51
|
HAN JL, CHEN QH, ZOU MY, LU Y, WEI M, LI C, WANG CJ, HUANG LJ, WANG ZF. Separation and Purification of Sialylglycopeptide from Egg Yolk Based on Cotton Hydrophilic Chromatography. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(19)61209-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
52
|
Fabijanczuk K, Gaspar K, Desai N, Lee J, Thomas DA, Beauchamp JL, Gao J. Resin and Magnetic Nanoparticle-Based Free Radical Probes for Glycan Capture, Isolation, and Structural Characterization. Anal Chem 2019; 91:15387-15396. [PMID: 31718152 DOI: 10.1021/acs.analchem.9b01303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
By combining the merits of solid supports and free radical activated glycan sequencing (FRAGS) reagents, we develop a multifunctional solid-supported free radical probe (SS-FRAGS) that enables glycan enrichment and characterization. SS-FRAGS comprises a solid support, free radical precursor, disulfide bond, pyridyl, and hydrazine moieties. Thio-activated resin and magnetic nanoparticles (MNPs) are chosen as the solid support to selectively capture free glycans via the hydrazine moiety, allowing for their enrichment and isolation. The disulfide bond acts as a temporary covalent linkage between the solid support and the captured glycan, allowing the release of glycans via the cleavage of the disulfide bond by dithiothreitol. The basic pyridyl functional group provides a site for the formation of a fixed charge, enabling detection by mass spectrometry and avoiding glycan rearrangement during collisional activation. The free radical precursor generates a nascent free radical upon collisional activation and thus simultaneously induces systematic and predictable fragmentation for glycan structure elucidation. A radical-driven glycan deconstruction diagram (R-DECON) is developed to visually summarize the MS2 results and thus allow for the assembly of the glycan skeleton, making the differentiation of isobaric glycan isomers unambiguous. For application to a real-world sample, we demonstrate the efficacy of the SS-FRAGS by analyzing glycan structures enzymatically cleaved from RNase-B.
Collapse
Affiliation(s)
- Kimberly Fabijanczuk
- Department of Chemistry and Biochemistry and Center for Quantitative Obesity Research , Montclair State University , Montclair , New Jersey 07043 , United States
| | - Kaylee Gaspar
- Department of Chemistry and Biochemistry and Center for Quantitative Obesity Research , Montclair State University , Montclair , New Jersey 07043 , United States
| | - Nikunj Desai
- Department of Chemistry and Biochemistry and Center for Quantitative Obesity Research , Montclair State University , Montclair , New Jersey 07043 , United States
| | - Jungeun Lee
- Department of Chemistry and Biochemistry and Center for Quantitative Obesity Research , Montclair State University , Montclair , New Jersey 07043 , United States
| | - Daniel A Thomas
- Arthur Amos Noyes Laboratory of Chemical Physics , California Institute of Technology , Pasadena , California 91125 , United States
| | - J L Beauchamp
- Arthur Amos Noyes Laboratory of Chemical Physics , California Institute of Technology , Pasadena , California 91125 , United States
| | - Jinshan Gao
- Department of Chemistry and Biochemistry and Center for Quantitative Obesity Research , Montclair State University , Montclair , New Jersey 07043 , United States
| |
Collapse
|
53
|
van Leeuwen SS. Challenges and Pitfalls in Human Milk Oligosaccharide Analysis. Nutrients 2019; 11:E2684. [PMID: 31698698 PMCID: PMC6893418 DOI: 10.3390/nu11112684] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/29/2019] [Accepted: 11/02/2019] [Indexed: 01/08/2023] Open
Abstract
Human milk oligosaccharides have been recognized as an important, functional biomolecule in mothers' milk. Moreover, these oligosaccharides have been recognized as the third most abundant component of human milk, ranging from 10-15 g/L in mature milk and up to and over 20 g/L reported in colostrum. Initially, health benefits of human milk oligosaccharides were assigned via observational studies on the differences between breastfed and bottle fed infants. Later, pools of milk oligosaccharides were isolated and used in functional studies and in recent years more specific studies into structure-function relationships have identified some advanced roles for milk oligosaccharides in the healthy development of infants. In other research, the levels, diversity, and complexity of human milk oligosaccharides have been studied, showing a wide variation in results. This review gives a critical overview of challenges in the analysis of human milk oligosaccharides. In view of the myriad functions that can be assigned, often to specific structures or classes of structures, it is very relevant to assess the levels of these structures in the human milk correctly, as well as in other biological sample materials. Ultimately, the review makes a case for a comparative, inter-laboratory study on quantitative human milk oligosaccharide analysis in all relevant biological samples.
Collapse
Affiliation(s)
- Sander S van Leeuwen
- Department of Laboratory Medicine, Cluster Human Nutrition & Health, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
54
|
Zhou J, Gao H, Xie W, Li Y. FcγR-binding affinity of monoclonal murine IgG1s carrying different N-linked Fc oligosaccharides. Biochem Biophys Res Commun 2019; 520:8-13. [DOI: 10.1016/j.bbrc.2019.09.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 09/17/2019] [Indexed: 12/23/2022]
|
55
|
Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection. Nat Microbiol 2019; 4:2146-2154. [PMID: 31611643 PMCID: PMC7157942 DOI: 10.1038/s41564-019-0581-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/09/2019] [Indexed: 12/17/2022]
Abstract
A slimy, hydrated mucus gel lines all wet epithelia in the human body, including the eyes, lungs, and gastrointestinal and urogenital tracts. Mucus forms the first line of defence while housing trillions of microorganisms that constitute the microbiota1. Rarely do these microorganisms cause infections in healthy mucus1, suggesting that mechanisms exist in the mucus layer that regulate virulence. Using the bacterium Pseudomonas aeruginosa and a three-dimensional (3D) laboratory model of native mucus, we determined that exposure to mucus triggers downregulation of virulence genes that are involved in quorum sensing, siderophore biosynthesis and toxin secretion, and rapidly disintegrates biofilms-a hallmark of mucosal infections. This phenotypic switch is triggered by mucins, which are polymers that are densely grafted with O-linked glycans that form the 3D scaffold inside mucus. Here, we show that isolated mucins act at various scales, suppressing distinct virulence pathways, promoting a planktonic lifestyle, reducing cytotoxicity to human epithelia in vitro and attenuating infection in a porcine burn model. Other viscous polymer solutions lack the same effect, indicating that the regulatory function of mucin does not result from its polymeric structure alone. We identify that interactions with P. aeruginosa are mediated by mucin-associated glycans (mucin glycans). By isolating glycans from the mucin backbone, we assessed the collective activity of hundreds of complex structures in solution. Similar to their grafted counterparts, free mucin glycans potently regulate bacterial phenotypes even at relatively low concentrations. This regulatory function is likely dependent on glycan complexity, as monosaccharides do not attenuate virulence. Thus, mucin glycans are potent host signals that 'tame' microorganisms, rendering them less harmful to the host.
Collapse
|
56
|
MacMillan JL, Vicaretti SD, Noyovitz B, Xing X, Low KE, Inglis GD, Zaytsoff SJ, Boraston AB, Smith SP, Uwiera RR, Selinger LB, Zandberg WF, Abbott DW. Structural analysis of broiler chicken small intestinal mucin O-glycan modification by Clostridium perfringens. Poult Sci 2019; 98:5074-5088. [DOI: 10.3382/ps/pez297] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
|
57
|
Niu H, Li X, Peng J, Zhang H, Zhao X, Zhou X, Yu D, Liu X, Wu R. The efficient profiling of serum N-linked glycans by a highly porous 3D graphene composite. Analyst 2019; 144:5261-5270. [PMID: 31364612 DOI: 10.1039/c9an01119f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, an enrichment approach for the profiling of N-linked glycans was developed by utilizing a highly porous 3D graphene composite fabricated from graphene oxide nanosheets and a phenol-formaldehyde polymer via graphitization and KOH activation. In tailoring the large surface area (ca. 2213 m2 g-1) and 3D-layered mesoporous structure, the 3D graphene composite demonstrated not only high efficiency in glycan enrichment but also the size-exclusion effect against residual protein interference. For a standard protein ovalbumin digest, 26 N-linked glycans were identified with good repeatability, and the detection limit was as low as 0.25 ng μL-1 with the identification of 13 N-linked glycans (S/N > 10). When the mass ratio of the ovalbumin digest to the interfering proteins, i.e., bovine serum albumin and ovalbumin was 1 : 2000 : 2000, 18 N-linked glycans could still be detected with sufficient signal intensities. From a 60 nL minute complex human serum sample, up to 53 N-linked glycans with S/N > 10 were identified after the 3D graphene enrichment, while only 20 N-linked glycans were identified by the porous graphitized carbon material used for comparison. In addition, the application of the 3D graphene composite in profiling the up-regulated and down-regulated N-linked glycans from the real clinical serum samples of ovarian cancer patients confirmed the potential of the 3D graphene composite for analyzing minute and complicated biological samples.
Collapse
Affiliation(s)
- Huan Niu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China. and The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China. and The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxi Peng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China. and The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyan Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China. and The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyun Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China. and The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China. and The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongping Yu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China. and The University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.
| | - Ren'an Wu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.
| |
Collapse
|
58
|
Link-Lenczowski P, Jastrzębska M, Chwalenia K, Pierzchalska M, Leja-Szpak A, Bonior J, Pierzchalski P, Jaworek J. A switch of N-glycosylation of proteome and secretome during differentiation of intestinal epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118555. [PMID: 31499077 DOI: 10.1016/j.bbamcr.2019.118555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022]
Abstract
The maintenance of homeostasis of the intestinal epithelium depends on the complex process of epithelial cells differentiation, which repeatedly continues throughout the entire life. Many studies suggest, that cellular differentiation is regulated by glycosylation, or at least that changes of the latter are the hallmark of the process. The detailed description and understanding of this relationship are important in the context of gastrointestinal tract disease, including cancer. Here we employ a broadly used in vitro model of intestinal cell differentiation to track the glycosylation changes in details. We analyzed the glycoproteome- and glycosecretome-derived N-glycomes of undifferentiated Caco-2 adenocarcinoma cells and Caco-2-derived enterocyte-like cells. We used HILIC-HPLC and MALDI-ToF-MS approach together with exoglycosidases digestions to describe qualitative and quantitative N-glycosylation changes upon differentiation. Derived glycan traits analysis revealed, that differentiation results in substantial upregulation of sialylation of glycoproteome and increment of fucosylation within glycosecretome. This was also clearly visible when we analyzed the abundances of individual glycan species. Moreover, we observed the characteristic shift within oligomannose N-glycans, suggesting the augmentation of mannose trimming, resulting in downregulation of H8N2 and upregulation of H5N2 glycan. This was supported by elevated expression of Golgi alpha-mannosidases (especially MAN1C1). We hypothesize, that intensified mannose trimming at the initial steps of N-glycosylation pathway during differentiation, together with the remodeling of the expression of key glycosyltransferases leads to increased diversity of N-glycans and enhanced fucosylation and sialylation of complex structures. Finally, we propose H4N5F1 glycan as a potential biomarker of intestinal epithelial cell differentiation.
