51
|
Rundlöf AK, Arnér ESJ. Regulation of the mammalian selenoprotein thioredoxin reductase 1 in relation to cellular phenotype, growth, and signaling events. Antioxid Redox Signal 2004; 6:41-52. [PMID: 14980055 DOI: 10.1089/152308604771978336] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reactive oxygen species (ROS) are generated as toxic by-products of aerobic metabolism, but are also essential biomolecules in cell signaling. The thioredoxin (Trx) system is a major enzymatic system modulating ROS levels and is important for redox regulation of cellular function. It consists of Trx and thioredoxin reductase (TrxR), which reduces Trx using NADPH. Most, if not all, of the functions of Trx depend on the activity of TrxR. Mammalian TrxR enzymes are selenoproteins with broad substrate specificities, and alteration of cytosolic TrxR1 expression and activity is likely to be an important determinant for the control of cellular redox regulation. TrxR1 activity in cells seems to be modulated by an intricate interplay, involving a housekeeping type promoter in combination with alternative splice variants and transcriptional start sites, posttranscriptional regulation through AU-rich elements, inactivation by electrophilic agents and by itself modulating the effects of several key signaling molecules. TrxR1 activity is also intimately linked with several aspects of selenium metabolism, and hence selenoprotein function in general. Here, we summarize the current knowledge of these different levels of TrxR1 regulation in diverse cell types and in response to growth and signaling events.
Collapse
Affiliation(s)
- Anna-Klara Rundlöf
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | |
Collapse
|
52
|
Nogueira ML, Wang VEH, Tantin D, Sharp PA, Kristie TM. Herpes simplex virus infections are arrested in Oct-1-deficient cells. Proc Natl Acad Sci U S A 2004; 101:1473-8. [PMID: 14745036 PMCID: PMC341744 DOI: 10.1073/pnas.0307300101] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Expression of the herpes simplex virus (HSV) immediate early (IE) genes is regulated by a multiprotein complex that is assembled on the TAATGARAT enhancer core element. The complex contains the cellular POU domain protein Oct-1, the viral transactivator VP16, and the cellular cofactor host cell factor 1. The current model suggests that the assembly depends on recognition of the core element by Oct-1. Here, HSV infection of Oct-1-deficient mouse embryonic fibroblast cells demonstrates that Oct-1 is critical for IE gene expression at low multiplicities of infection (moi). However, the protein is not essential for IE gene expression at high moi, indicating that VP16-mediated transcriptional induction through other IE regulatory elements is also important. This induction depends, at least in part, on the GA-binding protein binding elements that are present in each IE enhancer domain. Surprisingly, whereas the viral IE genes are expressed after high moi infection of Oct-1-deficient cells, the assembly of viral replication factories is severely impaired, revealing a second critical role for Oct-1 in HSV replication. The results have implications for both the HSV lytic and latency-reactivation cycles.
Collapse
Affiliation(s)
- Mauricio L Nogueira
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4-131, 4 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
53
|
Abstract
HCF-1 is a transcriptional cofactor required for activation of herpes simplex virus immediate-early genes by VP16 as well as less clearly defined roles in cell proliferation, cytokinesis, and spliceosome formation. It is expressed as a large precursor that undergoes proteolysis to yield two subunits that remain stably associated. VP16 uses a degenerate 4-amino acid sequence, known as the HCF-binding motif, to bind to a six-bladed beta-propeller domain at the N terminus of HCF-1. Functional HCF-binding motifs are also found in LZIP and Zhangfei, two cellular bZIP transcription factors of unknown function. Here we show that the HCF-binding motif occurs in a wide spectrum of DNA-binding proteins and transcriptional cofactors. Three well characterized examples were further analyzed for their ability to use HCF-1 as a coactivator. Krox20, a zinc finger transcription factor required for Schwann cell differentiation, and E2F4, a cell cycle regulator, showed a strong requirement for functional HCF-1 to activate transcription. In contrast, activation by estrogen receptor-alpha did not display HCF dependence. In Krox20, the HCF-binding motif lies within the N-terminal activation domain and mutation of this sequence diminishes both transactivation and association with the HCF-1 beta-propeller. The activation domain in the C-terminal subunit of HCF-1 contributes to activation by Krox20, possibly through recruitment of p300. These results suggest that HCF-1 is recruited by many different classes of cellular transcription factors and is therefore likely to be required for a variety of cellular processes including cell cycle progression and development.
