51
|
LoPachin RM, Geohagen BC, Nordstroem LU. Mechanisms of soft and hard electrophile toxicities. Toxicology 2019; 418:62-69. [PMID: 30826385 PMCID: PMC6494464 DOI: 10.1016/j.tox.2019.02.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/24/2019] [Accepted: 02/10/2019] [Indexed: 12/21/2022]
Abstract
Electron-deficient chemicals (electrophiles) react with compounds that have one or more unshared valence electron pairs (nucleophiles). The resulting covalent reactions between electrophiles and nucleophiles (e.g., Michael addition, SN2 reactions) are important, not only to Organic Chemistry, but also to the fields of Molecular Biology and Toxicology. Specifically, covalent bond formation is the operational basis of many critically important cellular processes; e.g., enzyme function, neurotransmitter release, and membrane-vesicle fusion. Given this context it is understandable that these reactions are also relevant to Toxicology, since a significant number of xenobiotic chemicals are toxic electrophiles that can react with endogenous nucleophilic residues. Therefore, the purpose of this Review is to discuss electrophile-nucleophile chemistry as it pertains to cell injury and resulting organ toxicity. Our discussion will involve an introduction to the Hard and Soft, Acids and Bases (HSAB) theory of Pearson. The HSAB concept provides a framework for calculation of quantum chemical parameters that classify the electrophile and nucleophile covalent components according to their respective electronic nature (softness/hardness) and reactivity (electrophilicity/nucleophilicity). The calculated quantum indices in conjunction with corroborative in vivo, in chemico (cell free) and in vitro research can offer an illuminating approach to mechanistic discovery. Accordingly, we will provide examples that demonstrate how this approach has been used to discern mechanisms and sites of electrophile action.
Collapse
Affiliation(s)
- Richard M LoPachin
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E. 210th St, Bronx NY 10467, United States.
| | - Brian C Geohagen
- Department of Anesthesiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 E. 210th St, Bronx NY 10467, United States
| | - Lars U Nordstroem
- The Chemical Synthesis & Biology Core Facility, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
52
|
Phenylpyrrole fungicides act on triosephosphate isomerase to induce methylglyoxal stress and alter hybrid histidine kinase activity. Sci Rep 2019; 9:5047. [PMID: 30911085 PMCID: PMC6433957 DOI: 10.1038/s41598-019-41564-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/06/2019] [Indexed: 01/03/2023] Open
Abstract
Fludioxonil, a natural product of pyrrolnitrin, is a potent fungicide used on crops worldwide. Drug action requires the presence of a group III hybrid histidine kinase (HHK) and the high osmolarity glycerol (HOG) pathway. We have reported that the drug does not act directly on HHK, but triggers the conversion of the kinase to a phosphatase, which dephosphorylates Ypd1 to constitutively activate HOG signaling. Still, the direct drug target remains unknown and mode of action ill defined. Here, we heterologously expressed a group III HHK, dimorphism-regulating kinase 1 (Drk1) in Saccharomyces cerevisae to delineate fludioxonil’s target and action. We show that the drug interferes with triosephosphate isomerase (TPI) causing release of methylglyoxal (MG). MG activates the group III HHK and thus the HOG pathway. Drug action involved Drk1 cysteine 392, as a C392S substitution increased drug resistance in vivo. Drug sensitivity was reversed by dimedone treatment, indicating Drk1 responds in vivo to an aldehydic stress. Fludioxonil treatment triggered elevated cytosolic methylglyoxal. Likewise, methylglyoxal treatment of Drk1-expressing yeast phenocopied treatment with fludioxonil. Fludioxonil directly inhibited TPI and also caused it to release methylglyoxal in vitro. Thus, TPI is a drug target of the phenylpyrrole class of fungicides, inducing elevated MG which alters HHK activity, likely converting the kinase to a phosphatase that acts on Ypd1 to trigger HOG pathway activation and fungal cell death.
Collapse
|
53
|
Igarashi K, Uemura T, Kashiwagi K. Assessing acrolein for determination of the severity of brain stroke, dementia, renal failure, and Sjögren's syndrome. Amino Acids 2019; 52:119-127. [PMID: 30863888 DOI: 10.1007/s00726-019-02700-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 01/11/2019] [Indexed: 11/26/2022]
Abstract
It was found recently that acrolein (CH2=CH-CHO), mainly produced from spermine, is more toxic than ROS (reactive oxygen species, O2-·, H2O2, and ·OH). In this review, we describe how the seriousness of brain infarction, dementia, renal failure, and Sjӧgren's syndrome is correlated with acrolein. In brain infarction and dementia, it was possible to identify incipient patients with high sensitivity and specificity by measuring protein-conjugated acrolein (PC-Acro) in plasma together with IL-6 and CRP in brain infarction and Aβ40/42 in dementia. The level of PC-Acro in plasma and saliva correlated with the seriousness of renal failure and Sjӧgren's syndrome, respectively. Thus, development of acrolein scavenger medicines containing SH-group such as N-acetylcysteine derivatives is important to maintain QOL (quality of life) of the elderly.
Collapse
Affiliation(s)
- Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-ku, Chiba, Chiba, 260-0856, Japan.
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8675, Japan.
| | - Takeshi Uemura
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-ku, Chiba, Chiba, 260-0856, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8675, Japan
| | - Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba, 288-0025, Japan
| |
Collapse
|
54
|
Clapp PW, Lavrich KS, van Heusden CA, Lazarowski ER, Carson JL, Jaspers I. Cinnamaldehyde in flavored e-cigarette liquids temporarily suppresses bronchial epithelial cell ciliary motility by dysregulation of mitochondrial function. Am J Physiol Lung Cell Mol Physiol 2019; 316:L470-L486. [PMID: 30604630 PMCID: PMC6459291 DOI: 10.1152/ajplung.00304.2018] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 01/23/2023] Open
Abstract
Aldehydes in cigarette smoke (CS) impair mitochondrial function and reduce ciliary beat frequency (CBF), leading to diminished mucociliary clearance (MCC). However, the effects of aldehyde e-cigarette flavorings on CBF are unknown. The purpose of this study was to investigate whether cinnamaldehyde, a flavoring agent commonly used in e-cigarettes, disrupts mitochondrial function and impairs CBF on well-differentiated human bronchial epithelial (hBE) cells. To this end, hBE cells were exposed to diluted cinnamon-flavored e-liquids and vaped aerosol and assessed for changes in CBF. hBE cells were subsequently exposed to various concentrations of cinnamaldehyde to establish a dose-response relationship for effects on CBF. Changes in mitochondrial oxidative phosphorylation and glycolysis were evaluated by Seahorse Extracellular Flux Analyzer, and adenine nucleotide levels were quantified by HPLC. Both cinnamaldehyde-containing e-liquid and vaped aerosol rapidly yet transiently suppressed CBF, and exposure to cinnamaldehyde alone recapitulated this effect. Cinnamaldehyde impaired mitochondrial respiration and glycolysis in a dose-dependent manner, and intracellular ATP levels were significantly but temporarily reduced following exposure. Addition of nicotine had no effect on the cinnamaldehyde-induced suppression of CBF or mitochondrial function. These data indicate that cinnamaldehyde rapidly disrupts mitochondrial function, inhibits bioenergetic processes, and reduces ATP levels, which correlates with impaired CBF. Because normal ciliary motility and MCC are essential respiratory defenses, inhalation of cinnamaldehyde may increase the risk of respiratory infections in e-cigarette users.
Collapse
Affiliation(s)
- Phillip W Clapp
- Curriculum in Toxicology, School of Medicine, University of North Carolina , Chapel Hill, North Carolina
- Center for Environmental Medicine, Asthma, and Lung Biology, School of Medicine, University of North Carolina , Chapel Hill, North Carolina
| | - Katelyn S Lavrich
- Curriculum in Toxicology, School of Medicine, University of North Carolina , Chapel Hill, North Carolina
| | | | - Eduardo R Lazarowski
- Department of Medicine, University of North Carolina , Chapel Hill, North Carolina
| | - Johnny L Carson
- Center for Environmental Medicine, Asthma, and Lung Biology, School of Medicine, University of North Carolina , Chapel Hill, North Carolina
- Department of Pediatrics, University of North Carolina , Chapel Hill, North Carolina
| | - Ilona Jaspers
- Curriculum in Toxicology, School of Medicine, University of North Carolina , Chapel Hill, North Carolina
- Center for Environmental Medicine, Asthma, and Lung Biology, School of Medicine, University of North Carolina , Chapel Hill, North Carolina
- Department of Pediatrics, University of North Carolina , Chapel Hill, North Carolina
| |
Collapse
|
55
|
Xu XY, Tsang SW, Guan YF, Liu KL, Pan WH, Lam CS, Lee KM, Xia YX, Xie WJ, Wong WY, Lee MML, Tai WCS, Zhang HJ. In Vitro and in Vivo Antitumor Effects of Plant-Derived Miliusanes and Their Induction of Cellular Senescence. J Med Chem 2019; 62:1541-1561. [DOI: 10.1021/acs.jmedchem.8b01742] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xin-Ya Xu
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong SAR, People’s Republic of China
| | - Siu Wai Tsang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong SAR, People’s Republic of China
| | - Yi-Fu Guan
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong SAR, People’s Republic of China
| | - Kang-Lun Liu
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong SAR, People’s Republic of China
| | - Wen-Hui Pan
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong SAR, People’s Republic of China
| | - Chu Shing Lam
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong SAR, People’s Republic of China
| | - Kwan Ming Lee
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong SAR, People’s Republic of China
| | - Yi-Xuan Xia
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong SAR, People’s Republic of China
| | - Wen-Jian Xie
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong SAR, People’s Republic of China
| | - Wing Yan Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, People’s Republic of China
| | - Magnolia Muk Lan Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, People’s Republic of China
| | - William Chi Shing Tai
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, People’s Republic of China
| | - Hong-Jie Zhang
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Hong Kong SAR, People’s Republic of China
| |
Collapse
|
56
|
Sinharoy P, McAllister SL, Vasu M, Gross ER. Environmental Aldehyde Sources and the Health Implications of Exposure. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:35-52. [PMID: 31368096 DOI: 10.1007/978-981-13-6260-6_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aldehydes, which are present within the air as well as food and beverage sources, are highly reactive molecules that can be cytotoxic, mutagenic, and carcinogenic. To prevent harm from reactive aldehyde exposure, the enzyme aldehyde dehydrogenase 2 (ALDH2) metabolizes reactive aldehydes to a less toxic form. However, the genetic variant of ALDH2, ALDH2*2, significantly reduces the ability to metabolize reactive aldehydes in humans. Therefore, frequent environmental aldehyde exposure, coupled with inefficient aldehyde metabolism, could potentially lead to an increased health risk for diseases such as cancer or cardiovascular disease.Here, we discuss the environmental sources of reactive aldehydes and the potential health implications particularly for those with an ALDH2*2 genetic variant. We also suggest when considering the ALDH2*2 genetic variant the safety limits of reactive aldehyde exposure may have to be reevaluated. Moreover, the ALDH2*2 genetic variant can also be used as an example for how to implement precision medicine in the field of environmental health sciences.
