51
|
Alqadah A, Hsieh YW, Schumacher JA, Wang X, Merrill SA, Millington G, Bayne B, Jorgensen EM, Chuang CF. SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification. PLoS Genet 2016; 12:e1005654. [PMID: 26771544 PMCID: PMC4714817 DOI: 10.1371/journal.pgen.1005654] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/16/2015] [Indexed: 01/09/2023] Open
Abstract
The C. elegans AWC olfactory neuron pair communicates to specify asymmetric subtypes AWCOFF and AWCON in a stochastic manner. Intercellular communication between AWC and other neurons in a transient NSY-5 gap junction network antagonizes voltage-activated calcium channels, UNC-2 (CaV2) and EGL-19 (CaV1), in the AWCON cell, but how calcium signaling is downregulated by NSY-5 is only partly understood. Here, we show that voltage- and calcium-activated SLO BK potassium channels mediate gap junction signaling to inhibit calcium pathways for asymmetric AWC differentiation. Activation of vertebrate SLO-1 channels causes transient membrane hyperpolarization, which makes it an important negative feedback system for calcium entry through voltage-activated calcium channels. Consistent with the physiological roles of SLO-1, our genetic results suggest that slo-1 BK channels act downstream of NSY-5 gap junctions to inhibit calcium channel-mediated signaling in the specification of AWCON. We also show for the first time that slo-2 BK channels are important for AWC asymmetry and act redundantly with slo-1 to inhibit calcium signaling. In addition, nsy-5-dependent asymmetric expression of slo-1 and slo-2 in the AWCON neuron is necessary and sufficient for AWC asymmetry. SLO-1 and SLO-2 localize close to UNC-2 and EGL-19 in AWC, suggesting a role of possible functional coupling between SLO BK channels and voltage-activated calcium channels in AWC asymmetry. Furthermore, slo-1 and slo-2 regulate the localization of synaptic markers, UNC-2 and RAB-3, in AWC neurons to control AWC asymmetry. We also identify the requirement of bkip-1, which encodes a previously identified auxiliary subunit of SLO-1, for slo-1 and slo-2 function in AWC asymmetry. Together, these results provide an unprecedented molecular link between gap junctions and calcium pathways for terminal differentiation of olfactory neurons.
Collapse
Affiliation(s)
- Amel Alqadah
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Yi-Wen Hsieh
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jennifer A. Schumacher
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Xiaohong Wang
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Sean A. Merrill
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Grethel Millington
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Brittany Bayne
- Division of Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Erik M. Jorgensen
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Chiou-Fen Chuang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
52
|
Lim CX, Ricos MG, Dibbens LM, Heron SE. KCNT1mutations in seizure disorders: the phenotypic spectrum and functional effects. J Med Genet 2016; 53:217-25. [DOI: 10.1136/jmedgenet-2015-103508] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/06/2015] [Indexed: 01/01/2023]
|
53
|
Tang QY, Zhang FF, Xu J, Wang R, Chen J, Logothetis DE, Zhang Z. Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms. Cell Rep 2015; 14:129-139. [PMID: 26725113 DOI: 10.1016/j.celrep.2015.12.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/11/2015] [Accepted: 11/23/2015] [Indexed: 01/07/2023] Open
Abstract
Twelve sodium-activated potassium channel (KCNT1, Slack) genetic mutants have been identified from severe early-onset epilepsy patients. The changes in biophysical properties of these mutants and the underlying mechanisms causing disease remain elusive. Here, we report that seven of the 12 mutations increase, whereas one mutation decreases, the channel's sodium sensitivity. Two of the mutants exhibit channel over-activity only when the intracellular Na(+) ([Na(+)]i) concentration is ∼80 mM. In contrast, single-channel data reveal that all 12 mutants increase the maximal open probability (Po). We conclude that these mutant channels lead to channel over-activity predominantly by increasing the ability of sodium binding to activate the channel, which is indicated by its maximal Po. The sodium sensitivity of these epilepsy causing mutants probably determines the [Na(+)]i concentration at which these mutants exert their pathological effects.