Collapse
Affiliation(s)
| | - Angus C. Wilson
- To whom correspondence should be addressed: Dept. of Microbiology, 550 First Ave., New York, NY 10016. Tel.: 212-263-0206; Fax: 212-263-8276;
| |
Collapse
|
54
|
Firestone GL, Bjeldanes LF. Indole-3-carbinol and 3-3'-diindolylmethane antiproliferative signaling pathways control cell-cycle gene transcription in human breast cancer cells by regulating promoter-Sp1 transcription factor interactions. J Nutr 2003; 133:2448S-2455S. [PMID: 12840223 DOI: 10.1093/jn/133.7.2448s] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Indole-3-carbinol (I3C), a compound that occurs naturally in Brassica vegetables such as cabbage and broccoli, can induce a G1 cell-cycle arrest of human MCF-7 breast cancer cells that is accompanied by the selective inhibition of cyclin-dependent kinase 6 (Cdk6) expression and stimulation of p21(Waf1/Cip1) gene expression. Construction and transfection of a series of promoter-reporter plasmids demonstrate that the indole-regulated changes in Cdk6 and p21(Waf1/Cip1) levels are due to specific effects on their corresponding promoters. Mutagenic analysis reveals that I3C signaling targets a composite transcriptional element in the Cdk6 promoter that requires both Sp1 and Ets transcription factors for transactivation function. Analysis of protein-DNA complexes formed with nuclear proteins isolated from I3C-treated and -untreated cells demonstrates that the Sp1 DNA element in the Cdk6 promoter interacts with an I3C-inhibited protein-protein complex that contains the Sp1 transcription factor. In indole-treated cells, a fraction of [(3)H]I3C was converted into its natural diindole product (3)H-labeled 3-3'-diindolylmethane ([(3)H]DIM), which accumulates in the nucleus; this suggests that DIM may have a role in the transcriptional activities of I3C. Mutagenic analysis of the p21(Waf1/Cip1) promoter reveals that in transfected breast cancer cells, DIM (as well as I3C) stimulates p21(Waf1/Cip1) transcription through an indole-responsive region of the promoter that contains multiple Sp1 consensus sequences. Furthermore, DIM treatment regulates the presence of a nuclear Sp1 DNA-binding activity. Our results demonstrate that both the Cdk6 and p21(Waf1/Cip1) promoters are newly defined downstream targets of the indole-signaling pathway, and that the observed transcriptional effects are due to a combination of the cellular activities of I3C and DIM.
Collapse
Affiliation(s)
- Gary L Firestone
- Department of Molecular and Cell Biology and Cancer Research Laboratory, University of California at Berkeley, Berkeley, CA 94720-3200, USA.
| | | |
Collapse
|
55
|
Wysocka J, Herr W. The herpes simplex virus VP16-induced complex: the makings of a regulatory switch. Trends Biochem Sci 2003; 28:294-304. [PMID: 12826401 DOI: 10.1016/s0968-0004(03)00088-4] [Citation(s) in RCA: 226] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
When herpes simplex virus (HSV) infects human cells, it is able to enter two modes of infection: lytic and latent. A key activator of lytic infection is a virion protein called VP16, which, upon infection of a permissive cell, forms a transcriptional regulatory complex with two cellular proteins - the POU-domain transcription factor Oct-1 and the cell-proliferation factor HCF-1 - to activate transcription of the first set of expressed viral genes. This regulatory complex, called the VP16-induced complex, reveals mechanisms of combinatorial control of transcription. The activities of Oct-1 and HCF-1 - two important regulators of cellular gene expression and proliferation - illuminate strategies by which HSV might coexist with its host.