Collapse
Affiliation(s)
- Paweł Link-Lenczowski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland.
| | - Martyna Jastrzębska
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Chwalenia
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland; Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Małgorzata Pierzchalska
- Department of Food Biotechnology, Faculty of Food Technology, The University of Agriculture in Kraków, Kraków, Poland
| | - Anna Leja-Szpak
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Bonior
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Piotr Pierzchalski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Jolanta Jaworek
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
59
|
Kim J, Lee J, Jang Y, Ha J, Kim D, Ji M, Lee YK, Kim W, You S, Do J, Ryu C, Kim HH. N-glycans of bovine submaxillary mucin contain core-fucosylated and sulfated glycans but not sialylated glycans. Int J Biol Macromol 2019; 138:1072-1078. [PMID: 31325506 DOI: 10.1016/j.ijbiomac.2019.07.108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/21/2019] [Accepted: 07/17/2019] [Indexed: 12/15/2022]
Abstract
Bovine submaxillary mucin (BSM) is a heavily-glycosylated macromolecular (approximately 4 MDa) protein and is used in various biomaterial applications in light of its high viscosity and biocompatibility, in addition to use as a biochemical substrate or inhibitor as a result of its abundant O-glycans. Although it has been reported that N-glycosylation provides stability of human mucins, most BSM research has been focused on its O-glycans, while N-glycans have not been reported to date. In this study, a common N-glycan core component was detected by monosaccharide analysis of BSM, and the structures of the N-glycans and their relative quantities were determined by liquid chromatography-tandem mass spectrometry. Seventeen N-glycans comprising ten complex-type [Fucose0~2Hexose3~4N-acetylhexosamine1~6Sulfate0~1; 61.1% (the sum of the relative quantities of each N-glycan out of the total N-glycans)], two high-mannose-type (Hexose5~6N-acetylhexosamine2; 12.0%), and five paucimannose type (Fucose0~1Hexose3~4N-acetylhexosamine2~3; 26.9%) were identified, but no hybrid-type or sialylated N-glycans were found. Additionally, these are less-branched structures compared to human mucins. Of these, ten glycans (77.2%), including two sulfated glycans (8.0%), were core fucosylated, which confer unique biological functions to glycoproteins. The N-glycosylation sites were identified from the analysis of glycopeptides from BSM. This study is the first confirmation of N-glycan attachment to BSM.
Collapse
Affiliation(s)
- Jihye Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Junmyoung Lee
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Yeonjoo Jang
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Jongkwan Ha
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Donghwi Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Minkyoo Ji
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Young Kwang Lee
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Wooseok Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Seungkwan You
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Jonghye Do
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Changsoo Ryu
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, South Korea.
| |
Collapse
|
60
|
Gomes RA, Almeida C, Correia C, Guerreiro A, Simplício AL, Abreu IA, Alves PG. Exploring the analytical power of the QTOF MS platform to assess monoclonal antibodies quality attributes. PLoS One 2019; 14:e0219156. [PMID: 31291294 PMCID: PMC6619757 DOI: 10.1371/journal.pone.0219156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022] Open
Abstract
The biopharmaceutical industry is growing at a fast pace, making nowadays 20% of the pharma market. Within this market, therapeutic monoclonal antibodies (mAbs) are the dominant product class. With the patent expirations, biosimilars and, perhaps more relevant, biobetters, are in fast development. Thus, a comprehensive characterization at the molecular level of antibodies heterogeneity such as glycoforms, post-translational modifications (PTMs) and sequence variations is of utmost importance. Mass spectrometry (MS)-based approaches are undoubtedly the most powerful analytical strategies to monitor and define an array of critical quality attributes on mAbs. In this work, we demonstrate the analytical power of the Q-TOF MS platform for comprehensive and detailed analysis at molecular levels of an in-house produced mAb. This methodology involves minimal sample preparation procedures and provides an extensive collection of valuable data in a short period of time.
Collapse
Affiliation(s)
| | | | | | - Ana Guerreiro
- UniMS – Mass Spectrometry Unit, ITQB/IBET, Oeiras, Portugal
| | | | | | | |
Collapse
|
61
|
Martins GN, Ureta MM, Tymczyszyn EE, Castilho PC, Gomez-Zavaglia A. Technological Aspects of the Production of Fructo and Galacto-Oligosaccharides. Enzymatic Synthesis and Hydrolysis. Front Nutr 2019; 6:78. [PMID: 31214595 PMCID: PMC6554340 DOI: 10.3389/fnut.2019.00078] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022] Open
Abstract
Fructo- and galacto-oligosaccharides (FOS and GOS) are non-digestible oligosaccharides with prebiotic properties that can be incorporated into a wide number of products. This review details the general outlines for the production of FOS and GOS, both by enzymatic synthesis using disaccharides or other substrates, and by hydrolysis of polysaccharides. Special emphasis is laid on technological aspects, raw materials, properties, and applications.
Collapse
Affiliation(s)
- Gonçalo N. Martins
- Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Funchal, Portugal
| | - Maria Micaela Ureta
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| | - E. Elizabeth Tymczyszyn
- Laboratorio de Microbiología Molecular, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Paula C. Castilho
- Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, Funchal, Portugal
| | - Andrea Gomez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata, Argentina
| |
Collapse
|
62
|
Valk-Weeber RL, Dijkhuizen L, van Leeuwen SS. Large-scale quantitative isolation of pure protein N-linked glycans. Carbohydr Res 2019; 479:13-22. [PMID: 31100702 DOI: 10.1016/j.carres.2019.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023]
Abstract
Glycoproteins are biologically active proteins of which the attached glycans contribute to their biological functionality. Limited data is available on the functional properties of these N-glycans in isolation, without the protein core. Glycan release, typically performed with the PNGase F enzyme, is achieved on denatured proteins in the presence of detergents which are notoriously difficult to be completely removed. In this work we compared two methods aiming at recovering N-glycans in a high yield and at high purity from a PNGase F glycoprotein digest of bovine lactoferrin. Detergents were removed from the digest by two separate approaches. In the first approach, protein and glycans were precipitated with acetone and the detergent containing supernatant was discarded. In the second approach, detergent was removed by adsorption onto a polystyrene resin. Following detergent removal, the glycans were further purified by a sequence of solid phase extraction (SPE) steps. Both approaches for detergent removal yielded a final glycan purity above 85%. Recovery of the glycans from lactoferrin was, however, much lower when utilizing acetone precipitation versus the polystyrene resin; 52% versus 85% respectively. A more detailed analysis of the acetone precipitation step revealed a loss of shorter oligomannose structures specifically. A loss of glycans of lesser complexity (oligomannose and biantennary structures) was also observed for other glycoproteins (RNase B, porcine thyroglobulin, human lactoferrin). These results indicate that acetone precipitation, a commonly used step for small-scale glycan purification, is not suitable for all target glycoproteins. The polystyrene resin detergent removal step conserved the full N-glycan profile and could be applied to all mammalian glycoproteins tested. Using this optimized protocol, large-scale quantitative isolation of N-glycan structures was achieved with sufficient purity for functional studies.
Collapse
Affiliation(s)
- Rivca L Valk-Weeber
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Lubbert Dijkhuizen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| | - Sander S van Leeuwen
- Microbial Physiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
63
|
Jung JW, Choi HY, Huy NX, Park H, Kim HH, Yang MS, Kang SH, Kim DI, Kim NS. Production of recombinant human acid β-glucosidase with high mannose-type N-glycans in rice gnt1 mutant for potential treatment of Gaucher disease. Protein Expr Purif 2019; 158:81-88. [PMID: 30822514 DOI: 10.1016/j.pep.2019.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/28/2022]
Abstract
Gaucher disease is an inherited metabolic disease caused by genetic acid β -glucosidase (GBA) deficiency and is currently treated by enzyme replacement therapy. For uptake into macrophages, GBA needs to carry terminal mannose residues on their N-glycans. Knockout mutant rice of N-acetylglucosaminyltransferase-I (gnt1) have a disrupted N-glycan processing pathway and produce only glycoproteins with high mannose residues. In this study, we introduced a gene encoding recombinant human GBA into both wild-type rice (WT) and rice gnt1 calli. Target gene integration and mRNA expression were confirmed by genomic DNA PCR and Northern blotting, respectively. Secreted rhGBAs in culture media from cell lines originating from both WT (WT-GBA) and rice gnt1 (gnt1-GBA) were detected by Western blotting. Each rhGBA was purified by affinity and ion exchange chromatography. In vitro catalytic activity of purified rhGBA was comparable to commercial Chinese hamster ovary cell-derived rhGBA. N-glycans were isolated from WT-GBA and gnt1-GBA and analyzed by using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The amounts of high mannose-type N-glycans were highly elevated in gnt1-GBA (100%) compared to WT-GBA (1%).
