
- Division of Molecular Pharmaceutics, College of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| | - Barbra E Wyslouzil
- William G. Lowrie Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University , Columbus, Ohio 43210, United States.,Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University , Columbus, Ohio 43210, United States
| | - Kristy M Ainslie
- Division of Molecular Pharmaceutics, College of Pharmacy, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
55
|
Cellulose alters the expression of nuclear factor kappa B-related genes and Toll-like receptor-related genes in human peripheral blood mononuclear cells. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
56
|
Schully KL, Bell MG, Prouty AM, Gallovic MD, Gautam S, Peine KJ, Sharma S, Bachelder EM, Pesce JT, Elberson MA, Ainslie KM, Keane-Myers A. Evaluation of a biodegradable microparticulate polymer as a carrier for Burkholderia pseudomallei subunit vaccines in a mouse model of melioidosis. Int J Pharm 2015; 495:849-61. [PMID: 26428631 DOI: 10.1016/j.ijpharm.2015.09.059] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/15/2015] [Accepted: 09/24/2015] [Indexed: 01/17/2023]
Abstract
Melioidosis, a potentially lethal disease of humans and animals, is caused by the soil-dwelling bacterium Burkholderia pseudomallei. Due to B. pseudomallei's classification as a Tier 1 Select Agent, there is substantial interest in the development of an effective vaccine. Yet, despite decades of research, no effective target, adjuvant or delivery vehicle capable of inducing protective immunity against B. pseudomallei infection has been identified. We propose a microparticulate delivery vehicle comprised of the novel polymer acetalated dextran (Ac-DEX). Ac-DEX is an acid-sensitive biodegradable carrier that can be fabricated into microparticles (MPs) that are relatively stable at pH 7.4, but rapidly degrade after phagocytosis by antigen presenting cells where the pH can drop to 5.0. As compared to other biomaterials, this acid sensitivity has been shown to enhance cross presentation of subunit antigens. To evaluate this platform as a delivery system for a melioidosis vaccine, BALB/c mice were vaccinated with Ac-DEX MPs separately encapsulating B. pseudomallei whole cell lysate and the toll-like receptor (TLR) 7/8 agonist resiquimod. This vaccine elicited a robust antibody response that included both Th1 and Th2 immunity. Following lethal intraperitoneal challenge with B. pseudomallei 1026b, vaccinated mice demonstrated a significant delay to time of death compared to untreated mice. The formulation, however, demonstrated incomplete protection indicating that lysate protein offers limited value as an antigen. Nevertheless, our Ac-DEX MPs may offer an effective delivery vehicle for a subunit B. psuedomallei vaccine.
Collapse
Affiliation(s)
- K L Schully
- Vaccines and Medical Countermeasures, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft Detrick, MD 21702, USA
| | - M G Bell
- Vaccines and Medical Countermeasures, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft Detrick, MD 21702, USA
| | - A M Prouty
- Vaccines and Medical Countermeasures, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft Detrick, MD 21702, USA
| | - M D Gallovic
- William G. Lowrie Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - S Gautam
- Department of Pharmaceutical Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - K J Peine
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - S Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - E M Bachelder
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - J T Pesce
- Vaccines and Medical Countermeasures, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft Detrick, MD 21702, USA
| | - M A Elberson
- Vaccines and Medical Countermeasures, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft Detrick, MD 21702, USA
| | - K M Ainslie
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - A Keane-Myers
- Vaccines and Medical Countermeasures, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Ft Detrick, MD 21702, USA
| |
Collapse
|
57
|
Yuba E, Kanda Y, Yoshizaki Y, Teranishi R, Harada A, Sugiura K, Izawa T, Yamate J, Sakaguchi N, Koiwai K, Kono K. pH-sensitive polymer-liposome-based antigen delivery systems potentiated with interferon-γ gene lipoplex for efficient cancer immunotherapy. Biomaterials 2015. [PMID: 26222284 DOI: 10.1016/j.biomaterials.2015.07.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Potentiation of pH-sensitive liposome-based antigen carriers with IFN-γ gene lipoplexes was attempted to achieve efficient induction of tumor-specific immunity. 3-Methylglutarylated poly(glycidol) (MGluPG)-modified liposomes and cationic liposomes were used, respectively, for the delivery of antigenic protein ovalbumin (OVA) and IFN-γ-encoding plasmid DNA (pDNA). The MGluPG-modified liposomes and the cationic liposome-pDNA complexes (lipoplexes) formed hybrid complexes via electrostatic interactions after their mixing in aqueous solutions. The hybrid complexes co-delivered OVA and IFN-γ-encoding pDNA into DC2.4 cells, a murine dendritic cell line, as was the case of MGluPG-modified liposomes for OVA or the lipoplexes for pDNA. Both the lipoplexes and the hybrid complexes transfected DC2.4 cells and induced IFN-γ protein production, but transfection activities of the hybrid complexes were lower than those of the parent lipoplexes. Subcutaneous administration of hybrid complexes to mice bearing E.G7-OVA tumor reduced tumor volumes, which might result from the induction of OVA-specific cytotoxic T lymphocytes (CTLs). However, the hybrid complex-induced antitumor effect was the same level of the MGluPG-modified liposome-mediated antitumor immunity. In contrast, an extremely strong antitumor immune response was derived when these liposomes and lipoplexes without complexation were injected subcutaneously at the same site of tumor-bearing mice. Immunohistochemical analysis of tumor sections revealed that immunization through the liposome-lipoplex combination promoted the infiltration of CTLs to tumors at an early stage of treatment compared with liposomes, resulting in strong therapeutic effects.
Collapse
Affiliation(s)
- Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yuhei Kanda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yuta Yoshizaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Ryoma Teranishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Atsushi Harada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kikuya Sugiura
- Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan
| | - Takeshi Izawa
- Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan
| | - Jyoji Yamate
- Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan
| | - Naoki Sakaguchi
- Terumo Corp., Ltd., Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Kazunori Koiwai
- Terumo Corp., Ltd., Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Kenji Kono
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
58
|
Zhang W, Wang L, Yang T, Liu Y, Chen X, Liu Q, Jia J, Ma G. Immunopotentiator-Loaded Polymeric Microparticles as Robust Adjuvant to Improve Vaccine Efficacy. Pharm Res 2015; 32:2837-50. [PMID: 26017300 DOI: 10.1007/s11095-015-1666-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/03/2015] [Indexed: 01/08/2023]
Abstract
PURPOSE Adjuvants are required to ensure the efficacy of subunit vaccines. Incorporating molecular immunopotentiators within particles could overcome drawbacks of molecular adjuvants (such as solubility and toxicity), and improve adjuvanticity of particles, achieving stronger adjuvant activity. Aim of this study is to evaluate the adjuvanticity of immunopotentiator-loaded polymeric particles for subunit vaccine. METHODS PLGA microparticles (PMPs) and imiquimod (TLR-7 ligand)-loaded PLGA microparticles (IPMPs) were prepared by SPG premix membrane emulsification. In vitro and in vivo studies were performed to their adjuvant activity, using ovalbumin and H5N1 influenza split vaccine as antigens. RESULTS Incorporating imiquimod into microparticles significantly improved the efficacy of PLGA microparticles in activating BMDCs and pMΦs, and antigen uptake by pMΦs was also promoted. IPMPs showed stronger adjuvanticity to augment OVA-specific immune responses than PMPs. IgG subclass profiles and cytokine secretion levels by splenocytes indicated that IPMPs elicited more Th1-polarized immune response, compared to PMPs. In vivo study using H5N1 influenza split vaccine as antigen also confirmed the effects of IPMPs on antigen-specific cellular immunity. CONCLUSIONS Considering adjuvanticity and safety profiles (PLGA and IMQ, both approved by FDA), we conclude that IMQ-loaded PLGA microparticles are promising robust adjuvant for subunit vaccines.
