51
|
Cunha NB, Murad AM, Ramos GL, Maranhão AQ, Brígido MM, Araújo ACG, Lacorte C, Aragão FJL, Covas DT, Fontes AM, Souza GHMF, Vianna GR, Rech EL. Accumulation of functional recombinant human coagulation factor IX in transgenic soybean seeds. Transgenic Res 2011; 20:841-55. [PMID: 21069460 DOI: 10.1007/s11248-010-9461-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 10/24/2010] [Indexed: 12/12/2022]
Abstract
The seed-based production of recombinant proteins is an efficient strategy to achieve the accumulation, correct folding, and increased stability of these recombinant proteins. Among potential plant molecular farming systems, soybean [Glycine max (L.) Merrill] is a viable option for the production of recombinant proteins due to its high protein content, known regulatory sequences, efficient gene transfer protocols, and a scalable production system under greenhouse conditions. We report here the expression and stable accumulation of human coagulation factor IX (hFIX) in transgenic soybean seeds. A biolistic process was utilised to co-introduce a plasmid carrying the hFIX gene under the transcriptional control of the α' subunit of a β-conglycinin seed-specific promoter and an α-Coixin signal peptide in soybean embryonic axes from mature seeds. The 56-kDa hFIX protein was expressed in the transgenic seeds at levels of up to 0.23% (0.8 g kg(-1) seed) of the total soluble seed protein as determined by an enzyme-linked immunosorbent assay (ELISA) and western blot. Ultrastructural immunocytochemistry assays indicated that the recombinant hFIX in seed cotyledonary cells was efficiently directed to protein storage vacuoles. Mass spectrometry characterisation confirmed the presence of the hFIX recombinant protein sequence. Protein extracts from transgenic seeds showed a blood-clotting activity of up to 1.4% of normal plasma. Our results demonstrate the correct processing and stable accumulation of functional hFIX in soybean seeds stored for 6 years under room temperature conditions (22 ± 2°C).
Collapse
Affiliation(s)
- Nicolau B Cunha
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica (PqEB), Av. W5 Norte, Brasília, DF 70770-917, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Cunha NB, Murad AM, Cipriano TM, Araújo ACG, Aragão FJL, Leite A, Vianna GR, McPhee TR, Souza GHMF, Waters MJ, Rech EL. Expression of functional recombinant human growth hormone in transgenic soybean seeds. Transgenic Res 2011; 20:811-26. [PMID: 21069461 DOI: 10.1007/s11248-010-9460-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 10/24/2010] [Indexed: 10/18/2022]
Abstract
We produced human growth hormone (hGH), a protein that stimulates growth and cell reproduction, in genetically engineered soybean [Glycine max (L.) Merrill] seeds. Utilising the alpha prime (α') subunit of β-conglycinin tissue-specific promoter from soybean and the α-Coixin signal peptide from Coix lacryma-jobi, we obtained transgenic soybean lines that expressed the mature form of hGH in their seeds. Expression levels of bioactive hGH up to 2.9% of the total soluble seed protein content (corresponding to approximately 9 g kg(-1)) were measured in mature dry soybean seeds. The results of ultrastructural immunocytochemistry assays indicated that the recombinant hGH in seed cotyledonary cells was efficiently directed to protein storage vacuoles. Specific bioassays demonstrated that the hGH expressed in the soybean seeds was fully active. The recombinant hGH protein sequence was confirmed by mass spectrometry characterisation. These results demonstrate that the utilisation of tissue-specific regulatory sequences is an attractive and viable option for achieving high-yield production of recombinant proteins in stable transgenic soybean seeds.
Collapse
Affiliation(s)
- Nicolau B Cunha
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica (PqEB), Av. W5 Norte, Brasília, DF, 70770-917, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Penney CA, Thomas DR, Deen SS, Walmsley AM. Plant-made vaccines in support of the Millennium Development Goals. PLANT CELL REPORTS 2011; 30:789-98. [PMID: 21243362 PMCID: PMC3075396 DOI: 10.1007/s00299-010-0995-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 12/23/2010] [Accepted: 12/24/2010] [Indexed: 05/02/2023]
Abstract
Vaccines are one of the most successful public health achievements of the last century. Systematic immunisation programs have reduced the burden of infectious diseases on a global scale. However, there are limitations to the current technology, which often requires costly infrastructure and long lead times for production. Furthermore, the requirement to keep vaccines within the cold-chain throughout manufacture, transport and storage is often impractical and prohibitively expensive in developing countries-the very regions where vaccines are most needed. In contrast, plant-made vaccines (PMVs) can be produced at a lower cost using basic greenhouse agricultural methods, and do not need to be kept within such narrow temperature ranges. This increases the feasibility of developing countries producing vaccines locally at a small-scale to target the specific needs of the region. Additionally, the ability of plant-production technologies to rapidly produce large quantities of strain-specific vaccine demonstrates their potential use in combating pandemics. PMVs are a proven technology that has the potential to play an important role in increasing global health, both in the context of the 2015 Millennium Development Goals and beyond.
Collapse
Affiliation(s)
- Claire A. Penney
- Department of Biological Sciences, Monash University, Clayton, VIC Australia
| | - David R. Thomas
- Department of Biological Sciences, Monash University, Clayton, VIC Australia
| | - Sadia S. Deen
- Department of Biological Sciences, Monash University, Clayton, VIC Australia
| | - Amanda M. Walmsley
- Department of Biological Sciences, Monash University, Clayton, VIC Australia
| |
Collapse
|
54
|
Miao Y, Ding Y, Sun QY, Xu ZF, Jiang L. Plant bioreactors for pharmaceuticals. Biotechnol Genet Eng Rev 2011; 25:363-80. [PMID: 21412362 DOI: 10.5661/bger-25-363] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Plant bioreactors are attractive expression systems for economic production of pharmaceuticals. Various plant expression systems or platforms have been tested with certain degrees of success over the past years. However, further development and improvement are needed for more effective plant bioreactors. In this review we first summarize recent progress in various plant bioreactor expression systems and then focus on discussing protein compartmentation to unique organelles and various strategies for developing better plant bioreactors.
Collapse
Affiliation(s)
- Yansong Miao
- Department of Biology and Molecular Biotechnology Program, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
55
|
High-value products from transgenic maize. Biotechnol Adv 2011; 29:40-53. [DOI: 10.1016/j.biotechadv.2010.08.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 08/17/2010] [Accepted: 08/17/2010] [Indexed: 11/19/2022]
|
56
|
Henquet M, Eigenhuijsen J, Hesselink T, Spiegel H, Schreuder M, van Duijn E, Cordewener J, Depicker A, van der Krol A, Bosch D. Characterization of the single-chain Fv-Fc antibody MBP10 produced in Arabidopsis alg3 mutant seeds. Transgenic Res 2010; 20:1033-42. [PMID: 21188635 PMCID: PMC3174376 DOI: 10.1007/s11248-010-9475-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 12/10/2010] [Indexed: 11/03/2022]
Abstract
ER resident glycoproteins, including ectopically expressed recombinant glycoproteins, carry so-called high-mannose type N-glycans, which can be at different stages of processing. The presence of heterogeneous high-mannose type glycans on ER-retained therapeutic proteins is undesirable for specific therapeutic applications. Previously, we described an Arabidopsis alg3-2 glycosylation mutant in which aberrant Man(5)GlcNAc(2) mannose type N-glycans are transferred to proteins. Here we show that the alg3-2 mutation reduces the N-glycan heterogeneity on ER resident glycoproteins in seeds. We compared the properties of a scFv-Fc, with a KDEL ER retention tag (MBP10) that was expressed in seeds of wild type and alg3-2 plants. N-glycans on these antibodies from mutant seeds were predominantly of the intermediate Man(5)GlcNAc(2) compared to Man(8)GlcNAc(2) and Man(7)GlcNAc(2) isoforms on MBP10 from wild-type seeds. The presence of aberrant N-glycans on MBP10 did not seem to affect MBP10 dimerisation nor binding of MBP10 to its antigen. In alg3-2 the fraction of underglycosylated MBP10 protein forms was higher than in wild type. Interestingly, the expression of MBP10 resulted also in underglycosylation of other, endogenous glycoproteins.
Collapse
Affiliation(s)
- Maurice Henquet
- Business Unit Bioscience, Plant Research International BV, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6700 AA Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Kawakatsu T, Takaiwa F. Cereal seed storage protein synthesis: fundamental processes for recombinant protein production in cereal grains. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:939-53. [PMID: 20731787 DOI: 10.1111/j.1467-7652.2010.00559.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cereal seeds provide an ideal production platform for high-value products such as pharmaceuticals and industrial materials because seeds have ample and stable space for the deposition of recombinant products without loss of activity at room. Seed storage proteins (SSPs) are predominantly synthesized and stably accumulated in maturing endosperm tissue. Therefore, understanding the molecular mechanisms regulating SSP expression and accumulation is expected to provide valuable information for producing higher amounts of recombinant products. SSP levels are regulated by several steps at the transcriptional (promoters, transcription factors), translational and post-translational levels (modification, processing trafficking, and deposition). Our objective is to develop a seed production platform capable of producing very high yields of recombinant product. Towards this goal, we review here the individual regulatory steps controlling SSP synthesis and accumulation.
