51
|
Hu G, Zhang B, Zhou P, Hou Y, Jia H, Liu Y, Gan L, Zhang H, Mao Y, Fang J. Depletion of protein thiols and the accumulation of oxidized thioredoxin in Parkinsonism disclosed by a red-emitting and environment-sensitive probe. J Mater Chem B 2019; 7:2696-2702. [DOI: 10.1039/c8tb03101k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein sulfhydryl groups play a vital role in maintaining cellular redox homeostasis and protein functions and have attracted increasing interests for the selective detection of protein thiols over low-molecular-weight thiols (LMWTs).
Collapse
|
52
|
Wang W, Wang B. SO 2 Donors and Prodrugs, and Their Possible Applications: A Review. Front Chem 2018; 6:559. [PMID: 30505833 PMCID: PMC6250732 DOI: 10.3389/fchem.2018.00559] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/29/2018] [Indexed: 12/16/2022] Open
Abstract
SO2 is widely recognized as an air pollutant and is a known cause of acid rain. At a sufficiently high level, it also causes respiratory diseases. A much lesser known side of SO2 is its endogenous nature and possible physiological roles. There is mounting evidence that SO2 is produced during normal cellular metabolism and may possibly function as a signaling molecule in normal physiology. The latter aspect is still at the stage of being carefully examined as to the validity of classifying SO2 as a gasotransmitter with endogenous signaling roles. One difficulty in studying the biological and pharmacological roles of SO2 is the lack of adequate tools for its controllable and precise delivery. Traditional methods of using SO2 gas or mixed sulfite salts do not meet research need for several reasons. Therefore, there has been increasing attention on the need of developing SO2 donors or prodrugs that can be used as tools for the elucidation of SO2's physiological roles, pharmacological effects, and possible mechanism(s) of action. In this review, we aim to review basic sulfur chemistry in the context of sulfur signaling and various chemical strategies used for designing SO2 donors. We will also discuss potential pharmacological applications of SO2 donors, lay out desirable features for such donors and possibly prodrugs, analyze existing problems, and give our thoughts on research needs.
Collapse
Affiliation(s)
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
53
|
Huang R, Li Z, Sheng Y, Yu J, Wu Y, Zhan Y, Chen H, Jiang B. N-Methyl-N-phenylvinylsulfonamides for Cysteine-Selective Conjugation. Org Lett 2018; 20:6526-6529. [DOI: 10.1021/acs.orglett.8b02849] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Rong Huang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Zhihong Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Yao Sheng
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Jianghui Yu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Yue Wu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Yuexiong Zhan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Hongli Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| |
Collapse
|
54
|
Nelson KJ, Bolduc JA, Wu H, Collins JA, Burke EA, Reisz JA, Klomsiri C, Wood ST, Yammani RR, Poole LB, Furdui CM, Loeser RF. H 2O 2 oxidation of cysteine residues in c-Jun N-terminal kinase 2 (JNK2) contributes to redox regulation in human articular chondrocytes. J Biol Chem 2018; 293:16376-16389. [PMID: 30190325 DOI: 10.1074/jbc.ra118.004613] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/04/2018] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen species (ROS), in particular H2O2, regulate intracellular signaling through reversible oxidation of reactive protein thiols present in a number of kinases and phosphatases. H2O2 has been shown to regulate mitogen-activated protein kinase (MAPK) signaling depending on the cellular context. We report here that in human articular chondrocytes, the MAPK family member c-Jun N-terminal kinase 2 (JNK2) is activated by fibronectin fragments and low physiological levels of H2O2 and inhibited by oxidation due to elevated levels of H2O2 The kinase activity of affinity-purified, phosphorylated JNK2 from cultured chondrocytes was reversibly inhibited by 5-20 μm H2O2 Using dimedone-based chemical probes that react specifically with sulfenylated cysteines (RSOH), we identified Cys-222 in JNK2, a residue not conserved in JNK1 or JNK3, as a redox-reactive site. MS analysis of human recombinant JNK2 also detected further oxidation at Cys-222 and other cysteines to sulfinic (RSO2H) or sulfonic (RSO3H) acid. H2O2 treatment of JNK2 resulted in detectable levels of peptides containing intramolecular disulfides between Cys-222 and either Cys-213 or Cys-177, without evidence of dimer formation. Substitution of Cys-222 to alanine rendered JNK2 insensitive to H2O2 inhibition, unlike C177A and C213A variants. Two other JNK2 variants, C116A and C163A, were also resistant to oxidative inhibition. Cumulatively, these findings indicate differential regulation of JNK2 signaling dependent on H2O2 levels and point to key cysteine residues regulating JNK2 activity. As levels of intracellular H2O2 rise, a switch occurs from activation to inhibition of JNK2 activity, linking JNK2 regulation to the redox status of the cell.