Collapse
Affiliation(s)
- Jae-Wan Jung
- Department of Molecular Biology, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Hong-Yeol Choi
- Department of Biological Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - Nguyen-Xuan Huy
- Department of Molecular Biology, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do, 54896, Republic of Korea; Biology Department, University of Education, Hue University, 34 Le Loi, Hue, Viet Nam
| | - Heajin Park
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06944, Republic of Korea
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06944, Republic of Korea
| | - Moon-Sik Yang
- Department of Molecular Biology, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Seung-Hoon Kang
- Department of Biological Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - Dong-Il Kim
- Department of Biological Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea.
| | - Nan-Sun Kim
- Department of Molecular Biology, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do, 54896, Republic of Korea; National Institute of Horticultural & Herbal Science (NIHHS), Rural Development Administration (RDA), Wanju, Jeollabuk-do, 55365, Republic of Korea.
| |
Collapse
|
64
|
Nonomura Y, Sawamura S, Hanzawa K, Nishikaze T, Sekiya S, Higuchi T, Nin F, Uetsuka S, Inohara H, Okuda S, Miyoshi E, Horii A, Takahashi S, Natsuka S, Hibino H. Characterisation of N-glycans in the epithelial-like tissue of the rat cochlea. Sci Rep 2019; 9:1551. [PMID: 30733536 PMCID: PMC6367448 DOI: 10.1038/s41598-018-38079-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 12/17/2018] [Indexed: 01/08/2023] Open
Abstract
Membrane proteins (such as ion channels, transporters, and receptors) and secreted proteins are essential for cellular activities. N-linked glycosylation is involved in stability and function of these proteins and occurs at Asn residues. In several organs, profiles of N-glycans have been determined by comprehensive analyses. Nevertheless, the cochlea of the mammalian inner ear, a tiny organ mediating hearing, has yet to be examined. Here, we focused on the stria vascularis, an epithelial-like tissue in the cochlea, and characterised N-glycans by liquid chromatography with mass spectrometry. This hypervascular tissue not only expresses several ion transporters and channels to control the electrochemical balance in the cochlea but also harbours different transporters and receptors that maintain structure and activity of the organ. Seventy-nine N-linked glycans were identified in the rat stria vascularis. Among these, in 55 glycans, the complete structures were determined; in the other 24 species, partial glycosidic linkage patterns and full profiles of the monosaccharide composition were identified. In the process of characterisation, several sialylated glycans were subjected sequentially to two different alkylamidation reactions; this derivatisation helped to distinguish α2,3-linkage and α2,6-linkage sialyl isomers with mass spectrometry. These data should accelerate elucidation of the molecular architecture of the cochlea.
Collapse
Affiliation(s)
- Yoriko Nonomura
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Niigata University School of Medicine, Niigata, Japan
| | - Seishiro Sawamura
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan
| | - Ken Hanzawa
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan
| | - Takashi Nishikaze
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Sadanori Sekiya
- Koichi Tanaka Mass Spectrometry Research Laboratory, Shimadzu Corporation, Kyoto, Japan
| | - Taiga Higuchi
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan
| | - Fumiaki Nin
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan
| | - Satoru Uetsuka
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shujiro Okuda
- Bioinformatics Laboratory, Niigata University School of Medicine, Niigata, Japan
| | - Eiji Miyoshi
- Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Arata Horii
- Department of Otorhinolaryngology-Head and Neck Surgery, Niigata University School of Medicine, Niigata, Japan
| | - Sugata Takahashi
- Department of Otorhinolaryngology-Head and Neck Surgery, Niigata University School of Medicine, Niigata, Japan
| | - Shunji Natsuka
- Department of Biology, Faculty of Science, Niigata University, Niigata, Japan
| | - Hiroshi Hibino
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata, Japan.
- Center for Transdisciplinary Research, Niigata University, Niigata, Japan.
- AMED-CREST, AMED, Niigata, Japan.
| |
Collapse
|
65
|
Lu Y, Li C, Wei M, Jia Y, Song J, Zhang Y, Wang C, Huang L, Wang Z. Release, Separation, and Recovery of Monomeric Reducing N-Glycans with Pronase E Combined with 9-Chloromethyl Chloroformate and Glycosylasparaginase. Biochemistry 2019; 58:1120-1130. [PMID: 30661358 DOI: 10.1021/acs.biochem.8b01224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The glycan moiety of glycoproteins plays key roles in various biological processes. However, there are few versatile methods for releasing, separating, and recovering monomeric reducing N-glycans for further functional analysis. In this study, we developed a new method to achieve the release, separation, and recovery of monomeric reducing N-glycans using enzyme E (Pronase E) combined with 9-chloromethyl chloroformate (Fmoc-Cl) and glycosylasparaginase (GA). Ovalbumin, ribonuclease B, ginkgo, and pine nut glycoproteins were used as materials and sequentially enzymatically hydrolyzed with Pronase E, derivatized with Fmoc-Cl, and enzymatically hydrolyzed with GA. The products produced by this method were then detected by electrospray ionization mass spectrometry, high-performance liquid chromatography (HPLC), and online hydrophilic interaction chromatography (HILIC-MS) separation. The results showed that all N-glycans with essentially one amino acid obtained with Pronase E were labeled with Fmoc-Cl and could be efficiently separated and detected via HPLC and HILIC-MS. Finally, the isolated Asn-glycan derivatives were digested with GA, enabling the recovery of all monomeric reducing N-glycans modified by core α-1,3 fucose. This method was simple, inexpensive, and broadly applicable and could therefore be quite important for analysis of the structure-function relationships of glycans.
Collapse
Affiliation(s)
- Yu Lu
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Cheng Li
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Ming Wei
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Yue Jia
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Jingjing Song
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Ying Zhang
- The College of Life Sciences , Northwest University , Xi'an 710069 , China
| | - Chengjian Wang
- The College of Life Sciences , Northwest University , Xi'an 710069 , China.,Glycobiology and Glycotechnology Research Center, College of Food Science and Technology , Northwest University , Xi'an 710069 , China
| | - Linjuan Huang
- The College of Life Sciences , Northwest University , Xi'an 710069 , China.,Glycobiology and Glycotechnology Research Center, College of Food Science and Technology , Northwest University , Xi'an 710069 , China
| | - Zhongfu Wang
- The College of Life Sciences , Northwest University , Xi'an 710069 , China.,Glycobiology and Glycotechnology Research Center, College of Food Science and Technology , Northwest University , Xi'an 710069 , China
| |
Collapse
|
66
|
Geronimo I, Ntarima P, Piens K, Gudmundsson M, Hansson H, Sandgren M, Payne CM. Kinetic and molecular dynamics study of inhibition and transglycosylation in Hypocrea jecorina family 3 β-glucosidases. J Biol Chem 2019; 294:3169-3180. [PMID: 30602567 DOI: 10.1074/jbc.ra118.007027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Indexed: 01/09/2023] Open
Abstract
β-Glucosidases enhance enzymatic biomass conversion by relieving cellobiose inhibition of endoglucanases and cellobiohydrolases. However, the susceptibility of these enzymes to inhibition and transglycosylation at high glucose or cellobiose concentrations severely limits their activity and, consequently, the overall efficiency of enzyme mixtures. We determined the impact of these two processes on the hydrolytic activity of the industrially relevant family 3 β-glucosidases from Hypocrea jecorina, HjCel3A and HjCel3B, and investigated the underlying molecular mechanisms through kinetic studies, binding free energy calculations, and molecular dynamics (MD) simulations. HjCel3B had a 7-fold higher specificity for cellobiose than HjCel3A but greater tendency for glucose inhibition. Energy decomposition analysis indicated that cellobiose has relatively weak electrostatic interactions with binding site residues, allowing it to be easily displaced by glucose and free to inhibit other hydrolytic enzymes. HjCel3A is, thus, preferable as an industrial β-glucosidase despite its lower activity caused by transglycosylation. This competing pathway to hydrolysis arises from binding of glucose or cellobiose at the product site after formation of the glycosyl-enzyme intermediate. MD simulations revealed that binding is facilitated by hydrophobic interactions with Trp-37, Phe-260, and Tyr-443. Targeting these aromatic residues for mutation to reduce substrate affinity at the product site would therefore potentially mitigate transglycosidic activity. Engineering improved variants of HjCel3A and other structurally similar β-glucosidases would have a significant economic effect on enzymatic biomass conversion in terms of yield and production cost as the process can be consequently conducted at higher substrate loadings.
Collapse
Affiliation(s)
- Inacrist Geronimo
- From the Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046
| | - Patricia Ntarima
- the Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium, and
| | - Kathleen Piens
- the Department of Biochemistry and Microbiology, Ghent University, Ghent 9000, Belgium, and
| | - Mikael Gudmundsson
- the Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 750 07 Uppsala, Sweden
| | - Henrik Hansson
- the Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 750 07 Uppsala, Sweden
| | - Mats Sandgren
- the Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 750 07 Uppsala, Sweden
| | - Christina M Payne
- From the Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506-0046, .,the Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 750 07 Uppsala, Sweden
| |
Collapse
|
67
|
Xu H, Ding A, Chen S, Marowa P, Wang D, Chen M, Hu R, Kong Y, O’Neill M, Chai G, Zhou G. Genome-Wide Analysis of Sorghum GT47 Family Reveals Functional Divergences of MUR3-Like Genes. FRONTIERS IN PLANT SCIENCE 2018; 9:1773. [PMID: 30619385 PMCID: PMC6302003 DOI: 10.3389/fpls.2018.01773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/15/2018] [Indexed: 05/13/2023]
Abstract
Sorghum (Sorghum bicolor) is an important bioenergy crop. Its biomass mainly consists of the cellulosic and non-cellulosic polysaccharides, both which can be converted to biofuels. The biosynthesis of non-cellulosic polysaccharides involves several glycosyltransferases (GT) families including GT47. However, there was no systemic study on GT47 family in sorghum to date. Here, we identified 39 sorghum GT47 family members and showed the functional divergences of MURUS3 (MUR3) homologs. Sorghum GT47 proteins were phylogenetically clustered into four distinct subfamilies. Within each subfamily, gene structure was relatively conserved between the members. Ten gene pairs were identified from the 39 GT47 genes, of which two pairs might be originated from tandem duplication. 25.6% (10/39) of sorghum GT47 genes were homologous to Arabidopsis MUR3, a xyloglucan biosynthesis gene in primary cell walls. SbGT47_2, SbGT47_7, and SbGT47_8, three most homologous genes of MUR3, exhibited different tissue expression patterns and were selected for complementation into Arabidopsis mur3-3. Physiological and cell wall analyses showed that SbGT47_2 and SbGT47_7 may be two functional xyloglucan galactosyltransferases in sorghum. Further studies found that MUR3-like genes are widely present in the seed plants but not in the chlorophytic alga Chlamydomonas reinhardtii. Our results provide novel information for evolutionary analysis and functional dissection of sorghum GT47 family members.
