51
|
Pan Q, Tian J, Zhu H, Hong L, Mao Z, Oliveira JM, Reis RL, Li X. Tumor-Targeting Polycaprolactone Nanoparticles with Codelivery of Paclitaxel and IR780 for Combinational Therapy of Drug-Resistant Ovarian Cancer. ACS Biomater Sci Eng 2020; 6:2175-2185. [DOI: 10.1021/acsbiomaterials.0c00163] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Qianqian Pan
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P. R. China
- Zhejiang Financial College, No. 118 Xueyuan Street, Hangzhou, Zhejiang 310018, P. R. China
| | - Jingjun Tian
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P. R. China
| | - Huihui Zhu
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P. R. China
| | - Liangjie Hong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Joaquim Miguel Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables, and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables, and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Xiao Li
- Women’s Reproductive Health Laboratory of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, P. R. China
| |
Collapse
|
52
|
Xu F, Ye ML, Zhang YP, Li WJ, Li MT, Wang HZ, Qiu X, Xu Y, Yin JW, Hu Q, Wei WH, Chang Y, Liu L, Zhao Q. MicroRNA-375-3p enhances chemosensitivity to 5-fluorouracil by targeting thymidylate synthase in colorectal cancer. Cancer Sci 2020; 111:1528-1541. [PMID: 32073706 PMCID: PMC7226198 DOI: 10.1111/cas.14356] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Resistance to chemotherapy is a major challenge for the treatment of patients with colorectal cancer (CRC). Previous studies have found that microRNAs (miRNAs) play key roles in drug resistance; however, the role of miRNA‐373‐3p (miR‐375‐3p) in CRC remains unclear. The current study aimed to explore the potential function of miR‐375‐3p in 5‐fluorouracil (5‐FU) resistance. MicroRNA‐375‐3p was found to be widely downregulated in human CRC cell lines and tissues and to promote the sensitivity of CRC cells to 5‐FU by inducing colon cancer cell apoptosis and cycle arrest and by inhibiting cell growth, migration, and invasion in vitro. Thymidylate synthase (TYMS) was found to be a direct target of miR‐375‐3p, and TYMS knockdown exerted similar effects as miR‐375‐3p overexpression on the CRC cellular response to 5‐FU. Lipid‐coated calcium carbonate nanoparticles (NPs) were designed to cotransport 5‐FU and miR‐375‐3p into cells efficiently and rapidly and to release the drugs in a weakly acidic tumor microenvironment. The therapeutic effect of combined miR‐375 + 5‐FU/NPs was significantly higher than that of the individual treatments in mouse s.c. xenografts derived from HCT116 cells. Our results suggest that restoring miR‐375‐3p levels could be a future novel therapeutic strategy to enhance chemosensitivity to 5‐FU.
Collapse
Affiliation(s)
- Fei Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ming-Liang Ye
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Yu-Peng Zhang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Wen-Jie Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Meng-Ting Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Hai-Zhou Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Xiao Qiu
- Department of Hematology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Yan Xu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Jin-Wen Yin
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qian Hu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Wan-Hui Wei
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Lan Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
53
|
Xue Y, Feng J, Liu Y, Che J, Bai G, Dong X, Wu F, Jin T. A Synthetic Carrier of Nucleic Acids Structured as a Neutral Phospholipid Envelope Tightly Assembled on Polyplex Surface. Adv Healthc Mater 2020; 9:e1901705. [PMID: 31977157 DOI: 10.1002/adhm.201901705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/05/2020] [Indexed: 12/24/2022]
Abstract
Synthetic carriers of nucleic acids remain inefficient for practical applications due to their insufficient functions as compared with viral vectors developed by evolution. Here, a synthetic carrier is designed to structurally mimic lentivirus, a widely-used viral vector in therapeutic developments, for its neutral phospholipid membrane tightly anchored on the surface of a packed nucleic acid core. Unlike the reported lipopolyplexes of which the surface membrane around the nucleic acid core is formed from charged lipids, the stable attachment of the neutral lipids to each polyplex core in the present system is achieved through preadsorbed micelles of multicarboxyl amphiphilic molecules as lipid bilayer anchors. The adsorbed micelles are under a tension of deformation due to the electrostatic attraction of the head groups to the cationic surface and their "thermodynamic responsibility" to cover the hydrophobic tails in water. When liposomes of neutral phospholipids approach, the hydrophobic tail groups of the adsorbed micelles may insert into the lipid bilayer matrix to induce them to fuse around polyplex and relieve the thermodynamic tension. The formed neutral phospholipid membrane may encapsulate the polyplex core stably, prevent siRNA from prephagocytic leaking and degrading, and immobilize functional agents with increased capacity.
Collapse
Affiliation(s)
- Yonger Xue
- Center for BioDelivery SciencesSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 P. R. China
| | - Jia Feng
- Center for BioDelivery SciencesSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 P. R. China
| | - Yilei Liu
- Center for BioDelivery SciencesSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 P. R. China
| | - Junyi Che
- Center for BioDelivery SciencesSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 P. R. China
| | - Guang Bai
- Center for BioDelivery SciencesSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 P. R. China
| | - Xiaotao Dong
- Center for BioDelivery SciencesSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 P. R. China
| | - Fei Wu
- Center for BioDelivery SciencesSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 P. R. China
| | - Tuo Jin
- Center for BioDelivery SciencesSchool of PharmacyShanghai Jiao Tong University 800 Dongchuan Rd Shanghai 200240 P. R. China
| |
Collapse
|
54
|
Redox-responsive polyprodrug nanoparticles for targeted siRNA delivery and synergistic liver cancer therapy. Biomaterials 2020; 234:119760. [DOI: 10.1016/j.biomaterials.2020.119760] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
|
55
|
Oliveira ACN, Fernandes J, Gonçalves A, Gomes AC, Oliveira MECDR. Lipid-based Nanocarriers for siRNA Delivery: Challenges, Strategies and the Lessons Learned from the DODAX: MO Liposomal System. Curr Drug Targets 2020; 20:29-50. [PMID: 29968536 DOI: 10.2174/1389450119666180703145410] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/24/2018] [Accepted: 06/28/2018] [Indexed: 12/19/2022]
Abstract
The possibility of using the RNA interference (RNAi) mechanisms in gene therapy was one of the scientific breakthroughs of the last century. Despite the extraordinary therapeutic potential of this approach, the need for an efficient gene carrier is hampering the translation of the RNAi technology to the clinical setting. Although a diversity of nanocarriers has been described, liposomes continue to be one of the most attractive siRNA vehicles due to their relatively low toxicity, facilitated siRNA complexation, high transfection efficiency and enhanced pharmacokinetic properties. This review focuses on RNAi as a therapeutic approach, the challenges to its application, namely the nucleic acids' delivery process, and current strategies to improve therapeutic efficacy. Additionally, lipid-based nanocarriers are described, and lessons learned from the relation between biophysical properties and biological performance of the dioctadecyldimethylammonium:monoolein (DODAX: MO) system are explored. Liposomes show great potential as siRNA delivery systems, being safe nanocarriers to protect nucleic acids in circulation, extend their half-life time, target specific cells and reduce off-target effects. Nevertheless, several issues related to delivery must be overcome before RNAi therapies reach their full potential, namely target-cell specificity and endosomal escape. Understanding the relationship between biophysical properties and biological performance is an essential step in the gene therapy field.
Collapse
Affiliation(s)
- Ana C N Oliveira
- CBMA (Center of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.,CFUM (Center of Physics), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Joana Fernandes
- CBMA (Center of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Anabela Gonçalves
- CBMA (Center of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Andreia C Gomes
- CBMA (Center of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - M E C D Real Oliveira
- CFUM (Center of Physics), Department of Physics, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
56
|
Ray L. Synergistic anticancer activity by co-delivered nanosized dual therapeutic agents and siRNA in colon cancer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
57
|
Nanomedicine in osteosarcoma therapy: Micelleplexes for delivery of nucleic acids and drugs toward osteosarcoma-targeted therapies. Eur J Pharm Biopharm 2020; 148:88-106. [PMID: 31958514 DOI: 10.1016/j.ejpb.2019.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/09/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023]
Abstract
Osteosarcoma(OS) represents the main cancer affecting bone tissue, and one of the most frequent in children. In this review we discuss the major pathological hallmarks of this pathology, its current therapeutics, new active biomolecules, as well as the nanotechnology outbreak applied to the development of innovative strategies for selective OS targeting. Small RNA molecules play a role as key-regulator molecules capable of orchestrate different responses in what concerns cancer initiation, proliferation, migration and invasiveness. Frequently associated with lung metastasis, new strategies are urgent to upgrade the therapeutic outcomes and the life-expectancy prospects. Hence, the prominent rise of micelleplexes as multifaceted and efficient structures for nucleic acid delivery and selective drug targeting is revisited here with special emphasis on ligand-mediated active targeting. Future landmarks toward the development of novel nanostrategies for both OS diagnosis and OS therapy improvements are also discussed.
Collapse
|
58
|
Li W, Yan R, Liu Y, He C, Zhang X, Lu Y, Khan MW, Xu C, Yang T, Xiang G. Co-delivery of Bmi1 small interfering RNA with ursolic acid by folate receptor-targeted cationic liposomes enhances anti-tumor activity of ursolic acid in vitro and in vivo. Drug Deliv 2019; 26:794-802. [PMID: 31366257 PMCID: PMC6711155 DOI: 10.1080/10717544.2019.1645244] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 01/08/2023] Open
Abstract
Overexpression of Bmi1 gene is an important feature of cancer stem cell in various human tumors. Therefore, Bmi1 gene can be a potential target for small interfering RNA (siRNA) mediated cancer therapy. Ursolic acid (UA) as a natural product plays a pivotal role in anti-tumor field, although its performance is limited by low bioavailability and poor hydrophilicity. A folate receptor-targeted cationic liposome system was designed for the purpose of investigating the relationship between Bmil siRNA and UA. The folate receptor-targeted cationic liposomes co-delivering UA and Bmi1 siRNA (FA-UA/siRNA-L) were fabricated by electrostatic interaction between folate UA liposome (FA-UA-L) and Bmi1 siRNA. Tumor growth is inhibited by FA-UA/siRNA-L in vitro and in vivo and this inhibition is contributed by a synergistic anti-tumor effect of UA and Bmi1 siRNA. The western blot measurement of apoptosis-protein and cancer stem cell (CSC) marked-protein demonstrated that UA led to activation-induced tumor cell death and Bmi1 siRNA resulted in inhibition of cancer stem cells. Overall, these results indicate that Bmi1 as a regulating gene for cancer stem cell is an effective target for cancer treatment using siRNA and co-delivery of UA and Bmi1 siRNA using folate-targeted liposomes is a promising strategy for improved anti-tumor effect.