Collapse
Affiliation(s)
- Weifeng Zhang
- National Key Laboratory of Biochemical Engineering, PLA Key Laboratory of Biopharmaceutical Production & Formulation Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Liu P, Situ JQ, Li WS, Shan CL, You J, Yuan H, Hu FQ, Du YZ. High tolerated paclitaxel nano-formulation delivered by poly (lactic-co-glycolic acid)-g-dextran micelles to efficient cancer therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:855-66. [DOI: 10.1016/j.nano.2015.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 02/04/2015] [Accepted: 02/09/2015] [Indexed: 12/31/2022]
|
60
|
Du L, Li B, Xu X, Sun B, Pang F, Wen L, Huang K, He K. Adsorption of a porcine reproductive and respiratory syndrome virus DNA vaccine candidate onto biodegradable nanoparticles improves immunogenicity in mice. Arch Virol 2015; 160:1543-7. [DOI: 10.1007/s00705-015-2396-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/12/2015] [Indexed: 12/17/2022]
|
61
|
Affiliation(s)
- Pingli Li
- Institute of Clinical Pharmacology, Qilu Hospital of Shandong University
| | - Fengshan Wang
- National Glycoengineering Research Center, Shandong University
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), Institute of Biochemical and Biotechnological Drug, School of Pharmaceutical Sciences, Shandong University
| |
Collapse
|
62
|
Sobhani H, Tarighi P, Ostad SN, Shafaati A, Nafissi-Varcheh N, Aboofazeli R. Formulation Development and Toxicity Assessment of Triacetin Mediated Nanoemulsions as Novel Delivery Systems for Rapamycin. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2015; 14:3-21. [PMID: 26185501 PMCID: PMC4499422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The aim of this investigation was to design and develop nanoemulsions (NEs) as novel delivery systems for rapamycin. Phase behavior of quaternary systems composed of Traicetin (as oil), various surfactants and co-surfactants and water at different surfactant/co-surfactant weight ratios was investigated by the construction of phase diagrams. Formulations were taken from the o/w NE region of the phase diagrams, depending upon the extent of NE domain. The spontaneous emulsification method was used to prepare various formulations containing 1 mg/mL of the drug. The NEs were characterized and subjected to stability tests at various temperatures over 9-12 months. Cumulative drug release from the selected formulations was determined for a period of 48 h using a dialysis sac. The assay of rapamycin was carried out using an HPLC technique. The effect of NEs on the viability of SKBR-3 cells was evaluated by MTT assay. The integrity of Caco-2 cell monolayers was measured by Transepithelial Electrical Resistance (TEER) and the transport of rapamycin-loaded NEs across Caco-2 cell monolayers was then assessed. The uptake of NEs by SKBR-3 cells was also investigated using florescence microscopy. Maximum drug release was observed in case of 4 formulations prepared with Tween 80 and Tween 20. MTT test results revealed different toxicity of NEs for SKBR-3 cell line and TEER demonstrated that formulations containing Tween 20 caused a more considerable decrease in cell integrity in comparison with those prepared with Tween 80. The results obtained from cellular uptake experiments were in consistent with those obtained from TEER and cytotoxicity experiments.
Collapse
Affiliation(s)
- Hamideh Sobhani
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Parastoo Tarighi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Nasser Ostad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Alireza Shafaati
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Nastaran Nafissi-Varcheh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Reza Aboofazeli
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
63
|
Hoang KV, Borteh HM, Rajaram MVS, Peine KJ, Curry H, Collier MA, Homsy ML, Bachelder EM, Gunn JS, Schlesinger LS, Ainslie KM. Acetalated dextran encapsulated AR-12 as a host-directed therapy to control Salmonella infection. Int J Pharm 2014; 477:334-43. [PMID: 25447826 DOI: 10.1016/j.ijpharm.2014.10.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/22/2014] [Accepted: 10/07/2014] [Indexed: 10/24/2022]
Abstract
AR-12 has been evaluated in clinical trials as an anti-cancer agent but also has demonstrated host-directed, broad-spectrum clearance of bacteria. We have previously shown that AR-12 has activity in vitro against Salmonella enterica serovar Typhimurium and Francisella species by inducing autophagy and other host immune pathways. AR-12 treatment of S. Typhimurium-infected mice resulted in a 10-fold reduction in bacterial load in the liver and spleen and an increased survival time. However, AR-12 treatment did not protect mice from death, likely due poor formulation. In the current study, AR-12 was encapsulated in a microparticulate carrier formulated from the novel degradable biopolymer acetalated dextran (Ace-DEX) and subsequently evaluated for its activity in human monocyte-derived macrophages (hMDMs). Our results show that hMDMs efficiently internalized Ace-DEX microparticles (MPs), and that encapsulation significantly reduced host cell cytotoxicity compared to unencapsulated AR-12. Efficient macrophage internalization of AR-12 loaded MPs (AR-12/MPs) was further demonstrated by autophagosome formation that was comparable to free AR-12 and resulted in enhanced clearance of intracellular Salmonella. Taken together, these studies provide support that Ace-DEX encapsulated AR-12 may be a promising new therapeutic agent to control intracellular bacterial pathogens of macrophages by targeting delivery and reducing drug toxicity.
