51
|
Identification of biomarkers for lymph node metastasis in early-stage cervical cancer by tissue-based proteomics. Br J Cancer 2014; 110:1748-58. [PMID: 24569473 PMCID: PMC3974096 DOI: 10.1038/bjc.2014.92] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/09/2013] [Accepted: 01/22/2014] [Indexed: 12/14/2022] Open
Abstract
Background: Pelvic lymph node metastasis (PLNM) is the key to determining the treatment and prognosis of early-stage cervical cancer (CC, I–IIst). The aim of this study was to identify biomarkers for PLNM of CC, I–IIst. Methods: Two-dimensional fluorescence difference gel electrophoresis and matrix-assisted laser desorption/ionisation-time-of-flight mass spectrometry (MALDI-TOF/TOF MS) were used to identify differentially expressed proteins in primary CC, I–IIst tissue with (n=8) and without (n=10) PLNM. The expression levels of three differential proteins (FABP5, HspB1, and MnSOD) were validated using western blotting and immunohistochemistry. An independent cohort of 105 CC, I–IIst patients was analysed to assess the correlation of FABP5, HspB1, and MnSOD with clinicopathologic factors and clinical outcomes. Results: Forty-one differential proteins were identified. Upregulation of FABP5, HspB1, and MnSOD in CC, I–IIst with PLNM was confirmed and was significantly correlated with PLNM. FABP5, HspB1, and MnSOD were significant predictors of PLNM in univariate analysis. FABP5, HspB1, and lymphovascular space invasion (LVSI) were independent predictors of PLNM in multivariate analysis. Survival curves indicated that CC, I–IIst patients with FABP5, HspB1, and MnSOD upregulation had poor prognosis. Conclusions: FABP5, HspB1, and MnSOD may be potential biomarkers for PLNM of CC, I–IIst and may have important roles in the pathogenesis of PLNM.
Collapse
|
52
|
Urbanelli L, Magini A, Ercolani L, Sagini K, Polchi A, Tancini B, Brozzi A, Armeni T, Principato G, Emiliani C. Oncogenic H-Ras up-regulates acid β-hexosaminidase by a mechanism dependent on the autophagy regulator TFEB. PLoS One 2014; 9:e89485. [PMID: 24586816 PMCID: PMC3933543 DOI: 10.1371/journal.pone.0089485] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 01/21/2014] [Indexed: 11/19/2022] Open
Abstract
The expression of constitutively active H-RasV12 oncogene has been described to induce proliferative arrest and premature senescence in many cell models. There are a number of studies indicating an association between senescence and lysosomal enzyme alterations, e.g. lysosomal β-galactosidase is the most widely used biomarker to detect senescence in cultured cells and we previously reported that H-RasV12 up-regulates lysosomal glycohydrolases enzymatic activity in human fibroblasts. Here we investigated the molecular mechanisms underlying lysosomal glycohydrolase β-hexosaminidase up-regulation in human fibroblasts expressing the constitutively active H-RasV12. We demonstrated that H-Ras activation increases β-hexosaminidase expression and secretion by a Raf/extracellular signal-regulated protein kinase dependent pathway, through a mechanism that relies on the activity of the transcription factor EB (TFEB). Because of the pivotal role of TFEB in the regulation of lysosomal system biogenesis and function, our results suggest that this could be a general mechanism to enhance lysosomal enzymes activity during oncogene-induced senescence.
Collapse
Affiliation(s)
- Lorena Urbanelli
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- * E-mail: (CE); (LU)
| | - Alessandro Magini
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- Department of Medical and Biological Sciences (DSMB), University of Udine, Udine, Italy
| | - Luisa Ercolani
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Marche Polytechnic University, Ancona, Italy
| | - Krizia Sagini
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Alice Polchi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Brunella Tancini
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Alessandro Brozzi
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Perugia, Italy
| | - Tatiana Armeni
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Marche Polytechnic University, Ancona, Italy
| | - Giovanni Principato
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Marche Polytechnic University, Ancona, Italy
| | - Carla Emiliani
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Perugia, Italy
- * E-mail: (CE); (LU)
| |
Collapse
|
53
|
Dvorakova M, Nenutil R, Bouchal P. Transgelins, cytoskeletal proteins implicated in different aspects of cancer development. Expert Rev Proteomics 2014; 11:149-65. [PMID: 24476357 DOI: 10.1586/14789450.2014.860358] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Transgelin is an abundant protein of smooth muscle cells, where its role has been primarily studied. As a protein affecting dynamics of the actin cytoskeleton via stabilization of actin filaments, transgelin is both directly and indirectly involved in many cancer-related processes such as migration, proliferation, differentiation or apoptosis. Transgelin was previously reviewed as a tumor suppressor; however, recent data based on a number of proteomics studies indicate its pro-tumorigenic role, for example, in colorectal or hepatocellular cancer. We summarize these contradictory observations in both clinical and functional proteomics projects and analyze the role of transgelin in tumors in detail. Generally, the expression and biological role of transgelin seem to differ among various types of tumor cells and stroma, and possibly change during tumor progression. We also overview the recent data on transgelin-2, a sequence homolog of transgelin, whose role in the tumor development might be contradictory to the role of transgelin.
Collapse
Affiliation(s)
- Monika Dvorakova
- Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Brno, Czech Republic
| | | | | |
Collapse
|
54
|
Maryáš J, Faktor J, Dvořáková M, Struhárová I, Grell P, Bouchal P. Proteomics in investigation of cancer metastasis: Functional and clinical consequences and methodological challenges. Proteomics 2014; 14:426-40. [DOI: 10.1002/pmic.201300264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/16/2013] [Accepted: 10/04/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Josef Maryáš
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
| | - Jakub Faktor
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Monika Dvořáková
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Iva Struhárová
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Peter Grell
- Department of Comprehensive Cancer Care; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| |
Collapse
|
55
|
Costanzi E, Urbanelli L, Bellezza I, Magini A, Emiliani C, Minelli A. Hypermethylation contributes to down-regulation of lysosomal β-hexosaminidase α subunit in prostate cancer cells. Biochimie 2014; 101:75-82. [PMID: 24389457 DOI: 10.1016/j.biochi.2013.12.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 12/21/2013] [Indexed: 10/25/2022]
Abstract
β-Hexosaminidase, involved in degradation of glycoproteins and glycosphingolipids, is altered in several tumours leading to enhanced migration capacity. To date, the expression of the β-hexosaminidase isoenzymes in prostate cancer cells has not been elucidated. By using PC3, LNCaP, DUCaP, MDAPCa 2b, and hyperplasic prostate (BPH-1) cell lines, we analysed the β-hexosaminidase activity in each cell line and determined β-hexosaminidase α subunit gene expression in PC3, LNCaP, and BPH-1. We then investigated the methylation status of the gene promoter and determined the cellular responses of PC3 and LNCaP after transfection with β-hexosaminidase α subunit. We found that each prostate cancer cell line had a decrease in total hexosaminidase activity and that the lack of hexosaminidase A activity, observed in PC3 and LNCaP cells, was associated with mRNA disappearance. The HEXA promoter region in LNCaP and PC3 cell lines had methylated CpG islands, as confirmed by 5'-Aza-2'-deoxycitidine treatment, in PC3 cells, used as cell cancer model. We also tested, the involvement of hexosaminidase A in the migration capacity by migration assay using Hex α subunit-transfected PC3. Finally, we found that, after Hex α subunit transfection, both PC3 and LNCaP were less susceptible to exogenous ceramide treatment. Results indicate a likely contribution of the lysosomal enzyme to the acquisition of cancerous features.