Collapse
Affiliation(s)
- Qiong-Yao Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China
| | - Fei-Fei Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China
| | - Jie Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China
| | - Ran Wang
- School of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China
| | - Jian Chen
- School of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China
| | - Diomedes E Logothetis
- Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Zhe Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou, Jiangsu Province 221004, China.
| |
Collapse
|
54
|
Gururaj S, Fleites J, Bhattacharjee A. Slack sodium-activated potassium channel membrane expression requires p38 mitogen-activated protein kinase phosphorylation. Neuropharmacology 2015; 103:279-89. [PMID: 26721627 DOI: 10.1016/j.neuropharm.2015.12.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 01/14/2023]
Abstract
p38 MAPK has long been understood as an inducible kinase under conditions of cellular stress, but there is now increasing evidence to support its role in the regulation of neuronal function. Several phosphorylation targets have been identified, an appreciable number of which are ion channels, implicating the possible involvement of p38 MAPK in neuronal excitability. The KNa channel Slack is an important protein to be studied as it is highly and ubiquitously expressed in DRG neurons and is important in the maintenance of their firing accommodation. We sought to examine if the Slack channel could be a substrate of p38 MAPK activity. First, we found that the Slack C-terminus contains two putative p38 MAPK phosphorylation sites that are highly conserved across species. Second, we show via electrophysiology experiments that KNa currents and further, Slack currents, are subject to tonic modulation by p38 MAPK. Third, biochemical approaches revealed that Slack channel regulation by p38 MAPK occurs through direct phosphorylation at the two putative sites of interaction, and mutating both sites prevented surface expression of Slack channels. Based on these results, we conclude that p38 MAPK is an obligate regulator of Slack channel function via the trafficking of channels into the membrane. The present study identifies Slack KNa channels as p38 MAPK substrates.
Collapse
Affiliation(s)
- Sushmitha Gururaj
- Department of Pharmacology and Toxicology, The State University of New York, Buffalo, USA
| | - John Fleites
- Program in Neuroscience, The State University of New York, Buffalo, USA
| | - Arin Bhattacharjee
- Department of Pharmacology and Toxicology, The State University of New York, Buffalo, USA; Program in Neuroscience, The State University of New York, Buffalo, USA.
| |
Collapse
|
55
|
Rizzi S, Knaus HG, Schwarzer C. Differential distribution of the sodium-activated potassium channels slick and slack in mouse brain. J Comp Neurol 2015; 524:2093-116. [PMID: 26587966 PMCID: PMC4982087 DOI: 10.1002/cne.23934] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 12/11/2022]
Abstract
The sodium‐activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are high‐conductance potassium channels of the Slo family. In neurons, Slick and Slack channels are involved in the generation of slow afterhyperpolarization, in the regulation of firing patterns, and in setting and stabilizing the resting membrane potential. The distribution and subcellular localization of Slick and Slack channels in the mouse brain have not yet been established in detail. The present study addresses this issue through in situ hybridization and immunohistochemistry. Both channels were widely distributed and exhibited distinct distribution patterns. However, in some brain regions, their expression overlapped. Intense Slick channel immunoreactivity was observed in processes, varicosities, and neuronal cell bodies of the olfactory bulb, granular zones of cortical regions, hippocampus, amygdala, lateral septal nuclei, certain hypothalamic and midbrain nuclei, and several regions of the brainstem. The Slack channel showed primarily a diffuse immunostaining pattern, and labeling of cell somata and processes was observed only occasionally. The highest Slack channel expression was detected in the olfactory bulb, lateral septal nuclei, basal ganglia, and distinct areas of the midbrain, brainstem, and cerebellar cortex. In addition, comparing our data obtained from mouse brain with a previously published study on rat brain revealed some differences in the expression and distribution of Slick and Slack channels in these species. J. Comp. Neurol. 524:2093–2116, 2016. © 2015 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sandra Rizzi
- Division of Molecular and Cellular Pharmacology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Hans-Günther Knaus
- Division of Molecular and Cellular Pharmacology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| |
Collapse
|
56
|
Identification of potential novel interaction partners of the sodium-activated potassium channels Slick and Slack in mouse brain. Biochem Biophys Rep 2015; 4:291-298. [PMID: 29124216 PMCID: PMC5669359 DOI: 10.1016/j.bbrep.2015.09.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/18/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023] Open
Abstract
The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are paralogous channels of the Slo family of high-conductance potassium channels. Slick and Slack channels are widely distributed in the mammalian CNS and they play a role in slow afterhyperpolarization, generation of depolarizing afterpotentials and in setting and stabilizing the resting potential. In the present study we used a combined approach of (co)-immunoprecipitation studies, Western blot analysis, double immunofluorescence and mass spectrometric sequencing in order to investigate protein-protein interactions of the Slick and Slack channels. The data strongly suggest that Slick and Slack channels co-assemble into identical cellular complexes. Double immunofluorescence experiments revealed that Slick and Slack channels co-localize in distinct mouse brain regions. Moreover, we identified the small cytoplasmic protein beta-synuclein and the transmembrane protein 263 (TMEM 263) as novel interaction partners of both, native Slick and Slack channels. In addition, the inactive dipeptidyl-peptidase (DPP 10) and the synapse associated protein 102 (SAP 102) were identified as constituents of the native Slick and Slack channel complexes in the mouse brain. This study presents new insights into protein-protein interactions of native Slick and Slack channels in the mouse brain.