Collapse
Affiliation(s)
| | - Jesalyn A Bolduc
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Hanzhi Wu
- the Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 and
| | - John A Collins
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Elizabeth A Burke
- the Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 and
| | - Julie A Reisz
- the Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 and
| | - Chananat Klomsiri
- From the Department of Biochemistry and.,the Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 and
| | - Scott T Wood
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Raghunatha R Yammani
- the Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 and
| | | | - Cristina M Furdui
- the Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157 and
| | - Richard F Loeser
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
55
|
Renault K, Fredy JW, Renard PY, Sabot C. Covalent Modification of Biomolecules through Maleimide-Based Labeling Strategies. Bioconjug Chem 2018; 29:2497-2513. [PMID: 29954169 DOI: 10.1021/acs.bioconjchem.8b00252] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Since their first use in bioconjugation more than 50 years ago, maleimides have become privileged chemical partners for the site-selective modification of proteins via thio-Michael addition of biothiols and, to a lesser extent, via Diels-Alder (DA) reactions with biocompatible dienes. Prominent examples include immunotoxins and marketed maleimide-based antibody-drug conjugates (ADCs) such as Adcetris, which are used in cancer therapies. Among the key factors in the success of these groups is the availability of several maleimides that can be N-functionalized by fluorophores, affinity tags, spin labels, and pharmacophores, as well as their unique reactivities in terms of selectivity and kinetics. However, maleimide conjugate reactions have long been considered irreversible, and only recently have systematic studies regarding their reversibility and stability toward hydrolysis been reported. This review provides an overview of the diverse applications for maleimides in bioconjugation, highlighting their strengths and weaknesses, which are being overcome by recent strategies. Finally, the fluorescence quenching ability of maleimides was leveraged for the preparation of fluorogenic probes, which are mainly used for the specific detection of thiol analytes. A summary of the reported structures, their photophysical features, and their relative efficiencies is discussed in the last part of the review.
Collapse
Affiliation(s)
- Kévin Renault
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014) , 76000 Rouen , France
| | - Jean Wilfried Fredy
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014) , 76000 Rouen , France
| | - Pierre-Yves Renard
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014) , 76000 Rouen , France
| | - Cyrille Sabot
- Normandie Univ, CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014) , 76000 Rouen , France
| |
Collapse
|
56
|
Hoch DG, Abegg D, Adibekian A. Cysteine-reactive probes and their use in chemical proteomics. Chem Commun (Camb) 2018; 54:4501-4512. [PMID: 29645055 DOI: 10.1039/c8cc01485j] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Proteomic profiling using bioorthogonal chemical probes that selectively react with certain amino acids is now a widely used method in life sciences to investigate enzymatic activities, study posttranslational modifications and discover novel covalent inhibitors. Over the past two decades, researchers have developed selective probes for several different amino acids, including lysine, serine, cysteine, threonine, tyrosine, aspartate and glutamate. Among these amino acids, cysteines are particularly interesting due to their highly diverse and complex biochemical role in our cells. In this feature article, we focus on the chemical probes and methods used to study cysteines in complex proteomes.
Collapse
Affiliation(s)
- Dominic G Hoch
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | | | | |
Collapse
|
57
|
Abstract
Signaling by H2S is proposed to occur via persulfidation, a posttranslational modification of cysteine residues (RSH) to persulfides (RSSH). Persulfidation provides a framework for understanding the physiological and pharmacological effects of H2S. Due to the inherent instability of persulfides, their chemistry is understudied. In this review, we discuss the biologically relevant chemistry of H2S and the enzymatic routes for its production and oxidation. We cover the chemical biology of persulfides and the chemical probes for detecting them. We conclude by discussing the roles ascribed to protein persulfidation in cell signaling pathways.
Collapse
Affiliation(s)
- Milos R. Filipovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Jasmina Zivanovic
- Univeristy of Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
- CNRS, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Facultad de Ciencias and Center for Free Radical and Biomedical Research, Universidad de la Republica, 11400 Montevideo, Uruguay
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0600, United States
| |
Collapse
|
58
|
Kang J, Ferrell AJ, Chen W, Wang D, Xian M. Cyclic Acyl Disulfides and Acyl Selenylsulfides as the Precursors for Persulfides (RSSH), Selenylsulfides (RSeSH), and Hydrogen Sulfide (H 2S). Org Lett 2018; 20:852-855. [PMID: 29345467 PMCID: PMC5797492 DOI: 10.1021/acs.orglett.7b04005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reactions of three model compounds (1-3) for cyclic acyl disulfides and cyclic acyl selenylsulfides are studied. These compounds were found to be effective precursors for persulfides (RSSH) and selenylsulfides (RSeSH) upon reacting with nucleophilic species. They could also act as H2S donors when interacting with cellular thiols. The most interesting discovery was the generation of RSeSH from compound 3 under mild conditions. Selenylsulfides (RSeSH) are expected to be important regulating molecules involved in Sec-related redox signaling. The method of producing RSeSH should allow researchers to better understand the chemical biology of RSeSH.
Collapse
Affiliation(s)
- Jianming Kang
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Aaron J. Ferrell
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Wei Chen
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Difei Wang
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland 20850, United States
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
59
|
Reactive Cysteine Persulphides: Occurrence, Biosynthesis, Antioxidant Activity, Methodologies, and Bacterial Persulphide Signalling. Adv Microb Physiol 2018; 72:1-28. [PMID: 29778212 DOI: 10.1016/bs.ampbs.2018.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cysteine hydropersulphide (CysSSH) is a cysteine derivative having one additional sulphur atom bound to a cysteinyl thiol group. Recent advances in the development of analytical methods for detection and quantification of persulphides and polysulphides have revealed the biological presence, in both prokaryotes and eukaryotes, of hydropersulphides in diverse forms such as CysSSH, homocysteine hydropersulphide, glutathione hydropersulphide, bacillithiol hydropersulphide, coenzyme A hydropersulphide, and protein hydropersulphides. Owing to the chemical reactivity of the persulphide moiety, biological systems utilize persulphides as important intermediates in the synthesis of various sulphur-containing biomolecules. Accumulating evidence has revealed another important feature of persulphides: their potent reducing activity, which implies that they are implicated in the regulation of redox signalling and antioxidant functions. In this chapter, we discuss the biological occurrence and possible biosynthetic mechanisms of CysSSH and related persulphides, and we include descriptions of recent advances in the analytical methods that have been used to detect and quantitate persulphide species. We also discuss the antioxidant activity of persulphide species that contributes to protecting cells from reactive oxygen species-associated damage, and we examine the signalling roles of CysSSH in bacteria.