Collapse
Affiliation(s)
- Egidia Costanzi
- Dipartimento Medicina Sperimentale e Scienze Biochimiche, Università degli Studi di Perugia, 06124 Perugia, Italy.
| | - Lorena Urbanelli
- Dipartimento Medicina Sperimentale e Scienze Biochimiche, Università degli Studi di Perugia, 06124 Perugia, Italy
| | - Ilaria Bellezza
- Dipartimento Medicina Sperimentale e Scienze Biochimiche, Università degli Studi di Perugia, 06124 Perugia, Italy
| | - Alessandro Magini
- Dipartimento Medicina Sperimentale e Scienze Biochimiche, Università degli Studi di Perugia, 06124 Perugia, Italy
| | - Carla Emiliani
- Dipartimento Medicina Sperimentale e Scienze Biochimiche, Università degli Studi di Perugia, 06124 Perugia, Italy
| | - Alba Minelli
- Dipartimento Medicina Sperimentale e Scienze Biochimiche, Università degli Studi di Perugia, 06124 Perugia, Italy
| |
Collapse
|
56
|
Kim Y, Kislinger T. Novel approaches for the identification of biomarkers of aggressive prostate cancer. Genome Med 2013; 5:56. [PMID: 23809668 PMCID: PMC3706951 DOI: 10.1186/gm460] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The ability to distinguish indolent from aggressive prostate tumors remains one of the greatest challenges in the management of this disease. Ongoing efforts to establish a panel of molecular signatures, comprising gene expression profiles, proteins, epigenetic patterns, or a combination of these alterations, are being propelled by rapid advancements in 'omics' technologies. The identification of such biomarkers in biological fluids is an especially attractive goal for clinical applications. Here, we summarize recent progress in the identification of candidate prognostic biomarkers of prostate cancer using biological fluid samples.
Collapse
Affiliation(s)
- Yunee Kim
- Department of Medical Biophysics, University of Toronto, Toronto, Canada M5G 1L7
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, Canada M5G 1L7 ; Princess Margaret Cancer Center, University Health Network, Toronto, Canada M5G 1L7
| |
Collapse
|
57
|
Levi L, Lobo G, Doud MK, von Lintig J, Seachrist D, Tochtrop GP, Noy N. Genetic ablation of the fatty acid-binding protein FABP5 suppresses HER2-induced mammary tumorigenesis. Cancer Res 2013; 73:4770-80. [PMID: 23722546 DOI: 10.1158/0008-5472.can-13-0384] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fatty acid-binding protein FABP5 shuttles ligands from the cytosol to the nuclear receptor PPARβ/δ (encoded for by Pparδ), thereby enhancing the transcriptional activity of the receptor. This FABP5/PPARδ pathway is critical for induction of proliferation of breast carcinoma cells by activated epidermal growth factor receptor (EGFR). In this study, we show that FABP5 is highly upregulated in human breast cancers and we provide genetic evidence of the pathophysiologic significance of FABP5 in mammary tumorigenesis. Ectopic expression of FABP5 was found to be oncogenic in 3T3 fibroblasts where it augmented the ability of PPARδ to enhance cell proliferation, migration, and invasion. To determine whether FABP5 is essential for EGFR-induced mammary tumor growth, we interbred FABP5-null mice with MMTV-ErbB2/HER2 oncomice, which spontaneously develop mammary tumors. FABP5 ablation relieved activation of EGFR downstream effector signals, decreased expression of PPARδ target genes that drive cell proliferation, and suppressed mammary tumor development. Our findings establish that FABP5 is critical for mammary tumor development, rationalizing the development of FABP5 inhibitors as novel anticarcinogenic drugs.
Collapse
Affiliation(s)
- Liraz Levi
- Departments of Pharmacology, Chemistry, and Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH44106, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
An integrative proteomics and interaction network-based classifier for prostate cancer diagnosis. PLoS One 2013; 8:e63941. [PMID: 23737958 PMCID: PMC3667836 DOI: 10.1371/journal.pone.0063941] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/09/2013] [Indexed: 12/23/2022] Open
Abstract
Aim Early diagnosis of prostate cancer (PCa), which is a clinically heterogeneous-multifocal disease, is essential to improve the prognosis of patients. However, published PCa diagnostic markers share little overlap and are poorly validated using independent data. Therefore, we here developed an integrative proteomics and interaction network-based classifier by combining the differential protein expression with topological features of human protein interaction networks to enhance the ability of PCa diagnosis. Methods and Results By two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with MS using PCa and adjacent benign tissues of prostate, a total of 60 proteins with the differential expression in PCa tissues were identified as the candidate markers. Then, their networks were analyzed by GeneGO Meta-Core software and three hub proteins (PTEN, SFPQ and HDAC1) were chosen. After that, a PCa diagnostic classifier was constructed by support vector machine (SVM) modeling based on the microarray gene expression data of the genes which encode the hub proteins mentioned above. Validations of diagnostic performance showed that this classifier had high predictive accuracy (85.96∼90.18%) and area under ROC curve (approximating 1.0). Furthermore, the clinical significance of PTEN, SFPQ and HDAC1 proteins in PCa was validated by both ELISA and immunohistochemistry analyses. More interestingly, PTEN protein was identified as an independent prognostic marker for biochemical recurrence-free survival in PCa patients according to the multivariate analysis by Cox Regression. Conclusions Our data indicated that the integrative proteomics and interaction network-based classifier which combines the differential protein expression and topological features of human protein interaction network may be a powerful tool for the diagnosis of PCa. We also identified PTEN protein as a novel prognostic marker for biochemical recurrence-free survival in PCa patients.
