51
|
Lim CEL, Matthaei KI, Blackburn AC, Davis RP, Dahlstrom JE, Koina ME, Anders MW, Board PG. Mice deficient in glutathione transferase zeta/maleylacetoacetate isomerase exhibit a range of pathological changes and elevated expression of alpha, mu, and pi class glutathione transferases. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 165:679-93. [PMID: 15277241 PMCID: PMC1618558 DOI: 10.1016/s0002-9440(10)63332-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Glutathione transferase zeta (GSTZ1-1) is the major enzyme that catalyzes the metabolism of alpha-halo acids such as dichloroacetic acid, a carcinogenic contaminant of chlorinated water. GSTZ1-1 is identical with maleylacetoacetate isomerase, which catalyzes the penultimate step in the catabolic pathways for phenylalanine and tyrosine. In this study we have deleted the Gstz1 gene in BALB/c mice and characterized their phenotype. Gstz1(-/-) mice do not have demonstrable activity with maleylacetone and alpha-halo acid substrates, and other GSTs do not compensate for the loss of this enzyme. When fed a standard diet, the GSTZ1-1-deficient mice showed enlarged liver and kidneys as well as splenic atrophy. Light and electron microscopic examination revealed multifocal hepatitis and ultrastructural changes in the kidney. The addition of 3% (w/v) phenylalanine to the drinking water was lethal for young mice (<28 days old) and caused liver necrosis, macrovesicular steatosis, splenic atrophy, and a significant loss of circulating leukocytes in older surviving mice. GSTZ1-1-deficient mice showed constitutive induction of alpha, mu, and pi class GSTs as well as NAD(P)H:quinone oxidoreductase 1. The overall response is consistent with the chronic accumulation of a toxic metabolite(s). We detected the accumulation of succinylacetone in the serum of deficient mice but cannot exclude the possibility that maleylacetoacetate and maleylacetone may also accumulate.
Collapse
Affiliation(s)
- Cindy E L Lim
- John Curtin School of Medical Research, PO Box 334, Canberra ACT 2601, Australia
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Ricci G, Turella P, De Maria F, Antonini G, Nardocci L, Board PG, Parker MW, Carbonelli MG, Federici G, Caccuri AM. Binding and kinetic mechanisms of the Zeta class glutathione transferase. J Biol Chem 2004; 279:33336-42. [PMID: 15173170 DOI: 10.1074/jbc.m404631200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Zeta class of glutathione transferases (GSTs) has only recently been discovered and hence has been poorly characterized. Here we investigate the substrate binding and kinetic mechanisms of the human Zeta class GSTZ1c-1c by means of pre-steady state and steady-state experiments and site-directed mutagenesis. Binding of GSH occurs at a very low rate compared with that observed for the more recently evolved GSTs (Alpha, Mu, and Pi classes). Moreover, the single step binding mechanism observed in this enzyme is reminiscent of that found for the Theta class enzyme, whereas the Alpha, Mu, and Pi classes have adopted a multistep binding mechanism. Replacement of Cys16 with Ala increases the rate of GSH release from the active site causing a 10-fold decrease of affinity toward GSH. Cys16 also plays a crucial role in co-substrate binding; the mutant enzyme is unable to bind the carcinogenic substrate dichloroacetic acid in the absence of GSH. However, both substrate binding and GSH activation are not rate-limiting in catalysis. A peculiarity of the hGSTZ1c-1c is the half-site activation of bound GSH. This suggests a primitive monomer-monomer interaction that, in the recently diverged GSTP1-1, gives rise to a sophisticated cooperative mechanism that preserves the catalytic efficiency of this GST under stress conditions.