Collapse
Affiliation(s)
- Taiji Kawakatsu
- Transgenic Crop Research & Development Center, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
58
|
Zhang D, Nandi S, Bryan P, Pettit S, Nguyen D, Santos MA, Huang N. Expression, purification, and characterization of recombinant human transferrin from rice (Oryza sativa L.). Protein Expr Purif 2010; 74:69-79. [PMID: 20447458 PMCID: PMC2926268 DOI: 10.1016/j.pep.2010.04.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 04/21/2010] [Accepted: 04/27/2010] [Indexed: 11/29/2022]
Abstract
Transferrin is an essential ingredient used in cell culture media due to its crucial role in regulating cellular iron uptake, transport, and utilization. It is also a promising drug carrier used to increase a drug's therapeutic index via the unique transferrin receptor-mediated endocytosis pathway. Due to the high risk of contamination with blood-borne pathogens from the use of human or animal plasma-derived transferrin, recombinant transferrin is preferred for use as a replacement for native transferrin. We expressed recombinant human transferrin in rice (Oryza sativa L.) at a high level of 1% seed dry weight (10 g/kg). The recombinant human transferrin was able to be extracted with saline buffers and then purified by a one step anion exchange chromatographic process to greater than 95% purity. The rice-derived recombinant human transferrin was shown to be not only structurally similar to the native human transferrin, but also functionally the same as native transferrin in terms of reversible iron binding and promoting cell growth and productivity. These results indicate that rice-derived recombinant human transferrin should be a safe and low cost alternative to human or animal plasma-derived transferrin for use in cell culture-based biopharmaceutical production of protein therapeutics and vaccines.
Collapse
Affiliation(s)
- Deshui Zhang
- Ventria Bioscience, 2860 W Covell Blvd., Suite 1, Davis, CA 95616
| | - Somen Nandi
- Ventria Bioscience, 2860 W Covell Blvd., Suite 1, Davis, CA 95616
| | - Paula Bryan
- Ventria Bioscience, 2860 W Covell Blvd., Suite 1, Davis, CA 95616
| | - Steve Pettit
- InVitria, 2120 Milestone Dr., Suite 102, Fort Collins, CO 80525
| | - Diane Nguyen
- Ventria Bioscience, 2860 W Covell Blvd., Suite 1, Davis, CA 95616
| | - Mary Ann Santos
- InVitria, 2120 Milestone Dr., Suite 102, Fort Collins, CO 80525
| | - Ning Huang
- Ventria Bioscience, 2860 W Covell Blvd., Suite 1, Davis, CA 95616
- InVitria, 2120 Milestone Dr., Suite 102, Fort Collins, CO 80525
| |
Collapse
|
59
|
Cunha NB, Araújo ACG, Leite A, Murad AM, Vianna GR, Rech EL. Correct targeting of proinsulin in protein storage vacuoles of transgenic soybean seeds. GENETICS AND MOLECULAR RESEARCH 2010; 9:1163-70. [PMID: 20589613 DOI: 10.4238/vol9-2gmr849] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Soybean plants are promising bioreactors for the expression of biochemically complex proteins that cannot be produced in a safe and/or economically viable way in microorganisms, eukaryotic culture cells or secreted by transgenic animal glands. Soybeans present many desirable agronomic characteristics for high scale protein production, such as high productivity, short reproductive cycle, photoperiod sensitivity, and natural organs destined for protein accumulation in the seeds. The significant similarities between plant and human cells in terms of protein synthesis processes, folding, assembly, and post-translational processing are important for efficient accumulation of recombinant proteins. We obtained two transgenic lines using biolystics, incorporating the human proinsulin gene under control of the monocot tissue-specific promoter from sorghum gamma-kafirin seed storage protein gene and the alpha-coixin cotyledonary vacuolar signal peptide from Coix lacryma-jobi (Poaceae). Transgenic plants expressed the proinsulin gene and accumulated the polypeptide in mature seeds. Protein targeting to cotyledonary protein storage vacuoles was successfully achieved and confirmed with immunocytochemistry assays. The combination of different regulatory sequences was apparently responsible for high stability in protein accumulation, since human proinsulin was detected after seven years under room temperature storage conditions.
Collapse
Affiliation(s)
- N B Cunha
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, DF, Brasil
| | | | | | | | | | | |
Collapse
|
60
|
De Muynck B, Navarre C, Boutry M. Production of antibodies in plants: status after twenty years. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:529-63. [PMID: 20132515 DOI: 10.1111/j.1467-7652.2009.00494.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Thanks to their potential to bind virtually all types of molecules; monoclonal antibodies are in increasing demand as therapeutics and diagnostics. To overcome the overloading of current production facilities, alternative expression systems have been developed, of which plants appear the most promising. In this review, we focus on the expression of monoclonal IgG or IgM in plant species. We analyse the data for 32 different antibodies expressed in various ways, differing in DNA construction, transformation method, signal peptide source, presence or absence of an endoplasmic reticulum retention sequence, host species and the organs tested, together resulting in 98 reported combinations. A large heterogeneity is found in the quantity and quality of the antibody produced. We discuss in more detail the strategy used to express both chains, the nature of the transcription promoters, subcellular localization and unintended proteolysis, when encountered.
Collapse
Affiliation(s)
- Benoit De Muynck
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
61
|
Boothe J, Nykiforuk C, Shen Y, Zaplachinski S, Szarka S, Kuhlman P, Murray E, Morck D, Moloney MM. Seed-based expression systems for plant molecular farming. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:588-606. [PMID: 20500681 DOI: 10.1111/j.1467-7652.2010.00511.x] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The evolution of the seed system provides enormous adaptability to the gymnosperms and angiosperms, because of the properties of dormancy, nutrient storage and seedling vigour. Many of the unique properties of seeds can be exploited in molecular farming applications, particularly where it is desirable to produce large quantities of a recombinant protein. Seeds of transgenic plants have been widely used to generate a raw material for the extraction and isolation of proteins and polypeptides, which can be processed into valuable biopharmaceuticals. The factors that control high-level accumulation of recombinant proteins in seed are reviewed in the following paragraphs. These include promoters and enhancers, which regulate transcript abundance. However, it is shown that subcellular trafficking and targeting of the desired polypeptides or proteins play a crucial role in their accumulation at economically useful levels. Seeds have proven to be versatile hosts for recombinant proteins of all types, including peptides or short and long polypeptides as well as complex, noncontiguous proteins like antibodies and other immunoglobulins. The extraction and recovery of recombinant proteins from seeds is greatly assisted by their dormancy properties, because this allows for long-term stability of stored products including recombinant proteins and a decoupling of processing from the growth and harvest cycles. Furthermore, the low water content and relatively low bioload of seeds help greatly in designing cost-effective manufacturing processes for the desired active pharmaceutical ingredient. The development of cGMP processes based on seed-derived materials has only been attempted by a few groups to date, but we provide a review of the key issues and criteria based on interactions with Food and Drug Administration and European Medicines Agency. This article uses 'case studies' to highlight the utility of seeds as vehicles for pharmaceutical production including: insulin, human growth hormone, lysozyme and lactoferrin. These examples serve to illustrate the preclinical and, in one case, clinical information required to move these plant-derived molecules through the research phase and into the regulatory pathway en route to eventual approval.
Collapse
|
62
|
Erlendsson LS, Muench MO, Hellman U, Hrafnkelsdóttir SM, Jonsson A, Balmer Y, Mäntylä E, Orvar BL. Barley as a green factory for the production of functional Flt3 ligand. Biotechnol J 2010; 5:163-71. [PMID: 19844912 DOI: 10.1002/biot.200900111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biologically active recombinant human Flt3 ligand was expressed and isolated from transgenic barley seeds. Its expression is controlled by a tissue specific promoter that confines accumulation of the recombinant protein to the endosperm tissue of the seed. The recombinant Flt3 ligand variant expressed in the seeds contains an HQ-tag for affinity purification on immobilized metal ion affinity chromatography (IMAC) resin. The tagged protein was purified from seed extracts to near homogeneity using sequential chromatography on IMAC affinity resin and cation exchange resin. We also show that the recombinant Flt3 ligand protein undergoes posttranslational modifications: it is a glycoprotein containing alpha-1,3-fucose and alpha-1,2-xylose. The HQ-tagged Flt3 ligand variant exhibits comparable biological activity to commercial Flt3 ligand. This is the first report showing expression and accumulation of recombinant human growth factor in barley seeds with a yield of active protein similar to a bacterial expression system. The present results demonstrate that plant molecular farming is a viable approach for the bioproduction of human-derived growth factors.
Collapse
|
63
|
Kumlehn J, Zimmermann G, Berger C, Marthe C, Hensel G. Triticeae Cereals. BIOTECHNOLOGY IN AGRICULTURE AND FORESTRY 2010. [DOI: 10.1007/978-3-642-02391-0_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
64
|
Cheung SCK, Sun SSM, Chan JCN, Tong PCY. Expression and subcellular targeting of human insulin-like growth factor binding protein-3 in transgenic tobacco plants. Transgenic Res 2009; 18:943-51. [PMID: 19504171 DOI: 10.1007/s11248-009-9286-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 05/16/2009] [Indexed: 12/17/2022]
Abstract
Human insulin-like growth factor binding protein-3 (hIGFBP-3) is a multifunctional protein which has high affinity for insulin-like growth factor-I (IGF-I). It combines with IGF-I to form a tertiary complex in circulation, thus regulating the activity of IGF-I. Furthermore, recombinant hIGFBP-3 (rhIGFBP-3) has been found to negatively regulate cell proliferation and induce apoptosis. In this study, we have established an efficient plant bioreactor platform for mass production of rhIGFBP-3. Different expression constructs, driven by the seed-specific phaseolin promoter, were designed and transformed into tobacco plant via Agrobacterium. To enhance protein expression level, the signal peptide (SP) and the C-terminal tetrapeptide AFVY of phaseolin were used to direct rhIGFBP-3 to protein storage vacuole (PSV) in tobacco seed for stable accumulation. Western blot analysis showed that rhIGFBP-3 was successfully synthesized in transgenic tobacco seeds, with the highest protein expression of 800 mug/g dry weight. The localization of rhIGFBP-3 in PSV was also evident by confocal immunofluorescence microscopy. Our results indicated that protein sorting sequences could benefit the expression level of rhIGFBP-3 and it is feasible to use plant as "bio-factory" to produce therapeutic recombinant proteins in large quantity.