Collapse
|
59
|
Abstract
Prostate cancer (PCa) research in China has been on a rocketing trend in recent years. The first genome-wide association study (GWAS) in China identified two new PCa risk associated single nucleotide polymorphisms (SNPs). Next generation sequencing is beginning to be used, yielding novel findings: gene fusions, long non-coding RNAs and other variations. Mechanisms of PCa progression have been illustrated while various diagnosis biomarkers have been investigated extensively. Personalized therapy based on genetic factors, nano-medicine and traditional Chinese medicine has been the focus of experimental therapeutic research for PCa. This review intends to shed light upon the recent progress in PCa research in China and points out the possible breakthroughs in the future.
Collapse
|
60
|
Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR. Protein analysis by shotgun/bottom-up proteomics. Chem Rev 2013; 113:2343-94. [PMID: 23438204 PMCID: PMC3751594 DOI: 10.1021/cr3003533] [Citation(s) in RCA: 986] [Impact Index Per Article: 89.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yaoyang Zhang
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bryan R. Fonslow
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bing Shan
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Moon-Chang Baek
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Department of Molecular Medicine, Cell and Matrix Biology Research Institute, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
61
|
Zhang HH, Qi F, Zu XB, Cao YH, Miao JG, Xu L, Qi L. A proteomic study of potential VEGF-C-associated proteins in bladder cancer T24 cells. Med Sci Monit 2013; 18:BR441-9. [PMID: 23111735 PMCID: PMC3560612 DOI: 10.12659/msm.883537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background Overexpression of vascular endothelial growth factor-C (VEGF-C) has been found to play an important role in malignant progression of various cancer cells, in addition to lymphangiogenesis. However, the mechanisms involved are still largely unknown. Our early research has confirmed that the expression of VEGF-C in bladder cancer was markedly higher than that in normal bladder tissues. VEGF-C can also obviously promote proliferation and invasion of bladder cancer T24 cells. In the present work, we attempted to use proteomic analysis to screen out potential VEGF-C-associated proteins involved in malignant progression of the bladder cancer T24 cells. Material/Methods Lentivirus vector-based RNA interference (RNAi) was employed to diminish VEGF-C expression of bladder cancer T24 cells. Then we performed comparative proteome analysis to explore differentially expressed proteins in T24 cells with and without VEGF-C siRNA, by two-dimensional difference gel electrophoresis (2D-DIGE). Results Twenty-three proteins were identified. Some proteins (matrix metalloproteinase-9, Keratin 8, Serpin B5, Annexin A8) with significant differences were further confirmed by Western blotting. Conclusions The 23 potential VEGF-C-associated proteins identified in our study provide us with further insights into the mechanism of VEGF-C promoting malignant progression of bladder cancer cells.
Collapse
Affiliation(s)
- Hui-hui Zhang
- Department of Urology, First Affiliated Hospital of Nanhua University, Hengyang city, China
| | | | | | | | | | | | | |
Collapse
|
62
|
Tobo T, Hirahashi M, Yao T, Aishima S, Oda Y. Ezrin expression and its phosphorylation in gastric carcinoma with lymphoid stroma and Epstein-Barr virus infection. Mol Clin Oncol 2012; 1:220-224. [PMID: 24649150 DOI: 10.3892/mco.2012.56] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 12/05/2012] [Indexed: 12/13/2022] Open
Abstract
Gastric carcinoma with lymphoid stroma (GCLS) is a unique variant of gastric carcinoma that represents prominent lymphocytic infiltration and is correlated with Epstein-Barr virus (EBV) infection. Ezrin expression and activation are crucial in tumor metastasis and induce cell migration of EBV-related nasopharyngeal carcinomas. Using immunohistochemical methods, the expression of total and phosphorylated ezrin (p-ezrin), Thr567, was examined in 104 GCLS cases, including 78 EBV-positive and 26 EBV-negative cases, as well as 29 non-GCLS cases. Positive ezrin expression was detected to be at markedly higher levels in GCLS compared to non-GCLS (P<0.0001). Furthermore, ezrin expression was detected to be at higher levels in EBV-positive compared to EBV-negative GCLS (P=0.0294). High expression of p-ezrin in GCLS was associated with positive lymph node metastasis (P=0.0187). In summary, these results demonstrated that ezrin overexpression is correlated with the histologic characteristics of GCLS and EBV infection. Phosphorylation of ezrin may, therefore, contribute to lymph node metastasis in GCLS.
Collapse
Affiliation(s)
- Taro Tobo
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Minako Hirahashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Takashi Yao
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shinichi Aishima
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka
| |
Collapse
|
63
|
Pin E, Fredolini C, Petricoin EF. The role of proteomics in prostate cancer research: biomarker discovery and validation. Clin Biochem 2012; 46:524-38. [PMID: 23266295 DOI: 10.1016/j.clinbiochem.2012.12.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 01/06/2023]
Abstract
PURPOSE Prostate Cancer (PCa) represents the second most frequent type of tumor in men worldwide. Incidence increases with patient age and represents the most important risk factor. PCa is mostly characterized by indolence, however in a small percentage of cases (3%) the disease progresses to a metastatic state. To date, the most important issue concerning PCa research is the difficulty in distinguishing indolent from aggressive disease. This problem frequently results in low-grade PCa patient overtreatment and, in parallel; an effective treatment for distant and aggressive disease is not yet available. RESULT Proteomics represents a promising approach for the discovery of new biomarkers able to improve the management of PCa patients. Markers more specific and sensitive than PSA are needed for PCa diagnosis, prognosis and response to treatment. Moreover, proteomics could represent an important tool to identify new molecular targets for PCa tailored therapy. Several possible PCa biomarkers sources, each with advantages and limitations, are under investigation, including tissues, urine, serum, plasma and prostatic fluids. Innovative high-throughput proteomic platforms are now identifying and quantifying new specific and sensitive biomarkers for PCa detection, stratification and treatment. Nevertheless, many putative biomarkers are still far from being applied in clinical practice. CONCLUSIONS This review aims to discuss the recent advances in PCa proteomics, emphasizing biomarker discovery and their application to clinical utility for diagnosis and patient stratification.