Collapse
Affiliation(s)
- Hua Xu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Anming Ding
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Sihui Chen
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Prince Marowa
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Dian Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Ruibo Hu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yingzhen Kong
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Malcolm O’Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Guohua Chai
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Gongke Zhou
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
68
|
Sechet J, Htwe S, Urbanowicz B, Agyeman A, Feng W, Ishikawa T, Colomes M, Kumar KS, Kawai‐Yamada M, Dinneny JR, O'Neill MA, Mortimer JC. Suppression of Arabidopsis GGLT1 affects growth by reducing the L-galactose content and borate cross-linking of rhamnogalacturonan-II. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1036-1050. [PMID: 30203879 PMCID: PMC6263843 DOI: 10.1111/tpj.14088] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 05/16/2023]
Abstract
Boron is a micronutrient that is required for the normal growth and development of vascular plants, but its precise functions remain a subject of debate. One established role for boron is in the cell wall where it forms a diester cross-link between two monomers of the low-abundance pectic polysaccharide rhamnogalacturonan-II (RG-II). The inability of RG-II to properly assemble into a dimer results in the formation of cell walls with abnormal biochemical and biomechanical properties and has a severe impact on plant productivity. Here we describe the effects on RG-II structure and cross-linking and on the growth of plants in which the expression of a GDP-sugar transporter (GONST3/GGLT1) has been reduced. In the GGLT1-silenced plants the amount of L-galactose in side-chain A of RG-II is reduced by up to 50%. This leads to a reduction in the extent of RG-II cross-linking in the cell walls as well as a reduction in the stability of the dimer in the presence of calcium chelators. The silenced plants have a dwarf phenotype, which is rescued by growth in the presence of increased amounts of boric acid. Similar to the mur1 mutant, which also disrupts RG-II cross-linking, GGLT1-silenced plants display a loss of cell wall integrity under salt stress. We conclude that GGLT1 is probably the primary Golgi GDP-L-galactose transporter, and provides GDP-L-galactose for RG-II biosynthesis. We propose that the L-galactose residue is critical for RG-II dimerization and for the stability of the borate cross-link.
Collapse
Affiliation(s)
- Julien Sechet
- Joint BioEnergy InstituteEmeryvilleCA94608USA
- Biosciences AreaLawrence Berkeley National LaboratoryBerkeleyCA94720USA
- Present address:
INRAVersailles78000France
| | - Soe Htwe
- Joint BioEnergy InstituteEmeryvilleCA94608USA
- Biosciences AreaLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Breeanna Urbanowicz
- Complex Carbohydrate Research CenterThe University of GeorgiaAthensGA30602USA
| | - Abigail Agyeman
- Complex Carbohydrate Research CenterThe University of GeorgiaAthensGA30602USA
- Present address:
School of PharmacySouth UniversitySavannahGA31406USA
| | - Wei Feng
- Department of Plant BiologyCarnegie Institute for ScienceStanfordCA94305USA
| | - Toshiki Ishikawa
- Graduate School of Science and EngineeringSaitama UniversitySaitama338‐8570Japan
| | - Marianne Colomes
- Joint BioEnergy InstituteEmeryvilleCA94608USA
- Biosciences AreaLawrence Berkeley National LaboratoryBerkeleyCA94720USA
- Present address:
NutribioParis75440France
| | - Kavitha Satish Kumar
- Joint BioEnergy InstituteEmeryvilleCA94608USA
- Biosciences AreaLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Maki Kawai‐Yamada
- Graduate School of Science and EngineeringSaitama UniversitySaitama338‐8570Japan
| | - José R. Dinneny
- Department of Plant BiologyCarnegie Institute for ScienceStanfordCA94305USA
- Department of BiologyStanford UniversityStanfordCA94305USA
| | - Malcolm A. O'Neill
- Complex Carbohydrate Research CenterThe University of GeorgiaAthensGA30602USA
| | - Jenny C. Mortimer
- Joint BioEnergy InstituteEmeryvilleCA94608USA
- Biosciences AreaLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| |
Collapse
|
69
|
Boleij M, Pabst M, Neu TR, van Loosdrecht MCM, Lin Y. Identification of Glycoproteins Isolated from Extracellular Polymeric Substances of Full-Scale Anammox Granular Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13127-13135. [PMID: 30335377 PMCID: PMC6256349 DOI: 10.1021/acs.est.8b03180] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 05/22/2023]
Abstract
ANaerobic AMMonium OXidation (anammox) is an established process for efficient nitrogen removal from wastewater, relying on anammox bacteria to form stable biofilms or granules. To understand the formation, structure, and stability of anammox granules, it is important to determine the composition of the extracellular polymeric substances (EPS). The aim of this research was to elucidate the nature of the proteins, which are the major fraction of the EPS and were suspected to be glycosylated. EPS were extracted from full-scale anammox granular sludge, dominated by " Candidatus Brocadia", and subjected to denaturing polyacrylamide gel electrophoresis. By further analysis with mass spectrometry, a high abundant glycoprotein, carrying a heterogeneous O-glycan structure, was identified. The potential glycosylation sequence motif was identical to that proposed for the surface layer protein of " Candidatus Kuenenia stuttgartiensis". The heavily glycosylated protein forms a large fraction of the EPS and was also located by lectin staining. Therefore, we hypothesize an important role of glycoproteins in the structuring of anammox granules, comparable to the importance of glycans in the extracellular matrix of multicellular organisms. Furthermore, different glycoconjugates may have distinct roles in the matrix of granular sludge, which requires more in-depth characterization of different glycoconjugates in future EPS studies.
Collapse
Affiliation(s)
- Marissa Boleij
- Department of Biotechnology , Delft University of Technology , van der Maasweg 9 , 2629 HZ , Delft , The Netherlands
| | - Martin Pabst
- Department of Biotechnology , Delft University of Technology , van der Maasweg 9 , 2629 HZ , Delft , The Netherlands
| | - Thomas R Neu
- Department of River Ecology , Helmholtz Centre for Environmental Research - UFZ , Brueckstrasse 3A , 39114 Magdeburg , Germany
| | - Mark C M van Loosdrecht
- Department of Biotechnology , Delft University of Technology , van der Maasweg 9 , 2629 HZ , Delft , The Netherlands
| | - Yuemei Lin
- Department of Biotechnology , Delft University of Technology , van der Maasweg 9 , 2629 HZ , Delft , The Netherlands
| |
Collapse
|
70
|
Choi HY, Park H, Hong JK, Kim SD, Kwon JY, You S, Do J, Lee DY, Kim HH, Kim DI. N-glycan Remodeling Using Mannosidase Inhibitors to Increase High-mannose Glycans on Acid α-Glucosidase in Transgenic Rice Cell Cultures. Sci Rep 2018; 8:16130. [PMID: 30382146 PMCID: PMC6208381 DOI: 10.1038/s41598-018-34438-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/11/2018] [Indexed: 11/09/2022] Open
Abstract
Glycoengineering of plant expression systems is a prerequisite for the production of biopharmaceuticals that are compatible with animal-derived glycoproteins. Large amounts of high-mannose glycans such as Man7GlcNAc2, Man8GlcNAc2, and Man9GlcNAc2 (Man7/8/9), which can be favorably modified by chemical conjugation of mannose-6-phosphate, are desirable for lysosomal enzyme targeting. This study proposed a rice cell-based glycoengineering strategy using two different mannosidase inhibitors, kifunensine (KIF) and swainsonine (SWA), to increase Man7/8/9 glycoforms of recombinant human acid α-glucosidase (rhGAA), which is a therapeutic enzyme for Pompe disease. Response surface methodology was used to investigate the effects of the mannosidase inhibitors and to evaluate the synergistic effect of glycoengineering on rhGAA. Both inhibitors suppressed formation of plant-specific complex and paucimannose type N-glycans. SWA increased hybrid type glycans while KIF significantly increased Man7/8/9. Interestingly, the combination of KIF and SWA more effectively enhanced synthesis of Man7/8/9, especially Man9, than KIF alone. These changes show that SWA in combination with KIF more efficiently inhibited ER α-mannosidase II, resulting in a synergistic effect on synthesis of Man7/8/9. In conclusion, combined KIF and SWA treatment in rice cell culture media can be an effective method for the production of rhGAA displaying dominantly Man7/8/9 glycoforms without genetic manipulation of glycosylation.
Collapse
Affiliation(s)
- Hong-Yeol Choi
- Department of Biological Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - Heajin Park
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06944, Republic of Korea
| | - Jong Kwang Hong
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Singapore, 138668, Singapore
| | - Sun-Dal Kim
- Department of Biological Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - Jun-Young Kwon
- Department of Biological Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - SeungKwan You
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06944, Republic of Korea
| | - Jonghye Do
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06944, Republic of Korea
| | - Dong-Yup Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Singapore, 138668, Singapore.,School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Ha Hyung Kim
- Biotherapeutics and Glycomics Laboratory, College of Pharmacy, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06944, Republic of Korea.
| | - Dong-Il Kim
- Department of Biological Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea.
| |
Collapse
|
71
|
Kim D, Lee J, Kim B, Kim S. Optimization and Application of Paper-Based Spray Ionization Mass Spectrometry for Analysis of Natural Organic Matter. Anal Chem 2018; 90:12027-12034. [DOI: 10.1021/acs.analchem.8b02668] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Donghwi Kim
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Joonhee Lee
- Center for Analytical Chemistry, Division of Chemical & Medical Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Byungjoo Kim
- Center for Analytical Chemistry, Division of Chemical & Medical Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
- Green-Nano Materials Research Center, Daegu 41566, Republic of Korea
| |
Collapse
|
72
|
Zhang Q, Li Z, Wang Y, Zheng Q, Li J. Mass spectrometry for protein sialoglycosylation. MASS SPECTROMETRY REVIEWS 2018; 37:652-680. [PMID: 29228471 DOI: 10.1002/mas.21555] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
Sialic acids are a family of structurally unique and negatively charged nine-carbon sugars, normally found at the terminal positions of glycan chains on glycoproteins and glycolipids. The glycosylation of proteins is a universal post-translational modification in eukaryotic species and regulates essential biological functions, in which the most common sialic acid is N-acetyl-neuraminic acid (2-keto-5-acetamido-3,5-dideoxy-D-glycero-D-galactononulopyranos-1-onic acid) (Neu5NAc). Because of the properties of sialic acids under general mass spectrometry (MS) conditions, such as instability, ionization discrimination, and mixed adducts, the use of MS in the analysis of protein sialoglycosylation is still challenging. The present review is focused on the application of MS related methodologies to the study of both N- and O-linked sialoglycans. We reviewed MS-based strategies for characterizing sialylation by analyzing intact glycoproteins, proteolytic digested glycopeptides, and released glycans. The review concludes with future perspectives in the field.