Collapse
Affiliation(s)
- Pritam Sinharoy
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Stacy L McAllister
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Megana Vasu
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Eric R Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
57
|
Xiong R, Wu Q, Muskhelishvili L, Davis K, Shemansky JM, Bryant M, Rosenfeldt H, Healy SM, Cao X. Evaluating Mode of Action of Acrolein Toxicity in an In Vitro Human Airway Tissue Model. Toxicol Sci 2018; 166:451-464. [PMID: 30204913 DOI: 10.1093/toxsci/kfy226] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Acrolein is a reactive unsaturated aldehyde and is found at high concentrations in both mainstream and side-stream tobacco smoke. Exposure to acrolein via cigarette smoking has been associated with acute lung injury, chronic obstructive pulmonary diseases (COPDs), and asthma. In this study, we developed an in vitro treatment strategy that resembles the inhalation exposure to acrolein experienced by smokers and systematically examined the adverse respiratory effects induced by the noncytotoxic doses of acrolein in a human airway epithelial tissue model. A single 10-min exposure to buffered saline containing acrolein significantly induced oxidative stress and inflammatory responses, with changes in protein oxidation and GSH depletion occurring immediately after the treatment whereas responses in inflammation requiring a manifestation time of at least 24 h. Repeated exposure to acrolein for 10 consecutive days resulted in structural and functional changes that recapitulate the pathological lesions of COPD, including alterations in the beating frequency and structures of ciliated cells, inhibition of mucin expression and secretion apparatus, and development of squamous differentiation. Although some of the early responses caused by acrolein exposure were reversible after a 10-day recovery, perturbations in the functions and structures of the air-liquid-interface (ALI) cultures, such as mucin production, cilia structures, and morphological changes, failed to fully recover over the observation period. Taken together, these findings are consistent with its mode of action that oxidative stress and inflammation have fundamental roles in acrolein-induced tissue remodeling. Furthermore, these data demonstrate the usefulness of analytical methods and testing strategy for recapitulating the key events in acrolein toxicity using an in vitro model.
Collapse
Affiliation(s)
- Rui Xiong
- Division of Genetic and Molecular Toxicology
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas 72079
| | | | - Kelly Davis
- Toxicologic Pathology Associates, Jefferson, Arkansas 72079
| | | | - Matthew Bryant
- Division of Biochemical Toxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas 72079
| | - Hans Rosenfeldt
- Division of Nonclinical Science, Center for Tobacco Products, US Food and Drug Administration, Silver Spring, Maryland 20993
| | - Sheila M Healy
- Division of Nonclinical Science, Center for Tobacco Products, US Food and Drug Administration, Silver Spring, Maryland 20993
| | - Xuefei Cao
- Division of Genetic and Molecular Toxicology
| |
Collapse
|
58
|
Wang Z, He Z, Gan X, Li H. Interrelationship among ferrous myoglobin, lipid and protein oxidations in rabbit meat during refrigerated and superchilled storage. Meat Sci 2018; 146:131-139. [DOI: 10.1016/j.meatsci.2018.08.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 10/28/2022]
|
59
|
Abstract
Heterocyclic aromatic amines, acrylamide, 5-hydroxymethylfurfural, furan, polycyclic aromatic hydrocarbons, nitrosamines, acrolein, chloropropanols and chloroesters are generated toxicants formed in some foodstuffs, mainly starchy and protein-rich food during thermal treatment such as frying, roasting and baking. The formation of these chemical compounds is associated with development of aromas, colors and flavors. One of the challenges facing the food industry today is to minimize these toxicants without adversely affecting the positive attributes of thermal processing. To achieve this objective, it is essential to have a detailed understanding of the mechanism of formation of these toxicants in processed foods. All reviewed toxicants in that paper are classified as probable, possible or potential human carcinogens and have been proven to be carcinogenic in animal studies. The purpose of that review is to summarize some of the most frequent occurring heat-generated food toxicants during conventional heating, their metabolism and carcinogenicity. Moreover, conventional and microwave heating were also compared as two different heat treatment methods, especially how they change food chemical composition and which thermal food toxicants are formed during specific method.
Collapse
Affiliation(s)
- Agnieszka Koszucka
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Lodz, Poland
| | - Adriana Nowak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
60
|
Silva LK, Hile GA, Capella KM, Espenship MF, Smith MM, De Jesús VR, Blount BC. Quantification of 19 Aldehydes in Human Serum by Headspace SPME/GC/High-Resolution Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10571-10579. [PMID: 30133279 DOI: 10.1021/acs.est.8b02745] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sources of human aldehyde exposure include food additives, combustion of organic matter (tobacco smoke), water disinfection byproducts via ozonation, and endogenous processes. Aldehydes are potentially carcinogenic and mutagenic, and chronic human aldehyde exposure has raised concerns about potential deleterious health effects. To aid investigations of human aldehyde exposure, we developed a novel method to measure 19 aldehydes released from Schiff base protein adducts in serum using controlled acid hydrolysis, solid-phase microextraction (SPME), gas chromatography (GC), and high-resolution mass spectrometry (HRMS). Aldehydes are released from Schiff base protein adducts through acid hydrolysis, and are quantified in trace amounts (μg/L) using stable isotope dilution. Detection limits range from 0.1 to 50 μg/L, with calibration curves spanning 3 orders of magnitude. The analysis of fortified quality control material over a three-month period showed excellent precision and long-term stability (3-22% CV) for samples stored at -70 °C. The intraday precision is also excellent (CV, 1-10%). The method accuracy ranges from 89 to 108% for all measured aldehydes, except acrolein and crotonaldehyde, two aldehydes present in tobacco smoke; their analysis by this method is not considered robust due in part to their reactivity in vivo. However, results strongly suggest that propanal, butanal, isobutanal, and isopentanal levels in smokers are higher than levels in nonsmokers, and thus may be useful as biomarkers of tobacco smoke exposure. This method will facilitate large epidemiological studies involving aldehyde biomonitoring to examine nonoccupational environmental exposures.
Collapse
Affiliation(s)
- Lalith K Silva
- Division of Laboratory Sciences, National Center for Environmental Health , Centers for Disease Control and Prevention , Atlanta , Georgia 30341 , United States
| | - Grace A Hile
- Division of Laboratory Sciences, National Center for Environmental Health , Centers for Disease Control and Prevention , Atlanta , Georgia 30341 , United States
| | - Kimberly M Capella
- Division of Laboratory Sciences, National Center for Environmental Health , Centers for Disease Control and Prevention , Atlanta , Georgia 30341 , United States
| | - Michael F Espenship
- Division of Laboratory Sciences, National Center for Environmental Health , Centers for Disease Control and Prevention , Atlanta , Georgia 30341 , United States
| | - Mitchell M Smith
- Division of Laboratory Sciences, National Center for Environmental Health , Centers for Disease Control and Prevention , Atlanta , Georgia 30341 , United States
| | - Víctor R De Jesús
- Division of Laboratory Sciences, National Center for Environmental Health , Centers for Disease Control and Prevention , Atlanta , Georgia 30341 , United States
| | - Benjamin C Blount
- Division of Laboratory Sciences, National Center for Environmental Health , Centers for Disease Control and Prevention , Atlanta , Georgia 30341 , United States
| |
Collapse
|
61
|
Gomez JD, Ridgeway ME, Park MA, Fritz KS. Utilizing Ion Mobility to Identify Isobaric Post-Translational Modifications: Resolving Acrolein and Propionyl Lysine Adducts by TIMS Mass Spectrometry. INTERNATIONAL JOURNAL FOR ION MOBILITY SPECTROMETRY : OFFICIAL PUBLICATION OF THE INTERNATIONAL SOCIETY FOR ION MOBILITY SPECTROMETRY 2018; 21:65-69. [PMID: 30369833 PMCID: PMC6200409 DOI: 10.1007/s12127-018-0237-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/30/2018] [Indexed: 01/07/2023]
Abstract
Protein post-translational modifications provide critical proteomic details towards elucidating mechanisms of altered protein function due to toxic exposure, altered metabolism, or disease pathogenesis. Lysine propionylation is a recently described modification that occurs due to metabolic alterations in propionyl-CoA metabolism and sirtuin depropionylase activity. Acrolein is a toxic aldehyde generated through exogenous and endogenous pathways, such as industrial exposure, cigarette smoke inhalation, and non-enzymatic lipid peroxidation. Importantly, lysine modifications arising from propionylation and acroleination can be isobaric - indistinguishable by mass spectrometry - and inseparable via reverse-phase chromatography. Here, we present the novel application of trapped ion mobility spectrometry (TIMS) to resolve such competing isobaric lysine modifications. Specifically, the PTM products of a small synthetic peptide were analyzed using a prototype TIMS - time-of-flight mass spectrometer (TIMS-TOF). In that the mobilities of these propionylated and acroleinated peptides differ by only 1%, a high-resolution mobility analysis is required to resolve the two. We were able to achieve more than sufficient resolution in the TIMS analyzer (~170), readily separating these isobars.
Collapse
Affiliation(s)
- Jose D. Gomez
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| | | | | | - Kristofer S. Fritz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, United States
| |
Collapse
|
62
|
Wang Z, He Z, Gan X, Li H. The Effects of Lipid Oxidation Product Acrolein on the Structure and Gel Properties of Rabbit Meat Myofibrillar Proteins. FOOD BIOPHYS 2018. [DOI: 10.1007/s11483-018-9543-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
63
|
MicroRNA Expression Analysis of Human Pulmonary Fibroblasts Treated with Acrolein. BIOCHIP JOURNAL 2018. [DOI: 10.1007/s13206-017-2304-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
64
|
Parkinson E, Aleksic M, Cubberley R, Kaur-Atwal G, Vissers JPC, Skipp P. Determination of Protein Haptenation by Chemical Sensitizers Within the Complexity of the Human Skin Proteome. Toxicol Sci 2018; 162:429-438. [PMID: 29267982 PMCID: PMC5889026 DOI: 10.1093/toxsci/kfx265] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Skin sensitization associated with the development of allergic contact dermatitis occurs via a number of specific key events at the cellular level. The molecular initiating event (MIE), the first in the sequence of these events, occurs after exposure of the skin to an electrophilic chemical, causing the irreversible haptenation of proteins within skin. Characterization of this MIE is a key step in elucidating the skin sensitization adverse outcome pathway and is essential to providing parameters for mathematical models to predict the capacity of a chemical to cause sensitization. As a first step to addressing this challenge, we have exposed complex protein lysates from a keratinocyte cell line and human skin tissue with a range of well characterized sensitizers, including dinitrochlorobenzene, 5-chloro-2-methylisothiazol-3-one, cinnamaldehyde, and the non (or weak) sensitizer 6-methyl coumarin. Using a novel stable isotope labeling approach combined with ion mobility-assisted data independent mass spectrometry (HDMSE), we have characterized the haptenome for these sensitizers. Although a significant proportion of highly abundant proteins were haptenated, we also observed the haptenation of low abundant proteins by all 3 of the chemical sensitizers tested, indicating that within a complex protein background, protein abundance is not the sole determinant driving haptenation, highlighting a relationship to tertiary protein structure and the amino acid specificity of these chemical sensitizers and sensitizer potency.