Collapse
Affiliation(s)
- Elisa Pin
- George Mason University, Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | | | | |
Collapse
|
64
|
Yamada F, Sumida K, Uehara T, Morikawa Y, Yamada H, Urushidani T, Ohno Y. Toxicogenomics discrimination of potential hepatocarcinogenicity of non-genotoxic compounds in rat liver. J Appl Toxicol 2012; 33:1284-93. [PMID: 22806939 DOI: 10.1002/jat.2790] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 05/28/2012] [Indexed: 01/23/2023]
Abstract
Long-term carcinogenicity testing of a compound is exceedingly time-consuming and costly, and requires many test animals, whereas the Ames test, which is based on the assumption that any substance that is mutagenic may also exert carcinogenic potential, is useful as a short-term screening assay but has major drawbacks. Although, in fact, 90% of compounds that give a positive Ames test cause cancer in laboratory animals, a good proportion of compounds that give a negative Ames test are also carcinogens; that is, there is no good correlation between carcinogenicity and negative Ames test results. As an alternative to these two approaches, we have tried applying toxicogenomics to predict the carcinogenicity of a compound from the gene expression profile induced in vivo. To establish our model, male Sprague-Dawley rats were orally administered test compounds (12 hepatocarcinogens and 26 non-hepatocarcinogens) for 28 days. Analysis of liver gene expression data by Support Vector Machines (SVM) dividing compounds into 'for training' and 'for test' (20 cases assigned randomly) allowed a set of marker genes to be tested for prediction of hepatocarcinogenicity. The developed prediction model was then validated with reference to the concordance rate with training data and test data, and a good performance was obtained. We will have new gene expression data and continue the validation of our model.
Collapse
Affiliation(s)
- Fumihiro Yamada
- Sumitomo Chemical Co., Ltd., 3-1-98 Kasugadenaka, Konohana-ku, Osaka, 554-8558, Japan
| | | | | | | | | | | | | |
Collapse
|
65
|
Mascareno EJ, Belashov I, Siddiqui MAQ, Liu F, Dhar-Mascareno M. Hexim-1 modulates androgen receptor and the TGF-β signaling during the progression of prostate cancer. Prostate 2012; 72:1035-44. [PMID: 22095517 DOI: 10.1002/pros.21510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 10/13/2011] [Indexed: 01/30/2023]
Abstract
BACKGROUND Androgen and TGF-β signaling are important components during the progression of prostate cancer. However, whether common molecular events participate in the activation of these signaling pathways are less understood. METHOD Hexim 1 expression was detected by immunohistochemistry of human tissue microarrays and TRAMP mouse models. The in vivo significance of Hexim-1 was established by crossing the TRAMP mouse model of prostate cancer with Hexim-1 heterozygous mice. TRAMP C2 cell line was also modified to delete one copy of Hexim-1 gene to generate TRAMP-C2-Hexim-1+/- cell lines. RESULTS In this report, we observed that Hexim-1 protein expression is absent in normal prostate but highly expressed in adenocarcinoma of the prostate and a characteristic sub-cellular distribution among normal, benign hyperplasia, and adenocarcinoma of the prostate. Heterozygosity of the Hexim-1 gene in the prostate cancer mice model and the TRAMP-C2 cell line, leads to increased Cdk9-dependent serine phosphorylation on protein targets such as the androgen receptor (AR) and the TGF-β-dependent downstream transcription factors, such as the SMAD proteins. CONCLUSION Our results suggest that changes in the Hexim-1 protein expression and cellular distribution significantly influences the AR activation and the TGF-β signaling. Thus, Hexim-1 is likely to play a significant role in prostate cancer progression.
Collapse
Affiliation(s)
- Eduardo J Mascareno
- Department of Cell Biology, State University of New York, Downstate Medical School, Brooklyn, New York 11203, USA.
| | | | | | | | | |
Collapse
|
66
|
Jiang QY, Xia JM, Ding HG, Fei XW, Lin J, Wu RJ. RNAi-mediated blocking of ezrin reduces migration of ectopic endometrial cells in endometriosis. Mol Hum Reprod 2012; 18:435-41. [PMID: 22544491 DOI: 10.1093/molehr/gas019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ezrin is a member of the ezrin-radixin-moesin (ERM) family of membrane-cytoskeletal linkage proteins. It is important for maintenance of cell shape, adhesion, migration and division. The overexpression of ezrin in some tumours is associated with increased cell migration that is mediated by the Rho/ROCK family of small GTPases. To investigate the role of ezrin in the migration of ectopic endometrial cells in endometriosis, we conducted real-time quantitative RT-PCR analysis of the eutopic and ectopic endometrium from women with endometriosis compared with those without the disease. RNAi, wound healing assays and western blot analysis of endometriotic cells were also included in this research. We found significantly higher levels of mRNA expression of ezrin (0.42 versus 0.27, P < 0.05), RhoA (0.99 versus 0.74, P < 0.05), RhoC (0.79 versus 0.43, P < 0.005) and ROCK1 (0.68 versus 0.38, P < 0.005) in the ectopic endometrial cells compared with the eutopic endometrial cells in endometriosis. Blocking ezrin with small-interfering RNA reduced the migration of ectopic endometrial cells with decreased expression of RhoA (42.68%), RhoC (58.42%) and ROCK1 (59.88%). Our results indicate that the over-expression of ezrin in endometriosis may play a significant role in the migration of endometrial cells of endometriosis, and the RhoC/Rock pathway may provide a promising treatment target.
Collapse
Affiliation(s)
- Qiao-Ying Jiang
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, No. 1 Xueshi Road, Hangzhou, Zhejiang Province 310006, People's Republic of China
| | | | | | | | | | | |
Collapse
|
67
|
Ummanni R, Barreto F, Venz S, Scharf C, Barett C, Mannsperger HA, Brase JC, Kuner R, Schlomm T, Sauter G, Sültmann H, Korf U, Bokemeyer C, Walther R, Brümmendorf TH, Balabanov S. Peroxiredoxins 3 and 4 are overexpressed in prostate cancer tissue and affect the proliferation of prostate cancer cells in vitro. J Proteome Res 2012; 11:2452-66. [PMID: 22424448 DOI: 10.1021/pr201172n] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The present study aimed to investigate the proteome profiling of surgically treated prostate cancers. Hereto, 2D-DIGE and mass spectrometry were performed for protein identification, and data validation for peroxiredoxin 3 and 4 (PRDX3 and PRDX4) was accomplished by reverse phase protein arrays (RPPA). The Formal Concept Analysis (FCA) method was applied to assess whether the TMPRSS2-ERG gene fusion could influence the degree of overexpression of PRDX3 and PRDX4 in prostate cancer. Lastly, we performed an in vitro functional characterization of both PRDX3 and PRDX4 using the classical human prostate cancer cell lines DU145 and LNCaP. Reverse phase protein arrays verified that the overexpression of both PRDX3 and PRDX4 in tumor samples is negatively correlated with the presence of the TMPRSS2-ERG gene fusion. Functional characterization of PRDX3 and PRDX4 activity in PCa cell lines suggests a role of these members of the peroxiredoxin family in the pathophysiology of this tumor entity.