Collapse
Affiliation(s)
- Giorgio Ricci
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Anderson WB, Board PG, Anders MW. Glutathione Transferase Zeta-Catalyzed Bioactivation of Dichloroacetic Acid: Reaction of Glyoxylate with Amino Acid Nucleophiles. Chem Res Toxicol 2004; 17:650-62. [PMID: 15144222 DOI: 10.1021/tx034099+] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dichloroacetic acid (DCA) is a drinking water contaminant, a therapeutic agent, and a rodent carcinogen. Glutathione transferase zeta (GSTZ1-1) catalyzes the biotransformation of a range of alpha-haloalkanoates and the cis-trans isomerization of maleylacetoacetate. GSTZ1-1 catalyzes the bioactivation of fluorine-lacking dihaloacetates to S-(alpha-halocarboxymethyl)glutathione, a reactive intermediate that covalently modifies and inactivates the enzyme or is hydrolyzed to glyoxylate. The purpose of this study was to examine the GSTZ1-1-catalyzed bioactivation of DCA, including the reaction of DCA-derived glyoxylate with amino acid nucleophiles and the characterization of the structures and kinetics of adduct formation by LC/MS. The binding of [1-(14)C]DCA-derived label to bovine serum albumin required both GSTZ1-1 and GSH, whereas the binding to dialyzed rat liver cytosolic protein was increased in the presence of GSH. Studies with model peptides (antiflammin-2 and IL-8 inhibitor) indicated that glyoxylate, rather than S-(alpha-chlorocarboxymethyl)glutathione, was the reactive species that modified amino acid nucleophiles. Both addition (+74 Da) and addition-elimination (+56 Da) adducts of glyoxylic acid were observed. Addition adducts (+74 Da) could not be characterized completely by mass spectrometry, whereas addition-elimination adducts (+56 Da) were characterized as 2-carboxy-4-imidazolidinones. 2-Carboxy-4-imidazolidinones were formed by the rapid equilibrium reaction of glyoxylate with the N-terminal amino group of antiflammin-2 to give an intermediate carbinolamine (K(eq) = 0.63 mM(-1)), which slowly eliminated water to give an intermediate imine (k(2) = 0.067 hour(-1)), which rapidly cyclized to give the 2-carboxy-4-imidazolidinone. Glucose 6-phosphate dehydrogenase was inactivated partially by glyoxylate when reactants were reduced with sodium borodeuteride, which may indicate that glyoxylate reacts with selective lysine epsilon-amino groups. The results of the present study demonstrate that GSTZ1-1 catalyzes the bioactivation of DCA to the reactive metabolite glyoxylate. The reaction of glyoxylate with cellular macromolecules may be associated with the multiorgan toxicity of DCA.
Collapse
Affiliation(s)
- Wayne B Anderson
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 711, Rochester, New York 14642, USA
| | | | | |
Collapse
|
54
|
Ammini CV, Fernandez-Canon J, Shroads AL, Cornett R, Cheung J, James MO, Henderson GN, Grompe M, Stacpoole PW. Pharmacologic or genetic ablation of maleylacetoacetate isomerase increases levels of toxic tyrosine catabolites in rodents. Biochem Pharmacol 2003; 66:2029-38. [PMID: 14599561 DOI: 10.1016/j.bcp.2003.07.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Dichloroacetate (DCA) is both an environmental contaminant and an investigational drug for diseases involving perturbed mitochondrial energetics. DCA is biotransformed to glyoxylate by maleylacetoacetate isomerase (MAAI). Previous studies have shown that DCA decreases MAAI activity in rat liver in a time- and dose-dependent manner and may target the protein for degradation in vivo. We now report that the MAAI protein is depleted in a time- and dose-dependent manner in the livers of Sprague-Dawley rats exposed to DCA. This decrease in protein expression is not mirrored by a decrease in the steady-state levels of MAAI mRNA, indicating that the depletion is exclusively a post-transcriptional event. We also investigated the pharmacokinetics of DCA in the recently developed MAAI knockout (MAAI-KO) mouse. MAAI-KO mice maintain high plasma and urine drug concentrations and do not biotransform DCA to monochloroacetate to a significant extent. Therefore, no alternative pathways for DCA clearance appear to exist in mice other than by MAAI-mediated biotransformation. DCA-nai;ve MAAI-KO mice accumulate very high levels of the tyrosine catabolites maleylacetone and succinylacetone, and DCA exposure did not significantly increase the levels of these compounds. MAAI-KO mice also have high levels of fumarylacetone and normal levels of fumarate. These results demonstrate that pharmacologic or genetic ablation of MAAI cause potentially toxic concentrations of tyrosine intermediates to accumulate in mice and perhaps in other species.