Collapse
Affiliation(s)
- Stanley C K Cheung
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | | | | | | |
Collapse
|
65
|
Tiwari S, Mishra DK, Roy S, Singh A, Singh PK, Tuli R. High level expression of a functionally active cholera toxin B: rabies glycoprotein fusion protein in tobacco seeds. PLANT CELL REPORTS 2009; 28:1827-36. [PMID: 19820945 DOI: 10.1007/s00299-009-0782-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/23/2009] [Accepted: 09/25/2009] [Indexed: 05/28/2023]
Abstract
A synthetic DNA construct containing cholera toxin B subunit, genetically fused to the surface glycoprotein of rabies virus was expressed in tobacco plants from a seed specific (legumin) promoter. Seed specific expression was monitored by real-time PCR, GM1-ELISA and Western blot analyses. The fusion protein accumulated in tobacco seeds at up to 1.22% of the total seed protein. It was functionally active in binding to the GM1-ganglioside receptors, suggesting its assembly into pentamers in seeds of the transgenic plants. Immunoblot analysis confirmed that the approximately 80.6 kDa monomeric fusion polypeptide was expressed in tobacco seeds and accumulated as an approximately 403 kDa pentamer. Evaluation of its immunoprotective ability against rabies and cholera is to be examined.
Collapse
Affiliation(s)
- Siddharth Tiwari
- Plant Molecular Biology and Genetic Engineering Division, National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow 226001, India
| | | | | | | | | | | |
Collapse
|
66
|
Eskelin K, Ritala A, Suntio T, Blumer S, Holkeri H, Wahlström EH, Baez J, Mäkinen K, Maria NA. Production of a recombinant full-length collagen type I alpha-1 and of a 45-kDa collagen type I alpha-1 fragment in barley seeds. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:657-672. [PMID: 19656332 DOI: 10.1111/j.1467-7652.2009.00432.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recombinant DNA technology can be used to design and express collagen and gelatin-related proteins with predetermined composition and structure. Barley seed was chosen as a production host for a recombinant full-length collagen type I alpha1 (rCIa1) and a related 45-kDa rCIa1 fragment. The transgenic barley seeds were shown to accumulate both the rCIa1 and the 45-kDa rCIa1 fragment. Even when the amount of the rCIa1 was just above the detection threshold, this work using rCIa1 as a model demonstrated for the first time that barley seed can be used as a production system for collagen-related structural proteins. The 45-kDa rCI1a fragment expression, targeted to the endoplasmic reticulum, was controlled by three different promoters (a constitutive maize ubiquitin, seed endosperm-specific rice glutelin and germination-specific barley alpha-amylase fusion) to compare their effects on rCIa1 accumulation. Highest accumulation of the 45-kDa rCIa1 was obtained with the glutelin promoter (140 mg/kg seed), whereas the lowest accumulation was obtained with the alpha-amylase promoter. To induce homozygosity for stable 45-kDa rCIa1 production in the transgenic lines, doubled haploid (DH) progeny was generated through microspore culture. The 45-kDa rCIa1 expression levels achieved from the best DH lines were 13 mg/kg dry seeds under the ubiquitin promoter and 45 mg/kg dry seeds under the glutelin promoter. Mass spectroscopy and amino acid composition analysis of the purified 45-kDa rCIa1 fragment revealed that a small percent of prolines were hydroxylated with no additional detectable post-translational modifications.
Collapse
Affiliation(s)
- Katri Eskelin
- Department of Applied Chemistry and Microbiology and Department of Applied Biology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Jamal A, Ko K, Kim HS, Choo YK, Joung H, Ko K. Role of genetic factors and environmental conditions in recombinant protein production for molecular farming. Biotechnol Adv 2009; 27:914-923. [PMID: 19698776 DOI: 10.1016/j.biotechadv.2009.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 07/19/2009] [Accepted: 07/21/2009] [Indexed: 01/03/2023]
Abstract
Plants are generally considered to represent a promising heterologous expression system for the production of valuable recombinant proteins. Minimal upstream plant production cost is a salient feature driving the development of plant expression systems used for the synthesis of recombinant proteins. For such a plant expression system to be fully effective, it is first essential to improve plant productivity by plant biomass after inserting genes of interest into a suitable plant. Plant productivity is related closely to its growth and development, both of which are affected directly by environmental factors. These environmental factors that affect the cultivation conditions mainly include temperature, light, salinity, drought, nutrition, insects and pests. In addition, genetic factors that affect gene expression at the transcriptional, translational, and post-translational levels are considered to be important factors related to gene expression in plants. Thus, these factors influence both the quality and quantity of recombinant protein produced in transgenic plants. Among the genetic factors, the post-translational process is of particular interest as it influences subcellular localization, protein glycosylation, assembly and folding of therapeutic proteins, consequently affecting both protein quantity and biological quality. In this review, we discuss the effects of cultivation condition and genetic factors on recombinant protein production in transgenic plants.
Collapse
Affiliation(s)
- Arshad Jamal
- School of Food Science/Technology, College of Natural Resources, Yeungnam University, Gyeonbuk 712-749, Republic of Korea
| | - Kinarm Ko
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Hyun-Soon Kim
- Plant Genomics Research Center, KRIBB, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Young-Kug Choo
- Department of Biological Science, College of Natural Sciences, Institute of Biotechnology Wonkwang University, Iksan, Chonbuk 570-749, Republic of Korea
| | - Hyouk Joung
- Plant Genomics Research Center, KRIBB, 111 Gwahangno, Yuseong-gu, Daejeon 305-806, Republic of Korea
| | - Kisung Ko
- Department of Biological Science, College of Natural Sciences, Institute of Biotechnology Wonkwang University, Iksan, Chonbuk 570-749, Republic of Korea.
| |
Collapse
|
68
|
Karg SR, Kallio PT. The production of biopharmaceuticals in plant systems. Biotechnol Adv 2009; 27:879-894. [PMID: 19647060 DOI: 10.1016/j.biotechadv.2009.07.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 07/15/2009] [Accepted: 07/17/2009] [Indexed: 12/20/2022]
Abstract
Biopharmaceuticals present the fastest growing segment in the pharmaceutical industry, with an ever widening scope of applications. Whole plants as well as contained plant cell culture systems are being explored for their potential as cheap, safe, and scalable production hosts. The first plant-derived biopharmaceuticals have now reached the clinic. Many biopharmaceuticals are glycoproteins; as the Golgi N-glycosylation machinery of plants differs from the mammalian machinery, the N-glycoforms introduced on plant-produced proteins need to be taken into consideration. Potent systems have been developed to change the plant N-glycoforms to a desired or even superior form compared to the native mammalian N-glycoforms. This review describes the current status of biopharmaceutical production in plants for industrial applications. The recent advances and tools which have been utilized to generate glycoengineered plants are also summarized and compared with the relevant mammalian systems whenever applicable.
Collapse
Affiliation(s)
- Saskia R Karg
- Institute of Microbiology, ETH Zurich, Wolfgang-Pauli Strasse 10, CH-8093 Zürich, Switzerland.
| | - Pauli T Kallio
- Institute of Microbiology, ETH Zurich, Wolfgang-Pauli Strasse 10, CH-8093 Zürich, Switzerland.
| |
Collapse
|
69
|
Sharma AK, Sharma MK. Plants as bioreactors: Recent developments and emerging opportunities. Biotechnol Adv 2009; 27:811-832. [PMID: 19576278 PMCID: PMC7125752 DOI: 10.1016/j.biotechadv.2009.06.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/15/2009] [Accepted: 06/16/2009] [Indexed: 12/18/2022]
Abstract
In recent years, the use of plants as bioreactors has emerged as an exciting area of research and significant advances have created new opportunities. The driving forces behind the rapid growth of plant bioreactors include low production cost, product safety and easy scale up. As the yield and concentration of a product is crucial for commercial viability, several strategies have been developed to boost up protein expression in transgenic plants. Augmenting tissue-specific transcription, elevating transcript stability, tissue-specific targeting, translation optimization and sub-cellular accumulation are some of the strategies employed. Various kinds of products that are currently being produced in plants include vaccine antigens, medical diagnostics proteins, industrial and pharmaceutical proteins, nutritional supplements like minerals, vitamins, carbohydrates and biopolymers. A large number of plant-derived recombinant proteins have reached advanced clinical trials. A few of these products have already been introduced in the market.
Collapse
Affiliation(s)
- Arun K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India.
| | - Manoj K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
70
|
Yasuda H, Hirose S, Kawakatsu T, Wakasa Y, Takaiwa F. Overexpression of BiP has Inhibitory Effects on the Accumulation of Seed Storage Proteins in Endosperm Cells of Rice. ACTA ACUST UNITED AC 2009; 50:1532-43. [DOI: 10.1093/pcp/pcp098] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
71
|
Abstract
Plants are attractive expression systems for the economic production of recombinant proteins. Among the different plant-based systems, plant seed is the leading platform and holds several advantages such as high protein yields and stable storage of target proteins. Significant advances in using seeds as bioreactors have occurred in the past decade, which include the first commercialized plant-derived recombinant protein. Here we review the current progress on seeds as bioreactors, with focus on the different food crops as production platforms and comprehensive strategies in optimizing recombinant protein production in seeds.