Collapse
Affiliation(s)
- Weijie Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Ruicong Yan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yong Liu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Chuanchuan He
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Xiaojuan Zhang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Yao Lu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Muhammad Waseem Khan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Chuanrui Xu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Tan Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P. R. China
| |
Collapse
|
59
|
Sahoo S, Kayal S, Poddar P, Dhara D. Redox-Responsive Efficient DNA and Drug Co-Release from Micelleplexes Formed from a Fluorescent Cationic Amphiphilic Polymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14616-14627. [PMID: 31613101 DOI: 10.1021/acs.langmuir.9b02921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cationic polymeric micelles that are capable of co-releasing drugs and DNA into cells have attracted considerable interest as combination chemotherapy in cancer treatment. To this effect, we have presently developed a cationic fluorescent amphiphilic copolymer, poly(N,N'-dimethylaminoethylmethacrylate)-b-(poly(2-(methacryloyl)oxyethyl-2'-hydroxyethyl disulfidecholate)-r-2-(methacryloyloxy)ethyl-1-pyrenebutyrate) [PDMAEMA-b-(PMAODCA-r-PPBA)], having pendent cholate moiety linked through a redox-responsive disulfide bond. The amphiphilic nature of the copolymer facilitated the formation of cationic micellar nanoparticles in aqueous medium. The self-assembly of the copolymer to form micelles and subsequent destabilization of the micelles in the presence of glutathione (GSH) was monitored by the change in the fluorescence characteristic of the attached pyrene resulting from alteration in the hydrophobicity of its neighborhood. These micellar nanoparticles were subsequently utilized in encapsulating hydrophobic anticancer drug, doxorubicin (DOX), in the core of the micelles, whereas the cationic shell of the micelles was used for complexation with oppositely charged DNA to form micelleplexes. Gel retardation assays, ethidium bromide (EB) exclusion assay, and DLS and AFM studies confirmed the successful binding of the cationic micelles with DNA. The binding capability of the micelles was higher than corresponding cationic linear PDMAEMA. The kinetics of the simultaneous release of encapsulated DOX and complexed DNA in the presence of glutathione was thoroughly studied using various techniques. All the experiments showed fast and efficient release of DOX and DNA from DOX-loaded micelleplexes. The study implies that these redox-responsive cationic micelles may open up new opportunities toward co-delivery of DNA and anticancer drugs in combinatorial therapy.
Collapse
Affiliation(s)
- Satyagopal Sahoo
- Department of Chemistry , Indian Institute of Technology Kharagpur , Kharagpur , West Bengal 721302 , India
| | - Shibayan Kayal
- Department of Chemistry , Indian Institute of Technology Kharagpur , Kharagpur , West Bengal 721302 , India
| | - Puja Poddar
- Department of Chemistry , Indian Institute of Technology Kharagpur , Kharagpur , West Bengal 721302 , India
| | - Dibakar Dhara
- Department of Chemistry , Indian Institute of Technology Kharagpur , Kharagpur , West Bengal 721302 , India
| |
Collapse
|
60
|
Hoang MD, Vandamme M, Kratassiouk G, Pinna G, Gravel E, Doris E. Tuning the cationic interface of simple polydiacetylene micelles to improve siRNA delivery at the cellular level. NANOSCALE ADVANCES 2019; 1:4331-4338. [PMID: 36134419 PMCID: PMC9418740 DOI: 10.1039/c9na00571d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/23/2019] [Indexed: 06/12/2023]
Abstract
Polydiacetylene micelles were assembled from four different cationic amphiphiles and photopolymerized to reinforce their architecture. The produced micelles were systematically investigated, in interaction with siRNAs, for intracellular delivery of the silencing nucleic acids. The performances of the carrier systems were rationalized based on the cell penetrating properties of the micelles and the nature of their cationic complexing group, responsible for efficient siRNA binding and further endosomal escape.
Collapse
Affiliation(s)
- Minh-Duc Hoang
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay 91191 Gif-sur-Yvette France
| | - Marie Vandamme
- Plateforme ARN Interférence, Service de Biologie Intégrative et de Génétique Moléculaire (SBIGeM), I2BC, CEA, CNRS, Université Paris-Saclay 91191 Gif-sur-Yvette France
| | - Gueorgui Kratassiouk
- Plateforme ARN Interférence, Service de Biologie Intégrative et de Génétique Moléculaire (SBIGeM), I2BC, CEA, CNRS, Université Paris-Saclay 91191 Gif-sur-Yvette France
| | - Guillaume Pinna
- Plateforme ARN Interférence, Service de Biologie Intégrative et de Génétique Moléculaire (SBIGeM), I2BC, CEA, CNRS, Université Paris-Saclay 91191 Gif-sur-Yvette France
| | - Edmond Gravel
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay 91191 Gif-sur-Yvette France
| | - Eric Doris
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay 91191 Gif-sur-Yvette France
| |
Collapse
|
61
|
Khan AA, Alanazi AM, Jabeen M, Chauhan A, Ansari MA. Therapeutic potential of functionalized siRNA nanoparticles on regression of liver cancer in experimental mice. Sci Rep 2019; 9:15825. [PMID: 31676815 PMCID: PMC6825139 DOI: 10.1038/s41598-019-52142-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022] Open
Abstract
Short interfering RNA (siRNA) possesses special ability of silencing specific gene. To increase siRNA stability, transportation and its uptake by tumor cells, effective delivery to the appropriate target cells is a major challenge of siRNA-based therapy. In the present study, an effective, safe and biocompatible survivin siRNA encapsulated, GalNAc decorated PEGylated PLGA nanoconjugates (NCs) viz., GalNAc@PEG@siRNA-PLGA were engineered and their synergistic antitumor efficacy was evaluated for targeted delivery in HCC bearing experimental mice. GalNAc@PEG@siRNA-PLGA NCs were characterized for size, bioavailability, toxicity and biocompatibility. Their antitumor potential was evaluated considering gene silencing, apoptosis, histopathology and survival of treated mice. Exceptional accumulation of hepatocytes, reduction in survivin expression and prominent regression in tumor size confirmed the ASGPR-mediated uptake of ligand-anchored NCs and silencing of survivin gene in a targeted manner. Increased DNA fragmentation and potential modulation of caspase-3, Bax and Bcl-2 factors specified the induction of apoptosis that helped in significant inhibition of HCC progression. The potential synchronous and tumor selective delivery of versatile NCs indicated the effective payloads towards the target site, increased apoptosis in cancer cells and improved survival of treated animals.
Collapse
Affiliation(s)
- Azmat Ali Khan
- 0000 0004 1773 5396grid.56302.32Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Amer M. Alanazi
- 0000 0004 1773 5396grid.56302.32Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451 Saudi Arabia
| | - Mumtaz Jabeen
- 0000 0004 1937 0765grid.411340.3Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, India
| | - Arun Chauhan
- 0000 0004 1936 8163grid.266862.eDepartment of Neuroimmunology, School of Health and Medicine, University of North Dakota, Grand Forks, ND USA
| | - Mohammad Azam Ansari
- 0000 0004 0607 035Xgrid.411975.fDepartment of Epidemic Disease Research, Institutes of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, 31441 Dammam, Saudi Arabia
| |
Collapse
|
62
|
Tan Z, Jiang Y, Zhang W, Karls L, Lodge TP, Reineke TM. Polycation Architecture and Assembly Direct Successful Gene Delivery: Micelleplexes Outperform Polyplexes via Optimal DNA Packaging. J Am Chem Soc 2019; 141:15804-15817. [PMID: 31553590 DOI: 10.1021/jacs.9b06218] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cellular delivery of biomacromolecules is vital to medical research and therapeutic development. Cationic polymers are promising and affordable candidate vehicles for these precious payloads. However, the impact of polycation architecture and solution assembly on the biological mechanisms and efficacy of these vehicles has not been clearly defined. In this study, four polymers containing the same cationic poly(2-(dimethylamino)ethyl methacrylate) (D) block but placed in different architectures have been synthesized, characterized, and compared for cargo binding and biological performance. The D homopolymer and its diblock copolymer poly(ethylene glycol)-block-poly(2-(dimethylamino) ethyl methacrylate) (OD) readily encapsulate pDNA to form polyplexes. Two amphiphilic block polymer variants, poly(2-(dimethylamino)ethyl methacrylate)-block-poly(n-butyl methacrylate) (DB) and poly(ethylene glycol)-block-poly(2-(dimethylamino)ethyl methacrylate)-block-poly(n-butyl methacrylate) (ODB), self-assemble into micelles, which template pDNA winding around the cationic corona to form micelleplexes. Micelleplexes were found to have superior delivery efficiency compared to polyplexes and detailed physicochemical and biological characterizations were performed to pinpoint the mechanisms by testing hypotheses related to cellular internalization, intracellular trafficking, and pDNA unpackaging. For the first time, we find that the higher concentration of amines housed in micelleplexes stimulates both cellular internalization and potential endosomal escape, and the physical motif of pDNA winding into micelleplexes, reminiscent of DNA compaction by histones in chromatin, preserves the pDNA secondary structure in its native B form. This likely allows greater payload accessibility for protein expression with micelleplexes compared to polyplexes, which tightly condense pDNA and significantly distort its helicity. This work provides important guidance for the design of successful biomolecular delivery systems via optimizing the physicochemical properties.