Collapse
Affiliation(s)
- Ramesh Ummanni
- Department of Oncology, Haematology and Bone marrow transplantation, section Pneumology, Hubertus Wald-Tumour Zentrum, University Hospital Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Pan C, Tao Y, Zhao M, Li W, Huang Z, Gao J, Wu Y, Yu J, Wu P, Xia Y, Lu J. Comparative serum proteomic analysis involving liver organ-specific metastasis-associated proteins of nasopharyngeal carcinoma. Exp Ther Med 2012; 3:1055-1061. [PMID: 22970016 DOI: 10.3892/etm.2012.526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/06/2012] [Indexed: 01/11/2023] Open
Abstract
Metastasis is the main cause of cancer-related mortality; patients with liver metastases (LM) have the worst prognosis among patients with nasopharyngeal carcinoma (NPC). However, at present, few biomarkers for detecting organ-specific metastasis have been identified. Proteomics, an ultra-sensitive analytical technique, can detect molecular changes before organ-specific metastasis occurs. Analysis with matrix-assisted, laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS), combined with magnetic chemical affinity beads is a new technique for evaluating protein separation. We sought to identify potential liver-specific, metastasis-associated proteomic printing in patients with NPC. We examined 64 serum samples from 50 patients who had pathologically confirmed NPC and 14 who had pathologically confirmed non-NPC with LM using MALDI-TOF-MS with weak cation bead protein chips. During follow-up of at least 37 months (maximum, 176 months) following radiotherapy, we confirmed 16 cases of LM (LM NPC), 16 cases without LM (non-LM NPC) and 18 cases without metastasis (non-M NPC). Using comparison analysis, 4 protein mass peaks, 4155.34, 4194.87, 4210.78 and 4249.56 m/z were identified as liver-specific, metastasis-associated protein peaks in NPC and two of them (4155 and 4249 m/z) met two different statistical criteria in both ClinProt software analyses and discriminant analyses. Models based on the 4 potential serum markers of NPC discriminated between LM NPC, non-LM NPC, non-M NPC and non-NPC LM analyzed with sieved markers. The recognition capability and cross-validation of these models for differentiating the above 4 groups are all approximately 80%. MALDI-TOF-MS combined with tree analysis models may provide a clinical diagnostic platform for detecting potential liver-specific, metastasis-associated proteomic printing in NPC. However, markedly differential proteins still need to be identified.
Collapse
Affiliation(s)
- Changchuan Pan
- Departments of Medical Imaging and Interventional Radiology and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Wu B, Wu H, Chen J, Hua X, Li N, Lu M. Comparative proteomic analysis of human donor tissues during orthotopic liver transplantation: ischemia versus reperfusion. Hepatol Int 2012. [PMID: 26201644 DOI: 10.1007/s12072-012-9346-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE To explore the specific alterations in protein profiles that occur during ischemia/reperfusion injury (I/RI) and find novel therapeutic strategies to reduce I/RI during orthotopic liver transplantation (OLT). METHOD We used the comparative proteomic approach of two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to compare the proteomic profiles of the same donor liver at three different time points: T1, immediately after cardiac arrest of donors (normal control); T2, before portal vein anastomosis (ischemia); and T3, 2 h after hepatic artery anastomosis (reperfusion). RESULT We identified 34 proteins that were significantly altered during I/RI. These differentially expressed proteins were functionally classified into seven categories: metabolic enzyme, molecular chaperone, antioxidant enzyme, cytoskeleton protein, signal transduction protein, cyclin, and binding protein. Among the 34 proteins, 9 changed during ischemia only (from T1 to T2), 11 changed during reperfusion only (from T2 to T3), and the others changed during both ischemia and reperfusion (from T1 to T3) periods. CONCLUSION Ischemia and reperfusion during LT may lead to different modifications of the liver proteins. Most metabolic enzymes and antioxidant enzymes were upregulated during ischemia, indicating that lipid metabolic disorder and oxidative stress are closely related to the development of ischemic injury. ER chaperones may play a vital role in mediating I/RI and preventing ER stress caused by I/RI. Modulation of ER chaperones could be used as a key therapeutic target to improve the outcomes of LT.
Collapse
Affiliation(s)
- Bin Wu
- Department of Liver Transplantation, The 3rd Affiliated Hospital of Sun-Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China.
| | - HongLi Wu
- School of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, 120 VBS, Lincoln, NE, 68583-0905, USA.
| | - JianNing Chen
- Department of Pathology, The 3rd Affiliated Hospital of Sun-Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China.
| | - XueFeng Hua
- Department of Liver Transplantation, The 3rd Affiliated Hospital of Sun-Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China.
| | - Ning Li
- Department of Liver Transplantation, The 3rd Affiliated Hospital of Sun-Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China.
| | - MinQiang Lu
- Department of Liver Transplantation, The 3rd Affiliated Hospital of Sun-Yat-Sen University, Tianhe Road 600, Guangzhou, 510630, China.