Collapse
Affiliation(s)
- Erika Parkinson
- Centre for Biological Sciences
- Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Maja Aleksic
- Safety & Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Richard Cubberley
- Safety & Environmental Assurance Centre, Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | | | | | - Paul Skipp
- Centre for Biological Sciences
- Centre for Proteomic Research, Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
65
|
Afonso CB, Sousa BC, Pitt AR, Spickett CM. A mass spectrometry approach for the identification and localization of small aldehyde modifications of proteins. Arch Biochem Biophys 2018; 646:38-45. [PMID: 29580947 DOI: 10.1016/j.abb.2018.03.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 12/29/2022]
Abstract
Lipids containing polyunsaturated fatty acids are primary targets of oxidation, which produces reactive short-chain aldehydes that can covalently modify proteins, a process called lipoxidation. Improved mass spectrometry (MS) methods for the analysis of these adducts in complex biological systems are needed. Lysozyme and human serum albumin (HSA) were used as model proteins to investigate lipoxidation products formed by two short-chain aldehydes, acrolein and pentanal, which are unsaturated and saturated aldehydes respectively. The adducts formed were stabilized by NaBH4 or NaBH3CN reduction and analysed by MS. Analysis of intact modified lysozyme showed a pentanal modification resulting from Schiff's base formation (+70 Da), and up to 8 acrolein adducts, all resulting from Michael addition (+58 Da). Analysis of tryptic digests identified specific histidine, cysteine and lysine residues modified in both lysozyme and HSA, and determined characteristic amino acid-specific fragmentations. Eight different internal fragment ions were found that could be used as general diagnostic ions for pentanal- and acrolein-modified amino acids. The combined use of intact protein analysis and LC-MS/MS methods provided a powerful tool for the identification and localization of aldehyde-protein adducts, and the diagnostic ions will facilitate the development of targeted MS methods for analysis of adducts in more complex samples.
Collapse
Affiliation(s)
- Catarina B Afonso
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham, UK
| | - Bebiana C Sousa
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham, UK
| | - Andrew R Pitt
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham, UK
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham, UK.
| |
Collapse
|
66
|
Ambaw A, Zheng L, Tambe MA, Strathearn KE, Acosta G, Hubers SA, Liu F, Herr SA, Tang J, Truong A, Walls E, Pond A, Rochet JC, Shi R. Acrolein-mediated neuronal cell death and alpha-synuclein aggregation: Implications for Parkinson's disease. Mol Cell Neurosci 2018; 88:70-82. [PMID: 29414104 DOI: 10.1016/j.mcn.2018.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 12/01/2017] [Accepted: 01/17/2018] [Indexed: 11/28/2022] Open
Abstract
Growing evidence suggests that oxidative stress plays a critical role in neuronal destruction characteristic of Parkinson's disease (PD). However, the molecular mechanisms of oxidative stress-mediated dopaminergic cell death are far from clear. In the current investigation, we tested the hypothesis that acrolein, an oxidative stress and lipid peroxidation (LPO) product, is a key factor in the pathogenesis of PD. Using a combination of in vitro, in vivo, and cell free models, coupled with anatomical, functional, and behavioral examination, we found that acrolein was elevated in 6-OHDA-injected rats, and behavioral deficits associated with 6-OHDA could be mitigated by the application of the acrolein scavenger hydralazine, and mimicked by injection of acrolein in healthy rats. Furthermore, hydralazine alleviated neuronal cell death elicited by 6-OHDA and another PD-related toxin, rotenone, in vitro. We also show that acrolein can promote the aggregation of alpha-synuclein, suggesting that alpha-synuclein self-assembly, a key pathological phenomenon in human PD, could play a role in neurotoxic effects of acrolein in PD models. These studies suggest that acrolein is involved in the pathogenesis of PD, and the administration of anti-acrolein scavengers such as hydralazine could represent a novel strategy to alleviate tissue damage and motor deficits associated with this disease.
Collapse
Affiliation(s)
- Abeje Ambaw
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, United States
| | - Lingxing Zheng
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, United States
| | - Mitali A Tambe
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, United States
| | - Katherine E Strathearn
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, United States
| | - Glen Acosta
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, United States
| | - Scott A Hubers
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, United States
| | - Fang Liu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, United States
| | - Seth A Herr
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, United States; Purdue University Interdisciplinary Life Sciences Program (PULSe), Purdue University, United States
| | - Jonathan Tang
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, United States; Weldon School of Biomedical Engineering, Purdue University, United States
| | - Alan Truong
- Weldon School of Biomedical Engineering, Purdue University, United States
| | - Elwood Walls
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, United States
| | - Amber Pond
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, United States
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, United States
| | - Riyi Shi
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, United States; Weldon School of Biomedical Engineering, Purdue University, United States.
| |
Collapse
|
67
|
Tsou HH, Hsu WC, Fuh JL, Chen SP, Liu TY, Wang HT. Alterations in Acrolein Metabolism Contribute to Alzheimer’s Disease. J Alzheimers Dis 2017; 61:571-580. [DOI: 10.3233/jad-170736] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Han-Hsing Tsou
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Wen-Chin Hsu
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Jong-Ling Fuh
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Pin Chen
- Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tsung-Yun Liu
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming University, Taipei, Taiwan
- Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei, Taiwan
| | - Hsiang-Tsui Wang
- Department of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
68
|
Ramirez Segovia AS, Wrobel K, Acevedo Aguilar FJ, Corrales Escobosa AR, Wrobel K. Effect of Cu(ii) on in vitro glycation of human serum albumin by methylglyoxal: a LC-MS-based proteomic approach. Metallomics 2017; 9:132-140. [PMID: 28001159 DOI: 10.1039/c6mt00235h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has been reported that glycation of human serum albumin (HSA) changes its capability for copper binding whereas the increase of free copper might have an impact on protein glycation - a key process in diabetes progression. In this work, proteomic analysis of non-glycated HSA and HSA glycated with methylglyoxal (MGo) in the absence or in the presence of Cu(ii) (0.1; 1.0; 5.0 mg Cu L-1) has been undertaken. Trypsin hydrolysates were subjected to capillary HPLC-ESI-QTOF-MS and MS/MS. Raw data were analyzed using two proteomic platforms: MaxQuant () and ProteinScape (Bruker). Considering seven MGo-derived modifications, the sequence coverage was 98% for non-modified HSA and ≥93% for HSA incubated with MGo or MGo + Cu(ii). Peptide mapping yielded 76 identical peptides in all samples though important differences were found between non-modified HSA and protein glycated with or without Cu(ii). Overall, 46 peptides with residues from 1 to 3 modified were detected/sequenced; the MGo-derived modifications found were: hydroimidazolone, argpyrimidine, Nε-carboxyethyl-lysine and S-carboxyethyl-cysteine; 39 modified sites were identified (22 on arginine, 12 on lysine, and 5 on cysteine) and among them, 27 were common for ProteinScape and MaxQuant. The count of the modified peptides and the comparative analysis of their abundance in different samples indicated that Cu(ii) at physiological and sub-physiological concentrations inhibited HSA glycation as compared to the glycation of the Cu-devoid protein; at higher concentrations (5 mg Cu L-1), this inhibitory effect tends to be inverted. The results obtained suggest that increased protein glycation might be associated with Cu-deficiency and with excessive Cu(ii) concentrations, calling for more detailed studies performed on real-world samples with a strict control of copper concentration.
Collapse
Affiliation(s)
| | - Kazimierz Wrobel
- Department of Chemistry, University of Guanajuato, L de Retana No. 5, 36000 Guanajuato, Mexico.
| | | | | | - Katarzyna Wrobel
- Department of Chemistry, University of Guanajuato, L de Retana No. 5, 36000 Guanajuato, Mexico.
| |
Collapse
|
69
|
Coyle JP, Rinaldi RJ, Johnson GT, Bourgeois MM, McCluskey J, Harbison RD. Acrolein measurement and degradation in Dulbecco's Modified Eagle Medium: an examination of in-vitro exposure metrics. Toxicol Mech Methods 2017; 28:115-121. [PMID: 28826359 DOI: 10.1080/15376516.2017.1370755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Acrolein is a reactive α,β-unsaturated aldehyde known for its adduction to endogenous biomolecules, resulting in initiation or exacerbation of several disease pathways. In-vitro systems are routinely used to elucidate the cytotoxic or mechanistic role(s) of acrolein in pathogenesis. Nevertheless, the half-life of acrolein in biological or in-vitro systems, e.g. blood or culture media, has not been well characterized. Since in-vitro cytotoxic and mechanistic investigations routinely expose cultures to acrolein from 1 hour to 72 hours, we aimed to characterize the half-life of acrolein in culture medium to ascertain the plausible exposure window. Half-life determinations were conducted in low-serum DMEM at room temperature and 37 °C, both with and without H9c2 cells. For quantitative assessment, acrolein was derivatized to a fluorescent 7-hydroxyquinoline method validated in-house and assessed via fluorescent spectroscopy. In closed vessel experiments at room temperature, acrolein in DMEM was reduced by more than 40% at 24 hours, irrespective of the initial concentration. Expectedly, open vessel experiments demonstrated accelerated depletion over time at room temperature, and faster still at 37 °C. The presence of cells tended to further accelerate degradation by an additional 15-30%, depending on temperature. These results undermine described experimental exposure conditions stated in most in-vitro experiments. Recognition of this discrepancy between stated and actual exposure metrics warrant examination of novel alternative objective and representative exposure characterization for in-vitro studies to facilitate translation to in-vivo and in-silico methods.