Collapse
|
60
|
Chen X, Wu H, Park CM, Poole TH, Keceli G, Devarie-Baez NO, Tsang AW, Lowther WT, Poole LB, King SB, Xian M, Furdui CM. Discovery of Heteroaromatic Sulfones As a New Class of Biologically Compatible Thiol-Selective Reagents. ACS Chem Biol 2017; 12:2201-2208. [PMID: 28687042 DOI: 10.1021/acschembio.7b00444] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The selective reaction of chemical reagents with reduced protein thiols is critical to biological research. This reaction is utilized to prevent cross-linking of cysteine-containing peptides in common proteomics workflows and is applied widely in discovery and targeted redox investigations of the mechanisms underlying physiological and pathological processes. However, known and commonly used thiol blocking reagents like iodoacetamide, N-ethylmaleimide, and others were found to cross-react with oxidized protein sulfenic acids (-SOH) introducing significant errors in studies employing these reagents. We have investigated and are reporting here a new heteroaromatic alkylsulfone, 4-(5-methanesulfonyl-[1,2,3,4]tetrazol-1-yl)-phenol (MSTP), as a selective and highly reactive -SH blocking reagent compatible with biological applications.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department
of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Hanzhi Wu
- Department
of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Chung-Min Park
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Thomas H. Poole
- Department
of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Gizem Keceli
- Department
of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Nelmi O. Devarie-Baez
- Department
of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Allen W. Tsang
- Department
of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - W. Todd Lowther
- Department
of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Leslie B. Poole
- Department
of Biochemistry, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - S. Bruce King
- Department
of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Ming Xian
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Cristina M. Furdui
- Department
of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
61
|
Day JJ, Neill DL, Xu S, Xian M. Benzothiazole Sulfinate: A Sulfinic Acid Transfer Reagent under Oxidation-Free Conditions. Org Lett 2017; 19:3819-3822. [PMID: 28670905 PMCID: PMC5863730 DOI: 10.1021/acs.orglett.7b01693] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sulfinic acids are commonly encountered intermediates found in natural product synthesis and medicinal chemistry. However, because of high reactivity, instability, and harsh reaction conditions, they are difficult to synthesize. Herein we have developed an oxidation-free method to produce sulfinic acids and sulfinate salts using 2-sulfinyl benzothiazole (BTS). We have also demonstrated the synthetic usefulness by developing one-pot syntheses of sulfones and sulfonamides.
Collapse
Affiliation(s)
- Jacob J. Day
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Deshka L. Neill
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Shi Xu
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
62
|
Yang Y, Yang F, Gong YJ, Chen JL, Goldfarb D, Su XC. A Reactive, Rigid Gd III Labeling Tag for In-Cell EPR Distance Measurements in Proteins. Angew Chem Int Ed Engl 2017; 56:2914-2918. [PMID: 28145030 DOI: 10.1002/anie.201611051] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/02/2016] [Indexed: 01/17/2023]
Abstract
The cellular environment of proteins differs considerably from in vitro conditions under which most studies of protein structures are carried out. Therefore, there is a growing interest in determining dynamics and structures of proteins in the cell. A key factor for in-cell distance measurements by the double electron-electron resonance (DEER) method in proteins is the nature of the used spin label. Here we present a newly designed GdIII spin label, a thiol-specific DOTA-derivative (DO3MA-3BrPy), which features chemical stability and kinetic inertness, high efficiency in protein labelling, a short rigid tether, as well as favorable spectroscopic properties, all are particularly suitable for in-cell distance measurements by the DEER method carried out at W-band frequencies. The high performance of DO3MA-3BrPy-GdIII is demonstrated on doubly labelled ubiquitin D39C/E64C, both in vitro and in HeLa cells. High-quality DEER data could be obtained in HeLa cells up to 12 h after protein delivery at in-cell protein concentrations as low as 5-10 μm.