Collapse
|
56
|
Wysocka J, Myers MP, Laherty CD, Eisenman RN, Herr W. Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3-K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1. Genes Dev 2003; 17:896-911. [PMID: 12670868 PMCID: PMC196026 DOI: 10.1101/gad.252103] [Citation(s) in RCA: 314] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The abundant and chromatin-associated protein HCF-1 is a critical player in mammalian cell proliferation as well as herpes simplex virus (HSV) transcription. We show here that separate regions of HCF-1 critical for its role in cell proliferation associate with the Sin3 histone deacetylase (HDAC) and a previously uncharacterized human trithorax-related Set1/Ash2 histone methyltransferase (HMT). The Set1/Ash2 HMT methylates histone H3 at Lys 4 (K4), but not if the neighboring K9 residue is already methylated. HCF-1 tethers the Sin3 and Set1/Ash2 transcriptional regulatory complexes together even though they are generally associated with opposite transcriptional outcomes: repression and activation of transcription, respectively. Nevertheless, this tethering is context-dependent because the transcriptional activator VP16 selectively binds HCF-1 associated with the Set1/Ash2 HMT complex in the absence of the Sin3 HDAC complex. These results suggest that HCF-1 can broadly regulate transcription, both positively and negatively, through selective modulation of chromatin structure.
Collapse
Affiliation(s)
- Joanna Wysocka
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | | | | | | |
Collapse
|
57
|
Fujita N, Watanabe S, Ichimura T, Ohkuma Y, Chiba T, Saya H, Nakao M. MCAF mediates MBD1-dependent transcriptional repression. Mol Cell Biol 2003; 23:2834-43. [PMID: 12665582 PMCID: PMC152570 DOI: 10.1128/mcb.23.8.2834-2843.2003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
DNA methylation is involved in a variety of genome functions, including gene control and chromatin dynamics. MBD1 is a transcriptional regulator through the cooperation of a methyl-CpG binding domain, cysteine-rich CXXC domains, and a transcriptional repression domain. A yeast two-hybrid screen was performed to investigate the role of MBD1 in methylation-based transcriptional repression. We report a mediator, MBD1-containing chromatin-associated factor (MCAF), that interacts with the transcriptional repression domain of MBD1. MCAF harbors two conserved domains that allow it to interact with MBD1 and enhancer-like transactivator Sp1. MCAF possesses a coactivator-like activity, and it seems to facilitate Sp1-mediated transcription. In contrast, the MBD1-MCAF complex blocks transcription through affecting Sp1 on methylated promoter regions. These data provide a mechanistic basis for direct inhibition of gene expression via methylation-dependent and histone deacetylation-resistant processes.
Collapse
Affiliation(s)
- Naoyuki Fujita
- Department of Regeneration Medicine, Institute of Molecular Embryology and Genetics, Kumamoto University School of Medicine, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | |
Collapse
|
58
|
Chrisman HR, Tindall DJ. Identification and characterization of a consensus DNA binding element for the zinc finger transcription factor TIEG/EGRalpha. DNA Cell Biol 2003; 22:187-99. [PMID: 12804117 DOI: 10.1089/104454903321655819] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
TGFbeta-Inducible Early Gene (TIEG) and the alternatively-transcribed Early Growth Response Gene alpha (EGRalpha) share a Cys(2)His(2) three-zinc finger region with high homology to Sp1 within its zinc finger region. Three-zinc finger transcription factors bind to GC-rich sequences, with small variations in consensus sequence between subfamilies. In this work, a consensus sequence was identified for TIEG/EGRalpha by expressing and purifying the zinc finger region of the protein, and using this to select a binding site from a random oligonucleotide library by iterative cycles of nitrocellulose filter binding and PCR. A fusion of the TIEG/EGRalpha with the VP16 activation domain supported transcription from this site when cloned in front of a heterologous promoter. Mutational analysis of the binding site identified a GT-rich core (5'-GGTGTG-3') that was necessary for binding, with mutations outside of this region causing only a small to moderate decrease in binding.