Collapse
|
57
|
Cryo-electron microscopy structure of the Slo2.2 Na(+)-activated K(+) channel. Nature 2015; 527:198-203. [PMID: 26436452 PMCID: PMC4886347 DOI: 10.1038/nature14958] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/15/2015] [Indexed: 12/26/2022]
Abstract
Na+-activated K+ channels are members of the Slo family of large conductance K+ channels that are widely expressed in the brain, where their opening regulates neuronal excitability. These channels are fascinating for the biological roles they fulfill as well as for their intriguing biophysical properties, including conductance levels ten times most other K+ channels and gating sensitivity to intracellular Na+. Here we present the structure a complete Na+-activated K+ channel, Slo2.2, in the Na+-free state, determined by cryo-electron microscopy at a nominal resolution of 4.5 Å. The channel is composed of a large cytoplasmic gating ring within which resides the Na+-binding site and a transmembrane domain that closely resembles voltage-gated K+ channels. In the structure, the cytoplasmic domain adopts a closed conformation and the ion conduction pore is also closed. The structure provides a first view of a member of the Slo K+ channel family, which reveals features explaining their high conductance and gating mechanism.
Collapse
|
58
|
Steinmann ME, González-Salgado A, Bütikofer P, Mäser P, Sigel E. A heteromeric potassium channel involved in the modulation of the plasma membrane potential is essential for the survival of African trypanosomes. FASEB J 2015; 29:3228-37. [DOI: 10.1096/fj.15-271353] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/31/2015] [Indexed: 11/11/2022]
|
59
|
Ohba C, Kato M, Takahashi N, Osaka H, Shiihara T, Tohyama J, Nabatame S, Azuma J, Fujii Y, Hara M, Tsurusawa R, Inoue T, Ogata R, Watanabe Y, Togashi N, Kodera H, Nakashima M, Tsurusaki Y, Miyake N, Tanaka F, Saitsu H, Matsumoto N. De novo
KCNT
1
mutations in early‐onset epileptic encephalopathy. Epilepsia 2015; 56:e121-8. [DOI: 10.1111/epi.13072] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2015] [Indexed: 11/25/2022]
Affiliation(s)
- Chihiro Ohba
- Department of Human Genetics Graduate School of Medicine Yokohama City University Yokohama Japan
- Department of Clinical Neurology and Stroke Medicine Yokohama City University Yokohama Japan
| | - Mitsuhiro Kato
- Department of Pediatrics Yamagata University Faculty of Medicine Yamagata Japan
| | - Nobuya Takahashi
- Department of Pediatrics Yamagata University Faculty of Medicine Yamagata Japan
| | - Hitoshi Osaka
- Division of Neurology Clinical Research Institute Kanagawa Children's Medical Center Yokohama Japan
- Department of Pediatrics Jichi Medical School Shimotsuke Tochigi Japan
| | - Takashi Shiihara
- Department of Neurology Gunma Children's Medical Center Shibukawa Japan
| | - Jun Tohyama
- Department of Pediatrics Epilepsy Center Nishi‐Niigata Chuo National Hospital Niigata Japan
| | - Shin Nabatame
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Junji Azuma
- Department of Pediatrics Osaka University Graduate School of Medicine Osaka Japan
| | - Yuji Fujii
- Department of Pediatrics Hiroshima University Hospital Hiroshima Japan
| | - Munetsugu Hara