Collapse
Affiliation(s)
- On Sun Lau
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8104, USA; Department of Biology, the Chinese University of Hong Kong, Hong Kong, China
| | - Samuel S M Sun
- Department of Biology, the Chinese University of Hong Kong, Hong Kong, China; State (China) Key Laboratory of Agrobiotechnology (the Chinese University of Hong Kong), Hong Kong China.
| |
Collapse
|
72
|
Weisser NE, Hall JC. Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnol Adv 2009; 27:502-20. [PMID: 19374944 DOI: 10.1016/j.biotechadv.2009.04.004] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 03/03/2009] [Accepted: 04/04/2009] [Indexed: 11/18/2022]
Abstract
Antibodies (Abs) are some of the most powerful tools in therapy and diagnostics and are currently one of the fastest growing classes of therapeutic molecules. Recombinant antibody (rAb) fragments are becoming popular therapeutic alternatives to full length monoclonal Abs since they are smaller, possess different properties that are advantageous in certain medical applications, can be produced more economically and are easily amendable to genetic manipulation. Single-chain variable fragment (scFv) Abs are one of the most popular rAb format as they have been engineered into larger, multivalent, bi-specific and conjugated forms for many clinical applications. This review will show the tremendous versatility and importance of scFv fragments as they provide the basic antigen binding unit for a multitude of engineered Abs for use as human therapeutics and diagnostics.
Collapse
Affiliation(s)
- Nina E Weisser
- Department of Environmental Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | | |
Collapse
|
73
|
Luo J, Ning T, Sun Y, Zhu J, Zhu Y, Lin Q, Yang D. Proteomic analysis of rice endosperm cells in response to expression of hGM-CSF. J Proteome Res 2009; 8:829-37. [PMID: 18778094 DOI: 10.1021/pr8002968] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The accumulation of significant levels of transgenic products in plant cells is required not only for crop improvement, but also for molecular pharming. However, knowledge about the fate of transgenic products and endogenous proteins in grain cells is lacking. Here, we utilized a quantitative mass spectrometry-based proteomic approach for comparative analysis of expression profiles of transgenic rice endosperm cells in response to expression of a recombinant pharmaceutical protein, human granulocyte-macrophage colony stimulation factor (hGM-CSF). This study provided the first available evidence concerning the fate of exogenous and endogenous proteins in grain cells. Among 1883 identified proteins with a false positive rate of 5%, 103 displayed significant changes (p-value < 0.05) between the transgenic and the wild-type endosperm cells. Notably, endogenous storage proteins and most carbohydrate metabolism-related proteins were down-regulated, while 26S proteasome-related proteins and chaperones were up-regulated in the transgenic rice endosperm. Furthermore, it was observed that expression of hGM-CSF induced endoplasmic reticulum stress and activated the ubiquitin/26S-proteasome pathway, which led to ubiquitination of this foreign gene product in the transgenic rice endosperm.
Collapse
Affiliation(s)
- Junling Luo
- Department of Genetics, College of Life Sciences, Wuhan University, 430072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
74
|
Liu D, Xue P, Meng Q, Zou J, Gu J, Jiang W. Pb/Cu effects on the organization of microtubule cytoskeleton in interphase and mitotic cells of Allium sativum L. PLANT CELL REPORTS 2009. [PMID: 19148647 DOI: 10.1007/s10535-009-0073-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The effects of lead and copper on the arrangement of microtubule (MT) cytoskeleton in root tip cells of Allium sativum L. were investigated. Batch cultures of garlic were carried out under defined conditions in the presence 10(-4) M Pb/Cu of various duration treatments. With tubulin immunolabelling and transmission electron microscopy (TEM), we found four different types of MT structures depending on the cell cycle stage: the interphase array, preprophase band, mitotic spindle and phragmoplast were typical for the control cells. Pb/Cu affected the mechanisms controlling the organization of MT cytoskeleton, and induces the following aberrations in interphase and mitotic cells. (1) Pb/Cu induced the formation of atypical MT arrays in the cortical cytoplasm of the interphase cells, consisting of skewed, wavy MT bundles, MT fragments and ring-like tubulin aggregations. (2) Pb/Cu disordered the chromosome movements carried out by the mitotic spindle. The outcome was chromosome aberrations, for example, chromosome bridges and chromosome stickiness, as well as inhibition of cells from entering mitosis. (3) Depending on the time of exposure, MTs disintegrated into shorter fragments or they completely disappeared, indicating MT depolymerization. (4) Different metals had different effects on MT organization. MTs were more sensitive to the pressure of Cu ions than Pb. Moreover, TEM observations showed that the MTs were relatively short and in some places wavy when exposed to 10(-4) M Pb/Cu solutions for 1-2 h. In many sections MTs were no longer visible with increasing duration of treatment (>4 h). Based on these results, we suggested that MT cytoskeleton is primarily responsible for Pb/Cu-associated toxicity and tolerance in plants.
Collapse
Affiliation(s)
- Donghua Liu
- Department of Biology, Tianjin Normal University, Tianjin, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
75
|
Gahrtz M, Conrad U. Immunomodulation of plant function by in vitro selected single-chain Fv intrabodies. Methods Mol Biol 2009; 483:289-312. [PMID: 19183906 DOI: 10.1007/978-1-59745-407-0_17] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In this chapter, we discuss and compare the different concepts and examples as well as present the basic protocols for applying intrabody-based approaches in plants for the investigation of cell functions and plant cell-pathogen interactions. The immunomodulation strategy, a molecular technique that allows to interfere with cellular metabolism, signal transduction pathways, or pathogen infectivity, is based on the ectopic expression of genes encoding specific recombinant antibodies. This needs basic prerequisites to be successfully applied as resources and techniques to isolate specific recombinant antibodies with sufficient binding parameters to bind and to block even low-concentrated targets or to compete successfully with substrates and ligands. Also techniques and constructs to efficiently transform plants and to target recombinant antibodies to selected compartments are important requirements. Basic protocols for all these techniques are provided.
Collapse
Affiliation(s)
- Manfred Gahrtz
- Department of Cell Biology and Plant Physiology, University of Regensburg, Regensburg, Germany
| | | |
Collapse
|
76
|
Ko K, Brodzik R, Steplewski Z. Production of Antibodies in Plants: Approaches and Perspectives. Curr Top Microbiol Immunol 2009; 332:55-78. [DOI: 10.1007/978-3-540-70868-1_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
77
|
Rehbinder E, Rehbinder E, Engelhard M, Hagen K, Jørgensen RB, Pardo-Avellaneda R, Schnieke A, Thiele F. The technology of pharming. ETHICS OF SCIENCE AND TECHNOLOGY ASSESSMENT 2009. [PMCID: PMC7123008 DOI: 10.1007/978-3-540-85793-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
78
|
Hong SY, Lee TS, Kim J, Jung JH, Choi CW, Kim TG, Kwon TH, Jang YS, Yang MS. Tumor targeting of humanized fragment antibody secreted from transgenic rice cell suspension culture. PLANT MOLECULAR BIOLOGY 2008; 68:413-422. [PMID: 18670890 DOI: 10.1007/s11103-008-9379-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 07/13/2008] [Indexed: 05/26/2023]
Abstract
The tumor-associated glycoprotein 72 (TAG 72) has been shown to be expressed in the majority of human adenocarcinomas. In an effort to develop a technique for the safe and inexpensive production of large quantities of anti-TAG 72 humanized antibody fragments (hzAb) as a future source of clinical-grade proteins, we developed a transgenic rice cell suspension culture system. The in vivo assembly and secretion of hzAb were achieved in a transgenic rice cell culture under the control of the rice alpha amylase 3D (RAmy 3D) expression system, and the biological activities of plant-derived hzAb were determined to be quite similar to those of animal-derived antibody. Purified hzAb was shown to bind to the recombinant antigen, TAG 72, and to bind specifically to human LS 174T colon adenocarcinoma cells expressing the TAG 72 antigen, and this binding occurred to the same extent as was seen with animal-derived antibody. Plant-derived hzAb proved as effective as animal-derived antibody in targeting tumors of xenotransplanted LS 174T cells in nude mice. The results of this study indicate that the hzAb derived from plant cell suspension cultures may have great potential for pharmaceutical applications in the development of future cancer therapeutic and diagnostic protocols.
Collapse
Affiliation(s)
- Shin-Young Hong
- Division of Biological Sciences, Research Institute for Bioactive Materials, Chonbuk National University, Jeonju 561-756, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Sunilkumar G, Waghela SD, Campbell LM, Rathore KS. Expression of anti-K99 scFv in transgenic rice tissues and its functional characterization. Transgenic Res 2008; 18:347-60. [PMID: 18830803 DOI: 10.1007/s11248-008-9223-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Accepted: 09/17/2008] [Indexed: 10/21/2022]
Abstract
As a first step towards manufacturing functional anti-K99 single chain variable antibody fragment (scFv) in a plant system to prevent colibacillosis in neonatal calves, we investigated the feasibility of producing these antibodies in rice plants. Two scFv constructs, with or without the endoplasmic reticulum (ER) targeting KDEL sequence, were introduced into rice for either ER-retention of the recombinant antibody or its secretion. In agreement with several other published reports, extremely low-levels of scFv were produced in rice plants transformed with the construct lacking the ER-targeting sequence. Constructs containing the KDEL sequence resulted in significantly higher levels of the antibody in rice leaves. Although scFv transcripts were found in all three rice tissues analyzed, scFv protein was detected only in the leaf and embryo tissues and not in the endosperm portion of the seed. Functionality of the rice-produced scFv was tested in two in vitro assays, i.e., inhibition of K99-induced horse red blood cell agglutination and inhibition of the attachment of enterotoxigenic Escherichia coli (ETEC) to calf enterocytes. Rice-scFv was found to be functionally equivalent to anti-K99 monoclonal antibody (mAb) in both the assays. The results obtained in this investigation provide valuable information and in combination with other studies of this kind, will be helpful in devising strategies to improve production of useful recombinant proteins in the seeds.