Collapse
Affiliation(s)
- Chandramohan V Ammini
- Division of Endocrinology and Metabolism, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Board PG, Taylor MC, Coggan M, Parker MW, Lantum HB, Anders MW. Clarification of the role of key active site residues of glutathione transferase zeta/maleylacetoacetate isomerase by a new spectrophotometric technique. Biochem J 2003; 374:731-7. [PMID: 12852784 PMCID: PMC1223650 DOI: 10.1042/bj20030625] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2003] [Revised: 06/27/2003] [Accepted: 07/10/2003] [Indexed: 11/17/2022]
Abstract
hGSTZ1-1 (human glutathione transferase Zeta 1-1) catalyses a range of glutathione-dependent reactions and plays an important role in the metabolism of tyrosine via its maleylacetoacetate isomerase activity. The crystal structure and sequence alignment of hGSTZ1 with other GSTs (glutathione transferases) focused attention on three highly conserved residues (Ser-14, Ser-15, Cys-16) as candidates for an important role in catalysis. Progress in the investigation of these residues has been limited by the absence of a convenient assay for kinetic analysis. In this study we have developed a new spectrophotometric assay with a novel substrate [(+/-)-2-bromo-3-(4-nitrophenyl)propionic acid]. The assay has been used to rapidly assess the potential catalytic role of several residues in the active site. Despite its less favourable orientation in the crystal structure, Ser-14 was the only residue found to be essential for catalysis. It is proposed that a conformational change may favourably reposition the hydroxyl of Ser-14 during the catalytic cycle. The Cys16-->Ala (Cys-16 mutated to Ala) mutation caused a dramatic increase in the K(m) for glutathione, indicating that Cys-16 plays an important role in the binding and orientation of glutathione in the active site. Previous structural studies implicated Arg-175 in the orientation of alpha-halo acid substrates in the active site of hGSTZ1-1. Mutation of Arg-175 to Lys or Ala resulted in a significant lowering of the kcat in the Ala-175 variant. This result is consistent with the proposal that the charged side chain of Arg-175 forms a salt bridge with the carboxylate of the alpha-halo acid substrates.
Collapse
Affiliation(s)
- Philip G Board
- Molecular Genetics Group, John Curtin School of Medical Research, Australian National University, Canberra ACT 2601, Australia.