Collapse
Affiliation(s)
- Qiwei Zhang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, Institute of Environment and Health, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Zack Li
- School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Institute for Interdisciplinary Research, Institute of Environment and Health, School of Chemical and Environmental Engineering, Jianghan University, Wuhan, China
| | - Jianjun Li
- National Research Council Canada, Ottawa, Ontario, Canada
| |
Collapse
|
73
|
Zhu R, Zhou S, Peng W, Huang Y, Mirzaei P, Donohoo K, Mechref Y. Enhanced Quantitative LC-MS/MS Analysis of N-linked Glycans Derived from Glycoproteins Using Sodium Deoxycholate Detergent. J Proteome Res 2018; 17:2668-2678. [PMID: 29745666 DOI: 10.1021/acs.jproteome.8b00127] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein glycosylation is a common protein post-translational modification (PTM) in living organisms and has been shown to associate with multiple diseases, and thus may potentially be a biomarker of such diseases. Efficient protein/glycoprotein extraction is a crucial step in the preparation of N-glycans derived from glycoproteins prior to LC-MS analysis. Convenient, efficient and unbiased sample preparation protocols are needed. Herein, we evaluated the use of sodium deoxycholate (SDC) acidic labile detergent to release N-glycans of glycoproteins derived from biological samples such as cancer cell lines. Compared to the filter-aided sample preparation approach, the sodium deoxycholate (SDC) assisted approach was determined to be more efficient and unbiased. SDC removal was determined to be more efficient when using acidic precipitation rather than ethyl acetate phase transfer. Efficient extraction of proteins/glycoproteins from biological samples was achieved by combining SDC lysis buffer and beads beating cell disruption. This was suggested by a significant overall increase in the intensities of N-glycans released from cancer cell lines. Additionally, the use of SDC approach was also shown to be more reproducible than those methods that do not use SDC.
Collapse
Affiliation(s)
- Rui Zhu
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409 , United States
| | - Shiyue Zhou
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409 , United States
| | - Wenjing Peng
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409 , United States
| | - Yifan Huang
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409 , United States
| | - Parvin Mirzaei
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409 , United States
| | - Kaitlyn Donohoo
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409 , United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry , Texas Tech University , Lubbock , Texas 79409 , United States
| |
Collapse
|
74
|
Toonstra C, Wu L, Li C, Wang D, Wang LX. Top-Down Chemoenzymatic Approach to Synthesizing Diverse High-Mannose N-Glycans and Related Neoglycoproteins for Carbohydrate Microarray Analysis. Bioconjug Chem 2018; 29:1911-1921. [PMID: 29738673 PMCID: PMC6013400 DOI: 10.1021/acs.bioconjchem.8b00145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
High-mannose-type N-glycans are an important component of neutralizing epitopes on HIV-1 envelope glycoprotein gp120. They also serve as signals for protein folding, trafficking, and degradation in protein quality control. A number of lectins and antibodies recognize high-mannose-type N-glycans, and glycan array technology has provided an avenue to probe these oligomannose-specific proteins. We describe in this paper a top-down chemoenzymatic approach to synthesize a library of high-mannose N-glycans and related neoglycoproteins for glycan microarray analysis. The method involves the sequential enzymatic trimming of two readily available natural N-glycans, the Man9GlcNAc2Asn prepared from soybean flour and the sialoglycopeptide (SGP) isolated from chicken egg yolks, coupled with chromatographic separation to obtain a collection of a full range of natural high-mannose N-glycans. The Asn-linked N-glycans were conjugated to bovine serum albumin (BSA) to provide neoglycoproteins containing the oligomannose moieties. The glycoepitopes displayed were characterized using an array of glycan-binding proteins, including the broadly virus-neutralizing agents, glycan-specific antibody 2G12, Galanthus nivalis lectin (GNA), and Narcissus pseudonarcissus lectin (NPA).
Collapse
Affiliation(s)
- Christian Toonstra
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lisa Wu
- Tumor Glycomics Laboratory, SRI International Biosciences Division, Menlo Park, California 94025, United States
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Denong Wang
- Tumor Glycomics Laboratory, SRI International Biosciences Division, Menlo Park, California 94025, United States
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
75
|
Kayili HM, Barlas N, Atakay M, Salih B. Fast purification of glycans and glycopeptides using silk-packed micropipette tip for matrix-assisted laser desorption/ionization-mass spectrometry and high-performance liquid chromatography-fluorescence detection analysis. Microchem J 2018. [DOI: 10.1016/j.microc.2018.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
76
|
Link-Lenczowski P, Bubka M, Balog CIA, Koeleman CAM, Butters TD, Wuhrer M, Lityńska A. The glycomic effect of N-acetylglucosaminyltransferase III overexpression in metastatic melanoma cells. GnT-III modifies highly branched N-glycans. Glycoconj J 2018; 35:217-231. [PMID: 29502191 PMCID: PMC5916991 DOI: 10.1007/s10719-018-9814-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/15/2018] [Accepted: 01/30/2018] [Indexed: 11/28/2022]
Abstract
N-acetylglucosaminyltransferase III (GnT-III) is known to catalyze N-glycan "bisection" and thereby modulate the formation of highly branched complex structures within the Golgi apparatus. While active, it inhibits the action of other GlcNAc transferases such as GnT-IV and GnT-V. Moreover, GnT-III is considered as an inhibitor of the metastatic potential of cancer cells both in vitro and in vivo. However, the effects of GnT-III may be more diverse and depend on the cellular context. We describe the detailed glycomic analysis of the effect of GnT-III overexpression in WM266-4-GnT-III metastatic melanoma cells. We used MALDI-TOF and ESI-ion-trap-MS/MS together with HILIC-HPLC of 2-AA labeled N-glycans to study the N-glycome of membrane-attached and secreted proteins. We found that the overexpression of GnT-III in melanoma leads to the modification of a broad range of N-glycan types by the introduction of the "bisecting" GlcNAc residue with highly branched complex structures among them. The presence of these unusual complex N-glycans resulted in stronger interactions of cellular glycoproteins with the PHA-L. Based on the data presented here we conclude that elevated activity of GnT-III in cancer cells does not necessarily lead to a total abrogation of the formation of highly branched glycans. In addition, the modification of pre-existing N-glycans by the introduction of "bisecting" GlcNAc can modulate their capacity to interact with carbohydrate-binding proteins such as plant lectins. Our results suggest further studies on the biological function of "bisected" oligosaccharides in cancer cell biology and their interactions with carbohydrate-binding proteins.
Collapse
Affiliation(s)
- Paweł Link-Lenczowski
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, Michałowskiego 12, 31-126, Kraków, Poland.
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland.
| | - Monika Bubka
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Crina I A Balog
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anna Lityńska
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| |
Collapse
|
77
|
Figl R, Altmann F. Reductive Alkaline Release of N-Glycans Generates a Variety of Unexpected, Useful Products. Proteomics 2018; 18. [DOI: 10.1002/pmic.201700330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/22/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Rudolf Figl
- Department of Chemistry; University of Natural Resources and Life Sciences; Vienna Austria
| | - Friedrich Altmann
- Department of Chemistry; University of Natural Resources and Life Sciences; Vienna Austria
| |
Collapse
|
78
|
Determination of N-glycans by high performance liquid chromatography using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate as the glycosylamine labeling reagent. J Chromatogr A 2018; 1535:114-122. [DOI: 10.1016/j.chroma.2018.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/26/2017] [Accepted: 01/07/2018] [Indexed: 11/18/2022]
|
79
|
Yao J, Sun N, Deng C. Recent advances in mesoporous materials for sample preparation in proteomics research. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
80
|
Everest-Dass AV, Moh ESX, Ashwood C, Shathili AMM, Packer NH. Human disease glycomics: technology advances enabling protein glycosylation analysis - part 1. Expert Rev Proteomics 2018; 15:165-182. [PMID: 29285957 DOI: 10.1080/14789450.2018.1421946] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Protein glycosylation is recognized as an important post-translational modification, with specific substructures having significant effects on protein folding, conformation, distribution, stability and activity. However, due to the structural complexity of glycans, elucidating glycan structure-function relationships is demanding. The fine detail of glycan structures attached to proteins (including sequence, branching, linkage and anomericity) is still best analysed after the glycans are released from the purified or mixture of glycoproteins (glycomics). The technologies currently available for glycomics are becoming streamlined and standardized and many features of protein glycosylation can now be determined using instruments available in most protein analytical laboratories. Areas covered: This review focuses on the current glycomics technologies being commonly used for the analysis of the microheterogeneity of monosaccharide composition, sequence, branching and linkage of released N- and O-linked glycans that enable the determination of precise glycan structural determinants presented on secreted proteins and on the surface of all cells. Expert commentary: Several emerging advances in these technologies enabling glycomics analysis are discussed. The technological and bioinformatics requirements to be able to accurately assign these precise glycan features at biological levels in a disease context are assessed.
Collapse
Affiliation(s)
- Arun V Everest-Dass
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,b Institute for Glycomics , Griffith University , Gold Coast , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Edward S X Moh
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Christopher Ashwood
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Abdulrahman M M Shathili
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| | - Nicolle H Packer
- a Biomolecular Discovery and Design Research Centre, Faculty of Science and Engineering , Macquarie University , Sydney , Australia.,b Institute for Glycomics , Griffith University , Gold Coast , Australia.,c ARC Centre for Nanoscale BioPhotonics , Macquarie University , Sydney , Australia
| |
Collapse
|
81
|
Robinson RC, Colet E, Tian T, Poulsen NA, Barile D. An improved method for the purification of milk oligosaccharides by graphitised carbon-solid phase extraction. Int Dairy J 2018; 80:62-68. [PMID: 30057440 DOI: 10.1016/j.idairyj.2017.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Milk oligosaccharides (OS) are bioactive molecules that impart a variety of health benefits to the consumer. Techniques commonly used to analyse and quantify OS require optimised extraction methods to separate the OS from more abundant milk components. Solid phase extraction (SPE) is frequently used to isolate milk OS from lactose; however, the literature contains no formal studies on its efficacy in this application. In this study, established SPE conditions were modified to improve the technique's effectiveness in purifying OS from lactose. Low concentrations of acetonitrile (ACN) and trifluoroacetic acid (TFA) were tested for solid phase washing. Lactose removal and retention of many OS were significantly improved when using 4% ACN/0.1% TFA compared with the more common water washing technique. Different behaviours between acidic and neutral OS were evident. The new SPE technique improves extraction efficiency for bovine milk OS in applications that do not require prior lactose hydrolysis.