Collapse
Affiliation(s)
- Ky V Hoang
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, United States
| | - Hassan M Borteh
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States
| | - Murugesan V S Rajaram
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, United States
| | - Kevin J Peine
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, 4211 Marsico Hall, 125 Mason Farm Road, Chapel Hill, NC 27599, United States
| | - Heather Curry
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, United States
| | - Michael A Collier
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, 4211 Marsico Hall, 125 Mason Farm Road, Chapel Hill, NC 27599, United States
| | - Michael L Homsy
- Department of Chemical and Bimolecular Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, United States
| | - Eric M Bachelder
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, 4211 Marsico Hall, 125 Mason Farm Road, Chapel Hill, NC 27599, United States
| | - John S Gunn
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, United States
| | - Larry S Schlesinger
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, United States
| | - Kristy M Ainslie
- Division of Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, 4211 Marsico Hall, 125 Mason Farm Road, Chapel Hill, NC 27599, United States.
| |
Collapse
|
64
|
Jiménez-Sánchez G, Pavot V, Chane-Haong C, Handké N, Terrat C, Gigmes D, Trimaille T, Verrier B. Preparation and In Vitro Evaluation of Imiquimod Loaded Polylactide-based Micelles as Potential Vaccine Adjuvants. Pharm Res 2014; 32:311-20. [DOI: 10.1007/s11095-014-1465-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
|
65
|
Yoshizaki Y, Yuba E, Sakaguchi N, Koiwai K, Harada A, Kono K. Potentiation of pH-sensitive polymer-modified liposomes with cationic lipid inclusion as antigen delivery carriers for cancer immunotherapy. Biomaterials 2014; 35:8186-96. [DOI: 10.1016/j.biomaterials.2014.05.077] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 05/26/2014] [Indexed: 01/10/2023]
|
66
|
Tong R, Tang L, Ma L, Tu C, Baumgartner R, Cheng J. Smart chemistry in polymeric nanomedicine. Chem Soc Rev 2014; 43:6982-7012. [DOI: 10.1039/c4cs00133h] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
67
|
Yuba E, Tajima N, Yoshizaki Y, Harada A, Hayashi H, Kono K. Dextran derivative-based pH-sensitive liposomes for cancer immunotherapy. Biomaterials 2014; 35:3091-101. [DOI: 10.1016/j.biomaterials.2013.12.024] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 12/13/2013] [Indexed: 12/31/2022]
|
68
|
Peine KJ, Guerau-de-Arellano M, Lee P, Kanthamneni N, Severin M, Probst GD, Peng H, Yang Y, Vangundy Z, Papenfuss TL, Lovett-Racke AE, Bachelder EM, Ainslie KM. Treatment of experimental autoimmune encephalomyelitis by codelivery of disease associated Peptide and dexamethasone in acetalated dextran microparticles. Mol Pharm 2014; 11:828-35. [PMID: 24433027 PMCID: PMC3993881 DOI: 10.1021/mp4005172] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune, demyelinating disease of the central nervous system that can cause loss of motor function and is thought to result, in part, from chronic inflammation due to an antigen-specific T cell immune response. Current treatments suppress the immune system without antigen specificity, increasing the risks of cancer, chronic infection, and other long-term side effects. In this study, we show treatment of experimental autoimmune encephalomyelitis (EAE), a model of MS, by coencapsulating the immunodominant peptide of myelin oligodendrocyte glycoprotein (MOG) with dexamethasone (DXM) into acetalated dextran (Ac-DEX) microparticles (DXM/MOG/MPs) and administering the microparticles subcutaneously. The clinical score of the mice was reduced from 3.4 to 1.6 after 3 injections 3 days apart with the coencapsulated microparticulate formulation (MOG 17.6 μg and DXM 8 μg). This change in clinical score was significantly greater than observed with phosphate-buffered saline (PBS), empty MPs, free DXM and MOG, DXM/MPs, and MOG/MPs. Additionally, treatment with DXM/MOG/MPs significantly inhibited disease-associated cytokine (e.g., IL-17, GM-CSF) expression in splenocytes isolated in treated mice. Here we show a promising approach for the therapeutic treatment of MS using a polymer-based microparticle delivery platform.
Collapse
Affiliation(s)
- Kevin J Peine
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University , Columbus, Ohio, 43210, United States
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Anish C, Khan N, Upadhyay AK, Sehgal D, Panda AK. Delivery of polysaccharides using polymer particles: implications on size-dependent immunogenicity, opsonophagocytosis, and protective immunity. Mol Pharm 2014; 11:922-37. [PMID: 24446810 DOI: 10.1021/mp400589q] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bacterial capsular polysaccharides are components of many modern vaccines, but they are weakly immunogenic. Herein, we describe the delivery of pneumococcal capsular polysaccharide serotype-1 (PCP-1) in polylactide polymeric particles to enhance its immunogenicity. Immunization with PCP-1-entrapped particles elicited long-term memory antibody responses from a single intramuscular injection. PCP-1-entrapped nanoparticles (NPs) elicited significantly higher anti-PCP-1 IgG responses than that observed with soluble and microparticles (MPs) formulations. Delivering PCP-1 and pneumococcal proteins in same particles did not improve the IgG response. The sera of animals immunized with PCP-1-entrapped particles promoted efficient opsonophagocytosis of pneumococci by macrophages. Single-dose immunization with PCP-1-entrapped particles conferred a long-term serotype-specific protection against lethal pneumococcal challenge. The higher immunogenicity of PCP-1 nanoparticles showed correlation with enhanced uptake by antigen-presenting cells. The results highlight the potential of polymeric nanoparticles as an efficient means of presenting polysaccharide antigens to the immune system.
Collapse
Affiliation(s)
- Chakkumkal Anish
- Product Development Cell, ‡Molecular Immunology Laboratory, National Institute of Immunology , Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
70
|
Suarez S, Grover GN, Braden RL, Christman KL, Almutairi A. Tunable protein release from acetalated dextran microparticles: a platform for delivery of protein therapeutics to the heart post-MI. Biomacromolecules 2013; 14:3927-35. [PMID: 24053580 PMCID: PMC3910395 DOI: 10.1021/bm401050j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The leading cause of death in the United States is cardiovascular disease. The majority of these cases result from heart failure post-myocardial infarction (MI). We present data providing evidence for use of acetalated dextran (AcDex) microparticles as a delivery vehicle for therapeutics to the heart post-MI. We harnessed the tunable degradation and acid-sensitivity of AcDex in the design of microparticles for intramyocardial injection. The particles released a model protein, myoglobin, and a sensitive growth factor, basic fibroblast growth factor (bFGF), over a wide range of time frames (from days to weeks) based on the percentage of cyclic acetals in the AcDex, which was easily controlled with acetalation reaction time. The release was shown in low pH environments, similar to what is found in an infarcted heart. bFGF maintained activity after release from the microparticles. Finally, biocompatibility of the microparticles was assessed.
Collapse
Affiliation(s)
- Sophia Suarez
- Department of Bioengineering and Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gregory N. Grover
- Department of Bioengineering and Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Rebecca L. Braden
- Department of Bioengineering and Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Karen L Christman
- Department of Bioengineering and Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, CA, USA
| | - Adah Almutairi
- Skaggs School of Pharmacy and Pharmaceutical Sciences and KACST UCSD Center of Excellence in Nanomedicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
71
|
Toita R, Nakao K, Mahara A, Yamaoka T, Akashi M. Biodistribution of vaccines comprised of hydrophobically-modified poly(γ-glutamic acid) nanoparticles and antigen proteins using fluorescence imaging. Bioorg Med Chem 2013; 21:6608-15. [DOI: 10.1016/j.bmc.2013.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 08/09/2013] [Accepted: 08/09/2013] [Indexed: 10/26/2022]
|
72
|
Collier MA, Gallovic MD, Peine KJ, Duong AD, Bachelder EM, Gunn JS, Schlesinger LS, Ainslie KM. Delivery of host cell-directed therapeutics for intracellular pathogen clearance. Expert Rev Anti Infect Ther 2013; 11:1225-35. [PMID: 24134600 DOI: 10.1586/14787210.2013.845524] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Intracellular pathogens present a major health risk because of their innate ability to evade clearance. Their location within host cells and ability to react to the host environment by mutation or transcriptional changes often enables survival mechanisms to resist standard therapies. Host-directed drugs do not target the pathogen, minimizing the potential development of drug resistance; however, they can be difficult to deliver efficiently to intracellular sites. Vehicle delivery of host-mediated response drugs not only improves drug distribution and toxicity profiles, but can reduce the total amount of drug necessary to clear infection. In this article, we will review some host-directed drugs and current drug delivery techniques that can be used to efficiently clear intracellular infections.