| | | | | | | | | | | |
Collapse
|
56
|
Anderson WB, Liebler DC, Board PG, Anders MW. Mass spectral characterization of dichloroacetic acid-modified human glutathione transferase zeta. Chem Res Toxicol 2002; 15:1387-97. [PMID: 12437329 DOI: 10.1021/tx025553x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glutathione transferase zeta (GSTZ1-1) is widely expressed in eukaryotic species, and four human allelic variants of hGSTZ1-1 have been described. GSTZ1-1 catalyzes the cis-trans isomerization of maleylacetoacetate to fumarylacetoacetate and the biotransformation of a range of alpha-haloalkanoic acids. GSTZ1-1-catalyzed biotransformation of fluorine-lacking alpha,alpha-dihaloalkanoic acids, including dichloroacetic acid (DCA), results in the mechanism-based inactivation and covalent modification of the enzyme. The objective of this study was to investigate further the DCA-induced inactivation of hGSTZ1c-1c and to explore the mechanism of inactivation by characterization of the sites and types of DCA-induced covalent modifications. The partition ratio for the DCA-induced, mechanism-based inactivation of hGSTZ1c-1c was (5.7 +/- 0.5) x 10(2), and the k(cat) for the biotransformation of DCA was 39 min(-)(1). Inactivation of hGSTZ1c-1c in vitro was limited at high enzyme concentrations and was inhibited by glyoxylate. The stoichiometry of DCA binding to hGSTZ1c-1c was approximately 0.5 mol of DCA/mol of enzyme monomer. A single DCA-derived adduct was observed and was assigned to cysteine-16 by a combination of matrix-assisted laser-desorption-ionization time-of-flight and electrospray-ionization quadrupole ion-trap mass spectrometry and by analysis of [1-(14)C]DCA binding to C16A hGSTZ1c-1c. The DCA-derived adduct contained both glutathione and the carbon skeleton of DCA, presumably in a dithioacetal linkage. Also, cysteine-16 formed a mixed disulfide bond with glutathione. These data support a mechanism of inactivation whereby glutathione displaces a chlorine atom from DCA, and cysteine-16 in the enzyme active site displaces the second chlorine atom to result in a covalently modified and inactivated enzyme. These findings explain the DCA-induced inactivation of GSTZ1-1 observed in humans and rats.
Collapse
Affiliation(s)
- Wayne B Anderson
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 711, New York 14642, USA
| | | | | | | |
Collapse
|
57
|
Swartz PD, Richard AM. Use of structure-activity relationships for probing biochemical mechanisms: glutathione transferase zeta conjugation of haloacids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 500:23-31. [PMID: 11764943 DOI: 10.1007/978-1-4615-0667-6_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- P D Swartz
- US Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Lab, Research Triangle Park, NC 27111, USA
| | | |
Collapse
|
58
|
Anders MW. Formation and fate of reactive intermediates of haloalkanes, haloalkenes, and alpha-haloacids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 500:113-20. [PMID: 11764921 DOI: 10.1007/978-1-4615-0667-6_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, NY 14642, USA
| |
Collapse
|
59
|
Lantum HB, Board PG, Anders MW. Inactivation of polymorphic variants of human glutathione transferase zeta (hGSTZ1-1) by maleylacetone and fumarylacetone. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2002; 500:339-42. [PMID: 11764965 DOI: 10.1007/978-1-4615-0667-6_54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- H B Lantum
- Department of Pharmacology and Physiology, University of Rochester, NY 14642, USA
| | | | | |
Collapse
|
60
|
Lantum HBM, Board PG, Anders MW. Kinetics of the biotransformation of maleylacetone and chlorofluoroacetic acid by polymorphic variants of human glutathione transferase zeta (hGSTZ1-1). Chem Res Toxicol 2002; 15:957-63. [PMID: 12119007 DOI: 10.1021/tx010095y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glutathione transferase zeta (GSTZ1-1) catalyzes the cis-trans isomerization of maleylacetoacetate and the biotransformation of a range of alpha-haloacids. The objective of this study was to determine the kinetics of the biotransformation of maleylacetone (MA), an analogue of the natural substrate maleylacetoacetate, and chlorofluoroacetic acid (CFA) by polymorphic variants of recombinant hGSTZ1-1. The k(cat) of the four variants of hGSTZ1-1 with MA as the substrate followed the order: 1c-1c > 1b-1b > 1d-1d > 1a-1a whereas the k(cat) for the biotransformation of CFA followed the order: 1a-1a > 1b-1b approximately 1c-1c approximately 1d-1d. The turnover rates of MA were much higher than those of CFA for each variant and ranged from 22-fold (1a-1a) to 980-fold differences (1c-1c). The catalytic efficiencies of hGSTZ1-1 variants with MA as the substrate were much greater than those with CFA as the substrate, but little difference among the polymorphic variants was observed. MA was a mixed inhibitor of all variants with CFA as substrate: the mean competitive inhibition constant (K(ic)(MA)) for all variants was about 100 microM, and the mean uncompetitive inhibition constant (K(iu)(MA)) was about 201 microM. Hence, MA and alpha-haloacids apparently compete for the same active site on the enzyme. DCA-induced inactivation of the four variants showed that the inactivated enzymes show markedly reduced isomerase activities. The residual activities were different for each variant: 1a-1a (12%) > 1b-1b approximately 1c-1c approximately 1d-1d (<5%). This is the first kinetic analysis of polymorphic variants of hGSTZ1-1, and the similarity of the kinetic constants for hGSTZ1-1 variants with either MA or CFA as substrates indicates that few differences in DCA-induced perturbations of tyrosine metabolism would likely be observed in humans.