Collapse
Affiliation(s)
- Zhe Tan
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Yaming Jiang
- Department of Chemical Engineering & Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - Wenjia Zhang
- Department of Chemical Engineering & Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - Logan Karls
- Department of Chemical Engineering & Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - Timothy P Lodge
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States.,Department of Chemical Engineering & Materials Science , University of Minnesota , 421 Washington Avenue SE , Minneapolis , Minnesota 55455 , United States
| | - Theresa M Reineke
- Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
63
|
Shrestha B, Tang L, Romero G. Nanoparticles‐Mediated Combination Therapies for Cancer Treatment. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900076] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Liang Tang
- Department of Biomedical Engineering University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Gabriela Romero
- Department of Chemical Engineering University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
64
|
Chemical modulation of siRNA lipophilicity for efficient delivery. J Control Release 2019; 307:98-107. [DOI: 10.1016/j.jconrel.2019.06.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 11/19/2022]
|
65
|
Tangeretin-Assisted Platinum Nanoparticles Enhance the Apoptotic Properties of Doxorubicin: Combination Therapy for Osteosarcoma Treatment. NANOMATERIALS 2019; 9:nano9081089. [PMID: 31362420 PMCID: PMC6723885 DOI: 10.3390/nano9081089] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/25/2019] [Accepted: 07/28/2019] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is the most common type of cancer and the most frequent malignant bone tumor in childhood and adolescence. Nanomedicine has become an indispensable field in biomedical and clinical research, with nanoparticles (NPs) promising to increase the therapeutic efficacy of anticancer drugs. Doxorubicin (DOX) is a commonly used chemotherapeutic drug against OS; however, it causes severe side effects that restrict its clinical applications. Here, we investigated whether combining platinum NPs (PtNPs) and DOX could increase their anticancer activity in human bone OS epithelial cells (U2OS). PtNPs with nontoxic, effective, thermally stable, and thermoplasmonic properties were synthesized and characterized using tangeretin. We examined the combined effects of PtNPs and DOX on cell viability, proliferation, and morphology, reactive oxygen species (ROS) generation, lipid peroxidation, nitric oxide, protein carbonyl content, antioxidants, mitochondrial membrane potential (MMP), adenosine tri phosphate (ATP) level, apoptotic and antiapoptotic gene expression, oxidative stress-induced DNA damage, and DNA repair genes. PtNPs and DOX significantly inhibited U2OS viability and proliferation in a dose-dependent manner, increasing lactate dehydrogenase leakage, ROS generation, and malondialdehyde, nitric oxide, and carbonylated protein levels. Mitochondrial dysfunction was confirmed by reduced MMP, decreased ATP levels, and upregulated apoptotic/downregulated antiapoptotic gene expression. Oxidative stress was a major cause of cytotoxicity and genotoxicity, confirmed by decreased levels of various antioxidants. Furthermore, PtNPs and DOX increased 8-oxo-dG and 8-oxo-G levels and induced DNA damage and repair gene expression. Combination of cisplatin and DOX potentially induce apoptosis comparable to PtNPs and DOX. To the best of our knowledge, this is the first report to describe the combined effects of PtNPs and DOX in OS.
Collapse
|
66
|
Wan WJ, Qu CX, Zhou YJ, Zhang L, Chen MT, Liu Y, You BG, Li F, Wang DD, Zhang XN. Doxorubicin and siRNA-PD-L1 co-delivery with T7 modified ROS-sensitive nanoparticles for tumor chemoimmunotherapy. Int J Pharm 2019; 566:731-744. [DOI: 10.1016/j.ijpharm.2019.06.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/30/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022]
|
67
|
Song Y, Sheng Z, Xu Y, Dong L, Xu W, Li F, Wang J, Wu Z, Yang Y, Su Y, Sun X, Ling D, Lu Y. Magnetic liposomal emodin composite with enhanced killing efficiency against breast cancer. Biomater Sci 2019; 7:867-875. [PMID: 30648710 DOI: 10.1039/c8bm01530a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As an active natural ingredient extracted from the plant Rheum palmatum, emodin exhibits various pharmacological activities, especially the inhibition of tumor growth and migration. However, the anticancer activity of emodin is limited mainly due to its poor solubility and the lack of specific targeting. Herein, we employed liposome to load emodin into the lipid bilayer, and high-performance ferromagnetic iron oxide nanocubes were simultaneously encapsulated in the hydrophilic bilayer. The optimized magnetic liposomal emodin nanocomposite (MLE) exhibited a 24.1% increase in the efficiency of killing MCF-7 cancer cells at a low concentration of 16 μg mL-1 compared with that of the hydrophobic free emodin. A further 8.67% enhancement of the killing efficiency was obtained by magnetic targeting. Benefitting from the high ferromagnetism, the transverse relaxivity (r2) of MLE was measured to be as high as 392.9 mM-1 s-1. With guidance from the external magnetic field, the effective accumulation of this magnetic liposome in the tumor region of a 4T1 breast tumor bearing mouse was observed by both MR tracking and fluorescence imaging, which should be beneficial for decreasing the required therapeutic dose of emodin. Hemolysis, cytotoxicity and biochemistry assays confirmed the excellent biocompatibility of this magnetic liposomal carrier. The anti-tumor therapeutic effect of MLE was further investigated in vivo, and the tumor in the therapeutic group was almost eliminated, indicating that this magnetic liposomal emodin could serve as a novel magnetically guided theranostic nanoagent.
Collapse
Affiliation(s)
- Yonghong Song
- Department of Pharmacy, Department of Radiology, Anhui Provincial Hospital, Hefei, Anhui 230001, P. R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Gao Y, Jia L, Wang Q, Hu H, Zhao X, Chen D, Qiao M. pH/Redox Dual-Responsive Polyplex with Effective Endosomal Escape for Codelivery of siRNA and Doxorubicin against Drug-Resistant Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16296-16310. [PMID: 30997984 DOI: 10.1021/acsami.9b02016] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The enhanced endo-lysosomal sequestration still remains a big challenge in overcoming multidrug resistance (MDR). Herein, a dual-responsive polyplex with effective endo-lysosomal escape based on methoxypoly(ethylene glycol)-polylactide-polyhistidine-ss-oligoethylenimine (mPEG- b-PLA-PHis-ssOEI) was developed for codelivering MDR1 siRNA and doxorubicin (DOX). The polyplex showed good encapsulation of DOX and siRNA as well as triggered payload release in response to pH/redox stimuli because of the PHis protonation and the disulfide bond cleavage. The polyplex at an N/P ratio of 7 demonstrated a much higher payload delivery efficiency, MDR1 gene silence efficiency, cytotoxicity against MCF-7/ADR cell, and stronger MCF-7/ADR tumor growth inhibition than the polyplexes at higher N/P ratios. This was attributed to the stronger electrostatic attraction between siRNA and OEIs at higher N/P ratios that suppressed the release of MDR1 siRNA and OEIs, which played a dominant role in overcoming payload endo-lysosomal sequestration by the OEI-induced membrane permeabilization effect. Consequently, the polyplex with effective endo-lysosomal escape provides a rational approach for codelivery of siRNAs and chemotherapy agents for MDR reversal.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry
- ATP Binding Cassette Transporter, Subfamily B, Member 1/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Doxorubicin/administration & dosage
- Doxorubicin/chemistry
- Drug Carriers/administration & dosage
- Drug Resistance, Neoplasm/drug effects
- Endosomes/chemistry
- Humans
- Hydrogen-Ion Concentration
- Lipids/chemistry
- MCF-7 Cells
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Neoplasms/drug therapy
- Neoplasms/pathology
- Polyesters/chemistry
- Polyethylene Glycols/chemistry
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
Collapse
Affiliation(s)
| | - Li Jia
- Department of Pharmacy , Heze Medical College , Heze 274000 , P. R. China
| | | | | | | | | | | |
Collapse
|
69
|
Weng Y, Xiao H, Zhang J, Liang XJ, Huang Y. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol Adv 2019; 37:801-825. [PMID: 31034960 DOI: 10.1016/j.biotechadv.2019.04.012] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023]
Abstract
Recently, United States Food and Drug Administration (FDA) and European Commission (EC) approved Alnylam Pharmaceuticals' RNA interference (RNAi) therapeutic, ONPATTRO™ (Patisiran), for the treatment of the polyneuropathy of hereditary transthyretin-mediated (hATTR) amyloidosis in adults. This is the first RNAi therapeutic all over the world, as well as the first FDA-approved treatment for this indication. As a milestone event in RNAi pharmaceutical industry, it means, for the first time, people have broken through all development processes for RNAi drugs from research to clinic. With this achievement, RNAi approval may soar in the coming years. In this paper, we introduce the basic information of ONPATTRO and the properties of RNAi and nucleic acid therapeutics, update the clinical and preclinical development activities, review its complicated development history, summarize the key technologies of RNAi at early stage, and discuss the latest advances in delivery and modification technologies. It provides a comprehensive view and biotechnological insights of RNAi therapy for the broader audiences.
Collapse
Affiliation(s)
- Yuhua Weng
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, PR China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Chemical Biology Key Laboratory of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China
| | - Yuanyu Huang
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
70
|
Multilayer nanoscale functionalization to treat disorders and enhance regeneration of bone tissue. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 19:22-38. [PMID: 31002932 DOI: 10.1016/j.nano.2019.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/04/2019] [Accepted: 03/26/2019] [Indexed: 12/18/2022]
Abstract
The coatings application onto medical devices has experienced a continuous growth in the last few years. Medical device coating market is expected to grow at a CAGR of 5.16% to reach USD 10 million by 2023 due to the increasing geriatric population and the growing demand for continuous innovation. Layer-by-Layer (LbL) assembly represents a versatile method to modify the surface properties, in order to control cell interaction and thus enhance biological functions. Furthermore, LbL is environmentally friendly, able to coat all types of surfaces with the creation of homogenous film and to include and control the release of biomolecules/drugs. This feature review provides a critical overview on recent progresses in functionalizing materials by LbL assembly for bone regeneration and disorder treatment. An overview of emerging and visionary opportunities on LbL technologies and further combination with other existing methods used in biomedical field, is also discussed to evidence the new challenges and potential developments in bone regenerative medicine.