Collapse
Affiliation(s)
- Michael A Collier
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Raemdonck K, Martens TF, Braeckmans K, Demeester J, De Smedt SC. Polysaccharide-based nucleic acid nanoformulations. Adv Drug Deliv Rev 2013; 65:1123-47. [PMID: 23680381 DOI: 10.1016/j.addr.2013.05.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 04/24/2013] [Accepted: 05/03/2013] [Indexed: 12/24/2022]
Abstract
Therapeutic application of nucleic acids requires their encapsulation in nanosized carriers that enable safe and efficient intracellular delivery. Before the desired site of action is reached, drug-loaded nanoparticles (nanomedicines) encounter numerous extra- and intracellular barriers. Judicious nanocarrier design is highly needed to stimulate nucleic acid delivery across these barriers and maximize the therapeutic benefit. Natural polysaccharides are widely used for biomedical and pharmaceutical applications due to their inherent biocompatibility. At present, there is a growing interest in applying these biopolymers for the development of nanomedicines. This review highlights various polysaccharides and their derivatives, currently employed in the design of nucleic acid nanocarriers. In particular, recent progress made in polysaccharide-assisted nucleic acid delivery is summarized and the specific benefits that polysaccharides might offer to improve the delivery process are critically discussed.
Collapse
|
74
|
Wondraczek H, Kotiaho A, Niemi M, Fardim P, Heinze T. Studies on the structure of coumarin-modified dextran nanoparticles by fluorescence spectroscopy. Carbohydr Polym 2013; 97:45-51. [DOI: 10.1016/j.carbpol.2013.04.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Accepted: 04/12/2013] [Indexed: 12/31/2022]
|
75
|
Handké N, Lahaye V, Bertin D, Delair T, Verrier B, Gigmes D, Trimaille T. Elaboration of Glycopolymer-Functionalized Micelles from an N
-Vinylpyrrolidone/Lactide-Based Reactive Copolymer Platform. Macromol Biosci 2013; 13:1213-20. [DOI: 10.1002/mabi.201300102] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/08/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Nadège Handké
- Aix-Marseille Université, CNRS, UMR 7273, Institut de Chimie Radicalaire, Avenue Escadrille Normandie-Niemen; 13397 Marseille Cedex 20 France
| | - Vincent Lahaye
- Université Lyon 1, Univ Lyon, CNRS, UMR 5305; Biologie Tissulaire et Ingénierie Thérapeutique, IBCP, 7 passage du Vercors; 69367 Lyon Cedex 07 France
| | - Denis Bertin
- Aix-Marseille Université, CNRS, UMR 7273, Institut de Chimie Radicalaire, Avenue Escadrille Normandie-Niemen; 13397 Marseille Cedex 20 France
| | - Thierry Delair
- Université Lyon 1, Univ Lyon, CNRS, UMR 5223; Ingénierie des Matériaux Polymères; 15 boulevard Latarjet, 69622 Villeurbanne France
| | - Bernard Verrier
- Université Lyon 1, Univ Lyon, CNRS, UMR 5305; Biologie Tissulaire et Ingénierie Thérapeutique, IBCP, 7 passage du Vercors; 69367 Lyon Cedex 07 France
| | - Didier Gigmes
- Aix-Marseille Université, CNRS, UMR 7273, Institut de Chimie Radicalaire, Avenue Escadrille Normandie-Niemen; 13397 Marseille Cedex 20 France
| | - Thomas Trimaille
- Aix-Marseille Université, CNRS, UMR 7273, Institut de Chimie Radicalaire, Avenue Escadrille Normandie-Niemen; 13397 Marseille Cedex 20 France
| |
Collapse
|
76
|
Efficient delivery of the toll-like receptor agonists polyinosinic:polycytidylic acid and CpG to macrophages by acetalated dextran microparticles. Mol Pharm 2013; 10:2849-57. [PMID: 23768126 DOI: 10.1021/mp300643d] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To enhance the immune activity of vaccine adjuvants polyinosinic:polycytidylic acid (poly I:C) and CpG acetalated dextran (Ac-DEX) microparticles can be used. Ac-DEX is a biodegradable and water-insoluble polymer that degrades significantly faster at pH 5.0 (phagosomal pH) than at pH 7.4 and has tunable degradation rates that can range from hours to months. This is an ideal characteristic for delivery of an antigen and adjuvant within the lysosomal compartment of a phagocytic cell. We evaluated poly I:C and CpG encapsulated in Ac-DEX microparticles using RAW macrophages as a model antigen-presenting cell. These cells were cultured with poly I:C or CpG in their free form, encapsulated in a fast degrading Ac-DEX, in slow degrading Ac-DEX, or in the Food and Drug Administration-approved polymer poly(lactic-co-glycolic acid) (PLGA). Ac-DEX had higher encapsulation efficiencies for both poly I:C and CpG than PLGA. Furthermore, poly I:C or CpG encapsulated in Ac-DEX also showed, in general, a significantly stronger immunostimulatory response than PLGA and unencapsulated CpG or poly I:C, which was indicated by a higher rate of nitric oxide release and increased levels of cytokines such as TNF-α, IL-6, IL-10, and IFN-γ. Overall, we have illustrated a method for enhancing the delivery of these vaccine adjuvants to further enhance the development of Ac-DEX vaccine formulations.
Collapse
|
77
|
Knuschke T, Sokolova V, Rotan O, Wadwa M, Tenbusch M, Hansen W, Staeheli P, Epple M, Buer J, Westendorf AM. Immunization with Biodegradable Nanoparticles Efficiently Induces Cellular Immunity and Protects against Influenza Virus Infection. THE JOURNAL OF IMMUNOLOGY 2013; 190:6221-9. [DOI: 10.4049/jimmunol.1202654] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
78
|
Colby AH, Colson YL, Grinstaff MW. Microscopy and tunable resistive pulse sensing characterization of the swelling of pH-responsive, polymeric expansile nanoparticles. NANOSCALE 2013; 5:3496-504. [PMID: 23487041 PMCID: PMC3878811 DOI: 10.1039/c3nr00114h] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Polymeric expansile nanoparticles (eNPs) that respond to a mildly acidic environment by swelling with water and expanding 2-10× in diameter represent a new responsive drug delivery system. Here, we use a variety of techniques to characterize the pH- and time-dependence of eNP swelling as this is a key property responsible for the observed in vitro and in vivo performance of eNPs. Results demonstrate a significant change in eNP volume (>350×) at pH 5.0 as seen using: scanning electron microscopy (SEM), conventional transmission electron microscopy (TEM), freeze-fracture transmission electron microscopy (ff-TEM), fluorescence microscopy, and a new nanopore based characterization technology, the qNano, which measures both individual particle size as well as overall particle concentration in situ using tunable resistive pulse sensing. eNP swelling occurs in a continuous and yet heterogeneous manner over several days and is pH dependent.