Collapse
Affiliation(s)
- Hoffman B M Lantum
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 711, Rochester, New York 14642, USA
| | | | | |
Collapse
|
61
|
Lantum HBM, Baggs RB, Krenitsky DM, Board PG, Anders MW. Immunohistochemical localization and activity of glutathione transferase zeta (GSTZ1-1) in rat tissues. Drug Metab Dispos 2002; 30:616-25. [PMID: 12019185 DOI: 10.1124/dmd.30.6.616] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutathione transferase zeta (GSTZ1-1) catalyzes the biotransformation of a range of alpha-haloacids, including dichloroacetic acid (DCA), and the penultimate step in the tyrosine degradation pathway. DCA is a rodent carcinogen and a common drinking water contaminant. DCA also causes multiorgan toxicity in rodents and dogs. The objective of this study was to determine the expression and activities of GSTZ1-1 in rat tissues with maleylacetone and chlorofluoroacetic acid as substrates. GSTZ1-1 protein was detected in most tissues by immunoblot analysis after immunoprecipitation of GSTZ1-1 and by immunohistochemical analysis; intense staining was observed in the liver, testis, and prostate; moderate staining was observed in the brain, heart, pancreatic islets, adrenal medulla, and the epithelial lining of the gastrointestinal tract, airways, and bladder; and sparse staining was observed in the renal juxtaglomerular regions, skeletal muscle, and peripheral nerve tissue. These patterns of expression corresponded to GSTZ1-1 activities in the different tissues with maleylacetone and chlorofluoroacetic acid as substrates. Specific activities ranged from 258 +/- 17 (liver) to 1.1 +/- 0.4 (muscle) nmol/min/mg of protein with maleylacetone as substrate and from 4.6 +/- 0.89 (liver) to 0.09 +/- 0.01 (kidney) nmol/min/mg of protein with chlorofluoroacetic acid as substrate. Rats given DCA had reduced amounts of immunoreactive GSTZ1-1 protein and activities of GSTZ1-1 in most tissues, especially in the liver. These findings indicate that the DCA-induced inactivation of GSTZ1-1 in different tissues may result in multiorgan disorders that may be associated with perturbed tyrosine metabolism.