Collapse
Affiliation(s)
- Yin Yang
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Feng Yang
- State Key Laboratory of Elemento-organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Yan-Jun Gong
- State Key Laboratory of Elemento-organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Jia-Liang Chen
- State Key Laboratory of Elemento-organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin, 300071, China
| |
Collapse
|
63
|
Yang Y, Yang F, Gong YJ, Chen JL, Goldfarb D, Su XC. A Reactive, Rigid GdIII
Labeling Tag for In-Cell EPR Distance Measurements in Proteins. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yin Yang
- Department of Chemical Physics; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Feng Yang
- State Key Laboratory of Elemento-organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Yan-Jun Gong
- State Key Laboratory of Elemento-organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Jia-Liang Chen
- State Key Laboratory of Elemento-organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| | - Daniella Goldfarb
- Department of Chemical Physics; Weizmann Institute of Science; Rehovot 76100 Israel
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-organic Chemistry; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; Tianjin 300071 China
| |
Collapse
|
64
|
Lad NP, Manohar Y, Mascarenhas M, Pandit YB, Kulkarni MR, Sharma R, Salkar K, Suthar A, Pandit SS. Methylsulfonyl benzothiazoles (MSBT) derivatives: Search for new potential antimicrobial and anticancer agents. Bioorg Med Chem Lett 2016; 27:1319-1324. [PMID: 28188067 DOI: 10.1016/j.bmcl.2016.08.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 04/06/2016] [Accepted: 08/12/2016] [Indexed: 11/25/2022]
Abstract
A series of novel 4 and 5-substituted methylsulfonyl benzothiazole (MSBT) compounds having amide, alkoxy, sulfonamide, nitro and amine functionality were synthesized from sequential reactions on 5-ethoxy-2-(methylsulfonyl)benzo[d]thiazole such as nitration, reduction, sulfonation, dealkylation, etc. All synthesized compounds were screened against antimicrobial and selected screened for anticancer activity. Antimicrobial activities studies reveled that among all compounds screened, out of MSBT-07, MSBT-11, MSBT-12, MSBT-14, MSBT-19, and MSBT-27 were found to have promising antimicrobial activity at MIC range of 4-50μg/ml against selected bacterial as well as fungal species. Compounds having good antimicrobial activity were screened for cervical cancer (HeLA cell lines). Of these MSBT-07 and MSBT-12 significantly reduced the cell growth. Consequently their calculated GI50 values were found to be 0.1 or <0.1μM.
Collapse
Affiliation(s)
- Nitin P Lad
- Research Centre and Post Graduate Department of Chemistry, Padmashri Vikhe Patil College of Arts, Science and Commerce, Pravaranagar, A/P Loni, Tal. Rahata, Dist. Ahmednagar 413713, India; Department of Medicinal Chemistry, Piramal Enterprises Ltd, 1-Nirlon Complex, Goregaon (East), Mumbai 400063, India
| | - Yogesh Manohar
- Department of Medicinal Chemistry, Piramal Enterprises Ltd, 1-Nirlon Complex, Goregaon (East), Mumbai 400063, India
| | - Malcolm Mascarenhas
- Department of Medicinal Chemistry, Piramal Enterprises Ltd, 1-Nirlon Complex, Goregaon (East), Mumbai 400063, India
| | - Yashwant B Pandit
- Applied Chemistry Division, DIAT-DRDO, Girinagar, Pune 411025, India
| | - Mahesh R Kulkarni
- Research Centre and Post Graduate Department of Chemistry, Padmashri Vikhe Patil College of Arts, Science and Commerce, Pravaranagar, A/P Loni, Tal. Rahata, Dist. Ahmednagar 413713, India; Department of Medicinal Chemistry, Piramal Enterprises Ltd, 1-Nirlon Complex, Goregaon (East), Mumbai 400063, India
| | - Rajiv Sharma
- Department of Medicinal Chemistry, Piramal Enterprises Ltd, 1-Nirlon Complex, Goregaon (East), Mumbai 400063, India
| | - Kavita Salkar
- Department of Phytomedicines, Piramal Enterprises Ltd, 1-Nirlon Complex, Goregaon (East), Mumbai 400063, India
| | - Ashish Suthar
- Department of Phytomedicines, Piramal Enterprises Ltd, 1-Nirlon Complex, Goregaon (East), Mumbai 400063, India
| | - Shivaji S Pandit
- Research Centre and Post Graduate Department of Chemistry, Padmashri Vikhe Patil College of Arts, Science and Commerce, Pravaranagar, A/P Loni, Tal. Rahata, Dist. Ahmednagar 413713, India
| |
Collapse
|
65
|
Faustino H, Silva MJSA, Veiros LF, Bernardes GJL, Gois PMP. Iminoboronates are efficient intermediates for selective, rapid and reversible N-terminal cysteine functionalisation. Chem Sci 2016; 7:5052-5058. [PMID: 30155155 PMCID: PMC6018717 DOI: 10.1039/c6sc01520d] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/14/2016] [Indexed: 12/24/2022] Open
Abstract
We show that formyl benzeno boronic acids (2FBBA) selectively react with N-terminal cysteines to yield a boronated thiazolidine featuring a B-N bond. The reaction exhibits a very rapid constant rate (2.38 ± 0.23 × 102 M-1 s-1) under mild aqueous conditions (pH 7.4, 23 °C) and tolerates different amino acids at the position adjacent to the N-cysteine. DFT calculations highlighted the diastereoselective nature of this ligation reaction and support the involvement of the proximal boronic acid in the activation of the imine functionality and the stabilisation of the boronated thiazolidine through a chelate effect. The 2FBBA reagent allowed the effective functionalisation of model peptides (C-ovalbumin and a laminin fragment) and the boronated thiazolidine construct was shown to be stable over time, though the reaction was reversible in the presence of benzyl hydroxylamine. The reaction proved to be highly chemoselective, and 2FBBA was used to functionalize the N-terminal cysteine of calcitonin in the presence of a potentially competing in-chain thiol group. This exquisite selectivity profile enabled the dual functionalisation of calcitonin and the interactive orthogonal modification of this peptide when 2FBBA was combined with conventional maleimide chemistry. These results highlight the potential of this methodology to construct complex and well-defined bioconjugates.