Collapse
Affiliation(s)
- Aaron H. Colby
- Boston University, Boston, MA. Fax: 617-358-3429; Tel: 617-353-3871
| | | | | |
Collapse
|
79
|
A liposome-based antigen delivery system using pH-sensitive fusogenic polymers for cancer immunotherapy. Biomaterials 2013; 34:3042-52. [DOI: 10.1016/j.biomaterials.2012.12.031] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/22/2012] [Indexed: 02/07/2023]
|
80
|
Tu C, Zhu L, Qiu F, Wang D, Su Y, Zhu X, Yan D. Facile PEGylation of Boltorn® H40 for pH-responsive drug carriers. POLYMER 2013. [DOI: 10.1016/j.polymer.2012.12.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
81
|
Duong AD, Sharma S, Peine KJ, Gupta G, Satoskar AR, Bachelder EM, Wyslouzil BE, Ainslie KM. Electrospray encapsulation of toll-like receptor agonist resiquimod in polymer microparticles for the treatment of visceral leishmaniasis. Mol Pharm 2013; 10:1045-55. [PMID: 23320733 PMCID: PMC3857017 DOI: 10.1021/mp3005098] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Leishmaniasis is a disease caused by the intracellular protozoan, Leishmania. A current treatment for cutaneous leishmaniasis involves the delivery of imidazoquinolines via a topical cream. However, there are no parenteral formulations of imidazoquinolines for the most deadly version of the disease, visceral leishmaniasis. This work investigates the use of electrospray to encapsulate the imidazoquinoline adjuvant resiquimod in acid sensitive microparticles composed of acetalated dextran (Ac-DEX) or Ac-DEX/Tween blends. The particles were characterized and tested both in vitro and in vivo. Solutions of Ac-DEX and resiquimod in ethanol were electrosprayed to generate approximately 2 μm Ac-DEX particles containing resiquimod with an encapsulation efficiency of 85%. To prevent particle aggregation, blends of Ac-DEX with Tween 20 and Tween 80 were investigated. Tween 80 was then blended with the Ac-DEX at ∼10% (w/w) of total polymer and particles containing resiquimod were formed via electrospray with encapsulation efficiencies between 40% and 60%. In vitro release profiles of resiquimod from Ac-DEX/Tween 80 particles exhibited the acid-sensitive nature of Ac-DEX, with 100% drug release after 8 h at pH 5 (phagosomal pH) and after 48 h at pH 7.4 (physiological pH). Treatment with Ac-DEX/Tween 80 particles elicited significantly greater immune response in RAW macrophages over free drug. When injected intravenously into mice inoculated with Leishmania, parasite load reduced significantly in the bone marrow compared to blank particles and phosphate-buffered saline controls. Overall, electrospray appears to offer an elegant, scalable way to encapsulate adjuvant into an acid sensitive delivery vehicle for use in treating visceral leishmaniasis.
Collapse
Affiliation(s)
- Anthony D. Duong
- William G. Lowrie Department of Chemical and Biomolecular Engineering, College of Engineering; The Ohio State University, Columbus, Ohio 43210, United States
| | - Sadhana Sharma
- Division of Pharmaceutics, College of Pharmacy; The Ohio State University, Columbus, Ohio 43210, United States
| | - Kevin J. Peine
- Molecular, Cellular and Developmental Biology Graduate Program; The Ohio State University, Columbus, Ohio 43210, United States
| | - Gaurav Gupta
- Department of Pathology, College of Medicine; The Ohio State University, Columbus, Ohio 43210, United States
| | - Abhay R. Satoskar
- Department of Pathology, College of Medicine; The Ohio State University, Columbus, Ohio 43210, United States
| | - Eric M. Bachelder
- Division of Pharmaceutics, College of Pharmacy; The Ohio State University, Columbus, Ohio 43210, United States
| | - Barbra E. Wyslouzil
- William G. Lowrie Department of Chemical and Biomolecular Engineering, College of Engineering; The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kristy M. Ainslie
- William G. Lowrie Department of Chemical and Biomolecular Engineering, College of Engineering; The Ohio State University, Columbus, Ohio 43210, United States
- Division of Pharmaceutics, College of Pharmacy; The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
82
|
Shakya AK, Nandakumar KS. Applications of polymeric adjuvants in studying autoimmune responses and vaccination against infectious diseases. J R Soc Interface 2013; 10:20120536. [PMID: 23173193 PMCID: PMC3565688 DOI: 10.1098/rsif.2012.0536] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/01/2012] [Indexed: 12/18/2022] Open
Abstract
Polymers as an adjuvant are capable of enhancing the vaccine potential against various infectious diseases and also are being used to study the actual autoimmune responses using self-antigen(s) without involving any major immune deviation. Several natural polysaccharides and their derivatives originating from microbes and plants have been tested for their adjuvant potential. Similarly, numerous synthetic polymers including polyelectrolytes, polyesters, polyanhydrides, non-ionic block copolymers and external stimuli responsive polymers have demonstrated adjuvant capacity using different antigens. Adjuvant potential of these polymers mainly depends on their solubility, molecular weight, degree of branching and the conformation of polymeric backbone. These polymers have the ability not only to activate humoral but also cellular immune responses in the host. The depot effect, which involves slow release of antigen over a long duration of time, using different forms (particulate, solution and gel) of polymers, and enhances the co-stimulatory signals for optimal immune activation, is the underlying principle of their adjuvant properties. Possibly, polymers may also interact and activate various toll-like receptors and inflammasomes, thus involving several innate immune system players in the ensuing immune response. Biocompatibility, biodegradability, easy production and purification, and non-toxic properties of most of the polymers make them attractive candidates for substituting conventional adjuvants that have undesirable effects in the host.