Collapse
Affiliation(s)
- Ganesan Sunilkumar
- Institute for Plant Genomics & Biotechnology, Texas A&M University, College Station, TX 77843-2123, USA
| | | | | | | |
Collapse
|
80
|
Benchabane M, Goulet C, Rivard D, Faye L, Gomord V, Michaud D. Preventing unintended proteolysis in plant protein biofactories. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:633-48. [PMID: 18452504 PMCID: PMC7159130 DOI: 10.1111/j.1467-7652.2008.00344.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2007] [Revised: 03/13/2008] [Accepted: 03/21/2008] [Indexed: 05/18/2023]
Abstract
Numerous reports have been published over the last decade assessing the potential of plants as useful hosts for the heterologous expression of clinically useful proteins. Significant progress has been made, in particular, in optimizing transgene transcription and translation in plants, and in elucidating the complex post-translational modifications of proteins typical of the plant cell machinery. In this article, we address the important issue of recombinant protein degradation in plant expression platforms, which directly impacts on the final yield, homogeneity and overall quality of the resulting protein product. Unlike several more stable and structurally less complex pharmaceuticals, recombinant proteins present a natural tendency to structural heterogeneity, resulting in part from the inherent instability of polypeptide chains expressed in heterologous environments. Proteolytic processing, notably, may dramatically alter the structural integrity and overall accumulation of recombinant proteins in plant expression systems, both in planta during expression and ex planta after extraction. In this article, we describe the current strategies proposed to minimize protein hydrolysis in plant protein factories, including organ-specific transgene expression, organelle-specific protein targeting, the grafting of stabilizing protein domains to labile proteins, protein secretion in natural fluids and the co-expression of companion protease inhibitors.
Collapse
|
81
|
Furtado A, Henry RJ, Takaiwa F. Comparison of promoters in transgenic rice. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:679-93. [PMID: 18503501 DOI: 10.1111/j.1467-7652.2008.00352.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Reports of the use of rice storage protein gene promoters to express transgenes in rice grain have demonstrated that rice grain can be used as a production platform for end-use quality or seed-based edible vaccines. The generation of transgenic rice with multitraits (gene stacking), which requires the use of multiple transgenes under the control of different promoters, necessitates the use of promoters from rice and other cereals, as this is highly advantageous in reducing homology-based transcriptional gene silencing. Using the green fluorescent protein gene (gfp) as a reporter gene and a transgenic rice platform, promoters of storage protein and non-storage protein genes from barley, wheat and rice were compared with regard to their spatial and temporal control of expression. Storage protein promoters from barley (549-bp B-hordein and 433-bp D-hordein) and wheat (425-bp high-molecular-weight glutenin) directed the expression of green fluorescent protein (GFP) in endosperm but not embryo; however, expression was leaky, as it was also observed in seed maternal tissues, leaf and root tissues. As expected, the rice promoters (1350-bp alpha-glutelin B-1 and 1007-bp alpha-globulin) directed the endosperm-specific expression of GFP in transgenic rice. Our results indicate that seed-specific promoters from barley and wheat, although containing endosperm and GCN4 motifs, which are important for endosperm-specific expression in rice, may not be spatially regulated in the same manner as they are in their native species. The analysis of GFP expression under the control of various promoters in rice grain indicates that promoters from other cereals can drive high levels of endosperm-specific expression in rice, but their utility for seed-specific expression may depend on their tissue specificity.
Collapse
Affiliation(s)
- Agnelo Furtado
- Cooperative Research Centre for Molecular Plant Breeding, Centre for Plant Conservation Genetics, Southern Cross University, Lismore, NSW 2480, Australia
| | | | | |
Collapse
|
82
|
de Virgilio M, De Marchis F, Bellucci M, Mainieri D, Rossi M, Benvenuto E, Arcioni S, Vitale A. The human immunodeficiency virus antigen Nef forms protein bodies in leaves of transgenic tobacco when fused to zeolin. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2815-29. [PMID: 18540021 PMCID: PMC2486477 DOI: 10.1093/jxb/ern143] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2008] [Revised: 03/31/2008] [Accepted: 04/28/2008] [Indexed: 05/03/2023]
Abstract
Protein bodies (PB) are stable polymers naturally formed by certain seed storage proteins within the endoplasmic reticulum (ER). The human immunodeficiency virus negative factor (Nef) protein, a potential antigen for the development of an anti-viral vaccine, is highly unstable when introduced into the plant secretory pathway, probably because of folding defects in the ER environment. The aim of this study was to promote the formation of Nef-containing PB in tobacco (Nicotiana tabacum) leaves by fusing the Nef sequence to the N-terminal domains of the maize storage protein gamma-zein or to the chimeric protein zeolin (which efficiently forms PB and is composed of the vacuolar storage protein phaseolin fused to the N-terminal domains of gamma-zein). Protein blots and pulse-chase indicate that fusions between Nef and the same gamma-zein domains present in zeolin are degraded by ER quality control. Consistently, a mutated zeolin, in which wild-type phaseolin was substituted with a defective version known to be degraded by ER quality control, is unstable in plant cells. Fusion of Nef to the entire zeolin sequence instead allows the formation of PB detectable by electron microscopy and subcellular fractionation, leading to zeolin-Nef accumulation higher than 1% of total soluble protein, consistently reproduced in independent transgenic plants. It is concluded that zeolin, but not its gamma-zein portion, has a positive dominant effect over ER quality control degradation. These results provide insights into the requirements for PB formation and avoidance of quality-control degradation, and indicate a strategy for enhancing foreign protein accumulation in plants.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/metabolism
- Gene Expression
- Humans
- Inclusion Bodies/chemistry
- Inclusion Bodies/genetics
- Inclusion Bodies/metabolism
- Molecular Sequence Data
- Plant Leaves/chemistry
- Plant Leaves/genetics
- Plant Leaves/metabolism
- Plants, Genetically Modified/chemistry
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/metabolism
- Protein Engineering
- Protein Structure, Tertiary
- Protein Transport
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Nicotiana/chemistry
- Nicotiana/genetics
- Nicotiana/metabolism
- Zea mays/genetics
- Zein/chemistry
- Zein/genetics
- Zein/metabolism
- nef Gene Products, Human Immunodeficiency Virus/chemistry
- nef Gene Products, Human Immunodeficiency Virus/genetics
- nef Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Maddalena de Virgilio
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Bassini 15, 20133 Milano, Italy, EU
| | - Francesca De Marchis
- Istituto di Genetica Vegetale, Consiglio Nazionale delle Ricerche, Articolazione Territoriale di Perugia, via della Madonna Alta 130, 06128 Perugia, Italy, EU
| | - Michele Bellucci
- Istituto di Genetica Vegetale, Consiglio Nazionale delle Ricerche, Articolazione Territoriale di Perugia, via della Madonna Alta 130, 06128 Perugia, Italy, EU
| | - Davide Mainieri
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Bassini 15, 20133 Milano, Italy, EU
| | - Marika Rossi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Bassini 15, 20133 Milano, Italy, EU
| | - Eugenio Benvenuto
- ENEA-BIOTEC Sezione Genetica e Genomica Vegetale, C.R. Casaccia, 00060 Roma, Italy, EU
| | - Sergio Arcioni
- Istituto di Genetica Vegetale, Consiglio Nazionale delle Ricerche, Articolazione Territoriale di Perugia, via della Madonna Alta 130, 06128 Perugia, Italy, EU
| | - Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Bassini 15, 20133 Milano, Italy, EU
| |
Collapse
|
83
|
Sustained Expression of Human Cytomegalovirus Glycoprotein B (UL55) in the Seeds of Homozygous Rice Plants. Mol Biotechnol 2008; 40:1-12. [DOI: 10.1007/s12033-007-9029-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Accepted: 12/14/2007] [Indexed: 12/21/2022]
|
84
|
Ramessar K, Rademacher T, Sack M, Stadlmann J, Platis D, Stiegler G, Labrou N, Altmann F, Ma J, Stöger E, Capell T, Christou P. Cost-effective production of a vaginal protein microbicide to prevent HIV transmission. Proc Natl Acad Sci U S A 2008; 105:3727-32. [PMID: 18316741 PMCID: PMC2268773 DOI: 10.1073/pnas.0708841104] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Indexed: 11/18/2022] Open
Abstract
A series of small-molecule microbicides has been developed for vaginal delivery to prevent heterosexual HIV transmission, but results from human clinical trials have been disappointing. Protein-based microbicides, such as HIV-specific monoclonal antibodies, have been considered as an alternative approach. Despite their promising safety profile and efficacy, the major drawback of such molecules is the economy of large-scale production in mammalian cells, the current system of choice. Here, we show that an alternative biomanufacturing platform is now available for one of the most promising anti-HIV antibodies (2G12). Our data show that the HIV-neutralization capability of the antibody is equal to or superior to that of the same antibody produced in CHO cells. We conclude that this protein production system may provide a means to achieve microbicide ingredient manufacture at costs that would allow product introduction and manufacture in the developing world.