Collapse
Affiliation(s)
- Holly R Chrisman
- Department of Urology Research, Mayo Clinic/Foundation, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
59
|
Shimano H. Sterol regulatory element-binding protein family as global regulators of lipid synthetic genes in energy metabolism. VITAMINS AND HORMONES 2003; 65:167-94. [PMID: 12481547 DOI: 10.1016/s0083-6729(02)65064-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sterol regulatory element-binding proteins (SREBPs) have been established as lipid synthetic transcription factors for cholesterol and fatty acid synthesis. SREBPs are synthesized as membrane-bound precursors with their N-terminal active portions entering the nucleus to activate target genes after proteolytic cleavage in a sterol-regulated manner. This cleavage step is regulated by a putative sterol-sensing molecule, SREBP-activating protein (SCAP), that forms a complex with SREBPs and traffics between the rough endoplasmic reticulum and Golgi. DNA cis-elements that SREBPs bind, originally identified as sterol-regulatory elements (SREs), now expands to a variety of SRE-like sequences and some of E-boxes, which makes SREBPs eligible to regulate a wide range of lipid genes. Animal experiments including transgenic and knockout mice suggest that three isoforms, SREBP-1a, -1c, and -2, have different roles in lipid synthesis. In differentiated tissues and organs, SREBP-1c is involved in fatty acid, whereas SREBP-2 plays a major role in regulation of cholesterol synthesis. SREBP-1a is expressed in growing cells, providing both cholesterol and fatty acids that are required for membrane synthesis. SREBP-1c seems to be a mediator for insulin/glucose signaling to lipogenesis, and could be involved in insulin resistance, remnant lipoproteins, and fatty livers. Future studies in this field will certainly focus on understanding the molecular mechanisms sensing cellular sterol and energy states leading to the activation of SREBP-mediated gene transcription.
Collapse
Affiliation(s)
- Hitoshi Shimano
- Department of Internal Medicine, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
60
|
Ajuh P, Chusainow J, Ryder U, Lamond AI. A novel function for human factor C1 (HCF-1), a host protein required for herpes simplex virus infection, in pre-mRNA splicing. EMBO J 2002; 21:6590-602. [PMID: 12456665 PMCID: PMC136956 DOI: 10.1093/emboj/cdf652] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human factor C1 (HCF-1) is needed for the expression of herpes simplex virus 1 (HSV-1) immediate-early genes in infected mammalian cells. Here, we provide evidence that HCF-1 is required for spliceosome assembly and splicing in mammalian nuclear extracts. HCF-1 interacts with complexes containing splicing snRNPs in uninfected mammalian cells and is a stable component of the spliceosome complex. We show that a missense mutation in HCF-1 in the BHK21 hamster cell line tsBN67, at the non-permissive temperature, inhibits the protein's interaction with U1 and U5 splicing snRNPs, causes inefficient spliceosome assembly and inhibits splicing. Transient expression of wild-type HCF-1 in tsBN67 cells restores splicing at the non-permissive temperature. The inhibition of splicing in tsBN67 cells correlates with the temperature-sensitive cell cycle arrest phenotype, suggesting that HCF-1-dependent splicing events may be required for cell cycle progression.
Collapse
Affiliation(s)
| | | | | | - Angus I. Lamond
- School of Life Sciences, The University of Dundee, Dow Street, Dundee DD1 5EH, UK
Corresponding author e-mail:
| |
Collapse
|
61
|
Antonello D, Moore PS, Zamboni G, Falconi M, Scarpa A. Absence of mutations in the transforming growth factor-beta inducible early gene 1, TIEG1, in pancreatic cancer. Cancer Lett 2002; 183:179-83. [PMID: 12065093 DOI: 10.1016/s0304-3835(01)00802-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pancreatic cancers frequently have defects in components of the transforming growth factor-beta (TGF-beta) signaling pathway. TIEG1 (TGF-beta inducible early gene) is a recently characterized transcription factor regulated by TGF-beta that induces apoptosis when overexpressed in pancreatic adenocarcinoma cell lines. Alterations on chromosome 8q, where TIEG1 is located, are also relatively frequent in pancreatic cancers. To determine if TIEG1 may be involved in the tumorigenesis of pancreatic cancer, we performed mutational screening of this gene in 22 pancreatic cancer cell lines. No sequence alterations were observed. Reverse transcription-polymerase chain reaction analysis was also performed to rule out the possibility that the expression of the gene is altered by genetic events other than mutation. Likewise, no alterations in expression were found. Thus, an essential role of TIEG1 in pancreatic cancer can be excluded.