Collapse
Affiliation(s)
| | - Kutty Selva Nandakumar
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
83
|
Schully KL, Sharma S, Peine KJ, Pesce J, Elberson MA, Fonseca ME, Prouty AM, Bell MG, Borteh H, Gallovic M, Bachelder EM, Keane-Myers A, Ainslie KM. Rapid vaccination using an acetalated dextran microparticulate subunit vaccine confers protection against triplicate challenge by bacillus anthracis. Pharm Res 2013; 30:1349-61. [PMID: 23354770 DOI: 10.1007/s11095-013-0975-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/04/2013] [Indexed: 01/20/2023]
Abstract
PURPOSE A rapid immune response is required to prevent death from Anthrax, caused by Bacillus anthracis. METHOD We formulated a vaccine carrier comprised of acetalated dextran microparticles encapsulating recombinant protective antigen (rPA) and resiquimod (a toll-like receptor 7/8 agonist). RESULTS We were able to protect against triplicate lethal challenge by vaccinating twice (Days 0, 7) and then aggressively challenging on Days 14, 21, 28. A significantly higher level of antibodies was generated by day 14 with the encapsulated group compared to the conventional rPA and alum group. Antibodies produced by the co-encapsulated group were only weakly-neutralizing in toxin neutralization; however, survival was not dependent on toxin neutralization, as all vaccine formulations survived all challenges except control groups. Post-mortem culture swabs taken from the hearts of vaccinated groups that did not produce significant neutralizing titers failed to grow B. anthracis. CONCLUSIONS Results indicate that protective antibodies are not required for rapid protection; indeed, cytokine results indicate that T cell protection may play a role in protection from anthrax. We report the first instance of use of a particulate carrier to generate a rapid protective immunity against anthrax.
Collapse
Affiliation(s)
- Kevin L Schully
- Vaccine and Medical Countermeasures Department Biological Defense Research Directorate Naval Medical Research Center, Silver Spring, Maryland 20910, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Qiao ZY, Cheng J, Ji R, Du FS, Liang DH, Ji SP, Li ZC. Biocompatible acid-labile polymersomes from PEO-b-PVA derived amphiphilic block copolymers. RSC Adv 2013. [DOI: 10.1039/c3ra42824a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
85
|
Ornelas-Megiatto C, Shah PN, Wich PR, Cohen JL, Tagaev JA, Smolen JA, Wright BD, Panzner MJ, Youngs WJ, Fréchet JMJ, Cannon CL. Aerosolized antimicrobial agents based on degradable dextran nanoparticles loaded with silver carbene complexes. Mol Pharm 2012; 9:3012-22. [PMID: 23025592 PMCID: PMC3579655 DOI: 10.1021/mp3004379] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Degradable acetalated dextran (Ac-DEX) nanoparticles were prepared and loaded with a hydrophobic silver carbene complex (SCC) by a single-emulsion process. The resulting particles were characterized for morphology and size distribution using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The average particle size and particle size distribution were found to be a function of the ratio of the organic phase to the surfactant containing aqueous phase with a 1:5 volume ratio of Ac-DEX CH(2)Cl(2) (organic):PBS (aqueous) being optimal for the formulation of nanoparticles with an average size of 100 ± 40 nm and a low polydispersity. The SCC loading was found to increase with an increase in the SCC quantity in the initial feed used during particle formulation up to 30% (w/w); however, the encapsulation efficiency was observed to be the best at a feed ratio of 20% (w/w). In vitro efficacy testing of the SCC loaded Ac-DEX nanoparticles demonstrated their activity against both Gram-negative and Gram-positive bacteria; the nanoparticles inhibited the growth of every bacterial species tested. As expected, a higher concentration of drug was required to inhibit bacterial growth when the drug was encapsulated within the nanoparticle formulations compared with the free drug illustrating the desired depot release. Compared with free drug, the Ac-DEX nanoparticles were much more readily suspended in an aqueous phase and subsequently aerosolized, thus providing an effective method of pulmonary drug delivery.
Collapse
Affiliation(s)
- Cátia Ornelas-Megiatto
- College of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Duong HTT, Hughes F, Sagnella S, Kavallaris M, Macmillan A, Whan R, Hook J, Davis TP, Boyer C. Functionalizing Biodegradable Dextran Scaffolds Using Living Radical Polymerization: New Versatile Nanoparticles for the Delivery of Therapeutic Molecules. Mol Pharm 2012; 9:3046-61. [DOI: 10.1021/mp300144y] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hien T. T. Duong
- Australian
Centre for NanoMedicine‡Children’s Cancer Institute Australia, Lowy
Cancer Research Centre, §Biomedical Imaging Facility, Mark Wainwright
Analytical Centre, ∥Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney,
NSW 2052, Australia
| | - Felicity Hughes
- Australian
Centre for NanoMedicine‡Children’s Cancer Institute Australia, Lowy
Cancer Research Centre, §Biomedical Imaging Facility, Mark Wainwright
Analytical Centre, ∥Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney,
NSW 2052, Australia
| | - Sharon Sagnella
- Australian
Centre for NanoMedicine‡Children’s Cancer Institute Australia, Lowy
Cancer Research Centre, §Biomedical Imaging Facility, Mark Wainwright
Analytical Centre, ∥Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney,
NSW 2052, Australia
| | - Maria Kavallaris
- Australian
Centre for NanoMedicine‡Children’s Cancer Institute Australia, Lowy
Cancer Research Centre, §Biomedical Imaging Facility, Mark Wainwright
Analytical Centre, ∥Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney,
NSW 2052, Australia
| | - Alexander Macmillan
- Australian
Centre for NanoMedicine‡Children’s Cancer Institute Australia, Lowy
Cancer Research Centre, §Biomedical Imaging Facility, Mark Wainwright
Analytical Centre, ∥Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney,
NSW 2052, Australia
| | - Renee Whan
- Australian
Centre for NanoMedicine‡Children’s Cancer Institute Australia, Lowy
Cancer Research Centre, §Biomedical Imaging Facility, Mark Wainwright
Analytical Centre, ∥Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney,
NSW 2052, Australia
| | - James Hook
- Australian
Centre for NanoMedicine‡Children’s Cancer Institute Australia, Lowy
Cancer Research Centre, §Biomedical Imaging Facility, Mark Wainwright
Analytical Centre, ∥Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney,
NSW 2052, Australia
| | - Thomas P. Davis
- Australian
Centre for NanoMedicine‡Children’s Cancer Institute Australia, Lowy
Cancer Research Centre, §Biomedical Imaging Facility, Mark Wainwright
Analytical Centre, ∥Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney,
NSW 2052, Australia
| | - Cyrille Boyer
- Australian
Centre for NanoMedicine‡Children’s Cancer Institute Australia, Lowy
Cancer Research Centre, §Biomedical Imaging Facility, Mark Wainwright
Analytical Centre, ∥Nuclear Magnetic Resonance Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney,
NSW 2052, Australia
| |
Collapse
|
87
|
Kauffman KJ, Do C, Sharma S, Gallovic MD, Bachelder EM, Ainslie KM. Synthesis and characterization of acetalated dextran polymer and microparticles with ethanol as a degradation product. ACS APPLIED MATERIALS & INTERFACES 2012; 4:4149-4155. [PMID: 22833690 DOI: 10.1021/am3008888] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In the field of drug delivery, pH-sensitive polymeric microparticles can be used to release therapeutic payloads slowly in extracellular conditions (pH 7.4) and faster in more acidic areas in vivo, such as sites of inflammation, tumors, or intracellular conditions. Our group currently uses and is further developing the pH-sensitive polymer acetalated dextran (Ac-DEX), which is a biodegradable polymer with highly tunable degradation kinetics. Ac-DEX has displayed enhanced delivery of vaccine and drug components to immune and other cells, making it an extremely desirable polymer for immune applications. Currently, one of the degradation products of Ac-DEX is methanol, which may cause toxicity issues if applied at high concentrations with repeated doses. Therefore, in this manuscript we report the first synthesis and characterization of an Ac-DEX analog which, instead of a methanol degradation product, has a much safer ethanol degradation product. We abbreviate this ethoxy acetal derivatized acetalated dextran polymer as Ace-DEX, with the 'e' to indicate an ethanol degradation product. Like Ac-DEX, Ace-DEX microparticles have tunable degradation rates at pH 5 (intracellular). These rates range from hours to several days and are controlled simply by reaction time. Ace-DEX microparticles also show minimal cytotoxicity compared to commonly used poly(lactic-co-glycolic acid) (PLGA) microparticles when incubated with macrophages. This study aims to enhance the biocompatibility of acetalated dextran-type polymers to allow their use in high volume clinical applications such as multiple dosing and tissue engineering.