- Department of Neonatology Medical Center for Maternal and Child Health St. Mary's Hospital Kurume Japan
- Department of Pediatrics and Child Health Kurume University School of Medicine Kurume Japan
| | - Reimi Tsurusawa
- Department of Pediatrics Fukuoka University Chikushi Hospital Fukuoka Japan
| | - Takahito Inoue
- Department of Pediatrics Fukuoka University Chikushi Hospital Fukuoka Japan
| | - Reina Ogata
- Department of Pediatric Neurology Fukuoka Children's Hospital Fukuoka Japan
| | - Yoriko Watanabe
- Department of Pediatrics and Child Health Kurume University School of Medicine Kurume Japan
| | - Noriko Togashi
- Department of Neurology Miyagi Children's Hospital Sendai Japan
| | - Hirofumi Kodera
- Department of Human Genetics Graduate School of Medicine Yokohama City University Yokohama Japan
| | - Mitsuko Nakashima
- Department of Human Genetics Graduate School of Medicine Yokohama City University Yokohama Japan
| | - Yoshinori Tsurusaki
- Department of Human Genetics Graduate School of Medicine Yokohama City University Yokohama Japan
| | - Noriko Miyake
- Department of Human Genetics Graduate School of Medicine Yokohama City University Yokohama Japan
| | - Fumiaki Tanaka
- Department of Clinical Neurology and Stroke Medicine Yokohama City University Yokohama Japan
| | - Hirotomo Saitsu
- Department of Human Genetics Graduate School of Medicine Yokohama City University Yokohama Japan
| | - Naomichi Matsumoto
- Department of Human Genetics Graduate School of Medicine Yokohama City University Yokohama Japan
| |
Collapse
|
60
|
Bausch AE, Dieter R, Nann Y, Hausmann M, Meyerdierks N, Kaczmarek LK, Ruth P, Lukowski R. The sodium-activated potassium channel Slack is required for optimal cognitive flexibility in mice. ACTA ACUST UNITED AC 2015; 22:323-35. [PMID: 26077685 PMCID: PMC4478330 DOI: 10.1101/lm.037820.114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/05/2015] [Indexed: 01/14/2023]
Abstract
Kcnt1 encoded sodium-activated potassium channels (Slack channels) are highly expressed throughout the brain where they modulate the firing patterns and general excitability of many types of neurons. Increasing evidence suggests that Slack channels may be important for higher brain functions such as cognition and normal intellectual development. In particular, recent findings have shown that human Slack mutations produce very severe intellectual disability and that Slack channels interact directly with the Fragile X mental retardation protein (FMRP), a protein that when missing or mutated results in Fragile X syndrome (FXS), the most common form of inherited intellectual disability and autism in humans. We have now analyzed a recently developed Kcnt1 null mouse model in several behavioral tasks to assess which aspects of memory and learning are dependent on Slack. We demonstrate that Slack deficiency results in mildly altered general locomotor activity, but normal working memory, reference memory, as well as cerebellar control of motor functions. In contrast, we find that Slack channels are required for cognitive flexibility, including reversal learning processes and the ability to adapt quickly to unfamiliar situations and environments. Our data reveal that hippocampal-dependent spatial learning capabilities require the proper function of Slack channels.