Collapse
Affiliation(s)
- Hélio Faustino
- Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal .
| | - Maria J S A Silva
- Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal .
| | - Luís F Veiros
- Centro de Química Estrutural , Instituto Superior Técnico , Universidade de Lisboa , Av. Rovisco Pais 1 , 1049-001 Lisbon , Portugal
| | - Gonçalo J L Bernardes
- Department of Chemistry , University of Cambridge , Lensfield Road , CB2 1EW , Cambridge , UK
- Instituto de Medicina Molecular , Faculdade de Medicina , Universidade de Lisboa , Avenida Professor Egas Moniz , 1649-028 , Lisboa , Portugal
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa) , Faculty of Pharmacy , Universidade de Lisboa , Lisbon , Portugal .
| |
Collapse
|
66
|
Day JJ, Yang Z, Chen W, Pacheco A, Xian M. Benzothiazole Sulfinate: a Water-Soluble and Slow-Releasing Sulfur Dioxide Donor. ACS Chem Biol 2016; 11:1647-51. [PMID: 27031093 DOI: 10.1021/acschembio.6b00106] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sulfur dioxide (SO2) has long been considered a toxic environmental pollutant and byproduct of industrial processing. Recently it has become evident that SO2 may also have regulatory functions in mammalian pulmonary systems. However, the study of these effects has proven to be challenging due to the difficulty in administering SO2 in a reliable manner. In this work, we report the discovery of a new pH-dependent and water-soluble SO2 donor, benzothiazole sulfinate (BTS). We have found BTS to have slow and sustained SO2 release at physiological pH. Additionally, we have explored its vasorelaxation properties as compared to the authentic SO2 gas solutions. The slow release of BTS should make it a useful tool for the study of endogenously generated SO2.
Collapse
Affiliation(s)
- Jacob J. Day
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Zhenhua Yang
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Wei Chen
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Armando Pacheco
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
- Institute of Environmental Science, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
67
|
|
68
|
Kasamatsu S, Fujii S, Akaike T. [Reactive sulfur species-modified protein thiols: new methods for polysulfurated protein analysis]. Nihon Yakurigaku Zasshi 2016; 147:299-302. [PMID: 27181726 DOI: 10.1254/fpj.147.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
69
|
Zhou P, Yao J, Hu G, Fang J. Naphthalimide Scaffold Provides Versatile Platform for Selective Thiol Sensing and Protein Labeling. ACS Chem Biol 2016; 11:1098-105. [PMID: 26813105 DOI: 10.1021/acschembio.5b00856] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reversible thiol modifications are fundamental of cellular redox regulation. Specific thiol detection, including thiol sensing and protein thiols labeling, is critical to study such modifications. We reported the discovery of 4-methylsulfonyl-N-n-butyl-1,8-naphthalimide (MSBN), a highly selective fluorogenic probe for thiols based on the 1,8-naphthalimide scaffold. Thiols react with MSBN nearly quantitatively via nucleophilic aromatic substitution to replace the methylsulfonyl group and restore the quenched fluorescence (>100-fold increase). MSBN was employed to selectively image thiols in live cells and specifically label protein thiols with a turn-on signal to determine diverse reversible protein thiol modifications. In addition, we introduced a bulky group into the MSBN as a mass tag to create a probe MSBN-TPP, which readily discriminates the reduced thioredoxin from the oxidized one. The specific reaction of MSBN with thiols and the easy manipulation of the naphthalimide unit enable MSBN a versatile scaffold in developing novel probes for thiol-based protein bioconjugation and studying various thiol modifications.
Collapse
Affiliation(s)
- Pengcheng Zhou
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Juan Yao
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Guodong Hu
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- State Key Laboratory of Applied
Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
70
|
Gunnoo SB, Madder A. Chemical Protein Modification through Cysteine. Chembiochem 2016; 17:529-53. [DOI: 10.1002/cbic.201500667] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Smita B. Gunnoo
- Organic & Biomimetic Chemistry Research Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 9000 Gent Belgium
| | - Annemieke Madder
- Organic & Biomimetic Chemistry Research Group; Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281 9000 Gent Belgium
| |
Collapse
|
71
|
Park CM, Johnson BA, Duan J, Park JJ, Day JJ, Gang D, Qian WJ, Xian M. 9-Fluorenylmethyl (Fm) Disulfides: Biomimetic Precursors for Persulfides. Org Lett 2016; 18:904-7. [PMID: 26870874 PMCID: PMC4782721 DOI: 10.1021/acs.orglett.5b03557] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The development of
a functional disulfide, FmSSPy-A (Fm = 9-fluorenylmethyl;
Py = pyridinyl), is reported. It can effectively convert small molecule
and protein thiols (−SH) to form −S-SFm adducts under
mild conditions. This method allows for a H2S-free and
biomimetic protocol to generate highly reactive persulfides (in their
anionic forms). The high nucleophilicity of persulfides toward a number
of thiol-blocking reagents is also demonstrated. The method holds
promise for further understanding the chemical biology of persulfides
and S-sulfhydration.