Collapse
Affiliation(s)
- Kevin J Kauffman
- William G. Lowrie Department of Chemical and Biomolecular Engineering, College of Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | | | | | | | |
Collapse
|
88
|
Wang YJ, Lin HY, Wu CH, Liu DM. Forming of Demethoxycurcumin Nanocrystallite-Chitosan Nanocarrier for Controlled Low Dose Cellular Release for Inhibition of the Migration of Vascular Smooth Muscle Cells. Mol Pharm 2012; 9:2268-79. [DOI: 10.1021/mp300150q] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yen-Jen Wang
- Nano-Bioengineering Laboratory,
Department of Materials Science and Engineering, National Chiao Tung
University, Hsinchu 300, Taiwan
| | - Hui-Yi Lin
- Department of Pharmacology,
China Medical University, Taichung 404, Taiwan
| | - Chieh-Hsi Wu
- Department of Pharmacology,
China Medical University, Taichung 404, Taiwan
| | - Dean-Mo Liu
- Nano-Bioengineering Laboratory,
Department of Materials Science and Engineering, National Chiao Tung
University, Hsinchu 300, Taiwan
| |
Collapse
|
89
|
Kanthamneni N, Sharma S, Meenach SA, Billet B, Zhao JC, Bachelder EM, Ainslie KM. Enhanced stability of horseradish peroxidase encapsulated in acetalated dextran microparticles stored outside cold chain conditions. Int J Pharm 2012; 431:101-10. [PMID: 22548844 DOI: 10.1016/j.ijpharm.2012.04.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 04/03/2012] [Accepted: 04/16/2012] [Indexed: 01/15/2023]
Abstract
Micro- and nanoparticles have been shown to improve the efficacy of safer protein-based (subunit) vaccines. Here, we evaluate a method of improving the vaccine stability outside cold chain conditions by encapsulation of a model enzyme, horseradish peroxidase (HRP), in an acid-sensitive, tunable biodegradable polymer, acetalated dextran (Ac-DEX). Vaccines that are stable outside the cold chain would be desirable for use in developing nations. Ac-DEX particles encapsulating HRP were prepared using two different methods, probe sonication and homogenization. These particles were stored under different storage conditions (-20 °C, 4 °C, 25 °C or 45 °C) for a period of 3 months. On different days, the particles were characterized for various physical and chemical measurements. At all conditions, Ac-DEX particles remained spherical in nature, as compared to PLGA particles that fused together starting at day 3 at 45 °C. Furthermore, our results indicated that encapsulation of HRP in Ac-DEX reduces its storage temperature dependence and enhances its stability outside cold chain conditions. Homogenized particles performed better than probe sonicated particles and retained 70% of the enzyme's initial activity as compared to free HRP that retained only 40% of the initial activity after 3 months of storage at 25 °C or 45 °C. Additionally, HRP activity was more stable when encapsulated in Ac-DEX, and the variance in enzyme activity between the different storage temperatures was not observed for either particle preparation. This suggests that storage at a constant temperature is not required with vaccines encapsulated in Ac-DEX particles. Overall, our results suggest that an Ac-DEX based micro-/nanoparticles system has wide applications as vaccines and drug delivery carriers, including those in developing nations.
Collapse
Affiliation(s)
- Naveen Kanthamneni
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
90
|
Al-Qadi S, Grenha A, Carrión-Recio D, Seijo B, Remuñán-López C. Microencapsulated chitosan nanoparticles for pulmonary protein delivery: In vivo evaluation of insulin-loaded formulations. J Control Release 2012; 157:383-90. [DOI: 10.1016/j.jconrel.2011.08.008] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 08/05/2011] [Accepted: 08/05/2011] [Indexed: 11/17/2022]
|
91
|
Meenach SA, Kim YJ, Kauffman KJ, Kanthamneni N, Bachelder EM, Ainslie KM. Synthesis, Optimization, and Characterization of Camptothecin-Loaded Acetalated Dextran Porous Microparticles for Pulmonary Delivery. Mol Pharm 2012; 9:290-8. [DOI: 10.1021/mp2003785] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Samantha A. Meenach
- Division
of Pharmaceutics, College of Pharmacy and ‡Department of Chemical and Biomolecular
Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yu Jeong Kim
- Division
of Pharmaceutics, College of Pharmacy and ‡Department of Chemical and Biomolecular
Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kevin J. Kauffman
- Division
of Pharmaceutics, College of Pharmacy and ‡Department of Chemical and Biomolecular
Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Naveen Kanthamneni
- Division
of Pharmaceutics, College of Pharmacy and ‡Department of Chemical and Biomolecular
Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Eric M. Bachelder
- Division
of Pharmaceutics, College of Pharmacy and ‡Department of Chemical and Biomolecular
Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kristy M. Ainslie
- Division
of Pharmaceutics, College of Pharmacy and ‡Department of Chemical and Biomolecular
Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
92
|
Abstract
Successful gene therapy depends both on the effective transport and the stable expression of therapeutic genes to produce and regulate disease related proteins. In this context, non-viral gene delivery vehicles are regarded as one of the most promising approaches for the efficient and safe transport of genetic material to and into the target cells. This short review describes the development of novel particulate delivery vehicles based on the biopolymer dextran. This multifunctional platform was designed to safely transport genetic material across cell membranes, followed by an acid triggered release that causes overall high transfection efficiency. The biocompatibility and its unique tunability differentiate this new carrier system from previous particle systems, showing high potential for the treatment of several disease models in RNA interference related applications.