Collapse
Affiliation(s)
- Hoffman B M Lantum
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
62
|
Lantum HBM, Liebler DC, Board PG, Anders MW. Alkylation and inactivation of human glutathione transferase zeta (hGSTZ1-1) by maleylacetone and fumarylacetone. Chem Res Toxicol 2002; 15:707-16. [PMID: 12018993 DOI: 10.1021/tx025503s] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glutathione transferase zeta (GSTZ1-1) catalyzes the cis-trans isomerization of maleylacetoacetate or maleylacetone (MA) to fumarylacetoacetate or fumarylacetone (FA), respectively. GSTZ1-1 also catalyzes the glutathione-dependent biotransformation of a range of alpha-haloacids, including dichloroacetic acid. The objective of this study was to investigate the mechanism of inactivation of hGSTZ1-1 by MA and FA and to determine the covalent modification of hGSTZ1-1 by MA and FA in the presence and absence of glutathione. MA and FA (0.01-1 mM) inactivated all hGSTZ1-1 polymorphic variants in a concentration- and time-dependent manner, and this inactivation was blocked by glutathione. The C16A mutant of hGSTZ1c-1c was partially inactivated by MA and FA. Electrospray ionization-tandem mass spectrometry and SALSA (Scoring Algorithm for Spectral Analysis) analyses of tryptic digests of hGSTZ1 polymorphic variants revealed that the active site (SSCSWR) and C-terminal (LLVLEAFQVSHPCR) cysteine residues of hGSTZ1-1 were covalently modified by MA and FA. MA and FA adduction resulted in diagnostic 156-Da shifts in the masses of the modified peptide ions and in their MS-MS fragment ions. Alkylation of the active-site cysteine residues, but not of the C-terminal cysteine, was relatively less intense when hGSTZ1-1 polymorphic variants were incubated with MA or FA in the presence of S-methyl glutathione. These data indicate that MA and FA are substrate and product inactivators of hGSTZ1-1 and covalently modify hGSTZ1-1 at the active-site cysteine residue in the absence of glutathione. The observation that inactivation was blocked by glutathione indicates that binding of glutathione to the active site prevents reaction of MA or FA with the active-site cysteine residue. These data also indicate that MA and FA may covalently modify and inactivate other proteins that have accessible cysteine residues and may, thereby, contribute to dichloroacetic acid-induced or hypertyrosinemia type-I-associated toxicities.
Collapse
Affiliation(s)
- Hoffman B M Lantum
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Avenue, Box 711, New York 14642, USA
| | | | | | | |
Collapse
|
63
|
Haber LT, Maier A, Gentry PR, Clewell HJ, Dourson ML. Genetic polymorphisms in assessing interindividual variability in delivered dose. Regul Toxicol Pharmacol 2002; 35:177-97. [PMID: 12052003 DOI: 10.1006/rtph.2001.1517] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increasing sophistication in methods used to account for human variability in susceptibility to toxicants has been one of the success stories in the continuing evolution of risk assessment science. Genetic polymorphisms have been suggested as an important contributor to overall human variability. Recently, data on polymorphisms in metabolic enzymes have been integrated with physiologically based pharmacokinetic (PBPK) modeling as an approach to determining the resulting overall variability. We present an analysis of the potential contribution of polymorphisms in enzymes modulating the disposition of four diverse compounds: methylene chloride, warfarin, parathion, and dichloroacetic acid. Through these case studies, we identify key uncertainties likely to be encountered in the use of polymorphism data and highlight potential simplifying assumptions that might be required to test the hypothesis that genetic factors are a substantive source of human variability in susceptibility to environmental toxicants. These uncertainties include (1) the relative contribution of multiple enzyme systems, (2) the extent of induction/inhibition through coexposure, (3) allelic frequencies of major ethnic groups, (4) the absence of chemical-specific data on the kinetic parameters for the different allelic forms of key enzymes, (5) large numbers of low-frequency alleles, and (6) uncertainty regarding differences between in vitro and in vivo kinetic data. Our effort sets the stage for the acquisition of critical data and further integration of polymorphism data with PBPK modeling as a means to quantitate population variability.
Collapse
Affiliation(s)
- L T Haber
- Toxicology Excellence for Risk Assessment, 1757 Chase Avenue, Cincinnati, OH 45223, USA.