Collapse
Affiliation(s)
- Chung-Min Park
- Department of Chemistry, Washington State University , Pullman, Washington 99164, United States
| | - Brett A Johnson
- Department of Chemistry, Washington State University , Pullman, Washington 99164, United States
| | - Jicheng Duan
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Jeong-Jin Park
- Tissue Imaging and Proteomics Laboratory, Washington State University , Pullman, Washington 99164, United States
| | - Jacob J Day
- Department of Chemistry, Washington State University , Pullman, Washington 99164, United States
| | - David Gang
- Tissue Imaging and Proteomics Laboratory, Washington State University , Pullman, Washington 99164, United States
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Ming Xian
- Department of Chemistry, Washington State University , Pullman, Washington 99164, United States
| |
Collapse
|
72
|
Farrukh A, Paez JI, Salierno M, del Campo A. Bioconjugating Thiols to Poly(acrylamide) Gels for Cell Culture Using Methylsulfonyl Co-monomers. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201509986] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aleeza Farrukh
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Germany
- INM-Leibniz Institute for New Materials.; Campus D2 2; 66123 Saarbrücken Germany
| | - Julieta I. Paez
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Germany
- INM-Leibniz Institute for New Materials.; Campus D2 2; 66123 Saarbrücken Germany
| | - Marcelo Salierno
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Germany
| | - Aránzazu del Campo
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Germany
- INM-Leibniz Institute for New Materials.; Campus D2 2; 66123 Saarbrücken Germany
- Saarland University; Campus Saarbrücken D2 2; 66123 Saarbrücken Germany
| |
Collapse
|
73
|
Farrukh A, Paez JI, Salierno M, del Campo A. Bioconjugating Thiols to Poly(acrylamide) Gels for Cell Culture Using Methylsulfonyl Co-monomers. Angew Chem Int Ed Engl 2016; 55:2092-6. [DOI: 10.1002/anie.201509986] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 12/07/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Aleeza Farrukh
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Germany
- INM-Leibniz Institute for New Materials.; Campus D2 2; 66123 Saarbrücken Germany
| | - Julieta I. Paez
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Germany
- INM-Leibniz Institute for New Materials.; Campus D2 2; 66123 Saarbrücken Germany
| | - Marcelo Salierno
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Germany
| | - Aránzazu del Campo
- Max-Planck-Institut für Polymerforschung; Ackermannweg 10 55128 Mainz Germany
- INM-Leibniz Institute for New Materials.; Campus D2 2; 66123 Saarbrücken Germany
- Saarland University; Campus Saarbrücken D2 2; 66123 Saarbrücken Germany
| |
Collapse
|
74
|
Takano Y, Shimamoto K, Hanaoka K. Chemical tools for the study of hydrogen sulfide (H2S) and sulfane sulfur and their applications to biological studies. J Clin Biochem Nutr 2015; 58:7-15. [PMID: 26798192 PMCID: PMC4706096 DOI: 10.3164/jcbn.15-91] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/24/2015] [Indexed: 12/14/2022] Open
Abstract
Hydrogen sulfide (H2S) functions in many physiological processes, including relaxation of vascular smooth muscles, mediation of neurotransmission, inhibition of insulin signaling, and regulation of inflammation. On the other hand, sulfane sulfur, which is a sulfur atom with six valence electrons but no charge, has the unique ability to bind reversibly to other sulfur atoms to form hydropersulfides (R-S-SH) and polysulfides (-S-Sn-S-). H2S and sulfane sulfur always coexist, and recent work suggests that sulfane sulfur species may be the actual signaling molecules in at least some biological phenomena. For example, one of the mechanisms of activity regulation of proteins by H2S is the S-sulfhydration of cysteine residues (protein Cys-SSH). In this review, we summarize recent progress on chemical tools for the study of H2S and sulfane sulfur, covering fluorescence probes utilizing various design strategies, H2S caged compounds, inhibitors of physiological H2S-producing enzymes (cystathionine γ-lyase, cystathionine β-synthase and 3-mercaptopyruvate sulfurtransferase), and labeling reagents. Fluorescence probes offer particular advantages as chemical tools to study physiological functions of biomolecules, including ease of use and real-time, nondestructive visualization of biological processes in live cells and tissues.
Collapse
Affiliation(s)
- Yoko Takano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuhito Shimamoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
75
|
Snijder PM, Baratashvili M, Grzeschik NA, Leuvenink HGD, Kuijpers L, Huitema S, Schaap O, Giepmans BNG, Kuipers J, Miljkovic JL, Mitrovic A, Bos EM, Szabó C, Kampinga HH, Dijkers PF, Bos EM, Szabó C, Kampinga HH, Dijkers PF, Dunnen WFAD, Filipovic MR, Goor HV, Sibon OCM. Overexpression of Cystathionine γ-Lyase Suppresses Detrimental Effects of Spinocerebellar Ataxia Type 3. Mol Med 2015; 21:758-768. [PMID: 26467707 DOI: 10.2119/molmed.2015.00221] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 01/20/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a polyglutamine (polyQ) disorder caused by a CAG repeat expansion in the ataxin-3 (ATXN3) gene resulting in toxic protein aggregation. Inflammation and oxidative stress are considered secondary factors contributing to the progression of this neurodegenerative disease. There is no cure that halts or reverses the progressive neurodegeneration of SCA3. Here we show that overexpression of cystathionine γ-lyase, a central enzyme in cysteine metabolism, is protective in a Drosophila model for SCA3. SCA3 flies show eye degeneration, increased oxidative stress, insoluble protein aggregates, reduced levels of protein persulfidation and increased activation of the innate immune response. Overexpression of Drosophila cystathionine γ-lyase restores protein persulfidation, decreases oxidative stress, dampens the immune response and improves SCA3-associated tissue degeneration. Levels of insoluble protein aggregates are not altered; therefore, the data implicate a modifying role of cystathionine γ-lyase in ameliorating the downstream consequence of protein aggregation leading to protection against SCA3-induced tissue degeneration. The cystathionine γ-lyase expression is decreased in affected brain tissue of SCA3 patients, suggesting that enhancers of cystathionine γ-lyase expression or activity are attractive candidates for future therapies.