Collapse
Affiliation(s)
- Jayme P Coyle
- a Department of Environmental and Occupational Heath , University of South Florida , Tampa , FL , USA
| | - Robert J Rinaldi
- b Department of Integrative Biology , University of South Florida , Tampa , FL , USA
| | - Giffe T Johnson
- a Department of Environmental and Occupational Heath , University of South Florida , Tampa , FL , USA
| | - Marie M Bourgeois
- a Department of Environmental and Occupational Heath , University of South Florida , Tampa , FL , USA
| | - James McCluskey
- a Department of Environmental and Occupational Heath , University of South Florida , Tampa , FL , USA
| | - Raymond D Harbison
- a Department of Environmental and Occupational Heath , University of South Florida , Tampa , FL , USA
| |
Collapse
|
70
|
|
71
|
Uppugunduri CRS, Storelli F, Mlakar V, Huezo-Diaz Curtis P, Rezgui A, Théorêt Y, Marino D, Doffey-Lazeyras F, Chalandon Y, Bader P, Daali Y, Bittencourt H, Krajinovic M, Ansari M. The Association of Combined GSTM1 and CYP2C9 Genotype Status with the Occurrence of Hemorrhagic Cystitis in Pediatric Patients Receiving Myeloablative Conditioning Regimen Prior to Allogeneic Hematopoietic Stem Cell Transplantation. Front Pharmacol 2017; 8:451. [PMID: 28744217 PMCID: PMC5504863 DOI: 10.3389/fphar.2017.00451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/22/2017] [Indexed: 12/01/2022] Open
Abstract
Hemorrhagic cystitis (HC) is one of the complications of busulfan-cyclophosphamide (BU-CY) conditioning regimen during allogeneic hematopoietic stem cell transplantation (HSCT) in children. Identifying children at high risk of developing HC in a HSCT setting could facilitate the evaluation and implementation of effective prophylactic measures. In this retrospective analysis genotyping of selected candidate gene variants was performed in 72 children and plasma Sulfolane (Su, water soluble metabolite of BU) levels were measured in 39 children following treatment with BU-CY regimen. The cytotoxic effects of Su and acrolein (Ac, water soluble metabolite of CY) were tested on human urothelial cells (HUCs). The effect of Su was also tested on cytochrome P 450 (CYP) function in HepaRG hepatic cells. Cumulative incidences of HC before day 30 post HSCT were estimated using Kaplan–Meier curves and log-rank test was used to compare the difference between groups in a univariate analysis. Multivariate Cox regression was used to estimate hazard ratios with 95% confidence intervals (CIs). Multivariate analysis included co-variables that were significantly associated with HC in a univariate analysis. Cumulative incidence of HC was 15.3%. In the univariate analysis, HC incidence was significantly (p < 0.05) higher in children older than 10 years (28.6 vs. 6.8%) or in children with higher Su levels (>40 vs. <11%) or in carriers of both functional GSTM1 and CYP2C9 (33.3 vs. 6.3%) compared to the other group. In a multivariate analysis, combined GSTM1 and CYP2C9 genotype status was associated with HC occurrence with a hazards ratio of 4.8 (95% CI: 1.3–18.4; p = 0.02). Ac was found to be toxic to HUC cells at lower concentrations (33 μM), Su was not toxic to HUC cells at concentrations below 1 mM and did not affect CYP function in HepaRG cells. Our observations suggest that pre-emptive genotyping of CYP2C9 and GSTM1 may aid in selection of more effective prophylaxis to reduce HC development in pediatric patients undergoing allogeneic HSCT. Article summary: (1) Children carrying functional alleles in GSTM1 and CYP2C9 are at high risk for developing hemorrhagic cystitis following treatment with busulfan and cyclophosphamide based conditioning regimen. (2) Identification of children at high risk for developing hemorrhagic cystitis in an allogeneic HSCT setting will enable us to evaluate and implement optimal strategies for its prevention. Trial registration: This study is a part of the trail “clinicaltrials.gov identifier: NCT01257854.”
Collapse
Affiliation(s)
- Chakradhara Rao S Uppugunduri
- Onco-Hematology Unit, Geneva University Hospital, Department of PediatricsGeneva, Switzerland.,CANSEARCH Research Laboratory, Department of Pediatrics, Faculty of Medicine, University of GenevaGeneva, Switzerland
| | - Flavia Storelli
- Clinical Pharmacology and Toxicology Service, Geneva University HospitalGeneva, Switzerland
| | - Vid Mlakar
- Onco-Hematology Unit, Geneva University Hospital, Department of PediatricsGeneva, Switzerland.,CANSEARCH Research Laboratory, Department of Pediatrics, Faculty of Medicine, University of GenevaGeneva, Switzerland
| | - Patricia Huezo-Diaz Curtis
- Onco-Hematology Unit, Geneva University Hospital, Department of PediatricsGeneva, Switzerland.,CANSEARCH Research Laboratory, Department of Pediatrics, Faculty of Medicine, University of GenevaGeneva, Switzerland
| | - Aziz Rezgui
- CHU Sainte-Justine Research Center, Charles-Bruneau Cancer Center, MontrealQC, Canada
| | - Yves Théorêt
- Clinical Pharmacology Unit, CHU Sainte-Justine, MontrealQC, Canada
| | - Denis Marino
- CANSEARCH Research Laboratory, Department of Pediatrics, Faculty of Medicine, University of GenevaGeneva, Switzerland
| | | | - Yves Chalandon
- Division of Hematology, Department of Medical Specialties, Geneva University HospitalGeneva, Switzerland
| | - Peter Bader
- Division for Stem Cell Transplantation and Immunology, University Hospital FrankfurtFrankfurt, Germany
| | - Youssef Daali
- Clinical Pharmacology and Toxicology Service, Geneva University HospitalGeneva, Switzerland
| | - Henrique Bittencourt
- Department of Pediatrics, Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, MontrealQC, Canada
| | - Maja Krajinovic
- CHU Sainte-Justine Research Center, Charles-Bruneau Cancer Center, MontrealQC, Canada.,Clinical Pharmacology Unit, CHU Sainte-Justine, MontrealQC, Canada.,Department of Pediatrics, Charles-Bruneau Cancer Center, CHU Sainte-Justine Research Center, MontrealQC, Canada
| | - Marc Ansari
- Onco-Hematology Unit, Geneva University Hospital, Department of PediatricsGeneva, Switzerland.,CANSEARCH Research Laboratory, Department of Pediatrics, Faculty of Medicine, University of GenevaGeneva, Switzerland
| |
Collapse
|
72
|
Kavianinia I, Yang SH, Kaur H, Harris PWR, Dobson RCJ, Fairbanks AJ, Brimble MA. Synthesis and incorporation of an advanced lipid peroxidation end-product building block into collagen mimetic peptides. Chem Commun (Camb) 2017; 53:8459-8462. [PMID: 28702630 DOI: 10.1039/c7cc05025a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Advanced lipid peroxidation end-products (ALEs) accumulate with ageing and oxidative stress-related diseases. Despite their potential therapeutic value, there are no suitably protected ALE building blocks reported in the literature to enable their site-specific incorporation into synthetic peptides. The synthesis of an Fmoc-protected ALE building block, N∈-(3-methylpyridinium)lysine (MP-lysine) and its incorporation into collagen model peptides is reported.
Collapse
Affiliation(s)
- Iman Kavianinia
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds St, Auckland, New Zealand
| | - Sung-Hyun Yang
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Harveen Kaur
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand
| | - Paul W R Harris
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds St, Auckland, New Zealand
| | - Renwick C J Dobson
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds St, Auckland, New Zealand and Biomolecular Interaction Centre and School of Biological Sciences University of Canterbury, Private Bag 4800, Christchurch, New Zealand and Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Antony J Fairbanks
- Biomolecular Interaction Centre and Department of Chemistry, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Margaret A Brimble
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds St, Auckland, New Zealand and School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
73
|
Activation of MMP-9 activity by acrolein in saliva from patients with primary Sjögren’s syndrome and its mechanism. Int J Biochem Cell Biol 2017; 88:84-91. [DOI: 10.1016/j.biocel.2017.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/18/2017] [Accepted: 05/04/2017] [Indexed: 11/21/2022]
|
74
|
Raju SV, Lin VY, Liu L, McNicholas CM, Karki S, Sloane PA, Tang L, Jackson PL, Wang W, Wilson L, Macon KJ, Mazur M, Kappes JC, DeLucas LJ, Barnes S, Kirk K, Tearney GJ, Rowe SM. The Cystic Fibrosis Transmembrane Conductance Regulator Potentiator Ivacaftor Augments Mucociliary Clearance Abrogating Cystic Fibrosis Transmembrane Conductance Regulator Inhibition by Cigarette Smoke. Am J Respir Cell Mol Biol 2017; 56:99-108. [PMID: 27585394 DOI: 10.1165/rcmb.2016-0226oc] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acquired cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction may contribute to chronic obstructive pulmonary disease pathogenesis and is a potential therapeutic target. We sought to determine the acute effects of cigarette smoke on ion transport and the mucociliary transport apparatus, their mechanistic basis, and whether deleterious effects could be reversed with the CFTR potentiator ivacaftor (VX-770). Primary human bronchial epithelial (HBE) cells and human bronchi were exposed to cigarette smoke extract (CSE) and/or ivacaftor. CFTR function and expression were measured in Ussing chambers and by surface biotinylation. CSE-derived acrolein modifications on CFTR were determined by mass spectroscopic analysis of purified protein, and the functional microanatomy of the airway epithelia was measured by 1-μm resolution optical coherence tomography. CSE reduced CFTR-dependent current in HBE cells (P < 0.05) and human bronchi (P < 0.05) within minutes of exposure. The mechanism involved CSE-induced reduction of CFTR gating, decreasing CFTR open-channel probability by approximately 75% immediately after exposure (P < 0.05), whereas surface CFTR expression was partially reduced with chronic exposure, but was stable acutely. CSE treatment of purified CFTR resulted in acrolein modifications on lysine and cysteine residues that likely disrupt CFTR gating. In primary HBE cells, CSE reduced airway surface liquid depth (P < 0.05) and ciliary beat frequency (P < 0.05) within 60 minutes that was restored by coadministration with ivacaftor (P < 0.005). Cigarette smoking transmits acute reductions in CFTR activity, adversely affecting the airway surface. These effects are reversible by a CFTR potentiator in vitro, representing a potential therapeutic strategy in patients with chronic obstructive pulmonary disease with chronic bronchitis.