Collapse
|
71
|
Caravieri BB, de Jesus NAM, de Oliveira LK, Araujo MD, Andrade GP, Molina EF. Ureasil Organic–Inorganic Hybrid as a Potential Carrier for Combined Delivery of Anti-Inflammatory and Anticancer Drugs. ACS APPLIED BIO MATERIALS 2019; 2:1875-1883. [DOI: 10.1021/acsabm.8b00798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Beatriz B. Caravieri
- Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, SP, Brazil
| | - Natana A. M. de Jesus
- Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, SP, Brazil
| | - Lilian K. de Oliveira
- UEMG − Universidade do Estado de Minas Gerais, Unidade de Passos, Av. Juca Stockler 1130, Passos, MG, Brazil
| | - Marina D. Araujo
- Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, SP, Brazil
| | - Gabriele P. Andrade
- Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, SP, Brazil
| | - Eduardo F. Molina
- Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, SP, Brazil
| |
Collapse
|
72
|
Gao J, Chen L, Qi R, Zhou Z, Deng Z, Shi J, Qin T, Zhao S, Qian Y, Shen J. Simultaneous delivery of gene and chemotherapeutics via copolymeric micellar nanoparticles to overcome multiple drug resistance to promote synergistic tumor suppression. J Biomater Appl 2019; 34:130-140. [PMID: 30971178 DOI: 10.1177/0885328219839254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jianguo Gao
- 1 Department of Urology, Affiliated Hospital of Huzhou Teacher's College, The First People's Hospital of Hu Zhou, Hu Zhou, China
| | - Lingxiao Chen
- 2 Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Ruogu Qi
- 3 State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Changchun, China
| | - Zhihua Zhou
- 4 School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Zaian Deng
- 5 School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jue Shi
- 5 School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Tao Qin
- 5 School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Shengzhe Zhao
- 6 Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou, China
| | - Yuna Qian
- 5 School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- 6 Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou, China
| | - Jianliang Shen
- 5 School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
- 6 Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou, China
| |
Collapse
|
73
|
Rawal S, Patel MM. Threatening cancer with nanoparticle aided combination oncotherapy. J Control Release 2019; 301:76-109. [PMID: 30890445 DOI: 10.1016/j.jconrel.2019.03.015] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Abstract
Employing combination therapy has become obligatory in cancer cases exhibiting high tumor load, chemoresistant tumor population, and advanced disease stages. Realization of this fact has now led many of the combination oncotherapies to become an integral part of anticancer regimens. Combination oncotherapy may encompass a combination of anticancer agents belonging to a similar therapeutic category or that of different therapeutic categories (e.g. chemotherapy + gene therapy). Differences in the physicochemical properties, pharmacokinetics and biodistribution pattern of different payloads are the major constraints that are faced by combination chemotherapy. Concordant efforts in the field of nanotechnology and oncology have emerged with several approaches to solve the major issues encountered by combination therapy. Unique colloidal behaviors of various types of nanoparticles and differential targeting strategies have accorded an unprecedented ability to optimize combination oncotherapeutic delivery. Nanocarrier based delivery of the various types of payloads such as chemotherapeutic agents and other anticancer therapeutics such as small interfering ribonucleic acid (siRNA), chemosensitizers, radiosensitizers, and antiangiogenic agents have been addressed in the present review. Various nano-delivery systems like liposomes, polymeric nanoparticles, polymerosomes, dendrimers, micelles, lipid based nanoparticles, prodrug based nanocarriers, polymer-drug conjugates, polymer-lipid hybrid nanoparticles, carbon nanotubes, nanosponges, supramolecular nanocarriers and inorganic nanoparticles (gold nanoparticles, silver nanoparticles, magnetic nanoparticles and mesoporous silica based nanoparticles) that have been extensively explored for the formulation of multidrug delivery is an imperative part of discussion in the review. The present review features the outweighing benefits of combination therapy over mono-oncotherapy and discusses several existent nanoformulation strategies that facilitate a successful combination oncotherapy. Several obstacles that may impede in transforming nanotechnology-based combination oncotherapy from bench to bedside, and challenges associated therein have also been discussed in the present review.
Collapse
Affiliation(s)
- Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382481, Gujarat, India.
| |
Collapse
|
74
|
Wu J, Huang J, Kuang S, Chen J, Li X, Chen B, Wang J, Cheng D, Shuai X. Synergistic MicroRNA Therapy in Liver Fibrotic Rat Using MRI-Visible Nanocarrier Targeting Hepatic Stellate Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801809. [PMID: 30886803 PMCID: PMC6402399 DOI: 10.1002/advs.201801809] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/10/2018] [Indexed: 05/02/2023]
Abstract
Liver fibrosis, as one of the leading causes of liver-related morbidity and mortality, has no Food and Drug Administration (FDA)-approved antifibrotic therapy yet. Although microRNA-29b (miRNA-29b) and microRNA-122 (miRNA-122) have great potential in treating liver fibrosis via regulating profibrotic genes in hepatic stellate cells (HSCs), it is still a challenge to achieve a HSC-targeted and meanwhile noninvasively trackable delivery of miRNAs in vivo. Herein, a pH-sensitive and vitamin A (VA)-conjugated copolymer VA-polyethylene glycol-polyethyleneimine-poly(N-(N',N'-diisopropylaminoethyl)-co-benzylamino) aspartamide (T-PBP) is synthesized and assembled into superparamagnetic iron oxide (SPIO)-decorated cationic micelle for miRNA delivery. The T-PBP micelle efficiently transports the miRNA-29b and miRNA-122 to HSC in a magnetic resonance imaging-visible manner, resulting in a synergistic antifibrosis effect via downregulating the expression of fibrosis-related genes, including collagen type I alpha 1, α-smooth muscle actin, and tissue inhibitor of metalloproteinase 1. Consequently, the HSC-targeted combination therapy with miRNA-29b and miRNA-122 demonstrates a prominent antifibrotic efficacy in terms of improving liver function and relieving hepatic fibrosis.
Collapse
Affiliation(s)
- Jun Wu
- The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Jinsheng Huang
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Sichi Kuang
- The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Jingbiao Chen
- The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Xiaoxia Li
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Bin Chen
- Department of Orthopaedics and TraumatologyNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Jin Wang
- The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Du Cheng
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| | - Xintao Shuai
- The Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
75
|
Wu T, Qiao Q, Qin X, Zhang D, Zhang Z. Immunostimulatory cytokine and doxorubicin co-loaded nanovesicles for cancer immunochemotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 18:66-77. [PMID: 30831276 DOI: 10.1016/j.nano.2019.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/17/2018] [Accepted: 02/13/2019] [Indexed: 02/06/2023]
Abstract
Taking advantages of drug delivery system, immunostimulatory and chemotherapeutic agents with different physiochemical properties can be co-delivered to realize synergistic antitumor effect. Here the immunostimulatory cytokine interleukin-2 (IL-2) was firstly adsorbed in doxorubicin (DOX) loaded nanovesicles (NV-DOXIL-2) with high encapsulation efficiency by a facile solvent free method. After intravenous injection to melanoma bearing mice, NV-DOXIL-2 can accumulate in tumor and remarkably suppress tumor growth with negligible systemic toxicity. To extend the comprehensive application of this strategy, interferon-γ (IFN-γ) was further introduced to the combinatorial system to develop cytokine cocktails adsorbed NVs. This kind of NVs can significantly inhibit the primary tumor growth and lung metastasis of triple-negative breast cancer. With exploration of underlying mechanism, the cytokine cocktails adsorbed NVs can facilitate maturation of dendritic cells, promote the infiltration and activation of CD8+ T lymphocytes and natural killer cells, and increase the recruitment of CD45+ immune cells and Ly6G+ neutrophils.
Collapse
Affiliation(s)
- Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, China; Tongji School of Pharmacy, HuaZhong University of Science and Technology, Wuhan, China; National Engineering Research Center for Nanomedicine, HuaZhong University of Science and Technology, Wuhan, China; Hubei Engineering Research Center for Novel Drug Delivery System, HuaZhong University of Science and Technology, Wuhan, China
| | - Qi Qiao
- Tongji School of Pharmacy, HuaZhong University of Science and Technology, Wuhan, China; National Engineering Research Center for Nanomedicine, HuaZhong University of Science and Technology, Wuhan, China; Hubei Engineering Research Center for Novel Drug Delivery System, HuaZhong University of Science and Technology, Wuhan, China
| | - Xianya Qin
- Tongji School of Pharmacy, HuaZhong University of Science and Technology, Wuhan, China; National Engineering Research Center for Nanomedicine, HuaZhong University of Science and Technology, Wuhan, China; Hubei Engineering Research Center for Novel Drug Delivery System, HuaZhong University of Science and Technology, Wuhan, China
| | - Dan Zhang
- Tongji School of Pharmacy, HuaZhong University of Science and Technology, Wuhan, China; National Engineering Research Center for Nanomedicine, HuaZhong University of Science and Technology, Wuhan, China; Hubei Engineering Research Center for Novel Drug Delivery System, HuaZhong University of Science and Technology, Wuhan, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, HuaZhong University of Science and Technology, Wuhan, China; National Engineering Research Center for Nanomedicine, HuaZhong University of Science and Technology, Wuhan, China; Hubei Engineering Research Center for Novel Drug Delivery System, HuaZhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
76
|
Kim MR, Feng T, Zhang Q, Chan HYE, Chau Y. Co-Encapsulation and Co-Delivery of Peptide Drugs via Polymeric Nanoparticles. Polymers (Basel) 2019; 11:E288. [PMID: 30960272 PMCID: PMC6419018 DOI: 10.3390/polym11020288] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 12/18/2022] Open
Abstract
Combination therapy is a promising form of treatment. In particular, co-treatment of P3 and QBP1 has been shown to enhance therapeutic effect in vivo in treating polyglutamine diseases. These peptide drugs, however, face challenges in clinical administration due to poor stability, inability to reach intracellular targets, and lack of method to co-deliver both drugs. Here we demonstrate two methods of co-encapsulating the peptide drugs via polymer poly(ethylene glycol)-block-polycaprolactone (PEG-b-PCL) based nanoparticles. Nanoparticles made by double emulsion were 100⁻200 nm in diameter, with drug encapsulation efficiency of around 30%. Nanoparticles made by nanoprecipitation with lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) were around 250⁻300 nm in diameter, with encapsulation efficiency of 85⁻100%. Particles made with both formulations showed cellular uptake when decorated with a mixture of peptide ligands that facilitate endocytosis. In vitro assay showed that nanoparticles could deliver bioactive peptides and encapsulation by double emulsion were found to be more effective in rescuing cells from polyglutamine-induced toxicity.