Collapse
Affiliation(s)
- Koreen Ramessar
- *Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida, Avenida Alcalde Rovira Roure, 191, Lleida, 25198, Spain
| | - Thomas Rademacher
- Institute for Molecular Biotechnology, Biology VII, RWTH Aachen, Worringerweg 1, 52074 Aachen, Germany
| | - Markus Sack
- Institute for Molecular Biotechnology, Biology VII, RWTH Aachen, Worringerweg 1, 52074 Aachen, Germany
| | - Johannes Stadlmann
- Department of Chemistry, Glycobiology Division, University of Natural Resources and Applied Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Dimitris Platis
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | | | - Nikos Labrou
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Fritz Altmann
- Department of Chemistry, Glycobiology Division, University of Natural Resources and Applied Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Julian Ma
- Saint George's University of London, Cranmer Terrace, London SW17 0RE, United Kingdom; and
| | - Eva Stöger
- Institute for Molecular Biotechnology, Biology VII, RWTH Aachen, Worringerweg 1, 52074 Aachen, Germany
| | - Teresa Capell
- *Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida, Avenida Alcalde Rovira Roure, 191, Lleida, 25198, Spain
| | - Paul Christou
- *Departament de Producció Vegetal i Ciència Forestal, Universitat de Lleida, Avenida Alcalde Rovira Roure, 191, Lleida, 25198, Spain
- **Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona, Spain
| |
Collapse
|
85
|
Agarwal S, Singh R, Sanyal I, Amla DV. Expression of modified gene encoding functional human alpha-1-antitrypsin protein in transgenic tomato plants. Transgenic Res 2008; 17:881-96. [PMID: 18320339 DOI: 10.1007/s11248-008-9173-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Accepted: 02/08/2008] [Indexed: 10/22/2022]
Abstract
Transgenic plants offer promising alternative for large scale, sustainable production of safe, functional, recombinant proteins of therapeutic and industrial importance. Here, we report the expression of biologically active human alpha-1-antitrypsin in transgenic tomato plants. The 1,182 bp cDNA sequence of human AAT was strategically designed, modified and synthesized to adopt codon usage pattern of dicot plants, elimination of mRNA destabilizing sequences and modifications around 5' and 3' flanking regions of the gene to achieve high-level regulated expression in dicot plants. The native signal peptide sequence was substituted with modified signal peptide sequence of tobacco (Nicotiana tabacum) pathogenesis related protein PR1a, sweet potato (Ipomoea batatas) sporamineA and with dicot-preferred native signal peptide sequence of AAT gene. A dicot preferred translation initiation context sequence, 38 bp alfalfa mosaic virus untranslated region were incorporated at 5' while an endoplasmic reticulum retention signal (KDEL) was incorporated at 3' end of the gene. The modified gene was synthesized by PCR based method using overlapping oligonucleotides. Tomato plants were genetically engineered by nuclear transformation with Agrobacterium tumefaciens harbouring three different constructs pPAK, pSAK and pNAK having modified AAT gene with different signal peptide sequences under the control of CaMV35S duplicated enhancer promoter. Promising transgenic plants expressing recombinant AAT protein upto 1.55% of total soluble leaf protein has been developed and characterized. Plant-expressed recombinant AAT protein with molecular mass of around approximately 50 kDa was biologically active, showing high specific activity and efficient inhibition of elastase activity. The enzymatic deglycosylation established proper glycosylation of the plant-expressed recombinant AAT protein in contrast to unglycosylated rAAT expressed in E. coli ( approximately 45 kDa). Our results demonstrate feasibility for high-level expression of biologically active, glycosylated human alpha-1-antitrypsin in transgenic tomato plants.
Collapse
Affiliation(s)
- Saurabh Agarwal
- Plant Transgenic Lab, National Botanical Research Institute, PO Box 436, Rana Pratap Marg, Lucknow, 226001, India
| | | | | | | |
Collapse
|
86
|
Batista R, Saibo N, Lourenço T, Oliveira MM. Microarray analyses reveal that plant mutagenesis may induce more transcriptomic changes than transgene insertion. Proc Natl Acad Sci U S A 2008; 105:3640-5. [PMID: 18303117 PMCID: PMC2265136 DOI: 10.1073/pnas.0707881105] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Indexed: 12/27/2022] Open
Abstract
Controversy regarding genetically modified (GM) plants and their potential impact on human health contrasts with the tacit acceptance of other plants that were also modified, but not considered as GM products (e.g., varieties raised through conventional breeding such as mutagenesis). What is beyond the phenotype of these improved plants? Should mutagenized plants be treated differently from transgenics? We have evaluated the extent of transcriptome modification occurring during rice improvement through transgenesis versus mutation breeding. We used oligonucleotide microarrays to analyze gene expression in four different pools of four types of rice plants and respective controls: (i) a gamma-irradiated stable mutant, (ii) the M1 generation of a 100-Gy gamma-irradiated plant, (iii) a stable transgenic plant obtained for production of an anticancer antibody, and (iv) the T1 generation of a transgenic plant produced aiming for abiotic stress improvement, and all of the unmodified original genotypes as controls. We found that the improvement of a plant variety through the acquisition of a new desired trait, using either mutagenesis or transgenesis, may cause stress and thus lead to an altered expression of untargeted genes. In all of the cases studied, the observed alteration was more extensive in mutagenized than in transgenic plants. We propose that the safety assessment of improved plant varieties should be carried out on a case-by-case basis and not simply restricted to foods obtained through genetic engineering.
Collapse
Affiliation(s)
- Rita Batista
- Instituto Nacional de Saúde Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisbon, Portugal.
| | | | | | | |
Collapse
|
87
|
Rademacher T, Sack M, Arcalis E, Stadlmann J, Balzer S, Altmann F, Quendler H, Stiegler G, Kunert R, Fischer R, Stoger E. Recombinant antibody 2G12 produced in maize endosperm efficiently neutralizes HIV-1 and contains predominantly single-GlcNAc N-glycans. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:189-201. [PMID: 17979949 DOI: 10.1111/j.1467-7652.2007.00306.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Antibody 2G12 is one of a small number of human immunoglobulin G (IgG) monoclonal antibodies exhibiting potent and broad human immunodeficiency virus-1 (HIV-1)-neutralizing activity in vitro, and the ability to prevent HIV-1 infection in animal models. It could be used to treat or prevent HIV-1 infection in humans, although to be effective it would need to be produced on a very large scale. We have therefore expressed this antibody in maize, which could facilitate inexpensive, large-scale production. The antibody was expressed in the endosperm, together with the fluorescent marker protein Discosoma red fluorescent protein (DsRed), which helps to identify antibody-expressing lines and trace transgenic offspring when bred into elite maize germplasm. To achieve accumulation in storage organelles derived from the endomembrane system, a KDEL signal was added to both antibody chains. Immunofluorescence and electron microscopy confirmed the accumulation of the antibody in zein bodies that bud from the endoplasmic reticulum. In agreement with this localization, N-glycans attached to the heavy chain were mostly devoid of Golgi-specific modifications, such as fucose and xylose. Surprisingly, most of the glycans were trimmed extensively, indicating that a significant endoglycanase activity was present in maize endosperm. The specific antigen-binding function of the purified antibody was verified by surface plasmon resonance analysis, and in vitro cell assays demonstrated that the HIV-neutralizing properties of the maize-produced antibody were equivalent to or better than those of its Chinese hamster ovary cell-derived counterpart.
Collapse
Affiliation(s)
- Thomas Rademacher
- Institute for Molecular Biotechnology, Biology VII, RWTH Aachen, Worringerweg 1, 52074 Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Yang L, Suzuki K, Hirose S, Wakasa Y, Takaiwa F. Development of transgenic rice seed accumulating a major Japanese cedar pollen allergen (Cry j 1) structurally disrupted for oral immunotherapy. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:815-26. [PMID: 17714439 DOI: 10.1111/j.1467-7652.2007.00287.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Rice seed-based edible vaccines expressing T-cell epitope peptides derived from Japanese cedar major pollen allergens have been used to successfully suppress allergen-specific Th2-mediated immunoglobulin E (IgE) responses in mouse experiments. In order to further expand the application of seed-based allergen-specific immunotherapy for controlling Japanese cedar pollinosis, we generated transgenic rice plants that specifically express recombinant Cry j 1 allergens in seeds. Cry j 1 allergens give low specific IgE-binding activity but contain all of the T-cell epitopes. The allergens were expressed directly or as a protein fusion with the major rice storage protein glutelin. Fusion proteins expressed under the control of the strong rice endosperm-specific GluB-1 promoter accumulated in rice endosperm tissue up to 15% of total seed protein. The fusion proteins aggregated with cysteine-rich prolamin and were deposited in endoplasmic reticulum-derived protein body I. The production of transgenic rice expressing structurally disrupted Cry j 1 peptides with low IgE binding activity but spanning the entire Cry j1 region can be used as a universal, safe and effective tolerogen for rice seed-based oral immunotherapy for cedar pollen allergy in humans and other mammals.
Collapse
Affiliation(s)
- Lijun Yang
- Transgenic Crop Research and Development Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | |
Collapse
|
89
|
Pujol M, Gavilondo J, Ayala M, Rodríguez M, González EM, Pérez L. Fighting cancer with plant-expressed pharmaceuticals. Trends Biotechnol 2007; 25:455-9. [PMID: 17869360 DOI: 10.1016/j.tibtech.2007.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 06/18/2007] [Accepted: 09/03/2007] [Indexed: 11/24/2022]
Abstract
Cancer is one of the most prevalent diseases worldwide, which explains why biological therapies for cancer are forecast to make up 35% of total recombinant pharmaceuticals by 2010. Because of the high demand for cancer drugs, the need to lower production costs and the constraints of present production technologies for recombinant pharmaceuticals (such as the difficulties involved in culturing bacteria, yeast and mammalian cells), attention has recently been focused on recombinant expression of pharmaceutical anti-cancer proteins in plants. This review aims to provide an update on the most recent publications about anti-cancer recombinant pharmaceuticals expressed in plants, as well as on the relevant technical issues, potential and prospects of this emerging production system.
Collapse
Affiliation(s)
- Merardo Pujol
- Plant Division, Center for Genetic Engineering and Biotechnology, P.O. Box 6162, C.P. 10600, Havana, Cuba.
| | | | | | | | | | | |
Collapse
|
90
|
Blais DR, Altosaar I. Humanizing infant milk formula to decrease postnatal HIV transmission. Trends Biotechnol 2007; 25:376-84. [PMID: 17659799 DOI: 10.1016/j.tibtech.2007.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 05/21/2007] [Accepted: 07/18/2007] [Indexed: 01/03/2023]
Abstract
There are currently no safe methods for feeding babies born from the 16 million HIV-infected women living in resource-constrained countries. Breast milk can transmit HIV, and formula feeding can lead to gastrointestinal illnesses owing to unsanitary conditions and the composition of milk formulations. There is therefore a need to ensure that breast milk substitutes provide optimal health outcomes. Given that the immune properties of several breast milk proteins are known, transgenic food crops could facilitate inexpensive and safe reconstitution of the beneficial breast milk proteome in infant formulae, while keeping the HIV virus at bay. At least seven breast milk immune proteins have already been produced in food crops, and dozens more proteins could potentially be produced if fortified formula proves effective in nursing newborns born to HIV-infected mothers.