Collapse
Affiliation(s)
- Pauline M Snijder
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Madina Baratashvili
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Nicola A Grzeschik
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lucas Kuijpers
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sippie Huitema
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Onno Schaap
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ben N G Giepmans
- UMCG Microscopy and Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jeroen Kuipers
- UMCG Microscopy and Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jan Lj Miljkovic
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Eelke M Bos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Csaba Szabó
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Harm H Kampinga
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Pascale F Dijkers
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Eelke M Bos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Csaba Szabó
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Harm H Kampinga
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Pascale F Dijkers
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Wilfred F A den Dunnen
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Milos R Filipovic
- Department of Chemistry and Pharmacy, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Germany
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ody C M Sibon
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
76
|
Baez NOD, Reisz JA, Furdui CM. Mass spectrometry in studies of protein thiol chemistry and signaling: opportunities and caveats. Free Radic Biol Med 2015; 80:191-211. [PMID: 25261734 PMCID: PMC4355329 DOI: 10.1016/j.freeradbiomed.2014.09.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/08/2014] [Accepted: 09/11/2014] [Indexed: 12/13/2022]
Abstract
Mass spectrometry (MS) has become a powerful and widely utilized tool in the investigation of protein thiol chemistry, biochemistry, and biology. Very early biochemical studies of metabolic enzymes have brought to light the broad spectrum of reactivity profiles that distinguish cysteine thiols with functions in catalysis and protein stability from other cysteine residues in proteins. The development of MS methods for the analysis of proteins using electrospray ionization (ESI) or matrix-assisted laser desorption/ionization (MALDI) coupled with the emergence of high-resolution mass analyzers has been instrumental in advancing studies of thiol modifications, both in single proteins and within the cellular context. This article reviews MS instrumentation and methods of analysis employed in investigations of thiols and their reactivity toward a range of small biomolecules. A selected number of studies are detailed to highlight the advantages brought about by the MS technologies along with the caveats associated with these analyses.
Collapse
Affiliation(s)
- Nelmi O Devarie Baez
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Julie A Reisz
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
77
|
Affiliation(s)
- Omar Boutureira
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili , C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | | |
Collapse
|
78
|
Abstract
Protein S-sulfhydration (i.e., converting protein cysteines -SH to persulfides -SSH) is a redox-based posttranslational modification. This reaction plays an important role in signaling pathways mediated by hydrogen sulfide or other reactive sulfane sulfur species. Recently, our laboratories developed a "tag-switch" method which can be used to selectively label and detect protein S-sulfhydrated residues. In this chapter, we provide a comprehensive summary of this method, including the design of the method, preparation of the reagents, validation on small-molecule substrates, as well as applications in protein labeling. Experimental protocols for the use of the method are described in details.
Collapse
|
79
|
Yang Y, Wang JT, Pei YY, Su XC. Site-specific tagging proteins via a rigid, stable and short thiolether tether for paramagnetic spectroscopic analysis. Chem Commun (Camb) 2015; 51:2824-7. [DOI: 10.1039/c4cc08493d] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of phenylsulfonated pyridine derivatives and protein thiols is suitable for high-resolution spectroscopic analysis by generation of a rigid, stable and short thiolether tether.
Collapse
Affiliation(s)
- Yin Yang
- State-Key Laboratory of Elemento-organic Chemistry
- Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin
- China
| | - Jin-Tao Wang
- State-Key Laboratory of Elemento-organic Chemistry
- Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin
- China
| | - Ying-Ying Pei
- State-Key Laboratory of Elemento-organic Chemistry
- Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin
- China
| | - Xun-Cheng Su
- State-Key Laboratory of Elemento-organic Chemistry
- Innovation Center of Chemical Science and Engineering (Tianjin)
- Nankai University
- Tianjin
- China
| |
Collapse
|
80
|
Zhang D, Chen W, Kang J, Ye Y, Zhao Y, Xian M. Highly selective fluorescence off-on probes for biothiols and imaging in live cells. Org Biomol Chem 2014; 12:6837-41. [PMID: 25047799 PMCID: PMC4134666 DOI: 10.1039/c4ob01031k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three sulfonyl benzothiazole-based fluorescent probes (, , and ) for the detection of biothiols (cysteine, homocysteine, and glutathione) are developed based on thiol-mediated nucleophilic aromatic substitutions. The probes exhibited good selectivity and sensitivity toward biothiols over other analytes. The probes were successfully applied for visualizing endogenous thiols in living cells.