Collapse
Affiliation(s)
- Ma Rie Kim
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - Teng Feng
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| | - Qian Zhang
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Ho Yin Edwin Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Ying Chau
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
77
|
Pan J, Mendes LP, Yao M, Filipczak N, Garai S, Thakur GA, Sarisozen C, Torchilin VP. Polyamidoamine dendrimers-based nanomedicine for combination therapy with siRNA and chemotherapeutics to overcome multidrug resistance. Eur J Pharm Biopharm 2019; 136:18-28. [PMID: 30633973 DOI: 10.1016/j.ejpb.2019.01.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/30/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
Abstract
Multidrug resistance (MDR) significantly decreases the therapeutic efficiency of anti-cancer drugs. Its reversal could serve as a potential method to restore the chemotherapeutic efficiency. Downregulation of MDR-related proteins with a small interfering RNA (siRNA) is a promising way to reverse the MDR effect. Additionally, delivery of small molecule therapeutics simultaneously with siRNA can enhance the efficiency of chemotherapy by dual action in MDR cell lines. Here, we conjugated the dendrimer, generation 4 polyamidoamine (G4 PAMAM), with a polyethylene glycol (PEG)-phospholipid copolymer. The amphiphilic conjugates obtained spontaneously self-assembled into a micellar nano-preparation, which can be co-loaded with siRNA onto PAMAM moieties and sparingly water-soluble chemotherapeutics into the lipid hydrophobic core. This system was co-loaded with doxorubicin (DOX) and therapeutic siRNA (siMDR-1) and tested for cytotoxicity against MDR cancer cells: human ovarian carcinoma (A2780 ADR) and breast cancer (MCF7 ADR). The combination nanopreparation effectively downregulated P-gp in MDR cancer cells and reversed the resistance towards DOX.
Collapse
Affiliation(s)
- Jiayi Pan
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Livia P Mendes
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; CAPES Foundation, Ministry of Education of Brazil, Brasilia 70040-020, Brazil
| | - Momei Yao
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; Laboratory of Lipids and Liposomes, Department of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Sumanta Garai
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Ganesh A Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Can Sarisozen
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
78
|
Lu HH, Huang CH, Shiue TY, Wang FS, Chang KK, Chen Y, Peng CH. Highly efficient gene release in spatiotemporal precision approached by light and pH dual responsive copolymers. Chem Sci 2019; 10:284-292. [PMID: 30713638 PMCID: PMC6333234 DOI: 10.1039/c8sc01494a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
Triblock copolymer of poly(ethylene glycol)-b-poly(2-dimethylaminoethyl methacrylate)-b-poly(pyrenylmethyl methacrylate) (PEG-b-PDMAEMA-b-PPy) has been developed for use as an ideal gene delivery system, which showed both high stability under physiological conditions and efficient gene release in a mimetic cancer environment. The siRNA release from this system without external stimulation was 16% in 1 h and then remained steady. However, the photo-triggered siRNA release was 78% within 1 h and was higher than 91% after 24 h. The remarkable contrast between the stability and release efficiency of these siRNA-condensed micelleplexes before and after photo-irradiation has been rationalized by the light- and pH-induced structural transitions of the triblock copolymer micelles. The negligible cytotoxicity, high cellular uptake efficiency, and remarkable knockdown efficiency shown in in vitro tests further revealed the promising potential of these triblock copolymer micelleplexes for use in stimuli-responsive gene therapy.
Collapse
Affiliation(s)
- Hung-Hsun Lu
- Department of Chemistry , Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , 101, Sec 2, Kuang-Fu Rd. , Hsinchu 30013 , Taiwan .
| | - Cheng-Hung Huang
- Department of Chemistry , Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , 101, Sec 2, Kuang-Fu Rd. , Hsinchu 30013 , Taiwan .
| | - Ting-Yun Shiue
- Institute of Biomedical Engineering , Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , 101, Sec 2, Kuang-Fu Rd. , Hsinchu 30013 , Taiwan
| | - Fu-Sheng Wang
- Department of Chemistry , Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , 101, Sec 2, Kuang-Fu Rd. , Hsinchu 30013 , Taiwan .
| | - Ko-Kai Chang
- Department of Chemistry , Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , 101, Sec 2, Kuang-Fu Rd. , Hsinchu 30013 , Taiwan .
| | - Yunching Chen
- Institute of Biomedical Engineering , Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , 101, Sec 2, Kuang-Fu Rd. , Hsinchu 30013 , Taiwan
| | - Chi-How Peng
- Department of Chemistry , Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , 101, Sec 2, Kuang-Fu Rd. , Hsinchu 30013 , Taiwan .
| |
Collapse
|
79
|
Chen W, Zhang M, Shen W, Du B, Yang J, Zhang Q. A Polycationic Brush Mediated Co-Delivery of Doxorubicin and Gene for Combination Therapy. Polymers (Basel) 2019; 11:E60. [PMID: 30960044 PMCID: PMC6401996 DOI: 10.3390/polym11010060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/24/2018] [Accepted: 12/27/2018] [Indexed: 01/08/2023] Open
Abstract
The combination of drug and gene strategies for cancer therapy, has exhibited greater effectiveness than drug or gene therapy alone. In this paper, a coil-comb shaped polycationic brush was used as a multifunctional carrier for co-delivery of drug and gene. The side chains of the comb block of the brush were composed of cyclodextrin (CD)-containing cationic star polymers, with a super-high density of positive charge. Doxorubicin (DOX) could be loaded into the cavity of CD polymers to form DOX-loaded nanoparticles (DOX-NPs) and the p53 gene could be subsequently condensed by DOX-NPs. The obtained DOX-NPs/pDNA complexes were less than 150 nm in size, and so could transport DOX and the gene into the same cell. The complexes performed well with regards to their transfection efficiency on MCF-7 cancer cells. As a result, enhanced cell growth inhibition, with decreased DOX dosage was achieved due to the synergistic effect of co-delivery of DOX and the p53 gene. This finding provides an efficient approach for the development of a co-delivery system in combination therapy.
Collapse
Affiliation(s)
- Wenjuan Chen
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Mingming Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Wei Shen
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Bo Du
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Jing Yang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Qiqing Zhang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| |
Collapse
|
80
|
Huang W, Wang X, Wang C, Du L, Zhang J, Deng L, Cao H, Dong A. Structural exploration of hydrophobic core in polycationic micelles for improving siRNA delivery efficiency and cell viability. J Mater Chem B 2019; 7:965-973. [DOI: 10.1039/c8tb02706d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Improving siRNA delivery efficiency often encounters a dilemma with poor or decreased biocompatibility for polycationic micelles.
Collapse
Affiliation(s)
- Wenjun Huang
- Department of Polymer Science and Technology
- School of Chemical Engineering and Technology
- Key Laboratory of Systems Bioengineering (Ministry of Education)
- Tianjin University
- Tianjin 300072
| | - Xiaoxia Wang
- Laboratory of Nucleic Acid Technology
- Institute of Molecular Medicine
- Peking University
- Beijing 100871
- China
| | - Changrong Wang
- Department of Polymer Science and Technology
- School of Chemical Engineering and Technology
- Key Laboratory of Systems Bioengineering (Ministry of Education)
- Tianjin University
- Tianjin 300072
| | - Lili Du
- Laboratory of Nucleic Acid Technology
- Institute of Molecular Medicine
- Peking University
- Beijing 100871
- China
| | - Jianhua Zhang
- Department of Polymer Science and Technology
- School of Chemical Engineering and Technology
- Key Laboratory of Systems Bioengineering (Ministry of Education)
- Tianjin University
- Tianjin 300072
| | - Liandong Deng
- Department of Polymer Science and Technology
- School of Chemical Engineering and Technology
- Key Laboratory of Systems Bioengineering (Ministry of Education)
- Tianjin University
- Tianjin 300072
| | - Huiqing Cao
- Laboratory of Nucleic Acid Technology
- Institute of Molecular Medicine
- Peking University
- Beijing 100871
- China
| | - Anjie Dong
- Department of Polymer Science and Technology
- School of Chemical Engineering and Technology
- Key Laboratory of Systems Bioengineering (Ministry of Education)
- Tianjin University
- Tianjin 300072
| |
Collapse
|
81
|
Xue T, Wang L, Li Y, Song H, Chu H, Yang H, Guo A, Jiao J. SiRNA-Mediated RRM2 Gene Silencing Combined with Cisplatin in the Treatment of Epithelial Ovarian Cancer In Vivo: An Experimental Study of Nude Mice. Int J Med Sci 2019; 16:1510-1516. [PMID: 31673243 PMCID: PMC6818211 DOI: 10.7150/ijms.33979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/24/2019] [Indexed: 01/08/2023] Open
Abstract
Introduction: We aimed to explore small interfering (si)RNA silencing of ribonucleotide reductase M2 (RRM2) gene combined with cisplatin for the treatment of human ovarian cancer in nude mice models of subcutaneous transplantation of tumor cells. Methods: After conventional cultivation of human ovarian cancer cell line SKOV3 in vitro, SKOV3 cells were injected into the right back of nude mice by subcutaneous injection to establish the subcutaneous tumor models. Twenty-four tumor-burdened rats were randomly divided into four groups (n=6): siRNA group, siRNA in combination with cisplatin group, cisplatin group, and control group. Intraperitoneal injection of cisplatin and subcutaneous injection of siRNA were performed weekly. Tumor volume was measured, and tumor growth inhibition rate was calculated. RRM2 expression at the mRNA and protein levels was detected by reverse transcription-polymerase chain reaction and immunohistochemistry. Results: In the siRNA group, the tumor volume and tumor growth inhibition rate were 249.60±20.46 mm³ and 36.39%, respectively. The tumor growth inhibition rate and tumor volume were significantly different between the siRNA and control groups (p<0.05). In the cisplatin group, the tumor volume and tumor growth inhibition rate were 249.86±12.46 mm³ and 41.10%, respectively. The tumor growth inhibition rate and tumor volume were significantly different between the cisplatin and control groups (p<0.05). In the siRNA + cisplatin group, the tumor volume reduced to 180.84±16.25 mm³ and the tumor growth inhibition rate was increased to 64.33%, which were significantly different compared with the control group (p<0.01). Significant downregulation of RRM2 mRNA and protein expression in the tumor tissues was detected by reverse transcription polymerase chain reaction and immunohistochemistry assay (p<0.05). Discussion: siRNA alone or combined with cisplatin can effectively inhibit the growth of human ovarian cancer in nude mice models of subcutaneous transplantation of tumor cells. RRM2 gene silencing may be a potential treatment regimen for ovarian cancer in future.