Collapse
Affiliation(s)
- Randall C Robinson
- Department of Food Science and Technology, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Emeline Colet
- Ecole Nationale Supérieure de Chimie de Paris, 11 Rue Pierre et Marie Curie, 75005, Paris, France
| | - Tian Tian
- Department of Food Science and Technology, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Nina A Poulsen
- Department of Food Science, Aarhus University, Blichers Allé 20, DK-8830, Tjele, Denmark
| | - Daniela Barile
- Department of Food Science and Technology, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA.,Foods for Health Institute, University of California-Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
82
|
Structural analysis of N-/O-glycans assembled on proteins in yeasts. J Microbiol 2018; 56:11-23. [DOI: 10.1007/s12275-018-7468-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/02/2017] [Accepted: 12/03/2017] [Indexed: 01/06/2023]
|
83
|
Advanced LC-MS Methods for N-Glycan Characterization. ADVANCES IN THE USE OF LIQUID CHROMATOGRAPHY MASS SPECTROMETRY (LC-MS) - INSTRUMENTATION DEVELOPMENTS AND APPLICATIONS 2018. [DOI: 10.1016/bs.coac.2017.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
84
|
Isomeric Separation and Characterisation of Glycoconjugates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1104:77-99. [DOI: 10.1007/978-981-13-2158-0_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
85
|
King SR, Hecht ES, Muddiman DC. Demonstration of hydrazide tagging for O-glycans and a central composite design of experiments optimization using the INLIGHT™ reagent. Anal Bioanal Chem 2017; 410:1409-1415. [PMID: 29279989 DOI: 10.1007/s00216-017-0828-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 11/25/2022]
Abstract
The INLIGHT™ strategy for N-linked glycan derivatization has been shown to overcome many of the challenges associated with glycan analysis. The hydrazide tag reacts efficiently with the glycans, increasing their non-polar surface area, allowing for reversed-phase separations and increased ionization efficiency. We have taken the INLIGHT™ strategy and adopted it for use with O-linked glycans. A central composite design was utilized to find optimized tagging conditions (45% acetic acid, 0.1 μg/μL tag concentration, 37 C, 1.75 h). Derivatization at optimized conditions was much quicker than any hydrazide derivatization strategy used previously. Human immunoglobulin A (IgA) and bovine submaxillary mucin (BSM) were then deglycosylated through hydrazinolysis and the removed glycans were tagged under optimum conditions. XIC of tagged glycans and MS2 data show successful hydrazide tagging of O-linked glycans for the first time. Graphical abstract The INLIGHT™ hydrazide tag was optimized using a central composite design for derivatization of O-linked glycans. Two glycoprotein standards were deglycosylated through hydrazinolysis and tagged at the optimized conditions. MS/MS data shows INLIGHT™ derivatization of glycans demonstrating successful hydrazide tagging of O-glycans for the first time.
Collapse
Affiliation(s)
- Samuel R King
- W. M. Keck FTMS Laboratory from Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Elizabeth S Hecht
- W. M. Keck FTMS Laboratory from Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - David C Muddiman
- W. M. Keck FTMS Laboratory from Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
86
|
Boulos S, Nyström L. Complementary Sample Preparation Strategies for Analysis of Cereal β-Glucan Oxidation Products by UPLC-MS/MS. Front Chem 2017; 5:90. [PMID: 29164106 PMCID: PMC5673685 DOI: 10.3389/fchem.2017.00090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/17/2017] [Indexed: 11/18/2022] Open
Abstract
The oxidation of cereal (1→3,1→4)-β-D-glucan can influence the health promoting and technological properties of this linear, soluble homopolysaccharide by introduction of new functional groups or chain scission. Apart from deliberate oxidative modifications, oxidation of β-glucan can already occur during processing and storage, which is mediated by hydroxyl radicals (HO•) formed by the Fenton reaction. We present four complementary sample preparation strategies to investigate oat and barley β-glucan oxidation products by hydrophilic interaction ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), employing selective enzymatic digestion, graphitized carbon solid phase extraction (SPE), and functional group labeling techniques. The combination of these methods allows for detection of both lytic (C1, C3/4, C5) and non-lytic (C2, C4/3, C6) oxidation products resulting from HO•-attack at different glucose-carbons. By treating oxidized β-glucan with lichenase and β-glucosidase, only oxidized parts of the polymer remained in oligomeric form, which could be separated by SPE from the vast majority of non-oxidized glucose units. This allowed for the detection of oligomers with mid-chain glucuronic acids (C6) and carbonyls, as well as carbonyls at the non-reducing end from lytic C3/C4 oxidation. Neutral reducing ends were detected by reductive amination with anthranilic acid/amide as labeled glucose and cross-ring cleaved units (arabinose, erythrose) after enzyme treatment and SPE. New acidic chain termini were observed by carbodiimide-mediated amidation of carboxylic acids as anilides of gluconic, arabinonic, and erythronic acids. Hence, a full characterization of all types of oxidation products was possible by combining complementary sample preparation strategies. Differences in fine structure depending on source (oat vs. barley) translates to the ratio of observed oxidized oligomers, with in-depth analysis corroborating a random HO•-attack on glucose units irrespective of glycosidic linkage and neighborhood. The method was demonstrated to be (1) sufficiently sensitive to allow for the analysis of oxidation products also from a mild ascorbate-driven Fenton reaction, and (2) to be specific for cereal β-glucan even in the presence of other co-oxidized polysaccharides. This opens doors to applications in food processing to assess potential oxidations and provides the detailed structural basis to understand the effect oxidized functional groups have on β-glucan's health promoting and technological properties.
Collapse
Affiliation(s)
| | - Laura Nyström
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
87
|
A Novel Colletotrichum graminicola Raffinose Oxidase in the AA5 Family. Appl Environ Microbiol 2017; 83:AEM.01383-17. [PMID: 28778886 DOI: 10.1128/aem.01383-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/24/2017] [Indexed: 12/17/2022] Open
Abstract
We describe here the identification and characterization of a copper radical oxidase from auxiliary activities family 5 (AA5_2) that was distinguished by showing preferential activity toward raffinose. Despite the biotechnological potential of carbohydrate oxidases from family AA5, very few members have been characterized. The gene encoding raffinose oxidase from Colletotrichum graminicola (CgRaOx; EC 1.1.3.-) was identified utilizing a bioinformatics approach based on the known modular structure of a characterized AA5_2 galactose oxidase. CgRaOx was expressed in Pichia pastoris, and the purified enzyme displayed the highest activity on the trisaccharide raffinose, whereas the activity on the disaccharide melibiose was three times lower and more than ten times lower activity was detected on d-galactose at a 300 mM substrate concentration. Thus, the substrate preference of CgRaOx was distinguished clearly from the substrate preferences of the known galactose oxidases. The site of oxidation for raffinose was studied by 1H nuclear magnetic resonance and mass spectrometry, and we confirmed that the hydroxyl group at the C-6 position was oxidized to an aldehyde and that in addition uronic acid was produced as a side product. A new electrospray ionization mass spectrometry method for the identification of C-6 oxidized products was developed, and the formation mechanism of the uronic acid was studied. CgRaOx presented a novel activity pattern in the AA5 family.IMPORTANCE Currently, there are only a few characterized members of the CAZy AA5 protein family. These enzymes are interesting from an application point of view because of their ability to utilize the cheap and abundant oxidant O2 without the requirement of complex cofactors such as FAD or NAD(P). Here, we present the identification and characterization of a novel AA5 member from Colletotrichum graminicola As discussed in the present study, the bioinformatics approach using the modular structure of galactose oxidase was successful in finding a C-6 hydroxyl carbohydrate oxidase having substrate preference for the trisaccharide raffinose. By the discovery of this activity, the diversity of the CAZy AA5 family is increasing.
Collapse
|
88
|
Yang Q, Zhang R, Cai H, Wang LX. Revisiting the substrate specificity of mammalian α1,6-fucosyltransferase reveals that it catalyzes core fucosylation of N-glycans lacking α1,3-arm GlcNAc. J Biol Chem 2017; 292:14796-14803. [PMID: 28729420 DOI: 10.1074/jbc.m117.804070] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/17/2017] [Indexed: 01/21/2023] Open
Abstract
The mammalian α1,6-fucosyltransferase (FUT8) catalyzes the core fucosylation of N-glycans in the biosynthesis of glycoproteins. Previously, intensive in vitro studies with crude extract or purified enzyme concluded that the attachment of a GlcNAc on the α1,3 mannose arm of N-glycan is essential for FUT8-catalyzed core fucosylation. In contrast, we have recently shown that expression of erythropoietin in a GnTI knock-out, FUT8-overexpressing cell line results in the production of fully core-fucosylated glycoforms of the oligomannose substrate Man5GlcNAc2, suggesting that FUT8 can catalyze core fucosylation of N-glycans lacking an α1,3-arm GlcNAc in cells. Here, we revisited the substrate specificity of FUT8 by examining its in vitro activity toward an array of selected N-glycans, glycopeptides, and glycoproteins. Consistent with previous studies, we found that free N-glycans lacking an unmasked α1,3-arm GlcNAc moiety are not FUT8 substrates. However, Man5GlcNAc2 glycan could be efficiently core-fucosylated by FUT8 in an appropriate protein/peptide context, such as with the erythropoietin protein, a V3 polypeptide derived from HIV-1 gp120, or a simple 9-fluorenylmethyl chloroformate-protected Asn moiety. Interestingly, when placed in the V3 polypeptide context, a mature bi-antennary complex-type N-glycan also could be core-fucosylated by FUT8, albeit at much lower efficiency than the Man5GlcNAc2 peptide. This study represents the first report of in vitro FUT8-catalyzed core fucosylation of N-glycans lacking the α1,3-arm GlcNAc moiety. Our results suggest that an appropriate polypeptide context or other adequate structural elements in the acceptor substrate could facilitate the core fucosylation by FUT8.