| | | | | | | | | |
Collapse
|
64
|
Sheehan D, Meade G, Foley VM, Dowd CA. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 2001; 360:1-16. [PMID: 11695986 PMCID: PMC1222196 DOI: 10.1042/0264-6021:3600001] [Citation(s) in RCA: 702] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The glutathione transferases (GSTs; also known as glutathione S-transferases) are major phase II detoxification enzymes found mainly in the cytosol. In addition to their role in catalysing the conjugation of electrophilic substrates to glutathione (GSH), these enzymes also carry out a range of other functions. They have peroxidase and isomerase activities, they can inhibit the Jun N-terminal kinase (thus protecting cells against H(2)O(2)-induced cell death), and they are able to bind non-catalytically a wide range of endogenous and exogenous ligands. Cytosolic GSTs of mammals have been particularly well characterized, and were originally classified into Alpha, Mu, Pi and Theta classes on the basis of a combination of criteria such as substrate/inhibitor specificity, primary and tertiary structure similarities and immunological identity. Non-mammalian GSTs have been much less well characterized, but have provided a disproportionately large number of three-dimensional structures, thus extending our structure-function knowledge of the superfamily as a whole. Moreover, several novel classes identified in non-mammalian species have been subsequently identified in mammals, sometimes carrying out functions not previously associated with GSTs. These studies have revealed that the GSTs comprise a widespread and highly versatile superfamily which show similarities to non-GST stress-related proteins. Independent classification systems have arisen for groups of organisms such as plants and insects. This review surveys the classification of GSTs in non-mammalian sources, such as bacteria, fungi, plants, insects and helminths, and attempts to relate them to the more mainstream classification system for mammalian enzymes. The implications of this classification with regard to the evolution of GSTs are discussed.
Collapse
Affiliation(s)
- D Sheehan
- Department of Biochemistry, University College Cork, Lee Maltings, Prospect Row, Mardyke, Cork, Ireland.
| | | | | | | |
Collapse
|
65
|
Blackburn AC, Coggan M, Tzeng HF, Lantum H, Polekhina G, Parker MW, Anders MW, Board PG. GSTZ1d: a new allele of glutathione transferase zeta and maleylacetoacetate isomerase. PHARMACOGENETICS 2001; 11:671-8. [PMID: 11692075 DOI: 10.1097/00008571-200111000-00005] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The zeta class glutathione transferases (GSTs) are known to catalyse the isomerization of maleylacetoacetate (MAA) to fumarylacetoacetate (FAA), and the biotransformation of dichloroacetic acid to glyoxylate. A new allele of human GSTZ1, characterized by a Thr82Met substitution and termed GSTZ1d, has been identified by analysis of the expressed sequence tag (EST) database. In European Australians, GSTZ1d occurs with a frequency of 0.16. Like GSTZ1b-1b and GSTZ1c-1c, the new isoform has low activity with dichloroacetic acid compared with GSTZ1a-1a. The low activity appears to be due to a high sensitivity to substrate inhibition. The maleylacetoacetate isomerase (MAAI) activity of all known variants was compared using maleylacetone as a substrate. Significant differences in activity were noted, with GSTZ1a-1a having a notably lower catalytic efficiency. The unusual catalytic properties of GSTZ1a-1a in both reactions suggest that its characteristic arginine at position 42 plays a significant role in the regulation of substrate access and/or product release. The different amino acid substitutions have been mapped on to the recently determined crystal structure of GSTZ1-1 to evaluate and explain their influence on function.