Collapse
Affiliation(s)
- Davide Antonello
- Department of Pathology, Università di Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | | | | | | | | |
Collapse
|
62
|
Luciano RL, Wilson AC. An activation domain in the C-terminal subunit of HCF-1 is important for transactivation by VP16 and LZIP. Proc Natl Acad Sci U S A 2002; 99:13403-8. [PMID: 12271126 PMCID: PMC129685 DOI: 10.1073/pnas.202200399] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In herpes simplex virus, lytic replication is initiated by the viral transactivator VP16 acting with cellular cofactors Oct-1 and HCF-1. Although this activator complex has been studied in detail, the role of HCF-1 remains elusive. Here, we show that HCF-1 contains an activation domain (HCF-1(AD)) required for maximal transactivation by VP16 and its cellular counterpart LZIP. Expression of the VP16 cofactor p300 augments HCF-1(AD) activity, suggesting a mechanism of synergy. Infection of cells lacking the HCF-1(AD) leads to reduced viral immediate-early gene expression and lowered viral titers. These findings underscore the importance of HCF-1 to herpes simplex virus replication and VP16 transactivation.
Collapse
Affiliation(s)
- Randy L Luciano
- Department of Microbiology and Kaplan Comprehensive Cancer Center, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
63
|
Piluso D, Bilan P, Capone JP. Host cell factor-1 interacts with and antagonizes transactivation by the cell cycle regulatory factor Miz-1. J Biol Chem 2002; 277:46799-808. [PMID: 12244100 DOI: 10.1074/jbc.m206226200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Human host cell factor-1 (HCF-1) is essential for cell cycle progression and is required, in conjunction with the herpes simplex virus transactivator VP16, for induction of viral immediate-early gene expression. We show here that HCF-1 directly binds to the Myc-interacting protein Miz-1, a transcription factor that induces cell cycle arrest at G(1), in part by directly stimulating expression of the cyclin-dependent kinase inhibitor p15(INK4b). A domain encompassing amino acids 750-836, contained within a subregion of HCF-1 required for cell cycle progression, was sufficient to bind Miz-1. Conversely, HCF-1 interacted with two separate regions in Miz-1: the N-terminal POZ domain and a C-terminal domain (residues 637-803) previously shown to harbor determinants for interaction with c-Myc and the coactivator p300. The latter functioned as a potent transactivation domain when tethered to DNA, indicating that HCF-1 targets a transactivation function in Miz-1. HCF-1 or a Miz-1-binding fragment of HCF-1 repressed transactivation by Gal4-Miz-1 in transfection assays. Moreover, HCF-1 repressed Miz-1-mediated transactivation of a reporter gene linked to the p15(INK4b) promoter. Protein/protein interaction studies and transient transfection assays demonstrated that HCF-1 interferes with recruitment of p300 to Miz-1, similar to what has been reported with c-Myc. Our findings identify Miz-1 as a novel HCF-1-interacting partner and illustrate cross-talk between these two proteins that may be of consequence to their respective functions in gene regulation and their opposing effects on the cell cycle.
Collapse
Affiliation(s)
- David Piluso
- Department of Biochemistry, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | |
Collapse
|
64
|
Yamaki M, Isono K, Takada Y, Abe K, Akasaka T, Tanzawa H, Koseki H. The mouse Edr2 (Mph2) gene has two forms of mRNA encoding 90- and 36-kDa polypeptides. Gene 2002; 288:103-10. [PMID: 12034499 DOI: 10.1016/s0378-1119(02)00458-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The vertebrate Polycomb Group (PcG) genes encode proteins that form large multimeric and chromatin-associated complexes implicated in the stable repression of developmentally essential genes. Here we have isolated a 2.5-kb cDNA for Edr2, a mouse homolog of the Drosophila PcG gene Ph, although it was originally identified as a 3.8-kb cDNA. However, little is known about molecular basis of the 3.8-kb cDNA. Genomic and RNA analyses have shown that Edr2 locates on Chromosome 4 as a single copy gene and is transcribed into at least two transcript isoforms about 3.0 and 4.4 kb in length, most likely corresponding to the 2.5- and 3.8-kb cDNAs, respectively. The largest open reading frames in the 2.5- and 3.8-kb cDNAs encode 36- and 90-kDa polypeptides, respectively. The 36-kDa protein is a truncated form lacking of the N-terminal region of the 90-kDa protein. Interestingly, it has been demonstrated that the 3.0-kb mRNA accumulates at a much higher level than the 3.8-kb mRNA in mouse embryos and mature tissues. Immunostaining assay of mammalian cells has shown that the 36-kDa form tagged with HA colocalizes with the other PcG protein Mel18 in nuclei, suggesting that the smaller protein is capable of forming maltimeric complex with other PcG proteins. Therefore, the 36-kDa protein might function generally as a PcG protein.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chromosome Mapping