Collapse
Affiliation(s)
- Ting Xue
- Qingdao University, Qingdao, China
| | - Liming Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yong Li
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hao Song
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Huijun Chu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongjuan Yang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Jinwen Jiao
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
82
|
Manivasagan P, Jun SW, Nguyen VT, Truong NTP, Hoang G, Mondal S, Santha Moorthy M, Kim H, Vy Phan TT, Doan VHM, Kim CS, Oh J. A multifunctional near-infrared laser-triggered drug delivery system using folic acid conjugated chitosan oligosaccharide encapsulated gold nanorods for targeted chemo-photothermal therapy. J Mater Chem B 2019; 7:3811-3825. [DOI: 10.1039/c8tb02823k] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
FA–COS–TGA–GNRs–DOX have been successfully designed as a drug delivery system for chemo-photothermal combination therapy.
Collapse
|
83
|
Zhang L, Su H, Liu Y, Pang N, Li J, Qi XR. Enhancing solid tumor therapy with sequential delivery of dexamethasone and docetaxel engineered in a single carrier to overcome stromal resistance to drug delivery. J Control Release 2018; 294:1-16. [PMID: 30527754 DOI: 10.1016/j.jconrel.2018.12.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023]
Abstract
Nanomedicines are often designed to target and treat solid tumors. Unfortunately, tumor and stroma composed of dense extracellular matrix, abnormal vascular barriers, elevated interstitial fluid pressure, et al., which impede the access and accumulation of nanomedicines into tumors. Strategies to disrupt these deterministic obstacles require a unique combination of promoter drugs and cytotoxic agents to target stroma and tumor simultaneously. Here, we engineered a novel strategy by co-delivery dexamethasone (DEX) and docetaxel (DTX) in the 2-in-1 liposome, namely (DEX + DTX)-Lip, with sequential release property. We proved that the engineered liposomal therapy approach could potentially achieve two objectives in tumor drug delivery: modulate tumor stroma and promote drug penetration and accumulation in tumor. Thus more DTX tenured in intratumoral site to kill tumor cells in a strong way with minimize systemic toxicity. The sequentially released liposomes won excellent antitumor efficacy in multifarious models, including KB, multidrug resistant KBv and metastatic 4 T1 tumor models and low toxicities compared with the combination of free drugs in vivo. Moreover, they demonstrated the potential of prevention tumor cells colonization and anti-metastasis in vivo models. These findings give insights in overcoming the deterministic stroma obstacles and provide a rational strategy to increase antitumor efficacy of combination nanomedicines with practical value.
Collapse
Affiliation(s)
- Lu Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Haitao Su
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yujie Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Pang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ji Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xian-Rong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
84
|
Hao Y, Gao Y, Wu Y, An C. The AIB1siRNA-loaded hyaluronic acid-assembled PEI/heparin/Ca2+ nanocomplex as a novel therapeutic strategy in lung cancer treatment. Int J Mol Med 2018; 43:861-867. [PMID: 30535446 PMCID: PMC6317651 DOI: 10.3892/ijmm.2018.4014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/16/2018] [Indexed: 12/29/2022] Open
Abstract
In the present study, AIB1siRNA‑loaded polyethyleneimine (PEI)/heparin/Ca2+ nanoparticles (NPs) were successfully prepared and evaluated for their efficacy in lung cancer cells. The results demonstrated that the PEI and heparin complex reduced the toxic effect in cancer cells while maintaining its transfection efficiency. A nanosized particle of ~25 nm was formulated and siRNA was demonstrated to possess excellent binding efficiency in the particles. Confocal microscopy revealed that fluorescein‑labeled (FAM)‑small interfering (si)RNA dissociated from the HA‑PEI/heparin/Ca2+/siRNA (CPH‑siH) NPs and exhibited maximum fluorescence in the cytoplasm, which was important in elucidating its post‑transcriptional activity. CPH‑siH NPs exhibited a typical concentration‑dependent toxicity in cancer cells. Blank PEI/heparin/Ca2+ did not induce any toxicity in cancer cells, indicating its safety and lack of side effects. CPH‑siH (100 nm) induced the maximum apoptosis of cancer cells with nearly ~35% of cells in the early and late apoptosis stages. The expression of the nuclear receptor coactivator 3 (NCOA3, also known as AIB1) protein was knocked down in a concentration‑dependent manner, demonstrating the potent activity of AIB1siRNA in cancer cells. Together, these results indicated that HA‑PEI/heparin/Ca2+ NPs may be a promising carrier for the anticancer activity of AIB1siRNA in lung cancer cells.
Collapse
Affiliation(s)
- Ying Hao
- Department of Pathology, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, Xinjiang 832003, P.R. China
| | - Yongsheng Gao
- Department of Pathology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, P.R. China
| | - Yedan Wu
- Department of Respiratory Medicine, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China
| | - Changshan An
- Department of Respiratory Medicine, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China
| |
Collapse
|
85
|
Xue X, Fang T, Yin L, Jiang J, He Y, Dai Y, Wang D. Multistage delivery of CDs-DOX/ICG-loaded liposome for highly penetration and effective chemo-photothermal combination therapy. Drug Deliv 2018; 25:1826-1839. [PMID: 30458644 PMCID: PMC6598495 DOI: 10.1080/10717544.2018.1482975] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 01/08/2023] Open
Abstract
Nanoparticles (NPs) have proven to be effective drug carriers in diagnosis and therapy of cancer. But, they faced a contradictory issue that NPs with large size appear weak tumor penetration, meanwhile small size resulted in poor tumor retention. Herein, we fabricated doxorubicin conjugated carbon dots (CDs-DOX) and indocyanine green (ICG)-loaded liposomes (ICG-LPs) named CDs-ICG-LPs using a modified reverse phase evaporation process, and with high incorporation in the aqueous core. The CDs-ICG-LPs exhibited good monodispersity, excellent fluorescence/size stability, and consistent spectra characteristics compared with free ICG or DOX. Moreover, the CDs-ICG-LPs showed higher temperature response, faster DOX release under laser irradiation. In the meantime, the fluorescence of DOX and ICG in CDs-ICG-LPs was also visualized for the process of subcellular location in vitro. In comparison with chemo or photothermal treatment alone, the combined treatment of CDs-ICG-LPs with laser irradiation synergistically induced the apoptosis and death of DOX-sensitive HepG2 cells. In vivo antitumor activities demonstrated CDs-ICG-LPs could reach higher antitumor activity compared with CDs-DOX and ICG-LPs for H22 tumor cells, and suppressed H22 tumor growth in vivo. Notably, no systemic toxicity occurrence was observed after repeated dose of CDs-ICG-LPs with laser irradiation. Hence, the well-defined CDs-ICG-LPs exhibited great potential in targeting cancer imaging and chemo-photothermal therapy.
Collapse
Affiliation(s)
- Xiao Xue
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Ting Fang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Luyao Yin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Jianqi Jiang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Yunpeng He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Yinghui Dai
- Department of Traditional Chinese Medicine, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Dongkai Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, P.R. China
| |
Collapse
|
86
|
Ring-opened 4-hydroxy-δ-valerolactone subunit as a key structural fragment of polyesters that degrade without acid formation. MENDELEEV COMMUNICATIONS 2018. [DOI: 10.1016/j.mencom.2018.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
87
|
Xu HL, Fan ZL, ZhuGe DL, Tong MQ, Shen BX, Lin MT, Zhu QY, Jin BH, Sohawon Y, Yao Q, Zhao YZ. Ratiometric delivery of two therapeutic candidates with inherently dissimilar physicochemical property through pH-sensitive core-shell nanoparticles targeting the heterogeneous tumor cells of glioma. Drug Deliv 2018; 25:1302-1318. [PMID: 29869524 PMCID: PMC6060705 DOI: 10.1080/10717544.2018.1474974] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/02/2018] [Accepted: 05/07/2018] [Indexed: 12/17/2022] Open
Abstract
Currently, combination drug therapy is one of the most effective approaches to glioma treatment. However, due to the inherent dissimilar pharmacokinetics of individual drugs and blood brain barriers, it was difficult for the concomitant drugs to simultaneously be delivered to glioma in an optimal dose ratio manner. Herein, a cationic micellar core (Cur-M) was first prepared from d-α-tocopherol-grafted-ε-polylysine polymer to encapsulate the hydrophobic curcumin, followed by dopamine-modified-poly-γ-glutamic acid polymer further deposited on its surface as a anion shell through pH-sensitive linkage to encapsulate the hydrophilic doxorubicin (DOX) hydrochloride. By controlling the combinational Cur/DOX molar ratio at 3:1, a pH-sensitive core-shell nanoparticle (PDCP-NP) was constructed to simultaneously target the cancer stem cells (CSCs) and the differentiated tumor cells. PDCP-NP exhibited a dynamic diameter of 160.8 nm and a zeta-potential of -30.5 mV, while its core-shell structure was further confirmed by XPS and TEM. The ratiometric delivery capability of PDCP-NP was confirmed by in vitro and in vivo studies, in comparison with the cocktail Cur/DOX solution. Meanwhile, the percentage of CSCs in tumors was significantly decreased from 4.16% to 0.95% after treatment with PDCP-NP. Overall, PDCP-NP may be a promising carrier for the combination therapy with drug candidates having dissimilar physicochemical properties.