| |
Collapse
|
70
|
Identification of novel serological tumor markers for human prostate cancer using integrative transcriptome and proteome analysis. Med Oncol 2012; 29:2877-88. [DOI: 10.1007/s12032-011-0149-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 12/20/2011] [Indexed: 12/21/2022]
|
71
|
Jung JH, Kim HJ, Yeom J, Yoo C, Shin J, Yoo J, Kang CS, Lee C. Lowered expression of galectin-2 is associated with lymph node metastasis in gastric cancer. J Gastroenterol 2012; 47:37-48. [PMID: 22015694 DOI: 10.1007/s00535-011-0463-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 07/25/2011] [Indexed: 02/04/2023]
Abstract
BACKGROUND Lymph node metastasis (LNM) is recognized as an important factor in the progression of tumor malignancy. It is required to discover molecular markers for the prediction of LNM in gastric cancers (GCs). METHODS An isotope coded affinity tag (ICAT) method and mass spectrometry were used for the quantitative profiling of LNM-related proteins. Western blot analysis of the identified proteins and immunohistochemistry on a tissue microarray comprising 120 GC cases were performed for validation. RESULTS We identified 151 differentially expressed proteins (DEPs) with an abundance ratio greater than 1.5-fold. The proteins upregulated in LNM-negative GCs were largely populated with proteins related to cell death. Among the DEPs, galectin-2 was further tested because its expression level was significantly higher in LNM-negative GCs (~12-fold, p < 0.0001) and its expression is known to be not ubiquitous but confined to the gastrointestinal tract. Immunohistochemical analysis revealed that low expression of galectin-2 was significantly associated with LNM (p = 0.031) and advanced clinical stage (p = 0.024). The association of low galectin-2 with LNM was found even in early GCs (p = 0.020). CONCLUSION Our results show that proteomic analysis coupled with immunohistochemistry using tissue microarray is a useful tool for identifying LNM-associated proteins in GC. Also, loss of galectin-2 might play an important role in the aggressiveness of GC.
Collapse
Affiliation(s)
- Ji-Han Jung
- BRI, Korea Institute of Science and Technology, 39-1 Hawolgok, Seongbuk, Seoul 136-791, Korea
| | | | | | | | | | | | | | | |
Collapse
|
72
|
Wang C, Guo K, Gao D, Kang X, Jiang K, Li Y, Sun L, Zhang S, Sun C, Liu X, Wu W, Yang P, Liu Y. Identification of transaldolase as a novel serum biomarker for hepatocellular carcinoma metastasis using xenografted mouse model and clinic samples. Cancer Lett 2011; 313:154-66. [PMID: 22023829 DOI: 10.1016/j.canlet.2011.08.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/29/2011] [Accepted: 08/31/2011] [Indexed: 01/19/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of serious disorders with the highest morbidities and mortalities worldwide. Metastasis is the major concern that causes death in HCC. The goal of this study was to screen and identify potential serum proteins indicating HCC metastasis. Serum samples collected from control and HCCLM3-R metastatic HCC tumor model at specific stages of metastasis (1 wk, 3 wks and 6 wks) were subjected to iTRAQ labeling followed by 2DLC-ESI-MS/MS analysis. A total of 554 proteins were identified and 80 proteins were differential expressed at least between one adjacent time points. Among them, expression level of transaldolase (TALDO) was validated in mouse and human serum. The level of TALDO protein was found to be higher in metastatic mice serum compared to that of non-metastatic mice. Human specific TALDO was then identified in mouse serum through human specific peptides. Immunohistochemical and western blot analysis showed that the expression of TALDO in human HCC tissues and HCC cell lines was associated with its metastatic behavior. Subsequent screening of TALDO expression in 72 clinical serum samples (comprising 36 non-metastatic HCC and 36 metastatic HCC samples) revealed higher TALDO level in the serum of metastatic HCC patients. A receiver operating characteristic (ROC) curve estimated a maximal sensitivity of 77.8% and 86.1% specificity for TALDO in detection of HCC metastasis. The present results demonstrated that the nude mouse xenograft model is an efficient system for performing metastasis-related biomarker discovery. TALDO may be useful biomarkers for the detection of HCC metastasis.
Collapse
Affiliation(s)
- Cun Wang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Wang L, Su D, Yan HJ, Xu JH, Zheng ZG, Hu YJ, Pan XD, Ding XW, Chen C, Chen B, Mao WM, Meng XL. Primary Study of Lymph Node Metastasis-Related Serum Biomarkers in Breast Cancer. Anat Rec (Hoboken) 2011; 294:1818-24. [DOI: 10.1002/ar.21455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 06/22/2011] [Indexed: 01/22/2023]
|
74
|
Marimuthu A, O’Meally RN, Chaerkady R, Subbannayya Y, Nanjappa V, Kumar P, Kelkar DS, Pinto SM, Sharma R, Renuse S, Goel R, Christopher R, Delanghe B, Cole RN, Harsha H, Pandey A. A comprehensive map of the human urinary proteome. J Proteome Res 2011; 10:2734-43. [PMID: 21500864 PMCID: PMC4213861 DOI: 10.1021/pr2003038] [Citation(s) in RCA: 146] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The study of the human urinary proteome has the potential to offer significant insights into normal physiology as well as disease pathology. The information obtained from such studies could be applied to the diagnosis of various diseases. The high sensitivity, resolution, and mass accuracy of the latest generation of mass spectrometers provides an opportunity to accurately catalog the proteins present in human urine, including those present at low levels. To this end, we carried out a comprehensive analysis of human urinary proteome from healthy individuals using high-resolution Fourier transform mass spectrometry. Importantly, we used the Orbitrap for detecting ions in both MS (resolution 60 000) and MS/MS (resolution 15 000) modes. To increase the depth of our analysis, we characterized both unfractionated as well as lectin-enriched proteins in our experiments. In all, we identified 1,823 proteins with less than 1% false discovery rate, of which 671 proteins have not previously been reported as constituents of human urine. This data set should serve as a comprehensive reference list for future studies aimed at identification and characterization of urinary biomarkers for various diseases.