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drosophila Proteins
- Embryo, Mammalian/metabolism
- Exons
- Female
- Gene Expression
- Gene Expression Regulation, Developmental
- Genes/genetics
- Introns
- Male
- Mice
- Molecular Sequence Data
- Molecular Weight
- Nucleoproteins/genetics
- Peptides/chemistry
- Peptides/genetics
- Peptides/metabolism
- Polycomb Repressive Complex 1
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Transcription, Genetic
- Two-Hybrid System Techniques
Collapse
Affiliation(s)
- Makoto Yamaki
- Department of Molecular Embryology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Japan
| | | | | | | | | | | | | |
Collapse
|
65
|
Kawamura A, Yamada K, Fujimori K, Higashinakagawa T. Alternative transcripts of a polyhomeotic gene homolog are expressed in distinct regions of somites during segmentation of zebrafish embryos. Biochem Biophys Res Commun 2002; 291:245-54. [PMID: 11846397 DOI: 10.1006/bbrc.2002.6447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Here we describe isolation and characterization of two zebrafish cDNAs, designated ph2alpha and ph2beta, which were identified as structural homologs of the Drosophila polyhomeotic, mouse Mph2, and human HPH2 genes, collectively termed the Polycomb group. The alpha and beta transcripts shared a 1.9-kb sequence at their 3'-termini. Alpha had an additional 1.6-kb sequence extending toward its 5'-terminus. Only a short 0.1-kb segment was unique to beta. Sequencing of a genomic clone corresponding to the two cDNAs indicated that the mRNAs were transcribed from a single gene locus by alternative promoters. Northern blots revealed expression of alpha transcripts during the segmentation period, while beta expression occurred at all developmental stages examined. Whole-mount in situ hybridizations with an alpha-specific probe and a probe recognizing both transcripts revealed distinct spatio-temporal expression patterns along developing somites. Alpha transcripts were detected initially at the 7-8 somite stage; beta transcripts appeared in the first somites. As segmentation proceeded, alpha and beta expression shifted position toward the tailbud in parallel with the formation of each somite. Within individual somites, the signal corresponding to alpha was strongest at the posterior border and weakest in the anterior region. Conversely, that corresponding to beta was strongest at the anterior border and weakest in the posterior region. The data support the idea that Ph2alpha and Ph2beta are involved in spatio-temporal generation of somites as well as in specification of antero-posterior regional differences within individual somites.
Collapse
Affiliation(s)
- Akinori Kawamura
- Department of Biology, School of Education, Waseda University, 1-6-1 Nishi-Waseda, Shinjuku, Tokyo 169-8050, Japan
| | | | | | | |
Collapse
|
66
|
Engelhardt OG, Ullrich E, Kochs G, Haller O. Interferon-induced antiviral Mx1 GTPase is associated with components of the SUMO-1 system and promyelocytic leukemia protein nuclear bodies. Exp Cell Res 2001; 271:286-95. [PMID: 11716541 DOI: 10.1006/excr.2001.5380] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mx proteins are interferon-induced large GTPases, some of which have antiviral activity against a variety of viruses. The murine Mx1 protein accumulates in the nucleus of interferon-treated cells and is active against members of the Orthomyxoviridae family, such as the influenza viruses and Thogoto virus. The mechanism by which Mx1 exerts its antiviral action is still unclear, but an involvement of undefined nuclear factors has been postulated. Using the yeast two-hybrid system, we identified cellular proteins that interact with Mx1 protein. The Mx1 interactors were mainly nuclear proteins. They included Sp100, Daxx, and Bloom's syndrome protein (BLM), all of which are known to localize to specific subnuclear domains called promyelocytic leukemia protein nuclear bodies (PML NBs). In addition, components of the SUMO-1 protein modification system were identified as Mx1-interacting proteins, namely the small ubiquitin-like modifier SUMO-1 and SAE2, which represents subunit 2 of the SUMO-1 activating enzyme. Analysis of the subcellular localization of Mx1 and some of these interacting proteins by confocal microscopy revealed a close spatial association of Mx1 with PML NBs. This suggests a role of PML NBs and SUMO-1 in the antiviral action of Mx1 and may allow us to discover novel functions of this large GTPase.