Collapse
Affiliation(s)
- He-Lin Xu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, China
| | - Zi-Liang Fan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, China
| | - De-Li ZhuGe
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, China
| | - Meng-Qi Tong
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, China
| | - Bi-Xin Shen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, China
| | - Meng-Ting Lin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, China
| | - Qun-Yan Zhu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, China
| | - Bing-Hui Jin
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, China
| | - Yasin Sohawon
- School of International Studies, Wenzhou Medical University, Wenzhou City, China
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, China
| | - Qing Yao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, China
| | - Ying-Zheng Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, China
| |
Collapse
|
88
|
Polyester-based nanoparticles for nucleic acid delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:983-994. [DOI: 10.1016/j.msec.2018.07.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/05/2018] [Accepted: 07/11/2018] [Indexed: 12/14/2022]
|
89
|
Seo JR, Choi HW, Kim DE, Park DY, Kim EJ, Chung BG. Facile Synthesis of Surfactant-Free Au Decorated Hollow Silica Nanoparticles for Photothermal Applications. Macromol Res 2018. [DOI: 10.1007/s13233-018-6143-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
90
|
Magalhães M, Alvarez-Lorenzo C, Concheiro A, Figueiras A, Santos AC, Veiga F. RNAi-based therapeutics for lung cancer: biomarkers, microRNAs, and nanocarriers. Expert Opin Drug Deliv 2018; 15:965-982. [PMID: 30232915 DOI: 10.1080/17425247.2018.1517744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Despite the current advances in the discovery of the lung cancer biomarkers and, consequently, in the diagnosis, this pathology continues to be the primary cause of cancer-related death worldwide. In most cases, the illness is diagnosed in an advanced stage, which limits the current treatment options available and reduces the survival rate. Therefore, RNAi-based therapy arises as a promising option to treat lung cancer. AREAS COVERED This review provides an overview on the exploitation of lung cancer biology to develop RNAi-based therapeutics to be applied in the treatment of lung cancer. Furthermore, the review analyzes the main nanocarriers designed to deliver RNAi molecules and induce antitumoral effects in lung cancer, and provides updated information about current RNAi-based therapeutics for lung cancer in clinical trials. EXPERT OPINION RNAi-based therapy uses nanocarriers to perform a targeted and efficient delivery of therapeutic genes into lung cancer cells, by taking advantage of the known biomarkers in lung cancer. These therapeutic genes are key regulatory molecules of crucial cellular pathways involved in cell proliferation, migration, and apoptosis. Thereby, the characteristics and functionalization of the nanocarrier and the knowledge of lung cancer biology have direct influence in improving the therapeutic effect of this therapy.
Collapse
Affiliation(s)
- Mariana Magalhães
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| | - Carmen Alvarez-Lorenzo
- c Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS) , Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| | - Angel Concheiro
- c Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS) , Universidade de Santiago de Compostela , Santiago de Compostela , Spain
| | - Ana Figueiras
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| | - Ana Cláudia Santos
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| | - Francisco Veiga
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal.,b REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy , University of Coimbra , Coimbra , Portugal
| |
Collapse
|
91
|
Zhou M, Hou J, Zhong Z, Hao N, Lin Y, Li C. Targeted delivery of hyaluronic acid-coated solid lipid nanoparticles for rheumatoid arthritis therapy. Drug Deliv 2018. [PMID: 29516758 PMCID: PMC6058688 DOI: 10.1080/10717544.2018.1447050] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disease. Long-term, high-dose glucocorticoid therapy can be used to treat the disease, but the fact that the drug distributes systemically can give rise to severe adverse effects. Here we develop a targeted system for treating RA in which the glucocorticoid prednisolone (PD) is encapsulated within solid lipid nanoparticles (SLNs) coated with hyaluronic acid (HA), giving rise to HA-SLNs/PD. HA binds to hyaluronic receptor CD44, which is over-expressed on the surface of synovial lymphocytes, macrophages and fibroblasts in inflamed joints in RA. As predicted, HA-SLNs/PD particles accumulated in affected joint tissue after intravenous injection into mice with collagen-induced arthritis (CIA), and HA-SLNs/PD persisted longer in circulation and preserved bone and cartilage better than free drug or drug encapsulated in SLNs without HA. HA-SLNs/PD reduced joint swelling, bone erosion and levels of inflammatory cytokines in serum. These results suggest that encapsulating glucocorticoids such as PD in HA-coated SLNs may render them safe and effective for treating inflammatory disorders.
Collapse
Affiliation(s)
- Meiling Zhou
- a Department of Pharmacy , The Affiliated Hospital of Southwest Medical University , Luzhou , Sichuan , PR China
| | - Jierong Hou
- b Department of Health Section , Southwest Medical University , Luzhou , Sichuan , PR China
| | - Zhirong Zhong
- c Department of Pharmaceutical Sciences, School of Pharmacy , Southwest Medical University , Luzhou , Sichuan , PR China
| | - Na Hao
- c Department of Pharmaceutical Sciences, School of Pharmacy , Southwest Medical University , Luzhou , Sichuan , PR China
| | - Yan Lin
- c Department of Pharmaceutical Sciences, School of Pharmacy , Southwest Medical University , Luzhou , Sichuan , PR China
| | - Chunhong Li
- c Department of Pharmaceutical Sciences, School of Pharmacy , Southwest Medical University , Luzhou , Sichuan , PR China
| |
Collapse
|
92
|
Choi E, Yoo W, Park JH, Kim S. Simultaneous Delivery of Electrostatically Complexed Multiple Gene-Targeting siRNAs and an Anticancer Drug for Synergistically Enhanced Treatment of Prostate Cancer. Mol Pharm 2018; 15:3777-3785. [PMID: 30028622 DOI: 10.1021/acs.molpharmaceut.8b00227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Simultaneous silencing of multiple apoptosis-related genes is an attractive approach to treat cancer. In this article, we present a multiple gene-targeting siRNA/drug delivery system for prostate cancer treatment with a high efficiency. Bcl-2, survivin, and androgen receptor genes involved in the cell apoptosis pathways were chosen as silencing targets with three different siRNAs. The colloidal nanocomplex delivery system (<10 nm in size) was formulated electrostatically between anionic siRNAs and a cationic drug (BZT), followed by encapsulation with the Pluronic F-68 polymer. The formulated nanocomplex system exhibited sufficient stability against nuclease-induced degradation, leading to successful intracellular delivery for the desired therapeutic performance. Silencing of targeted genes and apoptosis induction were evaluated in vitro on human prostate LNCaP-LN3 cancer cells by using various biological analysis tools (e.g., real-time PCR, MTT cell viability test, and flow cytometry). It was demonstrated that when the total loaded siRNA amounts were kept the same in the nanocomplexes, the simultaneous silencing of triple genes with co-loaded siRNAs (i.e., Bcl-2, survivin, and AR-targeting siRNAs) enhanced BZT-induced apoptosis of cancer cells more efficiently than the silencing of each single gene alone, offering a novel way of improving the efficacy of gene therapeutics including anticancer drug.
Collapse
Affiliation(s)
- Eunshil Choi
- Center for Theragnosis , Korea Institute of Science and Technology (KIST) , Seoul 136-791 , Korea
| | - Wonjae Yoo
- Center for Theragnosis , Korea Institute of Science and Technology (KIST) , Seoul 136-791 , Korea.,School of Chemical Engineering, College of Engineering , Sungkyunkwan Univeristy , Suwon 440-746 , Korea
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering , Sungkyunkwan Univeristy , Suwon 440-746 , Korea
| | - Sehoon Kim
- Center for Theragnosis , Korea Institute of Science and Technology (KIST) , Seoul 136-791 , Korea.,Division of Bio-Medical Science & Technology, KIST School , Korea University of Science and Technology (UST) , Seoul 136-791 , Korea
| |
Collapse
|
93
|
Duan W, Li H. Combination of NF-kB targeted siRNA and methotrexate in a hybrid nanocarrier towards the effective treatment in rheumatoid arthritis. J Nanobiotechnology 2018; 16:58. [PMID: 30060740 PMCID: PMC6065064 DOI: 10.1186/s12951-018-0382-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/02/2018] [Indexed: 12/26/2022] Open
Abstract
Background The transcription factor NF-kB plays an important role in the pathogenesis of rheumatoid arthritis (RA). Effective treatment of RA is hindered due to the lack of specificity of small molecules in the inflamed joints. In this study, we aimed to develop a unique hybrid-nanoparticles system comprised of calcium phosphate/liposome to deliver NF-kB-targeted siRNA and methotrexate (MTX) to diseased site. Results We have successfully demonstrated that the combination of siRNA and MTX in a calcium phosphate/liposome-based hybrid nanocarrier could effectively treat the RA. We have showed that folate receptor-targeted nanocarrier system significantly suppression the arthritis progression in mice model. Substantial accumulation of F-siRML was observed in LPS-activated macrophages. These kind of activated macrophages are generally present in the RA and osteoarthritis and folate-targeted nanoparticle enables the effective accumulation of therapeutics in the diseased site. The combinational nanoparticles effectively blocked the NF-kB signaling pathways and reduced the expression of pro-inflammatory cytokines. Furthermore, siRML and F-siRML did not show any decrease in the lymphocyte count indicating that it can avoid the adverse effect of MTX. Conclusion Therefore, siRML and F-siRML provides unique benefits of excellent therapeutic efficacy with excellent safety profile in the arthritic mice and could be an promising approach in the treatment of rheumatoid arthritis. Electronic supplementary material The online version of this article (10.1186/s12951-018-0382-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weifeng Duan
- Department of Limb Function Rehabilitation, Luoyang Orthopedic Hospital of Henan Province, Luoyang, 471000, Henan Sheng, China.
| | - Huan Li
- Nursing College, Henan University of Chinese Medicine, Zhengzhou, 450000, Henan Sheng, China
| |
Collapse
|
94
|
Wang F, Zhang L, Bai X, Cao X, Jiao X, Huang Y, Li Y, Qin Y, Wen Y. Stimuli-Responsive Nanocarrier for Co-delivery of MiR-31 and Doxorubicin To Suppress High MtEF4 Cancer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22767-22775. [PMID: 29897733 DOI: 10.1021/acsami.8b07698] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Gene interference-based therapeutics represent a fascinating challenge and show enormous potential for cancer treatment, in which microRNA is used to correct abnormal gene. On the basis of the above, we introduced microRNA-31 to bind to 3'-untranslated region of mtEF4, resulting in the downregulation of its messenger RNA and protein to trigger cancer cells apoptosis through mitochondria-related pathway. To achieve better therapeutic effect, a mesoporous silica nanoparticle-based controlled nanoplatform had been developed. This system was fabricated by conjugation of microRNA-31 onto doxorubicin-loaded mesoporous silica nanoparticles with a poly(ethyleneimine)/hyaluronic acid coating, and drug release was triggered by acidic environment of tumors. By feat of surface functionalization and tumor-specific conjugation to nanoparticles, our drug delivery system could promote intracellular accumulation of drugs via the active transport at tumor site. More importantly, microRNA-31 not only directly targeted to mtEF4 to promote cell's death, but had synergistic effects when used in combination with doxorubicin, and achieved excellent superadditive effects. As such, our research might provide new insights toward detecting high mtEF4 cancer and exploiting highly effective anticancer drugs.