Collapse
Affiliation(s)
- Qiang Yang
- From the Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - Roushu Zhang
- From the Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - Hui Cai
- From the Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - Lai-Xi Wang
- From the Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
89
|
Epp A, Hobusch J, Bartsch YC, Petry J, Lilienthal GM, Koeleman CAM, Eschweiler S, Möbs C, Hall A, Morris SC, Braumann D, Engellenner C, Bitterling J, Rahmöller J, Leliavski A, Thurmann R, Collin M, Moremen KW, Strait RT, Blanchard V, Petersen A, Gemoll T, Habermann JK, Petersen F, Nandy A, Kahlert H, Hertl M, Wuhrer M, Pfützner W, Jappe U, Finkelman FD, Ehlers M. Sialylation of IgG antibodies inhibits IgG-mediated allergic reactions. J Allergy Clin Immunol 2017; 141:399-402.e8. [PMID: 28728998 DOI: 10.1016/j.jaci.2017.06.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 05/31/2017] [Accepted: 06/14/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Alexandra Epp
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck & University Medical Center Schleswig Holstein, Lübeck, Germany
| | - Juliane Hobusch
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck & University Medical Center Schleswig Holstein, Lübeck, Germany
| | - Yannic C Bartsch
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck & University Medical Center Schleswig Holstein, Lübeck, Germany
| | - Janina Petry
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck & University Medical Center Schleswig Holstein, Lübeck, Germany
| | - Gina-Maria Lilienthal
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck & University Medical Center Schleswig Holstein, Lübeck, Germany
| | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Simon Eschweiler
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck & University Medical Center Schleswig Holstein, Lübeck, Germany
| | - Christian Möbs
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - Ashley Hall
- Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Suzanne C Morris
- Division of Immunology, Allergy and Rheumatology, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dominique Braumann
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck & University Medical Center Schleswig Holstein, Lübeck, Germany; Laboratory of Glycodesign and Glycoanalytics, Institute for Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-University Medicine Berlin, Berlin, Germany
| | - Christine Engellenner
- Division of Biochemical Immunology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Josephine Bitterling
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck & University Medical Center Schleswig Holstein, Lübeck, Germany
| | - Johann Rahmöller
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck & University Medical Center Schleswig Holstein, Lübeck, Germany; Department of Anesthesiology and Intensive Care, University Medical Center Schleswig Holstein, Lübeck, Germany
| | - Alexei Leliavski
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck & University Medical Center Schleswig Holstein, Lübeck, Germany
| | - Robina Thurmann
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck & University Medical Center Schleswig Holstein, Lübeck, Germany
| | - Mattias Collin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Ga
| | - Richard T Strait
- Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Véronique Blanchard
- Laboratory of Glycodesign and Glycoanalytics, Institute for Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-University Medicine Berlin, Berlin, Germany
| | - Arnd Petersen
- Division of Clinical & Molecular Allergology, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Timo Gemoll
- Section for Translational Surgical Oncology & Biobanking, Department of Surgery, University of Lübeck & Univesity Medical Center Schleswig Holstein, Lübeck, Germany
| | - Jens K Habermann
- Section for Translational Surgical Oncology & Biobanking, Department of Surgery, University of Lübeck & Univesity Medical Center Schleswig Holstein, Lübeck, Germany
| | - Frank Petersen
- Division of Biochemical Immunology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Andreas Nandy
- Research and Preclinical Development, Allergopharma GmbH & Co. KG, a business of Merck, Darmstadt, Germany
| | - Helga Kahlert
- Research and Preclinical Development, Allergopharma GmbH & Co. KG, a business of Merck, Darmstadt, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wolfgang Pfützner
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - Uta Jappe
- Division of Clinical & Molecular Allergology, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany; Interdisciplinary Allergy Outpatient Clinic, Department of Internal Medicine, University of Lübeck, Lübeck, Germany
| | - Fred D Finkelman
- Division of Immunology, Allergy and Rheumatology, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck & University Medical Center Schleswig Holstein, Lübeck, Germany.
| |
Collapse
|
90
|
Hykollari A, Malzl D, Yan S, Wilson IBH, Paschinger K. Hydrophilic interaction anion exchange for separation of multiply modified neutral and anionic Dictyostelium N-glycans. Electrophoresis 2017; 38:2175-2183. [PMID: 28556908 DOI: 10.1002/elps.201700073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 11/05/2022]
Abstract
The unusual nature of the N-glycans of the cellular slime mould Dictyostelium discoideum has been revealed by a number of studies, primarily based on examination of radiolabeled glycopeptides but more recently also by MS. The complexity of the N-glycomes of even glycosylation mutants is compounded by the occurrence of anionic modifications, which also present an analytical challenge. In this study, we have employed hydrophilic interaction anion exchange (HIAX) HPLC in combination with MALDI-TOF MS/MS to explore the anionic N-glycome of the M31 (modA) strain, which lacks endoplasmic reticulum α-glucosidase II, an enzyme conserved in most eukaryotes including Homo sapiens. Prefractionation with HIAX chromatography enabled the identification of N-glycans with unusual oligo-α1,2-mannose extensions as well as others with up to four anionic modifications. Due to the use of hydrofluoric acid treatment, we were able to discriminate isobaric glycans differing in the presence of sulphate or phosphate on intersected structures as opposed to those carrying GlcNAc-phosphodiesters. The latter represent biosynthetic intermediates during the pathway leading to formation of the methylphosphorylated mannose epitope, which may have a similar function in intracellular targeting of hydrolases as the mannose-6-phosphate modification of lysosomal enzymes in mammals. In conclusion, HIAX in combination with MS is a highly sensitive approach for both fine separation and definition of neutral and anionic N-glycan structures.
Collapse
Affiliation(s)
- Alba Hykollari
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Daniel Malzl
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Shi Yan
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | - Iain B H Wilson
- Department für Chemie, Universität für Bodenkultur, Wien, Austria
| | | |
Collapse
|
91
|
Jiang K, Zhu H, Xiao C, Liu D, Edmunds G, Wen L, Ma C, Li J, Wang PG. Solid-phase reductive amination for glycomic analysis. Anal Chim Acta 2017; 962:32-40. [DOI: 10.1016/j.aca.2017.01.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/02/2017] [Accepted: 01/13/2017] [Indexed: 01/08/2023]
|
92
|
Jung JW, Huy NX, Kim HB, Kim NS, Van Giap D, Yang MS. Production of recombinant human acid α-glucosidase with high-mannose glycans in gnt1 rice for the treatment of Pompe disease. J Biotechnol 2017; 249:42-50. [PMID: 28363873 DOI: 10.1016/j.jbiotec.2017.03.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
Abstract
Lysosomal storage diseases are a group of inherited metabolic disorders. Patients are treated with enzyme replacement therapy (ERT), in which the replacement enzymes are required to carry terminal mannose or mannose 6-phosphate residues to allow efficient uptake into target cells and tissues. N-acetylglucosaminyltransferase-I (GnTI) mediates N-glycosylation in the cis cisternae of the Golgi apparatus by adding N-acetylglucosamine to the exposed terminal mannose residue of core N-glycan structures for further processing. Mutant rice lacking GnTI produces only high mannosylated glycoproteins. In this study, we introduced a gene encoding recombinant human acid α-glucosidase (rhGAA), which is used in ERT for Pompe disease, into gnt1 rice callus by particle bombardment. Integration of the target gene into the genome of the gnt1 rice line and its mRNA expression were confirmed by PCR and Northern blot, respectively. Western blot analysis was performed to confirm secretion of the target proteins into the culture media. Using an indirect enzyme linked immunosorbent assay, we determined the maximum expression of rhGAA to be approximately 45mg/L, 13days after induction. To assay the enzymatic activity and determine the N-glycan profile of rhGAA, we purified the protein using a 6×histidine tag. The in vitro α-glucosidase activity of rhGAA from gnt1 rice callus (gnt1-GAA) was 3.092U/mg, similar to the activity of the Chinese hamster ovary cell-derived GAA (3.154U/mg). N-glycan analysis revealed the presence of high-mannose N-glycans on gnt1-GAA. In addition, the production of high-mannose GAA using gnt1 rice calli as an expression host was characterized, which may aid the future development of therapeutic enzymes for the treatment of Pompe disease.
Collapse
Affiliation(s)
- Jae-Wan Jung
- Department of Molecular Biology, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea; Department of Bioactive Material Science, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea
| | - Nguyen-Xuan Huy
- Department of Molecular Biology, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea; Biology Department, Hue University of Education, 34 Le Loi, Hue, Viet Nam
| | - Hyo-Boon Kim
- Department of Molecular Biology, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea
| | - Nan-Sun Kim
- Department of Molecular Biology, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea
| | - Do Van Giap
- Department of Bioactive Material Science, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea
| | - Moon-Sik Yang
- Department of Molecular Biology, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea; Department of Bioactive Material Science, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea; Research Center of Bioactive Materials, Chonbuk National University, 664-14 Dukjindong, Jeonju, Jeollabuk-do 561-756, Republic of Korea.
| |
Collapse
|
93
|
Largy E, Cantais F, Van Vyncht G, Beck A, Delobel A. Orthogonal liquid chromatography-mass spectrometry methods for the comprehensive characterization of therapeutic glycoproteins, from released glycans to intact protein level. J Chromatogr A 2017; 1498:128-146. [PMID: 28372839 DOI: 10.1016/j.chroma.2017.02.072] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 01/04/2017] [Accepted: 02/28/2017] [Indexed: 01/16/2023]
Abstract
Proteins are increasingly used as therapeutics. Their characterization is challenging due to their size and inherent heterogeneity notably caused by post-translational modifications, among which glycosylation is probably the most prominent. The glycosylation profile of therapeutic proteins must therefore be thoroughly analyzed. Here, we illustrate how the use of a combination of various cutting-edge LC or LC/MS(/MS) methods, and operating at different levels of analysis allows the comprehensive characterization of both the N- and O-glycosylations of therapeutic proteins without the need for other approaches (capillary electrophoresis, MALDI-TOF). This workflow does not call for the use of highly specialized/custom hardware and software nor an extensive knowledge of glycan analysis. Most notably, we present the point of view of a contract research organization, with the constraints associated to the work in a regulated environment (GxP). Two salient points of this work are i) the use of mixed-mode chromatography as a fast and straightforward mean of profiling N-glycans sialylation as well as an orthogonal method to separate N-glycans co-eluting in the HILIC mode; and ii) the use of widepore HILIC/MS to analyze challenging N/O-glycosylation profiles at both the peptide and subunit levels. A particular attention was given to the sample preparations in terms of duration, specificity, versatility, and robustness, as well as the ease of data processing.