Collapse
Affiliation(s)
- O G Engelhardt
- Abteilung Virologie, Institut für Medizinische Mikrobiologie und Hygiene, Freiburg, D-79008, Germany.
| | | | | | | |
Collapse
|
67
|
Shimano H. Sterol regulatory element-binding proteins (SREBPs): transcriptional regulators of lipid synthetic genes. Prog Lipid Res 2001; 40:439-52. [PMID: 11591434 DOI: 10.1016/s0163-7827(01)00010-8] [Citation(s) in RCA: 542] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Roles of sterol regulatory element-binding proteins (SREBPs) have been established as lipid synthetic transcription factors especially for cholesterol and fatty acid synthesis. SREBPs have unique characteristics. Firstly, they are membrane-bound proteins and the N-terminal active portions enter nucleus to activate their target genes after proteolytic cleavage, which requires sterol-sensing molecule, SREBP-activating protein (SCAP) and is crucial for sterol-regulation. Secondly, they bind and activate sterol-regulatory (SREs) containing promoters as well as some E-boxes, which makes SREBPs eligible to regulate a wide range of lipid genes. Finally, three isoforms, SREBP-1a-1c, and have different roles in lipid synthesis. In vivo studies using transgenic and knockout mice suggest that SREBP-1 seems to be involved in energy metabolism including fatty acid and glucose/insulin metabolism, whereas SREBP-2 is specific to cholesterol synthesis. Future studies will be focused on understanding molecular mechanisms sensing cellular sterol and energy states where SREBPs are deeply involved.
Collapse
Affiliation(s)
- H Shimano
- Department of Internal Medicine, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
68
|
Sakamoto S, Taniguchi T. Identification of a phorbol ester-responsive element in the interferon-gamma receptor 1 chain gene. J Biol Chem 2001; 276:37237-41. [PMID: 11477089 DOI: 10.1074/jbc.m105543200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human monocytic leukemia THP-1 cells differentiate into macrophage-like cells when treated with 12-O-tetradecanoylphorbol-13-acetate (TPA). During this process, interferon-gamma (IFN-gamma)-inducible expression of human leukocyte antigen-DR alpha is markedly enhanced. The enhancement of human leukocyte antigen-DR alpha expression is at least due to the TPA-dependent induction of the IFN-gamma receptor 1 chain and IFN-gamma receptor 2 chain genes. Here we have studied the mechanism of TPA-induced up-regulation of the IFN-gamma receptor 1 chain gene. Reporter gene analyses of 5'-deletion constructs of the IFN-gamma receptor 1 gene (IFNGR1) promoter indicated that the critical region for control of transcription and the TPA-responsive element (TRE) were present in the -128 to -109 base pair (bp) region. We confirmed that this region of the IFNGR1 promoter was responsive to TPA-induced signals by using a reporter construct whose promoter consisted of the -128 to -109 bp fragment and the minimal herpes simplex virus thymidine kinase promoter. Moreover, a supershift assay indicated that Sp1 bound to this TRE in TPA-treated THP-1 cells. These results suggest that in TPA-treated cells the binding of Sp1 to the TRE of the IFNGR1 promoter causes the up-regulation of this gene.