Collapse
Affiliation(s)
- Di Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, China. Tel: +86-371-67767051
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA. Fax: +1- 509-335-8867
| | - Wei Chen
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA. Fax: +1- 509-335-8867
| | - Jianming Kang
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA. Fax: +1- 509-335-8867
| | - Yong Ye
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, China. Tel: +86-371-67767051
| | - Yufen Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450052, China. Tel: +86-371-67767051
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA. Fax: +1- 509-335-8867
| |
Collapse
|
81
|
Cal PMSD, Bernardes GJL, Gois PMP. Cysteinselektive Reaktionen zur Konjugation von Antikörpern. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405702] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
82
|
Cal PMSD, Bernardes GJL, Gois PMP. Cysteine-Selective Reactions for Antibody Conjugation. Angew Chem Int Ed Engl 2014; 53:10585-7. [DOI: 10.1002/anie.201405702] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 06/21/2014] [Indexed: 11/12/2022]
|
83
|
Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci U S A 2014; 111:7606-11. [PMID: 24733942 DOI: 10.1073/pnas.1321232111] [Citation(s) in RCA: 696] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Using methodology developed herein, it is found that reactive persulfides and polysulfides are formed endogenously from both small molecule species and proteins in high amounts in mammalian cells and tissues. These reactive sulfur species were biosynthesized by two major sulfurtransferases: cystathionine β-synthase and cystathionine γ-lyase. Quantitation of these species indicates that high concentrations of glutathione persulfide (perhydropersulfide >100 μM) and other cysteine persulfide and polysulfide derivatives in peptides/proteins were endogenously produced and maintained in the plasma, cells, and tissues of mammals (rodent and human). It is expected that persulfides are especially nucleophilic and reducing. This view was found to be the case, because they quickly react with H2O2 and a recently described biologically generated electrophile 8-nitroguanosine 3',5'-cyclic monophosphate. These results indicate that persulfides are potentially important signaling/effector species, and because H2S can be generated from persulfide degradation, much of the reported biological activity associated with H2S may actually be that of persulfides. That is, H2S may act primarily as a marker for the biologically active of persulfide species.
Collapse
|
84
|
Zhang D, Macinkovic I, Devarie-Baez NO, Pan J, Park CM, Carroll KS, Filipovic MR, Xian M. Detection of protein S-sulfhydration by a tag-switch technique. Angew Chem Int Ed Engl 2013; 53:575-81. [PMID: 24288186 DOI: 10.1002/anie.201305876] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Indexed: 01/08/2023]
Abstract
Protein S-sulfhydration (forming -S-SH adducts from cysteine residues) is a newly defined oxidative posttranslational modification and plays an important role in H2 S-mediated signaling pathways. In this study we report the first selective, "tag-switch" method which can directly label protein S-sulfhydrated residues by forming stable thioether conjugates. Furthermore we demonstrate that H2 S alone cannot lead to S-sulfhydration and that the two possible physiological mechanisms include reaction with protein sulfenic acids (P-SOH) or the involvement of metal centers which would facilitate the oxidation of H2 S to HS(.) .
Collapse
Affiliation(s)
- Dehui Zhang
- Department of Chemistry, Washington State University, Pullman, WA 99164 (USA)
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Zhang D, Macinkovic I, Devarie-Baez NO, Pan J, Park CM, Carroll KS, Filipovic MR, Xian M. Detektion von Persulfidbildung an Proteinen (S-Sulfhydrierung) mithilfe einer Tag-Switch-Technik. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
86
|
Toda N, Asano S, Barbas CF. Rapid, stable, chemoselective labeling of thiols with Julia-Kocieński-like reagents: a serum-stable alternative to maleimide-based protein conjugation. Angew Chem Int Ed Engl 2013; 52:12592-6. [PMID: 24123851 PMCID: PMC3865870 DOI: 10.1002/anie.201306241] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Indexed: 01/12/2023]
Abstract
Cysteine-maleimide chemistry is widely used for peptide and protein modification. However, the formed succinimide linkage is readily hydrolyzed and is susceptible to an exchange reaction in vivo. We demonstrate that methylsulfonyl phenyloxadiazole compounds react specifically with cysteine under various buffer conditions and found that the resulting protein conjugates had superior stability to cysteine-maleimide conjugates in human plasma. This Thiol-Click chemistry promises a new approach to stable protein conjugates and pegylated proteins.
Collapse
Affiliation(s)
| | | | - Carlos F. Barbas
- The Skaggs Institute for Chemical Biology and the Departments of Chemistry and Molecular and Cell Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
| |
Collapse
|
87
|
Reisz JA, Bechtold E, King SB, Poole LB, Furdui CM. Thiol-blocking electrophiles interfere with labeling and detection of protein sulfenic acids. FEBS J 2013; 280:6150-61. [PMID: 24103186 DOI: 10.1111/febs.12535] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/03/2013] [Accepted: 09/12/2013] [Indexed: 01/07/2023]
Abstract
Cellular exposure to reactive oxygen species induces rapid oxidation of DNA, proteins, lipids and other biomolecules. At the proteome level, cysteine thiol oxidation is a prominent post-translational process that is implicated in normal physiology and numerous pathologies. Methods for investigating protein oxidation include direct labeling with selective chemical probes and indirect tag-switch techniques. Common to both approaches is chemical blocking of free thiols using reactive electrophiles to prevent post-lysis oxidation or other thiol-mediated cross-reactions. These reagents are used in large excess, and their reactivity with cysteine sulfenic acid, a critical oxoform in numerous proteins, has not been investigated. Here we report the reactivity of three thiol-blocking electrophiles, iodoacetamide, N-ethylmaleimide and methyl methanethiosulfonate, with protein sulfenic acid and dimedone, the structural core of many sulfenic acid probes. We demonstrate that covalent cysteine -SOR (product) species are partially or fully susceptible to reduction by dithiothreitol, tris(2-carboxyethyl)phosphine and ascorbate, regenerating protein thiols, or, in the case of ascorbate, more highly oxidized species. The implications of this reactivity on detection methods for protein sulfenic acids and S-nitrosothiols are discussed.
Collapse
Affiliation(s)
- Julie A Reisz
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | |
Collapse
|
88
|
Toda N, Asano S, Barbas CF. Rapid, Stable, Chemoselective Labeling of Thiols with Julia-Kocieński-like Reagents: A Serum-Stable Alternative to Maleimide-Based Protein Conjugation. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306241] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|