Collapse
Affiliation(s)
- S Vamsee Raju
- Departments of 1 Medicine.,2 the Cystic Fibrosis Research Center
| | | | - Limbo Liu
- 3 Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Carmel M McNicholas
- 2 the Cystic Fibrosis Research Center.,4 Cell Developmental and Integrative Biology
| | | | | | - Liping Tang
- Departments of 1 Medicine.,2 the Cystic Fibrosis Research Center
| | | | - Wei Wang
- 2 the Cystic Fibrosis Research Center.,4 Cell Developmental and Integrative Biology
| | | | | | | | - John C Kappes
- Departments of 1 Medicine.,2 the Cystic Fibrosis Research Center
| | | | - Stephen Barnes
- 5 Targeted Metabolomics and Proteomics Laboratory.,7 Pharmacology, and
| | - Kevin Kirk
- 2 the Cystic Fibrosis Research Center.,4 Cell Developmental and Integrative Biology
| | - Guillermo J Tearney
- 3 Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Steven M Rowe
- Departments of 1 Medicine.,2 the Cystic Fibrosis Research Center.,4 Cell Developmental and Integrative Biology.,8 Pediatrics, University of Alabama at Birmingham, Birmingham, Alabama; and
| |
Collapse
|
75
|
Fumarate Mediates a Chronic Proliferative Signal in Fumarate Hydratase-Inactivated Cancer Cells by Increasing Transcription and Translation of Ferritin Genes. Mol Cell Biol 2017; 37:MCB.00079-17. [PMID: 28289076 DOI: 10.1128/mcb.00079-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/07/2017] [Indexed: 01/01/2023] Open
Abstract
Germ line mutations of the gene encoding the tricarboxylic acid (TCA) cycle enzyme fumarate hydratase (FH) cause a hereditary cancer syndrome known as hereditary leiomyomatosis and renal cell cancer (HLRCC). HLRCC-associated tumors harbor biallelic FH inactivation that results in the accumulation of the TCA cycle metabolite fumarate. Although it is known that fumarate accumulation can alter cellular signaling, if and how fumarate confers a growth advantage remain unclear. Here we show that fumarate accumulation confers a chronic proliferative signal by disrupting cellular iron signaling. Specifically, fumarate covalently modifies cysteine residues on iron regulatory protein 2 (IRP2), rendering it unable to repress ferritin mRNA translation. Simultaneously, fumarate increases ferritin gene transcription by activating the NRF2 (nuclear factor [erythroid-derived 2]-like 2) transcription factor. In turn, increased ferritin protein levels promote the expression of the promitotic transcription factor FOXM1 (Forkhead box protein M1). Consistently, clinical HLRCC tissues showed increased expression levels of both FOXM1 and its proliferation-associated target genes. This finding demonstrates how FH inactivation can endow cells with a growth advantage.
Collapse
|
76
|
Profiling of gene expression using microarray in acrolein-treated human pulmonary fibroblasts. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-017-0005-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
77
|
Jackson PA, Widen JC, Harki DA, Brummond KM. Covalent Modifiers: A Chemical Perspective on the Reactivity of α,β-Unsaturated Carbonyls with Thiols via Hetero-Michael Addition Reactions. J Med Chem 2017; 60:839-885. [PMID: 27996267 PMCID: PMC5308545 DOI: 10.1021/acs.jmedchem.6b00788] [Citation(s) in RCA: 332] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although Michael acceptors display a potent and broad spectrum of bioactivity, they have largely been ignored in drug discovery because of their presumed indiscriminate reactivity. As such, a dearth of information exists relevant to the thiol reactivity of natural products and their analogues possessing this moiety. In the midst of recently approved acrylamide-containing drugs, it is clear that a good understanding of the hetero-Michael addition reaction and the relative reactivities of biological thiols with Michael acceptors under physiological conditions is needed for the design and use of these compounds as biological tools and potential therapeutics. This Perspective provides information that will contribute to this understanding, such as kinetics of thiol addition reactions, bioactivities, as well as steric and electronic factors that influence the electrophilicity and reversibility of Michael acceptors. This Perspective is focused on α,β-unsaturated carbonyls given their preponderance in bioactive natural products.
Collapse
Affiliation(s)
- Paul A. Jackson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - John C. Widen
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daniel A. Harki
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kay M. Brummond
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
78
|
Salus K, Hoffmann M, Siodła T, Wyrzykiewicz B, Pluskota-Karwatka D. Synthesis, structural studies and stability of model cysteine containing DNA–protein cross-links. NEW J CHEM 2017. [DOI: 10.1039/c7nj00270j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the presence of Nα-acetyllysine, cross-links of aldehydic adenine nucleoside adducts with N-acetylcysteine lose an N-acetylcysteine moiety undergoing transformation into amino derivatives.
Collapse
Affiliation(s)
- Kinga Salus
- Adam Mickiewicz University in Poznań
- Faculty of Chemistry
- Umultowska 89b
- 61-614 Poznań
- Poland
| | - Marcin Hoffmann
- Adam Mickiewicz University in Poznań
- Faculty of Chemistry
- Umultowska 89b
- 61-614 Poznań
- Poland
| | - Tomasz Siodła
- Adam Mickiewicz University in Poznań
- Faculty of Chemistry
- Umultowska 89b
- 61-614 Poznań
- Poland
| | - Bożena Wyrzykiewicz
- Adam Mickiewicz University in Poznań
- Faculty of Chemistry
- Umultowska 89b
- 61-614 Poznań
- Poland
| | | |
Collapse
|
79
|
Mechanisms Underlying Acrolein-Mediated Inhibition of Chromatin Assembly. Mol Cell Biol 2016; 36:2995-3008. [PMID: 27669733 DOI: 10.1128/mcb.00448-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/14/2016] [Indexed: 01/29/2023] Open
Abstract
Acrolein is a major component of cigarette smoke and cooking fumes. Previously, we reported that acrolein compromises chromatin assembly; however, underlying mechanisms have not been defined. Here, we report that acrolein reacts with lysine residues, including lysines 5 and 12, sites important for chromatin assembly, on histone H4 in vitro and in vivo Acrolein-modified histones are resistant to acetylation, suggesting that the reduced H4K12 acetylation that occurs following acrolein exposure is probably due to the formation of acrolein-histone lysine adducts. Accordingly, the association of H3/H4 with the histone chaperone ASF1 and importin 4 is disrupted and the translocation of green fluorescent protein-tagged H3 is inhibited in cells exposed to acrolein. Interestingly, in vitro plasmid supercoiling assays revealed that treatment of either histones or ASF1 with acrolein has no effect on the formation of plasmid supercoiling, indicating that acrolein-protein adduct formation itself does not directly interfere with nucleosome assembly. Notably, exposure of histones to acrolein prior to histone acetylation leads to the inhibition of remodeling and spacing factor chromatin assembly, which requires acetylated histones for efficient assembly. These results suggest that acrolein compromises chromatin assembly by reacting with histone lysine residues at the sites critical for chromatin assembly and prevents these sites from physiological modifications.
Collapse
|
80
|
Danyal K, de Jong W, O'Brien E, Bauer RA, Heppner DE, Little AC, Hristova M, Habibovic A, van der Vliet A. Acrolein and thiol-reactive electrophiles suppress allergen-induced innate airway epithelial responses by inhibition of DUOX1 and EGFR. Am J Physiol Lung Cell Mol Physiol 2016; 311:L913-L923. [PMID: 27612966 DOI: 10.1152/ajplung.00276.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/05/2016] [Indexed: 01/27/2023] Open
Abstract
Acrolein is a major thiol-reactive component of cigarette smoke (CS) that is thought to contribute to increased asthma incidence associated with smoking. Here, we explored the effects of acute acrolein exposure on innate airway responses to two common airborne allergens, house dust mite and Alternaria alternata, and observed that acrolein exposure of C57BL/6 mice (5 ppm, 4 h) dramatically inhibited innate airway responses to subsequent allergen challenge, demonstrated by attenuated release of the epithelial-derived cytokines IL-33, IL-25, and IL-1α. Acrolein and other anti-inflammatory thiol-reactive electrophiles, cinnamaldehyde, curcumin, and sulforaphane, similarly inhibited allergen-induced production of these cytokines from human or murine airway epithelial cells in vitro. Based on our previous observations indicating the importance of Ca2+-dependent signaling, activation of the NADPH oxidase DUOX1, and Src/EGFR-dependent signaling in allergen-induced epithelial secretion of these cytokines, we explored the impact of acrolein on these pathways. Acrolein and other thiol-reactive electrophiles were found to dramatically prevent allergen-induced activation of DUOX1 as well as EGFR, and acrolein was capable of inhibiting EGFR tyrosine kinase activity via modification of C797. Biotin-labeling strategies indicated increased cysteine modification and carbonylation of Src, EGFR, as well as DUOX1, in response to acrolein exposure in vitro and in vivo, suggesting that direct alkylation of these proteins on accessible cysteine residues may be responsible for their inhibition. Collectively, our findings indicate a novel anti-inflammatory mechanism of CS-derived acrolein and other thiol-reactive electrophiles, by directly inhibiting DUOX1- and EGFR-mediated airway epithelial responses to airborne allergens.
Collapse
Affiliation(s)
- Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Willem de Jong
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Edmund O'Brien
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Robert A Bauer
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - David E Heppner
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Andrew C Little
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Milena Hristova
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Aida Habibovic
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont, Burlington, Vermont
| |
Collapse
|
81
|
Yeh YH, Chou JC, Weng TC, Lieu FK, Lin JY, Yeh CC, Hu S, Wang PS, Idova G, Wang SW. Effects of acrolein on the production of corticosterone in male rats. Steroids 2016; 111:139-147. [PMID: 26996390 DOI: 10.1016/j.steroids.2016.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/09/2016] [Accepted: 03/11/2016] [Indexed: 11/30/2022]
Abstract
Acrolein, an α, β-unsaturated aldehyde, exists in a wide range of sources. Acrolein can be not only generated from all types of smoke but also produced endogenously from the metabolism by lipid peroxidation. The cellular influence of acrolein is due to its electrophilic character via binding to and depleting cellular nucleophiles. Although the toxicity of acrolein has been extensively studied, there is relatively little information about its impact on hormone release. This study aimed at the effect of acrolein on hypothalamic-pituitary-adrenal (H-P-A) axis. In an in vivo study, male rats were administrated with acrolein for 1 or 3days. The plasma corticosterone in response to a single injection of adrenocorticotropic hormone (ACTH) increased slowly in acrolein-pretreated rats than in control rats. Further investigating the steroidogenic pathway, the protein expressions of steroidogenic acute regulatory protein (StAR) and the upper receptor-melanocortin 2 receptor (MC2R) were attenuated in acrolein-treated groups. Another experiment using trilostane showed less activity of P450scc in zona fasciculata-reticularis (ZFR) cells in acrolein-treated groups. In addition to the suppressed ability of corticosterone production in ZFR cells, acrolein even had extended influence at higher concentrations. The lower ACTH was observed in the plasma from acrolein-pretreated rats. In an in vitro study, ZFR cells were incubated with acrolein and the results showed that corticosterone concentrations in media were decreased in a dose-dependent manner. Acrolein also desensitized the response of the ZFR cells to ACTH. These results suggested that acrolein decreased the releasing ability of corticosterone via an inhibition on the response of ZFR cells to ACTH and the reduction of protein expressions of StAR and MC2R as well as the activity of P450scc in rat ZFR cells. The present evidences showed that the H-P-A axis was affected by the administration of acrolein.