Collapse
Affiliation(s)
- Eric Largy
- Quality Assistance sa, Technoparc de Thudinie 2, 6536, Donstiennes, Belgium
| | - Fabrice Cantais
- Quality Assistance sa, Technoparc de Thudinie 2, 6536, Donstiennes, Belgium
| | - Géry Van Vyncht
- Quality Assistance sa, Technoparc de Thudinie 2, 6536, Donstiennes, Belgium
| | - Alain Beck
- Centre d'Immunologie Pierre Fabre (CIPF), 5 Av. Napoléon III, BP 60497, 74164, Saint-Julien-en-Genevois, France
| | - Arnaud Delobel
- Quality Assistance sa, Technoparc de Thudinie 2, 6536, Donstiennes, Belgium.
| |
Collapse
|
94
|
Damm T, Pattathil S, Günl M, Jablonowski ND, O'Neill M, Grün KS, Grande PM, Leitner W, Schurr U, Usadel B, Klose H. Insights into cell wall structure of Sida hermaphrodita and its influence on recalcitrance. Carbohydr Polym 2017; 168:94-102. [PMID: 28457468 DOI: 10.1016/j.carbpol.2017.03.062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/27/2017] [Accepted: 03/18/2017] [Indexed: 01/25/2023]
Abstract
The perennial plant Sida hermaphrodita (Sida) is attracting attention as potential energy crop. Here, the first detailed view on non-cellulosic Sida cell wall polysaccharide composition, structure and architecture is given. Cell walls were prepared from Sida stems and sequentially extracted with aqueous buffers and alkali. The structures of the quantitatively predominant polysaccharides present in each fraction were determined by biochemical characterization, glycome profiling and mass spectrometry. The amounts of glucose released by Accellerase-1500® treatment of the cell wall and the cell wall residue remaining after each extraction were used to assess the roles of pectin and hemicellulose in the recalcitrance of Sida biomass. 4-O-Methyl glucuronoxylan with a low proportion of side substitutions was identified as the major non-cellulosic glycan component of Sida stem cell walls. Pectic polysaccharides and xylans were found to be associated with lignin, suggesting that these polysaccharides have roles in Sida cell wall recalcitrance to enzymatic hydrolysis.
Collapse
Affiliation(s)
- Tatjana Damm
- Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany; Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Sivakumar Pattathil
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd. Athens, GA, USA.
| | - Markus Günl
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany.
| | - Nicolai David Jablonowski
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany.
| | - Malcolm O'Neill
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Rd. Athens, GA, USA.
| | - Katharina Susanne Grün
- Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany.
| | - Philipp Michael Grande
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 1-2, 52074 Aachen Germany.
| | - Walter Leitner
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringer Weg 1-2, 52074 Aachen Germany; Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany.
| | - Ulrich Schurr
- Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany.
| | - Björn Usadel
- Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany; Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich, Leo- Brandt-Straße, 52425 Jülich, Germany.
| | - Holger Klose
- Institute for Botany and Molecular Genetics, RWTH Aachen University, Worringer Weg 3, 52074 Aachen, Germany; Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
95
|
Granzotto C, Sutherland K. Matrix Assisted Laser Desorption Ionization Mass Fingerprinting for Identification of Acacia Gum in Microsamples from Works of Art. Anal Chem 2017; 89:3059-3068. [DOI: 10.1021/acs.analchem.6b04797] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Clara Granzotto
- Northwestern University - Art Institute
of Chicago Center for Scientific Studies in the Arts (NU-ACCESS), 2145 Sheridan Road, Tech K111, Evanston, Illinois 60208, United States
| | - Ken Sutherland
- The Art Institute of Chicago, 111 South Michigan Avenue, Chicago, Illinois 60603, United States
| |
Collapse
|
96
|
Abstract
Glycosylation is one of the most common and essential protein modifications. Glycans conjugated to biomolecules modulate the function of such molecules through both direct recognition of glycan structures and indirect mechanisms that involve the control of protein turnover rates, stability, and conformation. The biological attributes of glycans in numerous biological processes and implications in a number of diseases highlight the necessity for comprehensive characterization of protein glycosylation. This chapter reviews cutting-edge methods and tools developed to facilitate quantitative glycomics. This chapter highlights the different methods employed for the release and purification of glycans from biological samples. The most effective labeling methods developed for sensitive quantitative glycomics are also described and discussed. The chromatographic approaches that have been used effectively in glycomics are also highlighted.
Collapse
Affiliation(s)
- L Veillon
- Texas Tech University, Lubbock, TX, United States
| | - S Zhou
- Texas Tech University, Lubbock, TX, United States
| | - Y Mechref
- Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
97
|
Danyluk HJ, Shum LK, Zandberg WF. A Rapid Procedure for the Purification of 8-Aminopyrene Trisulfonate (APTS)-Labeled Glycans for Capillary Electrophoresis (CE)-Based Enzyme Assays. Methods Mol Biol 2017; 1588:223-236. [PMID: 28417373 DOI: 10.1007/978-1-4939-6899-2_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Purified glycan standards are required for glycan arrays, characterizing substrate specificities of glycan-active enzymes, and to serve as retention-time or mobility standards for various separation techniques. This chapter describes a method for the rapid separation, and subsequent desalting, of glycans labeled with the highly fluorescent fluorophore 8-aminopyrene 1,3,6-trisulfonate (APTS). By using fluorophore-assisted carbohydrate electrophoresis (FACE) on polyacrylamide gels, which utilizes equipment readily available in most molecular biology laboratories, many APTS-labeled glycans can be simultaneously resolved. Excising specific gel bands containing the desired APTS-labeled glycans, followed by glycan elution from the gel and subsequent solid-phase extraction (SPE), yields single glycan species free of excess labeling reagents and buffer components. This chapter describes a FACE/SPE procedure ideal for preparing glycans for capillary electrophoresis (CE)-based enzyme assays, as well as for the purification of rare, commercially unavailable glycans from tissue culture samples.
Collapse
Affiliation(s)
- Hayden J Danyluk
- Simon Fraser University, Department of Molecular Biology and Biochemistry, 8888 University Drive, Burnaby, BC, Canada, V5A 1S6
| | - Leona K Shum
- Department of Chemistry, The University of British Columbia, Okanagan, Kelowna, BC, Canada
| | - Wesley F Zandberg
- Department of Chemistry, The University of British Columbia, Okanagan, Kelowna, BC, Canada.
- Department of Chemistry, Science Building, 1177 Research Road, Kelowna, BC, Canada, V1M 1V7.
| |
Collapse
|
98
|
Zhang SR, Yu YL, Xu CS, Jin D, Lee YI. Determination of N -glycans in glycoproteins using chemoenzymatic labeling with Endo-M N175Q. Microchem J 2017. [DOI: 10.1016/j.microc.2016.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
99
|
Stavenhagen K, Hinneburg H, Kolarich D, Wuhrer M. Site-Specific N- and O-Glycopeptide Analysis Using an Integrated C18-PGC-LC-ESI-QTOF-MS/MS Approach. Methods Mol Biol 2017; 1503:109-119. [PMID: 27743362 DOI: 10.1007/978-1-4939-6493-2_9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The vast heterogeneity of protein glycosylation, even of a single glycoprotein with only one glycosylation site, can give rise to a set of macromolecules with different physicochemical properties. Thus, the use of orthogonal approaches for comprehensive characterization of glycoproteins is a key requirement. This chapter describes a universal workflow for site-specific N- and O-glycopeptide analysis. In a first step glycoproteins are treated with Pronase to generate glycopeptides containing small peptide sequences for enhanced glycosylation site assignment and characterization. These glycopeptides are then separated and detected using an integrated C18-porous graphitized carbon-liquid chromatography (PGC-LC) setup online coupled to a high-resolution electrospray ionization (ESI)-quadrupole time-of-flight (QTOF)-mass spectrometer operated in a combined higher- and lower-energy CID (stepping-energy CID) mode. The LC-setup allows retention of more hydrophobic glycopeptides on C18 followed by subsequent capturing of C18-unbound (glyco)peptides by a downstream placed PGC stationary phase. Glycopeptides eluted from both columns are then analyzed within a single analysis in a combined data acquisition mode. Stepping-energy CID results in B- and Y-ion fragments originating from the glycan moiety as well as b- and y-ions derived from the peptide part. This allows simultaneous site-specific identification of the glycan and peptide sequence of a glycoprotein.
Collapse
Affiliation(s)
- Kathrin Stavenhagen
- Division of BioAnalytical Chemistry, VU University Amsterdam, De Boelelaan 1083, Amsterdam, 1081, HV, The Netherlands.,Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333, ZA, The Netherlands
| | - Hannes Hinneburg
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, 14424, Germany.,Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, 14195, Germany
| | - Daniel Kolarich
- Department of Biomolecular Systems, Max Planck Institute of Colloids andInterfaces, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Manfred Wuhrer
- Division of BioAnalytical Chemistry, VU University Amsterdam, De Boelelaan 1083, Amsterdam, 1081, HV, The Netherlands. .,Center for Proteomics and Metabolomics, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333, ZA, The Netherlands.
| |
Collapse
|
100
|
Highly sensitive derivatization reagents possessing positively charged structures for the determination of oligosaccharides in glycoproteins by high-performance liquid chromatography electrospray ionization tandem mass spectrometry. J Chromatogr A 2016; 1465:79-89. [DOI: 10.1016/j.chroma.2016.08.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 11/16/2022]
|