Collapse
Affiliation(s)
- S Sakamoto
- Laboratory of Molecular Biology, Medical Research Center, Kochi Medical School, Okoh, Nankoku, Kochi 783-8505, Japan
| | | |
Collapse
|
69
|
Black AR, Black JD, Azizkhan-Clifford J. Sp1 and krüppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol 2001; 188:143-60. [PMID: 11424081 DOI: 10.1002/jcp.1111] [Citation(s) in RCA: 830] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Sp/KLF family contains at least twenty identified members which include Sp1-4 and numerous krüppel-like factors. Members of the family bind with varying affinities to sequences designated as 'Sp1 sites' (e.g., GC-boxes, CACCC-boxes, and basic transcription elements). Family members have different transcriptional properties and can modulate each other's activity by a variety of mechanisms. Since cells can express multiple family members, Sp/KLF factors are likely to make up a transcriptional network through which gene expression can be fine-tuned. 'Sp1 site'-dependent transcription can be growth-regulated, and the activity, expression, and/or post-translational modification of multiple family members is altered with cell growth. Furthermore, Sp/KLF factors are involved in many growth-related signal transduction pathways and their overexpression can have positive or negative effects on proliferation. In addition to growth control, Sp/KLF factors have been implicated in apoptosis and angiogenesis; thus, the family is involved in several aspects of tumorigenesis. Consistent with a role in cancer, Sp/KLF factors interact with oncogenes and tumor suppressors, they can be oncogenic themselves, and altered expression of family members has been detected in tumors. Effects of changes in Sp/KLF factors are context-dependent and can appear contradictory. Since these factors act within a network, this diversity of effects may arise from differences in the expression profile of family members in various cells. Thus, it is likely that the properties of the overall network of Sp/KLF factors play a determining role in regulation of cell growth and tumor progression.
Collapse
Affiliation(s)
- A R Black
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | | | |
Collapse
|
70
|
Wysocka J, Reilly PT, Herr W. Loss of HCF-1-chromatin association precedes temperature-induced growth arrest of tsBN67 cells. Mol Cell Biol 2001; 21:3820-9. [PMID: 11340173 PMCID: PMC87041 DOI: 10.1128/mcb.21.11.3820-3829.2001] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human HCF-1 is a large, highly conserved, and abundant nuclear protein that plays an important but unknown role in cell proliferation. It also plays a role in activation of herpes simplex virus immediate-early gene transcription by the viral regulatory protein VP16. A single proline-to-serine substitution in the HCF-1 VP16 interaction domain causes a temperature-induced arrest of cell proliferation in hamster tsBN67 cells and prevents transcriptional activation by VP16. We show here that HCF-1 is naturally bound to chromatin in uninfected cells through its VP16 interaction domain. HCF-1 is chromatin bound in tsBN67 cells at permissive temperature but dissociates from chromatin before tsBN67 cells stop proliferating at the nonpermissive temperature, suggesting that loss of HCF-1 chromatin association is the primary cause of the temperature-induced tsBN67 cell proliferation arrest. We propose that the role of HCF-1 in cell proliferation is to regulate gene transcription by associating with a multiplicity of DNA-bound transcription factors through its VP16 interaction domain.
Collapse
Affiliation(s)
- J Wysocka
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | |
Collapse
|
71
|
Rundlöf AK, Carlsten M, Arnér ES. The core promoter of human thioredoxin reductase 1: cloning, transcriptional activity, and Oct-1, Sp1, and Sp3 binding reveal a housekeeping-type promoter for the AU-rich element-regulated gene. J Biol Chem 2001; 276:30542-51. [PMID: 11375392 DOI: 10.1074/jbc.m101452200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The selenoprotein thioredoxin reductase 1 (TrxR1) carries many vital antioxidant and redox regulatory functions. Its mRNA levels are known to be post-transcriptionally modulated via AUUUA motifs (AU-rich elements (AREs)), but the promoter yet remains unknown. Here we have cloned and determined the sequence of a 0.8-kilobase pair human genomic fragment containing the proximal promoter for TrxR1, which has transcriptional activity in several different cell types. The core promoter (-115 to +167) had an increased GC content and lacked TATA or CCAAT boxes. It contained a POU motif binding the Oct-1 transcription factor and two sites binding Sp1 and Sp3, which were identified with electrophoretic mobility shift assays using crude nuclear extracts of A549 cells. The TrxR1 promoter fulfills the typical criteria of a housekeeping gene. To our knowledge this is the first housekeeping-type promoter characterized for a gene with post-transcriptional regulation via ARE motifs generally possessed by transiently expressed proto-oncogenes, nuclear transcription factors, or cytokines and influencing mRNA stability in response to diverse exogenous factors. Expression of TrxR1 as an ARE-regulated housekeeping gene agrees with a role for the enzyme to maintain a balance between intracellular signaling via reactive oxygen species and protection of cells from excessive oxidative damage.
Collapse
Affiliation(s)
- A K Rundlöf
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|