Collapse
Affiliation(s)
- Yung-Hsing Yeh
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, ROC
| | - Jou-Chun Chou
- Medical Center of Aging Research, China Medical University Hospital, Taichung 40402, Taiwan, ROC; Department of Life Sciences, National Chung Hsing University, Taichung 40254, Taiwan, ROC
| | - Ting-Chun Weng
- Medical Center of Aging Research, China Medical University Hospital, Taichung 40402, Taiwan, ROC
| | - Fu-Kong Lieu
- Department of Rehabilitation, Cheng-Hsin General Hospital, Taipei 11283, Taiwan, ROC
| | - Jou-Yu Lin
- Department of Rehabilitation, Cheng-Hsin General Hospital, Taipei 11283, Taiwan, ROC
| | - Chii-Chang Yeh
- Department of Internal Medicine, Zhongxiao Branch, Taipei City Hospital, Taipei 11146, Taiwan, ROC
| | - Sindy Hu
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan 33333, Taiwan, ROC; Department of Medicine, College of Medicine, Chang Gung University, Taoyuan 33333, Taiwan, ROC
| | - Paulus S Wang
- Department of Physiology, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan, ROC; Medical Center of Aging Research, China Medical University Hospital, Taichung 40402, Taiwan, ROC; Graduate Institute of Basic Medical Science, College of Medicine, China Medical University, Taichung 40402, Taiwan, ROC; Department of Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan, ROC; Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 11217, Taiwan, ROC.
| | - Galina Idova
- State Scientific Research Institute of Physiology and Basic Medicine, Timakova Street, 4, Novosibirsk 630117, Russia
| | - Shyi-Wu Wang
- Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Taoyuan 33333, Taiwan, ROC; Department of Physiology and Pharmacology, College of Medicine, Chang-Gung University, Taoyuan 33333, Taiwan, ROC.
| |
Collapse
|
82
|
Sekine T, Hirata T, Mine T, Fukano Y. Activation of transcription factors in human bronchial epithelial cells exposed to aqueous extracts of mainstream cigarette smoke in vitro. Toxicol Mech Methods 2016; 26:22-31. [DOI: 10.3109/15376516.2015.1123788] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
83
|
Milic I, Kipping M, Hoffmann R, Fedorova M. Separation and characterization of oxidized isomeric lipid-peptide adducts by ion mobility mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:1386-1392. [PMID: 26634972 DOI: 10.1002/jms.3713] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/14/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
Phospholipids are major components of cell membranes and lipoprotein complexes. They are prone to oxidation by endogenous and exogenous reactive oxygen species yielding a large variety of modified lipids including small aliphatic and phospholipid bound aldehydes and ketones. These carbonyls are strong electrophiles that can modify proteins and, thereby, alter their structures and functions triggering various pathophysiological conditions. The analysis of lipid-protein adducts by liquid chromatography-MS is challenged by their mixed chemical nature (polar peptide and hydrophobic lipid), low abundance in biological samples, and formation of multiple isomers. Thus, we investigated traveling wave ion mobility mass spectrometry (TWIMS) to analyze lipid-peptide adducts generated by incubating model peptides corresponding to the amphipathic β1 sheet sequence of apolipoprotein B-100 with 1-palmitoyl-2-(oxo-nonanoyl)-sn-glycerophosphatidylcholine (PONPC). The complex mixture of peptides, lipids, and peptide-lipid adducts was separated by TWIMS, which was especially important for the identification of two mono-PONPC-peptide isomers containing Schiff bases at different lysine residues. Moreover, TWIMS separated structural conformers of one peptide-lipid adduct possessing most likely different orientations of the hydrophobic sn-1 fatty acyl residue and head group of PONPC, relative to the peptide backbone.
Collapse
Affiliation(s)
- Ivana Milic
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | | | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Leipzig, Germany
- Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
84
|
Sapkota M, Wyatt TA. Alcohol, Aldehydes, Adducts and Airways. Biomolecules 2015; 5:2987-3008. [PMID: 26556381 PMCID: PMC4693266 DOI: 10.3390/biom5042987] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 12/20/2022] Open
Abstract
Drinking alcohol and smoking cigarettes results in the formation of reactive aldehydes in the lung, which are capable of forming adducts with several proteins and DNA. Acetaldehyde and malondialdehyde are the major aldehydes generated in high levels in the lung of subjects with alcohol use disorder who smoke cigarettes. In addition to the above aldehydes, several other aldehydes like 4-hydroxynonenal, formaldehyde and acrolein are also detected in the lung due to exposure to toxic gases, vapors and chemicals. These aldehydes react with nucleophilic targets in cells such as DNA, lipids and proteins to form both stable and unstable adducts. This adduction may disturb cellular functions as well as damage proteins, nucleic acids and lipids. Among several adducts formed in the lung, malondialdehyde DNA (MDA-DNA) adduct and hybrid malondialdehyde-acetaldehyde (MAA) protein adducts have been shown to initiate several pathological conditions in the lung. MDA-DNA adducts are pre-mutagenic in mammalian cells and induce frame shift and base-pair substitution mutations, whereas MAA protein adducts have been shown to induce inflammation and inhibit wound healing. This review provides an insight into different reactive aldehyde adducts and their role in the pathogenesis of lung disease.
Collapse
Affiliation(s)
- Muna Sapkota
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Todd A Wyatt
- Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA.
- Department of Internal Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Nebraska Medical Center, Omaha, NE 68198, USA.
- VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA.
| |
Collapse
|
85
|
Randall MJ, Haenen GRMM, Bouwman FG, van der Vliet A, Bast A. The tobacco smoke component acrolein induces glucocorticoid resistant gene expression via inhibition of histone deacetylase. Toxicol Lett 2015; 240:43-9. [PMID: 26481333 DOI: 10.1016/j.toxlet.2015.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 09/15/2015] [Accepted: 10/11/2015] [Indexed: 01/24/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is the leading cause of cigarette smoke-related death worldwide. Acrolein, a crucial reactive electrophile found in cigarette smoke mimics many of the toxic effects of cigarette smoke-exposure in the lung. In macrophages, cigarette smoke is known to hinder histone deacetylases (HDACs), glucocorticoid-regulated enzymes that play an important role in the pathogenesis of glucocorticoid resistant inflammation, a common feature of COPD. Thus, we hypothesize that acrolein plays a role in COPD-associated glucocorticoid resistance. To examine the role of acrolein on glucocorticoid resistance, U937 monocytes, differentiated with PMA to macrophage-like cells were treated with acrolein for 0.5h followed by stimulation with hydrocortisone for 8h, or treated simultaneously with LPS and hydrocortisone for 8h without acrolein. GSH and nuclear HDAC activity were measured, or gene expression was analyzed by qPCR. Acrolein-mediated TNFα gene expression was not suppressed by hydrocortisone whereas LPS-induced TNFα expression was suppressed. Acrolein also significantly inhibited nuclear HDAC activity in macrophage-like cells. Incubation of recombinant HDAC2 with acrolein led to the formation of an HDAC2-acrolein adduct identified by mass spectrometry. Therefore, these results suggest that acrolein-induced inflammatory gene expression is resistant to suppression by the endogenous glucocorticoid, hydrocortisone.
Collapse
Affiliation(s)
- Matthew J Randall
- Department of Toxicology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands; Department of Pathology, College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA.
| | - Guido R M M Haenen
- Department of Toxicology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Freek G Bouwman
- Department of Human Biology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Albert van der Vliet
- Department of Pathology, College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Aalt Bast
- Department of Toxicology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
86
|
Hirose T, Saiki R, Uemura T, Suzuki T, Dohmae N, Ito S, Takahashi H, Ishii I, Toida T, Kashiwagi K, Igarashi K. Increase in acrolein-conjugated immunoglobulins in saliva from patients with primary Sjögren's syndrome. Clin Chim Acta 2015; 450:184-9. [DOI: 10.1016/j.cca.2015.08.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 08/01/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
|
87
|
Park SL, Carmella SG, Chen M, Patel Y, Stram DO, Haiman CA, Le Marchand L, Hecht SS. Mercapturic Acids Derived from the Toxicants Acrolein and Crotonaldehyde in the Urine of Cigarette Smokers from Five Ethnic Groups with Differing Risks for Lung Cancer. PLoS One 2015; 10:e0124841. [PMID: 26053186 PMCID: PMC4460074 DOI: 10.1371/journal.pone.0124841] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/17/2015] [Indexed: 12/27/2022] Open
Abstract
The Multiethnic Cohort epidemiology study has clearly demonstrated that, compared to Whites and for the same number of cigarettes smoked, African Americans and Native Hawaiians have a higher risk for lung cancer whereas Latinos and Japanese Americans have a lower risk. Acrolein and crotonaldehyde are two important constituents of cigarette smoke which have well documented toxic effects and could play a role in lung cancer etiology. Their urinary metabolites 3-hydroxypropylmercapturic acid (3-HPMA) and 3-hydroxy-1-methylpropylmercapturic acid (HMPMA), respectively, are validated biomarkers of acrolein and crotonaldehyde exposure. We quantified levels of 3-HPMA and HMPMA in the urine of more than 2200 smokers from these five ethnic groups, and also carried out a genome wide association study using blood samples from these subjects. After adjusting for age, sex, creatinine, and total nicotine equivalents, geometric mean levels of 3-HPMA and HMPMA were significantly different in the five groups (P < 0.0001). Native Hawaiians had the highest and Latinos the lowest geometric mean levels of both 3-HPMA and HMPMA. Levels of 3-HPMA and HMPMA were 3787 and 2759 pmol/ml urine, respectively, in Native Hawaiians and 1720 and 2210 pmol/ml urine in Latinos. These results suggest that acrolein and crotonaldehyde may be involved in lung cancer etiology, and that their divergent levels may partially explain the differing risks of Native Hawaiian and Latino smokers. No strong signals were associated with 3-HPMA in the genome wide association study, suggesting that formation of the glutathione conjugate of acrolein is mainly non-enzymatic, while the top significant association with HMPMA was located on chromosome 12 near the TBX3 gene, but its relationship to HMPMA excretion is not clear.