Collapse
Affiliation(s)
- Arivusudar Marimuthu
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
- Manipal University, Manipal 576104, Karnataka, India
| | - Robert N. O’Meally
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland, United States
| | - Raghothama Chaerkady
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland, United States
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland, United States
| | - Yashwanth Subbannayya
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
- Rajiv Gandhi University of Health Sciences, Bangalore 560041, Karnataka, India
| | - Vishalakshi Nanjappa
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
| | - Praveen Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
| | - Dhanashree S. Kelkar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
- School of Biotechnology, Amrita University, Kollam 690525, Kerala, India
| | - Sneha M. Pinto
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
| | - Rakesh Sharma
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bangalore 560006, Karnataka, India
| | - Santosh Renuse
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland, United States
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland, United States
- School of Biotechnology, Amrita University, Kollam 690525, Kerala, India
| | - Renu Goel
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
- Department of Biotechnology, Kuvempu University, Shimoga 577451, Karnataka, India
| | - Rita Christopher
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bangalore 560006, Karnataka, India
| | | | - Robert N. Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland, United States
| | - H.C. Harsha
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, Karnataka, India
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland, United States
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore 21205, Maryland, United States
| |
Collapse
|
75
|
Ray S, Reddy PJ, Jain R, Gollapalli K, Moiyadi A, Srivastava S. Proteomic technologies for the identification of disease biomarkers in serum: advances and challenges ahead. Proteomics 2011; 11:2139-61. [PMID: 21548090 DOI: 10.1002/pmic.201000460] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 02/28/2011] [Accepted: 03/07/2011] [Indexed: 01/22/2023]
Abstract
Serum is an ideal biological sample that contains an archive of information due to the presence of a variety of proteins released by diseased tissue, and serum proteomics has gained considerable interest for the disease biomarker discovery. Easy accessibility and rapid protein changes in response to disease pathogenesis makes serum an attractive sample for clinical research. Despite these advantages, the analysis of serum proteome is very challenging due to the wide dynamic range of proteins, difficulty in finding low-abundance target analytes due to the presence of high-abundance serum proteins, high levels of salts and other interfering compounds, variations among individuals and paucity of reproducibility. Sample preparation introduces pre-analytical variations and poses major challenges to analyze the serum proteome. The label-free detection techniques such as surface plasmon resonance, microcantilever, few nanotechniques and different resonators are rapidly emerging for the analysis of serum proteome and they have exhibited potential to overcome few limitations of the conventional techniques. In this article, we will discuss the current status of serum proteome analysis for the biomarker discovery and address key technological advancements, with a focus on challenges and amenable solutions.
Collapse
Affiliation(s)
- Sandipan Ray
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | | | | | | | | | |
Collapse
|
76
|
Kraljevic Pavelic S, Sedic M, Bosnjak H, Spaventi S, Pavelic K. Metastasis: new perspectives on an old problem. Mol Cancer 2011; 10:22. [PMID: 21342498 PMCID: PMC3052211 DOI: 10.1186/1476-4598-10-22] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 02/22/2011] [Indexed: 12/23/2022] Open
Abstract
Many hypotheses have been postulated to explain the intricate nature of the metastatic process, but none of them completely accounted for the actual biological and clinical observations. Consequently, metastasis still remains an open issue with only few metastasis-inducing proteins experimentally validated so far. Recently proposed novel metastatic model, where serial and parallel metastatic processes are adequately integrated, might help to bridge the current gap between experimental results and clinical observations. In addition, the identification, isolation and molecular characterization of cancer stem cells, a population of the cells within the tumour mass able to proliferate, self-renew and induce tumorigenesis, will shed new light on the complex molecular events mediating metastasis, invasion and resistance to therapy. Understanding the molecular basis of these tumour characteristics will usher in a new age of individualized cancer therapy. In this review article, we will provide a current overview of molecular mechanisms underpinning metastasis, and discuss recent findings in this field obtained by global molecular profiling strategies such as proteomics.
Collapse
|
77
|
Ummanni R, Mundt F, Pospisil H, Venz S, Scharf C, Barett C, Fälth M, Köllermann J, Walther R, Schlomm T, Sauter G, Bokemeyer C, Sültmann H, Schuppert A, Brümmendorf TH, Balabanov S. Identification of clinically relevant protein targets in prostate cancer with 2D-DIGE coupled mass spectrometry and systems biology network platform. PLoS One 2011; 6:e16833. [PMID: 21347291 PMCID: PMC3037937 DOI: 10.1371/journal.pone.0016833] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 01/16/2011] [Indexed: 11/18/2022] Open
Abstract
Prostate cancer (PCa) is the most common type of cancer found in men and among the leading causes of cancer death in the western world. In the present study, we compared the individual protein expression patterns from histologically characterized PCa and the surrounding benign tissue obtained by manual micro dissection using highly sensitive two-dimensional differential gel electrophoresis (2D-DIGE) coupled with mass spectrometry. Proteomic data revealed 118 protein spots to be differentially expressed in cancer (n = 24) compared to benign (n = 21) prostate tissue. These spots were analysed by MALDI-TOF-MS/MS and 79 different proteins were identified. Using principal component analysis we could clearly separate tumor and normal tissue and two distinct tumor groups based on the protein expression pattern. By using a systems biology approach, we could map many of these proteins both into major pathways involved in PCa progression as well as into a group of potential diagnostic and/or prognostic markers. Due to complexity of the highly interconnected shortest pathway network, the functional sub networks revealed some of the potential candidate biomarker proteins for further validation. By using a systems biology approach, our study revealed novel proteins and molecular networks with altered expression in PCa. Further functional validation of individual proteins is ongoing and might provide new insights in PCa progression potentially leading to the design of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Ramesh Ummanni
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumor Zentrum, University Hospital Eppendorf, Hamburg, Germany
| | - Frederike Mundt
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumor Zentrum, University Hospital Eppendorf, Hamburg, Germany
| | - Heike Pospisil
- Bioinformatics, University of Applied Sciences Wildau, Wildau, Germany
| | - Simone Venz
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Greifswald, Germany
- Interfacultary Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Christian Scharf
- Interfacultary Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Greifswald, Greifswald, Germany
| | - Christine Barett
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumor Zentrum, University Hospital Eppendorf, Hamburg, Germany
| | - Maria Fälth
- Cancer Genome Research, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - Jens Köllermann
- Department of Pathology, University Hospital Eppendorf, Hamburg, Germany
| | - Reinhard Walther
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Thorsten Schlomm
- Prostate Cancer Center, University Hospital Eppendorf, Hamburg, Germany
| | - Guido Sauter
- Department of Pathology, University Hospital Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumor Zentrum, University Hospital Eppendorf, Hamburg, Germany
| | - Holger Sültmann
- Cancer Genome Research, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | - A. Schuppert
- Aachen Institute for Advanced Study in Computational Engineering Science, RWTH Aachen University, Aachen, Germany
| | - Tim H. Brümmendorf
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumor Zentrum, University Hospital Eppendorf, Hamburg, Germany
- Medizinische Klinik IV - Hämatologie und Onkologie, RWTH Aachen University, Aachen, Germany
| | - Stefan Balabanov
- Department of Oncology, Haematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald-Tumor Zentrum, University Hospital Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
78
|
Huang LY, Xu Y, Cai GX, Guan ZQ, Sheng WQ, Lu HF, Xie LQ, Lu HJ, Cai SJ. S100A4 over-expression underlies lymph node metastasis and poor prognosis in colorectal cancer. World J Gastroenterol 2011; 17:69-78. [PMID: 21218086 PMCID: PMC3016682 DOI: 10.3748/wjg.v17.i1.69] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 08/10/2010] [Accepted: 08/17/2010] [Indexed: 02/06/2023] Open
Abstract
AIM: To develop lymph node metastasis (LNM)-associated biomarkers for colorectal cancer (CRC) using quantitative proteome analysis.