Collapse
Affiliation(s)
- David R Blais
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | | |
Collapse
|
91
|
Ramírez YJP, Tasciotti E, Gutierrez-Ortega A, Donayre Torres AJ, Olivera Flores MT, Giacca M, Gómez Lim MA. Fruit-specific expression of the human immunodeficiency virus type 1 tat gene in tomato plants and its immunogenic potential in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:685-92. [PMID: 17460112 PMCID: PMC1951073 DOI: 10.1128/cvi.00028-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) Tat protein is considered a potential candidate vaccine antigen. In an effort to design a strategy for noninvasive vaccination against HIV-1, we developed transgenic tomatoes expressing the Tat protein. Two independent plants testing positive in transgene detection analysis were selected and grown to maturity. Monoclonal antibodies against Tat recognized a protein of the expected size. Interestingly, expression of Tat seemed to be toxic to the plant, as in all cases the fruit exhibited underdeveloped reproductive structures and no seeds. Nine groups of 10 pathogen-free BALB/c male mice were primed either orally, intraperitoneally, or intramuscularly with 10 mg of tomato fruit extract derived from transgenic or wild-type plants and with 10 microg of Tat86 recombinant protein. Mice were immunized at days 0, 14, and 28, and given boosters after 15 weeks; sera were drawn 7 days after each booster, and the antibody titer was determined by enzyme-linked immunosorbent assay. All three immunization approaches induced the development of a strong anti-Tat immunological response, which increased over time. Isotype subclass determination showed the presence of mucosal (immunoglobulin A) immunity soon after the beginning of the oral immunization protocol, and the data were confirmed by the presence of anti-Tat antibodies in fecal pellets and in vaginal washes. We also demonstrated that sera from immunized mice inhibited with high efficiency recombinant Tat-dependent transactivation of the HIV-1 long terminal repeat promoter. This neutralization activity might be relevant for the suppression of extracellular Tat activities, which play an important role in HIV disease development.
Collapse
Affiliation(s)
- Yuri Jorge Peña Ramírez
- Departamento de Ingeniería Genética, Cinvestav Campus Guanajuato, Irapuato, Km 9.6 Libramiento norte, Apartado Postal 629, Irapuato, Gto., México 365002
| | | | | | | | | | | | | |
Collapse
|
92
|
Sarkar K, Bose A, Laskar S, Choudhuri SK, Dey S, Roychowdhury PK, Baral R. Antibody response against neem leaf preparation recognizes carcinoembryonic antigen. Int Immunopharmacol 2007; 7:306-12. [PMID: 17276888 DOI: 10.1016/j.intimp.2006.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 10/30/2006] [Accepted: 10/31/2006] [Indexed: 10/23/2022]
Abstract
An immune serum generated in Swiss mice against an aqueous preparation from neem leaf was reactive with carcinoembryonic antigen (CEA) and a peptide sequence derived from it. Using ELISA, we have demonstrated that CEA reactive antibody titer (chiefly IgG2a) was significantly decreased after absorption of the immune sera with CEA. Neem leaf preparation (NLP) generated immune sera was also reactive with CEA in immunoblotting and CEA reactive component in the NLP sera can be immunoprecipitated. Identical recognition of CEA expressed on human colorectal cancer specimens, by anti-CEA monoclonal antibody and NLP sera was documented by immunohistochemistry. NLP generated sera could also react with NLP in ELISA and this reactivity was decreased after absorption of the NLP with anti-CEA antibody. Estimation of protein in NLP revealed the presence of it, at least 10% of the total dry weight. In addition, existence of flavone and quercetin was also evidenced from LC-MS analysis. Further studies are needed to identify the antigenic component may have some homology with CEA molecule. This unique property of neem may be utilized for the immunotherapy of CEA positive tumors.
Collapse
Affiliation(s)
- Koustav Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute, Kolkata-700026, India
| | | | | | | | | | | | | |
Collapse
|
93
|
Holler C, Vaughan D, Zhang C. Polyethyleneimine precipitation versus anion exchange chromatography in fractionating recombinant beta-glucuronidase from transgenic tobacco extract. J Chromatogr A 2007; 1142:98-105. [PMID: 16950325 DOI: 10.1016/j.chroma.2006.08.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 08/11/2006] [Accepted: 08/15/2006] [Indexed: 11/16/2022]
Abstract
Tobacco has been studied as a possible host for the production of recombinant proteins. In this report, recombinant beta-glucuronidase (rGUS) was used as a model protein to study the feasibility of using polyethyleneimine (PEI) precipitation to fractionate acidic recombinant proteins from transgenic tobacco. Results showed that rGUS was preferentially precipitated when the PEI dosage was beyond 200mg PEI/g total protein. At 700-800 mg PEI/g total protein, nearly 100% rGUS was precipitated with less than 40% native tobacco proteins co-precipitated. Approximately 85-90% of the rGUS activity could be recovered from the precipitation pellet for an enrichment ratio of 2.7-3.4. As a comparison, anion exchange chromatography (AEX) yielded similar results to PEI precipitation with 66-90% rGUS activity recovered and an enrichment ratio of 1.8-3.1. The rGUS was further purified by an additional hydrophobic interaction chromatographic (HIC) step after precipitation or AEX. Similar results in terms of rGUS activity recovered and enrichment were obtained. The major interfering protein at the end of all purification steps is most likely the Fraction 1 protein ribulose 1,5-bisphosphate carboxylase-oxygenase (Rubisco). The presence of this protein is likely the cause for the varying and somewhat low enrichment ratios, but it may be later removed via a size-exclusion chromatography step. PEI precipitation offers the advantage of allowing significant sample concentration prior to subsequent purification techniques such as chromatography and is much less expensive than chromatographic methods as well. Through direct comparison, this study shows that PEI may be used as an initial fractionation step in replacement of AEX to facilitate the purification of acidic recombinant proteins from transgenic tobacco.
Collapse
Affiliation(s)
- Chris Holler
- Department of Biological Systems Engineering, 210 Seitz Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
94
|
Biologically active human GM-CSF produced in the seeds of transgenic rice plants. Transgenic Res 2007; 16:713-21. [PMID: 17985214 DOI: 10.1007/s11248-006-9062-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
Rice flour is a well-known and characterized source of pharmaceutical ingredients, which are gluten-free and incorporated in many drug delivery applications such as excipient starch. To further exploit this uniqueness, the synthetic capacity of rice endosperm tissue, the basis of rice flour, was extended by genetic transformation. Recombinant human GM-CSF, a cytokine used in treating neutropenia and with other potential clinical applications, has been expressed in transgenic rice seeds using a rice glutelin promoter. Rice seeds accumulated human GM-CSF to a level of 1.3% of total soluble protein. The rice seed-produced human GM-CSF was found to be biologically active when tested using a human cell line TF-1. Use of rice as a host plant offers not only attractive features of safe production in seeds but also self-containment of foreign genes, as rice is primarily a self-pollinated crop plant.
Collapse
|
95
|
Sivakumar G. Bioreactor technology: a novel industrial tool for high-tech production of bioactive molecules and biopharmaceuticals from plant roots. Biotechnol J 2007; 1:1419-27. [PMID: 17136730 DOI: 10.1002/biot.200600117] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plants are the richest source for different bioactive molecules. Because of the vast number of side effects associated with synthetic pharmaceuticals, medical biotechnologists turned to nature to provide new promising therapeutic molecules from plant biofactories. The large-scale availability of the disease- and pesticide-free raw material is, however, restricted in vivo. Many bioactive plant secondary metabolites are accumulated in roots. Engineered plants can also produce human therapeutic proteins. Vaccines and diagnostic monoclonal antibodies can be won from their roots, so that engineered plants hold immense potential for the biopharmaceutical industry. To obtain sufficient amounts of the plant bioactive molecules for application in human therapy, adventitious and hairy roots have to be cultured in in vitro systems. High-tech pilot-scale bioreactor technology for the establishment of a long-term adventitious root culture from biopharmaceutical plants has recently been established. In this review, I briefly discuss a technology for cultivating bioactive molecule-rich adventitious and hairy roots from plants using a high-tech bioreactor system, as well as the principles and application of genome-restructuring mechanisms for plant-based biopharmaceutical production from roots. High-tech bioreactor-derived bioactive phytomolecules and biopharmaceuticals hold the prospect of providing permanent remedies for improving human well-being.
Collapse
|
96
|
Brereton HM, Chamberlain D, Yang R, Tea M, McNeil S, Coster DJ, Williams KA. Single chain antibody fragments for ocular use produced at high levels in a commercial wheat variety. J Biotechnol 2007; 129:539-46. [PMID: 17306402 DOI: 10.1016/j.jbiotec.2007.01.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 12/22/2006] [Accepted: 01/03/2007] [Indexed: 11/18/2022]
Abstract
We are investigating the use of single chain antibody fragments (scFv) in eye drops for diagnosis and treatment of eye diseases. For ocular use, recombinant proteins must be free of bacterial endotoxin that causes inflammation in the eye. We required a means of generating high yields of scFvs with little endotoxin contamination. Using microprojectile bombardment we produced transgenic lines of the commercial wheat variety, Westonia, that express two scFvs that bind to CD4 or CD28 on the surface of rat thymocytes. A high level of expression of active scFv in the range 50-180 microg/g was measured by quantitative flow cytometry in crude extracts made from mature seeds. The levels of expression were stable over four generations of transgenic plants and mature seeds were stored for one year with little loss of scFv activity. Substantial purification of scFv was achieved by immobilised metal affinity chromatography. Compared to bacterial extracts, crude transgenic seed extracts contained only a small amount of endotoxin (150 EU/ml) that will be easily removed by purification. The transgenic wheat lines express functional scFv at levels comparable to production in bacteria and promise to be superior to bacteria for production of scFv pharmaceuticals for ocular use.