Collapse
|
93
|
Kauffman KJ, Kanthamneni N, Meenach SA, Pierson BC, Bachelder EM, Ainslie KM. Optimization of rapamycin-loaded acetalated dextran microparticles for immunosuppression. Int J Pharm 2012; 422:356-63. [DOI: 10.1016/j.ijpharm.2011.10.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 09/28/2011] [Accepted: 10/17/2011] [Indexed: 01/19/2023]
|
94
|
Youngs WJ, Knapp AR, Wagers PO, Tessier CA. Nanoparticle encapsulated silvercarbene complexes and their antimicrobial and anticancer properties: A perspective. Dalton Trans 2012; 41:327-36. [DOI: 10.1039/c1dt11100k] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
95
|
Zubris KAV, Colson YL, Grinstaff MW. Hydrogels as intracellular depots for drug delivery. Mol Pharm 2011; 9:196-200. [PMID: 22053709 DOI: 10.1021/mp200367s] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The intracellular activity and drug depot characteristics of micrometer-sized hydrogels are described. The hydrogel structure is formed after cellular uptake of a solid polymeric nanoparticle that swells in response to mildly acidic conditions as it transforms from a hydrophobic to a hydrophilic structure. These nanoparticles are rapidly taken up into A549 human non-small cell lung cancer cells with 88.3 ± 0.8% of cells experiencing uptake in 24 h, undergo expansion to release encapsulated drug and can effectively deliver chemotherapeutics in vitro. The anticancer drug paclitaxel was also shown to have a 3- to 4-fold increased affinity for the expanded nanoparticle state, allowing the expansile nanoparticles to act as intracellular drug depots and concentrate the drug locally.
Collapse
Affiliation(s)
- Kimberly Ann V Zubris
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | | | | |
Collapse
|
96
|
Abstract
The role for adjuvants in human vaccines has been a matter of vigorous scientific debate, with the field hindered by the fact that for over 80 years, aluminum salts were the only adjuvants approved for human use. To this day, alum-based adjuvants, alone or combined with additional immune activators, remain the only adjuvants approved for use in the USA. This situation has not been helped by the fact that the mechanism of action of most adjuvants has been poorly understood. A relative lack of resources and funding for adjuvant development has only helped to maintain alum's relative monopoly. To seriously challenge alum's supremacy a new adjuvant has many major hurdles to overcome, not least being alum's simplicity, tolerability, safety record and minimal cost. Carbohydrate structures play critical roles in immune system function and carbohydrates also have the virtue of a strong safety and tolerability record. A number of carbohydrate compounds from plant, bacterial, yeast and synthetic sources have emerged as promising vaccine adjuvant candidates. Carbohydrates are readily biodegradable and therefore unlikely to cause problems of long-term tissue deposits seen with alum adjuvants. Above all, the Holy Grail of human adjuvant development is to identify a compound that combines potent vaccine enhancement with maximum tolerability and safety. This has proved to be a tough challenge for many adjuvant contenders. Nevertheless, carbohydrate-based compounds have many favorable properties that could place them in a unique position to challenge alum's monopoly over human vaccine usage.
Collapse
Affiliation(s)
- Nikolai Petrovsky
- Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University, Adelaide, 5042 Australia.
| | | |
Collapse
|
97
|
Cohen JL, Schubert S, Wich PR, Cui L, Cohen JA, Mynar JL, Fréchet JMJ. Acid-degradable cationic dextran particles for the delivery of siRNA therapeutics. Bioconjug Chem 2011; 22:1056-65. [PMID: 21539393 PMCID: PMC3152952 DOI: 10.1021/bc100542r] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a new acid-sensitive, biocompatible, and biodegradable microparticulate delivery system, spermine modified acetalated-dextran (Spermine-Ac-DEX), which can be used to efficiently encapsulate siRNA. These particles demonstrated efficient gene knockdown in HeLa-luc cells with minimal toxicity. This knockdown was comparable to that obtained using Lipofectamine, a commercially available transfection reagent generally limited to in vitro use due to its high toxicity.
Collapse
Affiliation(s)
- Jessica L. Cohen
- College of Chemistry, University of California, Berkeley, California 94720-1460, USA
| | | | - Peter R. Wich
- College of Chemistry, University of California, Berkeley, California 94720-1460, USA
| | - Lina Cui
- College of Chemistry, University of California, Berkeley, California 94720-1460, USA
| | | | - Justin L. Mynar
- College of Chemistry, University of California, Berkeley, California 94720-1460, USA
| | - Jean M. J. Fréchet
- College of Chemistry, University of California, Berkeley, California 94720-1460, USA
| |
Collapse
|
98
|
Cui L, Cohen JA, Broaders KE, Beaudette TT, Fréchet JMJ. Mannosylated dextran nanoparticles: a pH-sensitive system engineered for immunomodulation through mannose targeting. Bioconjug Chem 2011; 22:949-57. [PMID: 21476603 DOI: 10.1021/bc100596w] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Biotherapeutic delivery is a rapidly growing field in need of new materials that are easy to modify, are biocompatible, and provide for triggered release of their encapsulated cargo. Herein, we report on a particulate system made of a polysaccharide-based pH-sensitive material that can be efficiently modified to display mannose-based ligands of cell-surface receptors. These ligands are beneficial for antigen delivery, as they enhance internalization and activation of APCs, and are thus capable of modulating immune responses. When compared to unmodified particles or particles modified with a nonspecific sugar residue used in the delivery of antigens to dendritic cells (DCs), the mannosylated particles exhibited enhanced antigen presentation in the context of major histocompatibility complex (MHC) class I molecules. This represents the first demonstration of a mannosylated particulate system that enables enhanced MHC I antigen presentation by DCs in vitro. Our readily functionalized pH-sensitive material may also open new avenues in the development of optimally modulated vaccine delivery systems.
Collapse
Affiliation(s)
- Lina Cui
- College of Chemistry, University of California-Berkeley, CA 94720-1460, United States
| | | | | | | | | |
Collapse
|
99
|
A review on composite liposomal technologies for specialized drug delivery. JOURNAL OF DRUG DELIVERY 2011; 2011:939851. [PMID: 21490759 PMCID: PMC3065812 DOI: 10.1155/2011/939851] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/23/2010] [Accepted: 12/07/2010] [Indexed: 12/21/2022]
Abstract
The combination of liposomes with polymeric scaffolds could revolutionize the current state of drug delivery technology. Although liposomes have been extensively studied as a promising drug delivery model for bioactive compounds, there still remain major drawbacks for widespread pharmaceutical application. Two approaches for overcoming the factors related to the suboptimal efficacy of liposomes in drug delivery have been suggested. The first entails modifying the liposome surface with functional moieties, while the second involves integration of pre-encapsulated drug-loaded liposomes within depot polymeric scaffolds. This attempts to provide ingenious solutions to the limitations of conventional liposomes such as short plasma half-lives, toxicity, stability, and poor control of drug release over prolonged periods. This review delineates the key advances in composite technologies that merge the concepts of depot polymeric scaffolds with liposome technology to overcome the limitations of conventional liposomes for pharmaceutical applications.
Collapse
|
100
|
Cohen JA, Beaudette TT, Cohen JL, Broaders KE, Bachelder EM, Fréchet JMJ. Acetal-modified dextran microparticles with controlled degradation kinetics and surface functionality for gene delivery in phagocytic and non-phagocytic cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:3593-7. [PMID: 20518040 PMCID: PMC3379559 DOI: 10.1002/adma.201000307] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
|