Collapse
Affiliation(s)
- Sungshim L. Park
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Steven G. Carmella
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Menglan Chen
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Yesha Patel
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Daniel O. Stram
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Christopher A. Haiman
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Loic Le Marchand
- University of Hawaii Cancer Center, Honolulu, Hawaii, United States of America
| | - Stephen S. Hecht
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
88
|
Milic I, Melo T, Domingues MR, Domingues P, Fedorova M. Heterogeneity of peptide adducts with carbonylated lipid peroxidation products. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:603-612. [PMID: 25800198 DOI: 10.1002/jms.3568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/17/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
Highly reactive lipid peroxidation-derived carbonyls (oxoLPP) modify protein nucleophiles via Michael addition or Schiff base formation. Once formed, Michael adducts can be further stabilized via cyclic hemiacetals with or without loss of water. Depending on the mechanism of their formation, peptide-oxoLPP can carry aldehyde or keto groups and thus be a part of the total protein carbonylation level. If a carbonyl function is lost during consecutive reactions, the oxoLPP-peptide adducts will not be detected using the common carbonyl labeling protocols. Because of the differences in adduct stabilities, it is possible to address the heterogeneity of peptide/protein-oxoLPP adducts by careful evaluation of tandem mass spectra of modified peptides. Here, we used hydrophilic interaction liquid chromatography-tandem mass spectrometry analysis of lysine, cysteine and histidine containing model peptides co-incubated with oxidized 1-palmitoyl-2-linoleoyl-sn-glycerophosphatidylcholine to characterize the collision-induced dissociation behavior of peptide-carbonyl adducts. Numerous modifications were detected based on the analysis of tandem mass spectra, including Schiff bases on lysine (two), Michael adducts on lysine (six), cysteine (eleven) and histidine (two), as well as 4-hydroxy-2-aldehydes derived dehydrated cyclic hemiacetals on cysteine (five) and histidine (one). Additionally, cysteine and histidine side chains were modified by lipid-bound aldehydes as Michael adducts and dehydrated hemiacetals. The tandem mass spectra revealed collision-induced dissociation characteristics specific for each class of oxoLPP-peptide adducts.
Collapse
Affiliation(s)
- Ivana Milic
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Leipzig University, Leipzig, Germany; Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | | | | | | | | |
Collapse
|
89
|
LoPachin RM, Gavin T. Protein adduct formation initiates acrolein-induced endothelial cell toxicity. Toxicol Sci 2015; 144:2-3. [PMID: 25740791 PMCID: PMC4349144 DOI: 10.1093/toxsci/kfu314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
90
|
Tully M, Zheng L, Acosta G, Tian R, Shi R. Acute systemic accumulation of acrolein in mice by inhalation at a concentration similar to that in cigarette smoke. Neurosci Bull 2014; 30:1017-1024. [PMID: 25446876 DOI: 10.1007/s12264-014-1480-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/18/2014] [Indexed: 11/28/2022] Open
Abstract
Cigarette smoke is an important environmental factor associated with a wide array of public health concerns. Acrolein, a component of tobacco smoke and a known toxin to various cell types, may be a key pathological factor mediating the adverse effects linked with tobacco smoke. Although acrolein is known to accumulate in the respiratory system after acute nasal exposure, it is not clear if it accumulates systemically, and less is known in the nervous system. The aim of this study was to assess the degree of acrolein accumulation in the circulation and in the spinal cord following acute acrolein inhalation in mice. Using a laboratory-fabricated inhalation chamber, we found elevated urinary 3-HPMA, an acrolein metabolite, and increased acrolein adducts in the spinal cord after weeks of nasal exposure to acrolein at a concentration similar to that in tobacco smoke. The data indicated that acrolein is absorbed into the circulatory system and some enters the nervous system. It is expected that these findings may facilitate further studies to probe the pathological role of acrolein in the nervous system resulting from smoke and other external sources.
Collapse
Affiliation(s)
- Melissa Tully
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.,Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lingxing Zheng
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Glen Acosta
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| | - Ran Tian
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA. .,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
91
|
Lee HW, Wang HT, Weng MW, Hu Y, Chen WS, Chou D, Liu Y, Donin N, Huang WC, Lepor H, Wu XR, Wang H, Beland FA, Tang MS. Acrolein- and 4-Aminobiphenyl-DNA adducts in human bladder mucosa and tumor tissue and their mutagenicity in human urothelial cells. Oncotarget 2014; 5:3526-40. [PMID: 24939871 PMCID: PMC4116500 DOI: 10.18632/oncotarget.1954] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 05/06/2014] [Indexed: 01/12/2023] Open
Abstract
Tobacco smoke (TS) is a major cause of human bladder cancer (BC). Two components in TS, 4-aminobiphenyl (4-ABP) and acrolein, which also are environmental contaminants, can cause bladder tumor in rat models. Their role in TS related BC has not been forthcoming. To establish the relationship between acrolein and 4-ABP exposure and BC, we analyzed acrolein-deoxyguanosine (dG) and 4-ABP-DNA adducts in normal human urothelial mucosa (NHUM) and bladder tumor tissues (BTT), and measured their mutagenicity in human urothelial cells. We found that the acrolein-dG levels in NHUM and BTT are 10-30 fold higher than 4-ABP-DNA adduct levels and that the acrolein-dG levels in BTT are 2 fold higher than in NHUM. Both acrolein-dG and 4-ABP-DNA adducts are mutagenic; however, the former are 5 fold more mutagenic than the latter. These two types of DNA adducts induce different mutational signatures and spectra. We found that acrolein inhibits nucleotide excision and base excision repair and induces repair protein degradation in urothelial cells. Since acrolein is abundant in TS, inhaled acrolein is excreted into urine and accumulates in the bladder and because acrolein inhibits DNA repair and acrolein-dG DNA adducts are mutagenic, we propose that acrolein is a major bladder carcinogen in TS.
Collapse
Affiliation(s)
- Hyun-Wook Lee
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York
| | - Hsiang-Tsui Wang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York
| | - Mao-wen Weng
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York
| | - Yu Hu
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York
| | - Wei-sheng Chen
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York
| | - David Chou
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York
| | - Yan Liu
- Department of Urology, New York University School of Medicine, New York, New York
| | - Nicholas Donin
- Department of Urology, New York University School of Medicine, New York, New York
| | - William C. Huang
- Department of Urology, New York University School of Medicine, New York, New York
| | - Herbert Lepor
- Department of Urology, New York University School of Medicine, New York, New York
| | - Xue-Ru Wu
- Department of Urology, New York University School of Medicine, New York, New York
| | - Hailin Wang
- The State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Frederick A. Beland
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR
| | - Moon-shong Tang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo Park, New York
| |
Collapse
|
92
|
Effects of Aliphatic Aldehydes on the Growth and Patulin Production ofPenicillium expansumin Apple Juice. Biosci Biotechnol Biochem 2014; 77:138-44. [DOI: 10.1271/bbb.120629] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
93
|
Sthijns MMJPE, Randall MJ, Bast A, Haenen GRMM. Adaptation to acrolein through upregulating the protection by glutathione in human bronchial epithelial cells: the materialization of the hormesis concept. Biochem Biophys Res Commun 2014; 446:1029-34. [PMID: 24667599 DOI: 10.1016/j.bbrc.2014.03.081] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 11/26/2022]
Abstract
Acrolein is a thiol reactive compound present in cigarette smoke and plays a pivotal role in the deleterious effects of smoking. Acrolein causes toxicity in human bronchial epithelial cells in a dose dependent manner. GSH forms the first line of defense against acrolein-induced toxicity. At high doses of acrolein (⩾10 μM) the capacity of the cellular protection by GSH is overwhelmed and GSH is not able to quench all the acrolein, resulting in cytotoxicity. At a relatively low dose of acrolein (3 μM), no cytotoxicity is observed due to protection by GSH. Moreover we found that exposure to a low dose of acrolein protects cells against the toxic effect of a second higher dose of acrolein. The adaptation to acrolein is induced via Nrf2 mediated gene expression of γ-glutamylcysteine synthetase leading to elevated GSH levels. This upregulation of the protection by GSH demonstrates a hormetic response to acrolein. Hormesis is an adaptive or compensatory response induced by a relatively subtle challenge of homeostasis by a toxic compound. Insight into the mechanism of hormesis is mandatory for a more accurate societal regulation of toxic compounds.
Collapse
Affiliation(s)
- Mireille M J P E Sthijns
- Department of Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
| | - Matthew J Randall
- Department of Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Pathology, College of Medicine, University of Vermont, Burlington, VT, USA
| | - Aalt Bast
- Department of Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Guido R M M Haenen
- Department of Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
94
|
Klüver N, Ortmann J, Paschke H, Renner P, Ritter AP, Scholz S. Transient overexpression of adh8a increases allyl alcohol toxicity in zebrafish embryos. PLoS One 2014; 9:e90619. [PMID: 24594943 PMCID: PMC3940891 DOI: 10.1371/journal.pone.0090619] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 02/03/2014] [Indexed: 11/28/2022] Open
Abstract
Fish embryos are widely used as an alternative model to study toxicity in vertebrates. Due to their complexity, embryos are believed to more resemble an adult organism than in vitro cellular models. However, concerns have been raised with respect to the embryo's metabolic capacity. We recently identified allyl alcohol, an industrial chemical, to be several orders of magnitude less toxic to zebrafish embryo than to adult zebrafish (embryo LC50 = 478 mg/L vs. fish LC50 = 0.28 mg/L). Reports on mammals have indicated that allyl alcohol requires activation by alcohol dehydrogenases (Adh) to form the highly reactive and toxic metabolite acrolein, which shows similar toxicity in zebrafish embryos and adults. To identify if a limited metabolic capacity of embryos indeed can explain the low allyl alcohol sensitivity of zebrafish embryos, we compared the mRNA expression levels of Adh isoenzymes (adh5, adh8a, adh8b and adhfe1) during embryo development to that in adult fish. The greatest difference between embryo and adult fish was found for adh8a and adh8b expression. Therefore, we hypothesized that these genes might be required for allyl alcohol activation. Microinjection of adh8a, but not adh8b mRNA led to a significant increase of allyl alcohol toxicity in embryos similar to levels reported for adults (LC50 = 0.42 mg/L in adh8a mRNA-injected embryos). Furthermore, GC/MS analysis of adh8a-injected embryos indicated a significant decline of internal allyl alcohol concentrations from 0.23-58 ng/embryo to levels below the limit of detection (< 4.6 µg/L). Injection of neither adh8b nor gfp mRNA had an impact on internal allyl alcohol levels supporting that the increased allyl alcohol toxicity was mediated by an increase in its metabolization. These results underline the necessity to critically consider metabolic activation in the zebrafish embryo. As demonstrated here, mRNA injection is one useful approach to study the role of candidate enzymes involved in metabolization.