Collapse
Affiliation(s)
- Helen M Brereton
- Department of Ophthalmology, Flinders University, Adelaide, SA 5042, Australia.
| | | | | | | | | | | | | |
Collapse
|
97
|
Liénard D, Sourrouille C, Gomord V, Faye L. Pharming and transgenic plants. BIOTECHNOLOGY ANNUAL REVIEW 2007; 13:115-47. [PMID: 17875476 DOI: 10.1016/s1387-2656(07)13006-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Plant represented the essence of pharmacopoeia until the beginning of the 19th century when plant-derived pharmaceuticals were partly supplanted by drugs produced by the industrial methods of chemical synthesis. In the last decades, genetic engineering has offered an alternative to chemical synthesis, using bacteria, yeasts and animal cells as factories for the production of therapeutic proteins. More recently, molecular farming has rapidly pushed towards plants among the major players in recombinant protein production systems. Indeed, therapeutic protein production is safe and extremely cost-effective in plants. Unlike microbial fermentation, plants are capable of carrying out post-translational modifications and, unlike production systems based on mammalian cell cultures, plants are devoid of human infective viruses and prions. Furthermore, a large panel of strategies and new plant expression systems are currently developed to improve the plant-made pharmaceutical's yields and quality. Recent advances in the control of post-translational maturations in transgenic plants will allow them, in the near future, to perform human-like maturations on recombinant proteins and, hence, make plant expression systems suitable alternatives to animal cell factories.
Collapse
Affiliation(s)
- David Liénard
- Université de Rouen, CNRS UMR 6037, IFRMP 23, GDR 2590, Faculté des Sciences, Bât. Ext. Biologie, 76821 Mont-Saint-Aignan cedex, France
| | | | | | | |
Collapse
|
98
|
Takaiwa F, Takagi H, Hirose S, Wakasa Y. Endosperm tissue is good production platform for artificial recombinant proteins in transgenic rice. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:84-92. [PMID: 17207259 DOI: 10.1111/j.1467-7652.2006.00220.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Transgenic rice plants expressing 7Crp peptide were generated by Agrobacterium-mediated transformation. The 7Crp peptide is the hybrid peptide of seven major human T-cell epitopes derived from Japanese cedar pollen allergens Cry j 1 and Cry j 2. When the 7Crp gene was expressed under the control of the rice AGPase large subunit or maize ubiquitin-1 promoters, it could only be detected in the endosperm of rice seed, although high levels of RNA transcript were observed in the leaf, stem, and seed embryo. It was demonstrated by confocal and electron microscopy analysis that the 7Crp peptide was mainly localized in the endoplasmic reticulum-derived protein bodies, designated protein body I (PB-I). Our results indicate that rice endosperm tissue has advantage over other tissues as a production platform for foreign recombinant proteins.
Collapse
Affiliation(s)
- Fumio Takaiwa
- Transgenic Crop Research and Development Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba Ibaraki 305-8602, Japan.
| | | | | | | |
Collapse
|
99
|
Galeffi P, Lombardi A, Pietraforte I, Novelli F, Di Donato M, Sperandei M, Tornambé A, Fraioli R, Martayan A, Natali PG, Benevolo M, Mottolese M, Ylera F, Cantale C, Giacomini P. Functional expression of a single-chain antibody to ErbB-2 in plants and cell-free systems. J Transl Med 2006; 4:39. [PMID: 17010186 PMCID: PMC1592514 DOI: 10.1186/1479-5876-4-39] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 09/29/2006] [Indexed: 12/03/2022] Open
Abstract
Background Aberrant signaling by ErbB-2 (HER 2, Neu), a member of the human Epidermal Growth Factor (EGF) receptor family, is associated with an aggressive clinical behaviour of carcinomas, particularly breast tumors. Antibodies targeting the ErbB-2 pathway are a preferred therapeutic option for patients with advanced breast cancer, but a worldwide deficit in the manufacturing capacities of mammalian cell bioreactors is foreseen. Methods Herein, we describe a multi-platform approach for the production of recombinant Single chain Fragments of antibody variable regions (ScFvs) to ErbB-2 that involves their functional expression in (a) bacteria, (b) transient as well as stable transgenic tobacco plants, and (c) a newly developed cell-free transcription-translation system. Results An ScFv (ScFv800E6) was selected by cloning immunoglobulin sequences from murine hybridomas, and was expressed and fully functional in all the expression platforms, thereby representing the first ScFv to ErbB-2 produced in hosts other than bacteria and yeast. ScFv800E6 was optimized with respect to redox synthesis conditions. Different tags were introduced flanking the ScFv800E6 backbone, with and without spacer arms, including a novel Strep II tag that outperforms conventional streptavidin-based detection systems. ScFv800E6 was resistant to standard chemical radiolabeling procedures (i.e. Chloramine T), displayed a binding ability extremely similar to that of the parental monovalent Fab' fragment, as well as a flow cytometry performance and an equilibrium binding affinity (Ka approximately 2 × 108 M-1) only slightly lower than those of the parental bivalent antibody, suggesting that its binding site is conserved as compared to that of the parental antibody molecule. ScFv800E6 was found to be compatible with routine reagents for immunohistochemical staining. Conclusion ScFv800E6 is a useful reagent for in vitro biochemical and immunodiagnostic applications in oncology, and a candidate for future in vivo studies.
Collapse
Affiliation(s)
- Patrizia Galeffi
- ENEA BIOTEC-GEN, CR Casaccia Via Anguillarese 301, 00060 Rome, Italy
| | - Alessio Lombardi
- ENEA BIOTEC-GEN, CR Casaccia Via Anguillarese 301, 00060 Rome, Italy
| | - Immacolata Pietraforte
- ENEA BIOTEC-GEN, CR Casaccia Via Anguillarese 301, 00060 Rome, Italy
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Novelli
- ENEA BIOTEC-GEN, CR Casaccia Via Anguillarese 301, 00060 Rome, Italy
| | - Monica Di Donato
- ENEA BIOTEC-GEN, CR Casaccia Via Anguillarese 301, 00060 Rome, Italy
| | - Maria Sperandei
- ENEA BIOTEC-GEN, CR Casaccia Via Anguillarese 301, 00060 Rome, Italy
| | - Andrea Tornambé
- ENEA BIOTEC-GEN, CR Casaccia Via Anguillarese 301, 00060 Rome, Italy
| | - Rocco Fraioli
- Laboratory of Immunology, Regina Elena Cancer Institute CRS, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | - Aline Martayan
- Laboratory of Immunology, Regina Elena Cancer Institute CRS, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | - Pier Giorgio Natali
- Laboratory of Immunology, Regina Elena Cancer Institute CRS, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | - Maria Benevolo
- Laboratory of Pathology, Regina Elena Cancer Institute, Istituti Fisioterapici Ospitalieri, Via E. Chianesi 53, 00144 Rome, Italy
| | - Marcella Mottolese
- Laboratory of Pathology, Regina Elena Cancer Institute, Istituti Fisioterapici Ospitalieri, Via E. Chianesi 53, 00144 Rome, Italy
| | - Francisco Ylera
- Roche Diagnostics GmbH, Nonnenwald 2, D-82372 Penzberg, Germany
| | - Cristina Cantale
- ENEA BIOTEC-GEN, CR Casaccia Via Anguillarese 301, 00060 Rome, Italy
| | - Patrizio Giacomini
- Laboratory of Immunology, Regina Elena Cancer Institute CRS, Via delle Messi d'Oro 156, 00158 Rome, Italy
| |
Collapse
|
100
|
Rajabi-Memari H, Jalali-Javaran M, Rasaee MJ, Rahbarizadeh F, Forouzandeh-Moghadam M, Esmaili A. Expression and characterization of a recombinant single-domain monoclonal antibody against MUC1 mucin in tobacco plants. Hybridoma (Larchmt) 2006; 25:209-15. [PMID: 16934017 DOI: 10.1089/hyb.2006.25.209] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A promising alternative to conventional antibodies is the single-domain antibody fragment of the Camelidae (V(HH)), which (because of features such as small length, high expression, solubility, and stability) is preferred to other antibody derivatives. In this report, a recombinant single-domain antibody (V(HH)) against MUC1 mucin in the tobacco plant, which may be considered as a suitable and economical alternative expression system, was produced. This antibody was expressed under the control of a strong constitutive promoter, CaMV35S, and NOS terminator. A plant high-expression sequence (Kozak sequence) was linked at the 5' end for overexpression of the V(HH) gene. The constructed cassette (pBIV(HH)) was transferred to agrobacterium, and the VHH gene was inserted into the plant genome by agrobacterium-mediated transformation. Transgenic lines were selected on kanamycin (100 mg/L) and maintained in soil, and subsequent generations were obtained. The presence and expression of the transgene was confirmed in the transformants by polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA), and Western blot. Tobacco transgenic lines leave expressed V(HH) at levels varying from 1.12% to 1.63% of the total soluble protein. This report examines the transformation and expression of recombinant single-domain antibody (V(HH)) against antigen-associated tumor in tobacco plants.
Collapse
Affiliation(s)
- H Rajabi-Memari
- Department of Plant Breeding, School of Agriculture, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|