Collapse
Affiliation(s)
- A C Blackburn
- Molecular Genetics Group, Division of Molecular Medicine, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Schultz IR, Sylvester SR. Stereospecific toxicokinetics of bromochloro- and chlorofluoroacetate: effect of GST-zeta depletion. Toxicol Appl Pharmacol 2001; 175:104-13. [PMID: 11543642 DOI: 10.1006/taap.2001.9250] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The chloro- and bromohaloacetates are drinking water disinfection by-products and rodent carcinogens. Chloro-bromo dihaloacetates are also mechanism-based inhibitors of glutathione S-transferase-zeta (GSTZ1-1). We studied the stereospecific toxicokinetics and in vitro metabolism of two chiral dihaloacetates in male F344 rats: (-),(+)-bromochloroacetate (BCA) and racemic chlorofluoroacetate (CFA), a non-GST-zeta-inhibiting dihaloacetate. These experiments were repeated in animals that had previously been treated with dichloroacetate (DCA) to deplete GST-zeta activity. Results indicated that the elimination half-life of (-)-BCA was 0.07 compared to 0.40 h for (+)-BCA in naive rats. A comparable difference in elimination half-life was also observed for the CFA stereoisomers (0.79 vs 0.11 h). In GST-zeta-depleted rats, stereospecific elimination of (-),(+)-BCA was absent, with both stereoisomers having an elimination half-life of approximately 0.4 h. This finding was in contrast to results for CFA, which still maintained the same relative difference in elimination rate between its stereoisomers, although overall elimination was diminished in GST-zeta-depleted rats. Results of in vitro metabolism experiments indicated (-)-BCA was affected by modulating GST-zeta activity, with the intrinsic metabolic clearance decreasing from 2.81 to 0.15 ml h(-1) mg.protein(-1) (naive, GST-zeta depleted) compared with values for (+)-BCA (0.30 and 0.31 ml h(-1) mg.protein(-1)). Incubations with 350 microM diethyldithiocarbamate preferentially decreased (+)-BCA metabolism in naive and GST-zeta-depleted cytosol. These results indicate (+)-BCA is a poor substrate for GST-zeta and its metabolism is controlled by an additional GST isoenzyme.
Collapse
Affiliation(s)
- I R Schultz
- Molecular Biosciences Department, Battelle Pacific Northwest Division, Richland, Washington 99352, USA
| | | |
Collapse
|
67
|
Polekhina G, Board PG, Blackburn AC, Parker MW. Crystal structure of maleylacetoacetate isomerase/glutathione transferase zeta reveals the molecular basis for its remarkable catalytic promiscuity. Biochemistry 2001; 40:1567-76. [PMID: 11327815 DOI: 10.1021/bi002249z] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Maleylacetoacetate isomerase (MAAI), a key enzyme in the metabolic degradation of phenylalanine and tyrosine, catalyzes the glutathione-dependent isomerization of maleylacetoacetate to fumarylacetoacetate. Deficiencies in enzymes along the degradation pathway lead to serious diseases including phenylketonuria, alkaptonuria, and the fatal disease, hereditary tyrosinemia type I. The structure of MAAI might prove useful in the design of inhibitors that could be used in the clinical management of the latter disease. Here we report the crystal structure of human MAAI at 1.9 A resolution in complex with glutathione and a sulfate ion which mimics substrate binding. The enzyme has previously been shown to belong to the zeta class of the glutathione S-transferase (GST) superfamily based on limited sequence similarity. The structure of MAAI shows that it does adopt the GST canonical fold but with a number of functionally important differences. The structure provides insights into the molecular bases of the remarkable array of different reactions the enzyme is capable of performing including isomerization, oxygenation, dehalogenation, peroxidation, and transferase activity.
Collapse
Affiliation(s)
- G Polekhina
- The Biota Structural Biology Laboratory, St. Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia
| | | | | | | |
Collapse
|
68
|
Abstract
In general, glutathione conjugation is regarded as a detoxication reaction. However, depending on the properties of the substrate, bioactivation is also possible. Four types of activation reaction have been recognized: direct-acting compounds, conjugates that are activated through cysteine conjugate beta-lyase, conjugates that are activated through redox cycling and lastly conjugates that release the original reactive parent compound. The glutathione S-transferases have three connections with the formation of biactivated conjugates: they catalyze their formation in a number of cases, they are the earliest available target for covalent binding by these conjugates and lastly, the parent alkylating agents are regularly involved in the induction of the enzymes. Individual susceptibility for each of these agents is determined by individual transferase subunit composition and methods are becoming available to assess this susceptibility.
Collapse
Affiliation(s)
- P J van Bladeren
- TNO Nutrition and Food Research and TNO WU Centre for Food Toxicology, PO Box 360, Zeist 3700AJ, The Netherlands.
| |
Collapse
|