Collapse
Affiliation(s)
- Nils Klüver
- Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Julia Ortmann
- Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Heidrun Paschke
- Department of Analytical Chemistry, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Patrick Renner
- Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Axel P. Ritter
- Department of Analytical Chemistry, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
95
|
Burcham PC, Raso A, Henry PJ. Airborne acrolein induces keratin-8 (Ser-73) hyperphosphorylation and intermediate filament ubiquitination in bronchiolar lung cell monolayers. Toxicology 2014; 319:44-52. [PMID: 24594012 DOI: 10.1016/j.tox.2014.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/24/2013] [Accepted: 02/13/2014] [Indexed: 01/12/2023]
Abstract
The combustion product acrolein is a key mediator of pulmonary edema in victims of smoke inhalation injury. Since studying acrolein toxicity in conventional in vitro systems is complicated by reactivity with nucleophilic culture media constituents, we explored an exposure system which delivers airborne acrolein directly to lung cell monolayers at the air-liquid interface. Calu-3 lung adenocarcinoma cells were maintained on membrane inserts such that the basal surface was bathed in nucleophile-free media while the upper surface remained in contact with acrolein-containing air. Cells were exposed to airborne acrolein for 30 min before they were allowed to recover in fresh media, with cell sampling at defined time points to allow evaluation of toxicity and protein damage. After prior exposure to acrolein, cell ATP levels remained close to controls for 4h but decreased in an exposure-dependent manner by 24h. A loss of transepithelial electrical resistance and increased permeability to fluorescein isothiocyanate-labeled dextran preceded ATP loss. Use of antibody arrays to monitor protein expression in exposed monolayers identified strong upregulation of phospho-keratin-8 (Ser(73)) as an early consequence of acrolein exposure. These changes were accompanied by chemical damage to keratin-8 and other intermediate filament family members, while acrolein exposure also resulted in controlled ubiquitination of high mass proteins within the intermediate filament extracts. These findings confirm the usefulness of systems allowing delivery of airborne smoke constituents to lung cell monolayers during studies of the molecular basis for acute smoke intoxication injury.
Collapse
Affiliation(s)
- Philip C Burcham
- Pharmacology and Anaesthesiology Unit, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia.
| | - Albert Raso
- Pharmacology and Anaesthesiology Unit, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Peter J Henry
- Pharmacology and Anaesthesiology Unit, School of Medicine & Pharmacology, The University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
96
|
Heylmann D, Bauer M, Becker H, van Gool S, Bacher N, Steinbrink K, Kaina B. Human CD4+CD25+ regulatory T cells are sensitive to low dose cyclophosphamide: implications for the immune response. PLoS One 2013; 8:e83384. [PMID: 24376696 PMCID: PMC3871695 DOI: 10.1371/journal.pone.0083384] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 11/03/2013] [Indexed: 12/23/2022] Open
Abstract
Regulatory T cells (Treg) play a pivotal role in the immune system since they inhibit the T cell response. It is well known that cyclophosphamide applied at low dose is able to stimulate the immune response while high dose cyclophosphamide exerts inhibitory activity. Data obtained in mice indicate that cyclophosphamide provokes a reduction in the number of Treg and impairs their suppressive activity, resulting in immune stimulation. Here, we addressed the question of the sensitivity of human Treg to cyclophosphamide, comparing Treg with cytotoxic T cells (CTL) and T helper cells (Th). We show that Treg are more sensitive than CTL and Th to mafosfamide, which is an active derivative of cyclophosphamide, which does not need metabolic activation. The high sensitivity of Treg was due to the induction of apoptosis. Treg compared to CTL and Th were not more sensitive to the alkylating drugs temozolomide and nimustine and also not to mitomycin C, indicating a specific Treg response to mafosfamide. The high sensitivity of Treg to mafosfamide resulted not only in enhanced cell death, but also in impaired Treg function as demonstrated by a decline in the suppressor activity of Treg in a co-culture model with Th and Helios positive Treg. Treatment of Treg with mafosfamide gave rise to a high level of DNA crosslinks, which were not repaired to the same extent as observed in Th and CTL. Also, Treg showed a low level of γH2AX foci up to 6 h and a high level 24 h after treatment, indicating alterations in the DNA damage response. Overall, this is the first demonstration that human Treg are, in comparison with Th and CTL, hypersensitive to cyclophosphamide, which is presumably due to a DNA repair defect.
Collapse
Affiliation(s)
- Daniel Heylmann
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Martina Bauer
- Department of Toxicology, University Medical Center, Mainz, Germany
| | - Huong Becker
- Department of Toxicology, University Medical Center, Mainz, Germany
| | | | - Nicole Bacher
- Department of Dermatology, University Medical Center, Mainz, Germany
| | | | - Bernd Kaina
- Department of Toxicology, University Medical Center, Mainz, Germany
- * E-mail:
| |
Collapse
|
97
|
Randall MJ, Hristova M, van der Vliet A. Protein alkylation by the α,β-unsaturated aldehyde acrolein. A reversible mechanism of electrophile signaling? FEBS Lett 2013; 587:3808-14. [PMID: 24157358 DOI: 10.1016/j.febslet.2013.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/08/2013] [Accepted: 10/10/2013] [Indexed: 01/16/2023]
Abstract
Acrolein, a reactive aldehyde found in cigarette smoke, is thought to induce its biological effects primarily by irreversible adduction to cellular nucleophiles such as cysteine thiols. Here, we demonstrate that acrolein rapidly inactivates the seleno-enzyme thioredoxin reductase (TrxR) in human bronchiolar epithelial HBE1 cells, which recovered over 4-8h by a mechanism depending on the presence of cellular GSH and thioredoxin 1 (Trx1), and corresponding with reversal of protein-acrolein adduction. Our findings indicate that acrolein-induced protein alkylation is not necessarily a feature of irreversible protein damage, but may reflect a reversible signaling mechanism that is regulated by GSH and Trx1.
Collapse
Affiliation(s)
- Matthew J Randall
- Department of Pathology, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | |
Collapse
|
98
|
Pizzimenti S, Ciamporcero E, Daga M, Pettazzoni P, Arcaro A, Cetrangolo G, Minelli R, Dianzani C, Lepore A, Gentile F, Barrera G. Interaction of aldehydes derived from lipid peroxidation and membrane proteins. Front Physiol 2013; 4:242. [PMID: 24027536 PMCID: PMC3761222 DOI: 10.3389/fphys.2013.00242] [Citation(s) in RCA: 234] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/15/2013] [Indexed: 01/07/2023] Open
Abstract
A great variety of compounds are formed during lipid peroxidation of polyunsaturated fatty acids of membrane phospholipids. Among them, bioactive aldehydes, such as 4-hydroxyalkenals, malondialdehyde (MDA) and acrolein, have received particular attention since they have been considered as toxic messengers that can propagate and amplify oxidative injury. In the 4-hydroxyalkenal class, 4-hydroxy-2-nonenal (HNE) is the most intensively studied aldehyde, in relation not only to its toxic function, but also to its physiological role. Indeed, HNE can be found at low concentrations in human tissues and plasma and participates in the control of biological processes, such as signal transduction, cell proliferation, and differentiation. Moreover, at low doses, HNE exerts an anti-cancer effect, by inhibiting cell proliferation, angiogenesis, cell adhesion and by inducing differentiation and/or apoptosis in various tumor cell lines. It is very likely that a substantial fraction of the effects observed in cellular responses, induced by HNE and related aldehydes, be mediated by their interaction with proteins, resulting in the formation of covalent adducts or in the modulation of their expression and/or activity. In this review we focus on membrane proteins affected by lipid peroxidation-derived aldehydes, under physiological and pathological conditions.
Collapse
Affiliation(s)
- Stefania Pizzimenti
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino Torino, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Bui LC, Manaa A, Xu X, Duval R, Busi F, Dupret JM, Rodrigues-Lima F, Dairou J. Acrolein, an α,β-Unsaturated Aldehyde, Irreversibly Inhibits the Acetylation of Aromatic Amine Xenobiotics by Human Arylamine N-Acetyltransferase 1. Drug Metab Dispos 2013; 41:1300-5. [DOI: 10.1124/dmd.113.052258] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
100
|
Randall MJ, Spiess PC, Hristova M, Hondal RJ, van der Vliet A. Acrolein-induced activation of mitogen-activated protein kinase signaling is mediated by alkylation of thioredoxin reductase and thioredoxin 1. Redox Biol 2013; 1:265-75. [PMID: 24024160 PMCID: PMC3757691 DOI: 10.1016/j.redox.2013.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/07/2013] [Accepted: 02/12/2013] [Indexed: 12/20/2022] Open
Abstract
Cigarette smoking remains a major health concern worldwide, and many of the adverse effects of cigarette smoke (CS) can be attributed to its abundant electrophilic aldehydes, such as acrolein (2-propenal). Previous studies indicate that acrolein readily reacts with thioredoxin reductase 1 (TrxR1), a critical enzyme involved in regulation of thioredoxin (Trx)-mediated redox signaling, by alkylation at its selenocysteine (Sec) residue. Because alkylation of Sec within TrxR1 has significant implications for its enzymatic function, we explored the potential importance of TrxR1 alkylation in acrolein-induced activation or injury of bronchial epithelial cells. Exposure of human bronchial epithelial HBE1 cells to acrolein (1–30 μM) resulted in dose-dependent loss of TrxR thioredoxin reductase activity, which coincided with its alkylation, as determined by biotin hydrazide labeling, and was independent of initial GSH status. To test the involvement of TrxR1 in acrolein responses in HBE1 cells, we suppressed TrxR1 using siRNA silencing or augmented TrxR1 by cell supplementation with sodium selenite. Acrolein exposure of HBE1 cells induced dose-dependent activation of the MAP kinases, extracellular regulated1 kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, and activation of JNK was markedly enhanced after selenite-mediated induction of TrxR1, and was associated with increased alkylation of TrxR1. Conversely, siRNA silencing of TrxR1 significantly suppressed the ability of acrolein to activate JNK, and also appeared to attenuate acrolein-dependent activation of ERK and p38. Alteration of initial TrxR1 levels by siRNA or selenite supplementation also affected initial Trx1 redox status and acrolein-mediated alkylation of Trx1, but did not significantly affect acrolein-mediated activation of HO-1 or cytotoxicity. Collectively, our findings indicate that alkylation of TrxR1 and/or Trx1 may contribute directly to acrolein-mediated activation of MAP kinases such as JNK, and may therefore be important in acrolein-induced alterations in airway epithelial function, as a contributing mechanism in tobacco-related respiratory disease.
Collapse
Affiliation(s)
- Matthew J Randall
- Department of Pathology, College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | |
Collapse
|