Collapse
Affiliation(s)
- Fang Wang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
| | - Lingyun Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiufeng Bai
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
| | - Xintao Cao
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiangyu Jiao
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Yan Huang
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Yansheng Li
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| | - Yan Qin
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , 15 Datun Road , Chaoyang District, Beijing 100101 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yongqiang Wen
- Research Center for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering , University of Science and Technology Beijing , Beijing 100083 , China
| |
Collapse
|
95
|
Li X, Zhao X, Pardhi D, Wu Q, Zheng Y, Zhu H, Mao Z. Folic acid modified cell membrane capsules encapsulating doxorubicin and indocyanine green for highly effective combinational therapy in vivo. Acta Biomater 2018; 74:374-384. [PMID: 29734009 DOI: 10.1016/j.actbio.2018.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/15/2022]
Abstract
A combination of chemotherapy and phototherapy has emerged as a promising strategy for cancer treatment. To achieve effective combinational therapy of cancer with reduced toxicity, it is highly desirable to improve the targeting of chemotherapeutic and near-infrared photosensitizers to enhance their accumulation in tumor. Here we report a novel tumor targeting cell membrane capsule (CMC), originate from living cells, to load doxorubicin hydrochloride (DOX) and indocyanine green (ICG), for combinational photo-chemotherapy against cancer. As a result, folic acid modified CMC (CMC-FA, with a diameter about 200 nm and a FA density of 0.4 molecule/nm2) showed 3-4 fold higher cell uptake by cancer cells in vitro and 2.3 times higher accumulation in mouse cancer xenografts in vivo than pristine CMC. DOX and ICG with therapeutically significant concentrations can be sequentially encapsulated into CMC-FA by temporary permeating the plasma membranes with high efficiency. The systematic administration of cancer targeting CMC-FA loaded with DOX and ICG could significantly inhibit tumor growth in mouse xenografts in the presence of a near-infrared light at 808 nm, without noticeable toxicity. These findings suggest that cancer targeting CMC may have considerable benefits in drug delivery and combinational cancer therapy. STATEMENT OF SIGNIFICANCE A combination of chemotherapy and photothermal/photodynamic therapy has emerged as a promising strategy for cancer therapy. In current study, a novel cancer targeting cell membrane capsule (CMC-FA), originate from living cells and surface modified with folic acid, was developed to load doxorubicin hydrochloride (DOX) and indocyanine green (ICG), for combinational photo-chemotherapy against cancer. The systematic administration of drug loaded CMC-FA can significantly inhibit tumor growth in mouse xenografts in the presence of a near-infrared light at 808 nm, without noticeable toxicity. This study provides a simple and robust strategy to develop biocompatible therapeutic cell membrane capsules, holds strong translational potential in precise cancer treatment.
Collapse
Affiliation(s)
- Xiao Li
- The Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China; Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China.
| | - Xinlian Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dinesh Pardhi
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qianqian Wu
- The Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Yong Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huihui Zhu
- The Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310006, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
96
|
Photoinduced PEG deshielding from ROS-sensitive linkage-bridged block copolymer-based nanocarriers for on-demand drug delivery. Biomaterials 2018; 170:147-155. [DOI: 10.1016/j.biomaterials.2018.04.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 01/12/2023]
|
97
|
Ha W, Zhao XB, Chen XY, Jiang K, Shi YP. Prodrug-Based Cascade Self-Assembly Strategy for Precisely Controlled Combination Drug Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21149-21159. [PMID: 29874031 DOI: 10.1021/acsami.8b05170] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of codelivery systems for combination therapy that can load different drugs in a single carrier and precisely deliver payloads (ratio and administration time) via programmable administration has proven to be challenging. By taking advantage of the increased dimension or space from particle self-assembly approach, we have developed a prodrug-based cascade self-assembly strategy to construct a supramolecular hydrogel that can load different drugs in stages yet temporally/spatially release drugs by cascade disassembly of supramolecular hydrogel under different microenvironments. The cascade self-assembly mechanism has been investigated in detail by morphology evolution of prodrug micelles. Using tumor cell uptake, cytotoxicity assay, and a tumor-bearing animal model, the effectiveness of the prodrug micelle-based cascade self-assembly system was studied, such as loading, controlling the drug ratio, and the administration time for possible therapeutic applications. These studies fully demonstrate the proof of concept and open up an attractive new way to construct multidrug-loaded carriers for combination therapy.
Collapse
Affiliation(s)
- Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences (CAS) , Lanzhou 730000 , P. R. China
| | - Xiao-Bo Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences (CAS) , Lanzhou 730000 , P. R. China
| | - Xin-Yue Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences (CAS) , Lanzhou 730000 , P. R. China
| | - Kan Jiang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences (CAS) , Lanzhou 730000 , P. R. China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences (CAS) , Lanzhou 730000 , P. R. China
| |
Collapse
|
98
|
Fu Y, Li X, Ren Z, Mao C, Han G. Multifunctional Electrospun Nanofibers for Enhancing Localized Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801183. [PMID: 29952070 PMCID: PMC6342678 DOI: 10.1002/smll.201801183] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/26/2018] [Indexed: 05/16/2023]
Abstract
Localized cancer treatment is one of the most effective strategies in clinical destruction of solid tumors at early stages as it can minimize the side effects of cancer therapeutics. Electrospun nanofibers have been demonstrated as a promising implantable platform in localized cancer treatment, enabling the on-site delivery of therapeutic components and minimizing side effects to normal tissues. This Review discusses the recent cutting-edge research with regard to electrospun nanofibers used for various therapeutic approaches, including gene therapy, chemotherapy, photodynamic therapy, thermal therapy, and combination therapy, in enhancing localized cancer treatment. Furthermore, it extensively analyzes the current challenges and potential breakthroughs in utilizing this novel platform for clinical transition in localized cancer treatment.
Collapse
Affiliation(s)
- Yike Fu
- State Key Laboratory of Silicon Materials, School of Materials
Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R.
China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials
Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China.,
| | - Zhaohui Ren
- State Key Laboratory of Silicon Materials, School of Materials
Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China.,
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life
Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway,
Norman, Oklahoma, 73019-5300, USA.,
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials
Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R.
China
| |
Collapse
|
99
|
Xiao B, Viennois E, Chen Q, Wang L, Han MK, Zhang Y, Zhang Z, Kang Y, Wan Y, Merlin D. Silencing of Intestinal Glycoprotein CD98 by Orally Targeted Nanoparticles Enhances Chemosensitization of Colon Cancer. ACS NANO 2018; 12:5253-5265. [PMID: 29860836 DOI: 10.1021/acsnano.7b08499] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Colon cancer is among the most widely occurring cancer types, leading to considerably high mortality rate. The current chemotherapy achieves only limited success, and more effective therapeutic strategies are urgently needed. Human colonic biopsy specimens indicate increased expression of CD98 in patients with colon cancer, suggesting that CD98 might be a potential therapeutic target and/or a receptor for targeted drug delivery in colon cancer treatment. Herein, we coloaded CD98 siRNA (siCD98) and camptothecin (CPT) into CD98 Fab'-functionalized nanoparticles (NPs). The resultant Fab'-siCD98/CPT-NPs showed good monodispersity with an average diameter of approximately 270 nm and a ζ-potential of around -24 mV. These NPs mediated efficient drug delivery to the target cancer cells and tumor tissues, producing much better anticancer and antimigration effects compared to other relevant NPs. Mouse models with orthotopic colon tumors were treated with NP-embedded hydrogel, which revealed that Fab'-siCD98/CPT-NPs exhibited a therapeutic efficacy significantly better than that of single drug-loaded NPs or nonfunctionalized siCD98/CPT-NPs. This study indicates that the Fab'-siCD98/CPT-NP/hydrogel system is able to realize specific release of NPs in the colonic lumen and enable drugs (siCD98 and CPT) to be internalized into target cells, demonstrating a notable potential for clinical applications in colon-cancer-targeted combination therapy.
Collapse
Affiliation(s)
- Bo Xiao
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Emilie Viennois
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group , Georgia State University , Atlanta , Georgia 30302 , United States
| | | | - Lixin Wang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group , Georgia State University , Atlanta , Georgia 30302 , United States
- Atlanta Veterans Affairs Medical Center , Decatur , Georgia 30033 , United States
| | - Moon Kwon Han
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Yuchen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Zhan Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group , Georgia State University , Atlanta , Georgia 30302 , United States
| | | | - Ying Wan
- College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , P.R. China
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group , Georgia State University , Atlanta , Georgia 30302 , United States
- Atlanta Veterans Affairs Medical Center , Decatur , Georgia 30033 , United States
| |
Collapse
|
100
|
Yu B, Cong H, Peng Q, Gu C, Tang Q, Xu X, Tian C, Zhai F. Current status and future developments in preparation and application of nonspherical polymer particles. Adv Colloid Interface Sci 2018; 256:126-151. [PMID: 29705026 DOI: 10.1016/j.cis.2018.04.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 03/30/2018] [Accepted: 04/14/2018] [Indexed: 11/16/2022]
Abstract
Nonspherical polymer particles (NPPs) are nano/micro-particulates of macromolecules that are anisotropic in shape, and can be designed anisotropic in chemistry. Due to shape and surface anisotropies, NPPs bear many unique structures and fascinating properties which are distinctly different from those of spherical polymer particles (SPPs). In recent years, the research on NPPs has surprisingly blossomed in recent years, and many practical materials based on NPPs with potential applications in photonic device, material science and biomedical engineering have been generated. In this review, we give a systematic, balanced and comprehensive summary of the main aspects of NPPs related to their preparation and application, and propose perspectives for the future developments of NPPs.
Collapse
Affiliation(s)
- Bing Yu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China; Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Qiaohong Peng
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Chuantao Gu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Qi Tang
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaodan Xu
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Chao Tian
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Feng Zhai
- Institute of Biomedical Materials and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|