METHODS: Differences in protein expression between primary CRC with LNM (LNM CRC) and without LNM (non-LNM CRC) were assessed using methyl esterification stable isotope labeling coupled with 2D liquid chromatography followed by tandem mass spectrometry (2D-LC-MS/MS). The relationship to clinicopathological parameters and prognosis of candidate biomarkers was examined using an independent sample set.
RESULTS: Forty-three proteins were found to be differentially expressed by at least 2.5-fold in two types of CRC. S100A4 was significantly upregulated in LNM CRC compared with non-LNM CRC, which was confirmed by Western blotting, immunohistochemistry and real-time quantitative polymerase chain reaction. Further immunohistochemistry on another 112 CRC cases showed that overexpression of S100A4 frequently existed in LNM CRC compared with non-LNM CRC (P < 0.001). Overexpression of S100A4 was significantly associated with LNM (P < 0.001), advanced TNM stage (P < 0.001), increased 5-year recurrence rate (P < 0.001) and decreased 5-year overall survival rate (P < 0.001). Univariate and multivariate analyses indicated that S100A4 expression was an independent prognostic factor for recurrence and survival of CRC patients (P < 0.05).
CONCLUSION: S100A4 might serve as a powerful biomarker for LNM and a prognostic factor in CRC.
Collapse
|
79
|
Hu ZZ, Huang H, Wu CH, Jung M, Dritschilo A, Riegel AT, Wellstein A. Omics-based molecular target and biomarker identification. Methods Mol Biol 2011; 719:547-71. [PMID: 21370102 PMCID: PMC3742302 DOI: 10.1007/978-1-61779-027-0_26] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genomic, proteomic, and other omic-based approaches are now broadly used in biomedical research to facilitate the understanding of disease mechanisms and identification of molecular targets and biomarkers for therapeutic and diagnostic development. While the Omics technologies and bioinformatics tools for analyzing Omics data are rapidly advancing, the functional analysis and interpretation of the data remain challenging due to the inherent nature of the generally long workflows of Omics experiments. We adopt a strategy that emphasizes the use of curated knowledge resources coupled with expert-guided examination and interpretation of Omics data for the selection of potential molecular targets. We describe a downstream workflow and procedures for functional analysis that focus on biological pathways, from which molecular targets can be derived and proposed for experimental validation.
Collapse
Affiliation(s)
- Zhang-Zhi Hu
- Lombardi Cancer Center, Georgetown University, Washington, DC, USA.
| | | | | | | | | | | | | |
Collapse
|
80
|
Sayagués JM, Fontanillo C, Abad MDM, González-González M, Sarasquete ME, Chillon MDC, Garcia E, Bengoechea O, Fonseca E, Gonzalez-Diaz M, De Las Rivas J, Muñoz-Bellvis L, Orfao A. Mapping of genetic abnormalities of primary tumours from metastatic CRC by high-resolution SNP arrays. PLoS One 2010; 5:e13752. [PMID: 21060790 PMCID: PMC2966422 DOI: 10.1371/journal.pone.0013752] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 10/06/2010] [Indexed: 02/07/2023] Open
Abstract
Background For years, the genetics of metastatic colorectal cancer (CRC) have been studied using a variety of techniques. However, most of the approaches employed so far have a relatively limited resolution which hampers detailed characterization of the common recurrent chromosomal breakpoints as well as the identification of small regions carrying genetic changes and the genes involved in them. Methodology/Principal Findings Here we applied 500K SNP arrays to map the most common chromosomal lesions present at diagnosis in a series of 23 primary tumours from sporadic CRC patients who had developed liver metastasis. Overall our results confirm that the genetic profile of metastatic CRC is defined by imbalanced gains of chromosomes 7, 8q, 11q, 13q, 20q and X together with losses of the 1p, 8p, 17p and 18q chromosome regions. In addition, SNP-array studies allowed the identification of small (<1.3 Mb) and extensive/large (>1.5 Mb) altered DNA sequences, many of which contain cancer genes known to be involved in CRC and the metastatic process. Detailed characterization of the breakpoint regions for the altered chromosomes showed four recurrent breakpoints at chromosomes 1p12, 8p12, 17p11.2 and 20p12.1; interestingly, the most frequently observed recurrent chromosomal breakpoint was localized at 17p11.2 and systematically targeted the FAM27L gene, whose role in CRC deserves further investigations. Conclusions/Significance In summary, in the present study we provide a detailed map of the genetic abnormalities of primary tumours from metastatic CRC patients, which confirm and extend on previous observations as regards the identification of genes potentially involved in development of CRC and the metastatic process.
Collapse
Affiliation(s)
- José María Sayagués
- Servicio General de Citometría, Departamento de Medicina and Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Universidad de Salamanca, Salamanca, Spain
| | - Celia Fontanillo
- Grupo de Investigación en Bioinformática y Genómica Funcional, Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Universidad de Salamanca, Salamanca, Spain
| | - María del Mar Abad
- Departamento de Patología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - María González-González
- Servicio General de Citometría, Departamento de Medicina and Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Universidad de Salamanca, Salamanca, Spain
| | - María Eugenia Sarasquete
- Servicio de Hematología, Hospital Universitario, Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Salamanca, Spain
| | - Maria del Carmen Chillon
- Servicio de Hematología, Hospital Universitario, Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Salamanca, Spain
| | - Eva Garcia
- Unidad de Genómica y Proteómica, Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Universidad de Salamanca, Salamanca, Spain
| | - Oscar Bengoechea
- Departamento de Patología, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Emilio Fonseca
- Servicio de Oncología Médica, Departamento de Cirugía, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Marcos Gonzalez-Diaz
- Servicio de Hematología, Hospital Universitario, Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Salamanca, Spain
| | - Javier De Las Rivas
- Grupo de Investigación en Bioinformática y Genómica Funcional, Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Universidad de Salamanca, Salamanca, Spain
| | - Luís Muñoz-Bellvis
- Unidad de Cirugía Hepatobiliopancreática, Departamento de Cirugía, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Alberto Orfao
- Servicio General de Citometría, Departamento de Medicina and Centro de Investigación del Cáncer (IBMCC-CSIC/USAL), Universidad de Salamanca, Salamanca, Spain
- * E-mail:
| |
Collapse
|