Collapse
Affiliation(s)
- Anne E Bausch
- Pharmakologie, Toxikologie und Klinische Pharmazie, Institut für Pharmazie, 72076 Tübingen, Germany
| | - Rebekka Dieter
- Pharmakologie, Toxikologie und Klinische Pharmazie, Institut für Pharmazie, 72076 Tübingen, Germany
| | - Yvette Nann
- Pharmakologie, Toxikologie und Klinische Pharmazie, Institut für Pharmazie, 72076 Tübingen, Germany
| | - Mario Hausmann
- Pharmakologie, Toxikologie und Klinische Pharmazie, Institut für Pharmazie, 72076 Tübingen, Germany
| | - Nora Meyerdierks
- Pharmakologie, Toxikologie und Klinische Pharmazie, Institut für Pharmazie, 72076 Tübingen, Germany
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Peter Ruth
- Pharmakologie, Toxikologie und Klinische Pharmazie, Institut für Pharmazie, 72076 Tübingen, Germany
| | - Robert Lukowski
- Pharmakologie, Toxikologie und Klinische Pharmazie, Institut für Pharmazie, 72076 Tübingen, Germany
| |
Collapse
|
61
|
Salari S, Ghasemi M, Fahanik-Babaei J, Saghiri R, Sauve R, Eliassi A. Evidence for a KATP Channel in Rough Endoplasmic Reticulum (rerKATP Channel) of Rat Hepatocytes. PLoS One 2015; 10:e0125798. [PMID: 25950903 PMCID: PMC4423865 DOI: 10.1371/journal.pone.0125798] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 03/25/2015] [Indexed: 12/24/2022] Open
Abstract
We report in a previous study the presence of a large conductance K+ channel in the membrane of rough endoplasmic reticulum (RER) from rat hepatocytes incorporated into lipid bilayers. Channel activity in this case was found to decrease in presence of ATP 100 µM on the cytoplasmic side and was totally inhibited at ATP concentrations greater than 0.25 mM. Although such features would be compatible with the presence of a KATP channel in the RER, recent data obtained from a brain mitochondrial inner membrane preparation have provided evidence for a Maxi-K channel which could also be blocked by ATP within the mM concentration range. A series of channel incorporation experiments was thus undertaken to determine if the ATP-sensitive channel originally observed in the RER corresponds to KATP channel. Our results indicate that the gating and permeation properties of this channel are unaffected by the addition of 800 nM charybdotoxin and 1 µM iberiotoxin, but appeared sensitive to 10 mM TEA and 2.5 mM ATP. Furthermore, adding 100 µM glibenclamide at positive potentials and 400 µM tolbutamide at negative or positive voltages caused a strong inhibition of channel activity. Finally Western blot analyses provided evidence for Kir6.2, SUR1 and/or SUR2B, and SUR2A expression in our RER fractions. It was concluded on the basis of these observations that the channel previously characterized in RER membranes corresponds to KATP, suggesting that opening of this channel may enhance Ca2+ releases, alter the dynamics of the Ca2+ transient and prevent accumulation of Ca2+ in the ER during Ca2+ overload.
Collapse
Affiliation(s)
- Sajjad Salari
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maedeh Ghasemi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-Babaei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Saghiri
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Remy Sauve
- Department of Molecular and Integrative Physiology and Membrane Protein Research Group, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Afsaneh Eliassi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- * E-mail:
| |
Collapse
|
62
|
Abstract
Slack (Slo2.2) is a sodium-activated potassium channel that regulates neuronal firing activities and patterns. Previous studies identified Slack in sensory neurons, but its contribution to acute and chronic pain in vivo remains elusive. Here we generated global and sensory neuron-specific Slack mutant mice and analyzed their behavior in various animal models of pain. Global ablation of Slack led to increased hypersensitivity in models of neuropathic pain, whereas the behavior in models of inflammatory and acute nociceptive pain was normal. Neuropathic pain behaviors were also exaggerated after ablation of Slack selectively in sensory neurons. Notably, the Slack opener loxapine ameliorated persisting neuropathic pain behaviors. In conclusion, Slack selectively controls the sensory input in neuropathic pain states, suggesting that modulating its activity might represent a novel strategy for management of neuropathic pain.
Collapse
|
63
|
Abstract
Voltage- and ligand-gated ion channels form the molecular basis of cellular excitability. With >400 members and accounting for ∼1.5% of the human genome, ion channels are some of the most well studied of all proteins in heterologous expression systems. Yet, ion channels often exhibit unexpected properties in vivo because of their interaction with a variety of signaling/scaffolding proteins. Such interactions can influence the function and localization of ion channels, as well as their coupling to intracellular second messengers and pathways, thus increasing the signaling potential of these ion channels in neurons. Moreover, functions have been ascribed to ion channels that are largely independent of their ion-conducting roles. Molecular and functional dissection of the ion channel proteome/interactome has yielded new insights into the composition of ion channel complexes and how their dysregulation leads to human disease.
Collapse
|
64
|
Kim GE, Kronengold J, Barcia G, Quraishi IH, Martin HC, Blair E, Taylor JC, Dulac O, Colleaux L, Nabbout R, Kaczmarek LK. Human slack potassium channel mutations increase positive cooperativity between individual channels. Cell Rep 2014; 9:1661-1672. [PMID: 25482562 DOI: 10.1016/j.celrep.2014.11.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/06/2014] [Accepted: 11/10/2014] [Indexed: 11/24/2022] Open
Abstract
Disease-causing mutations in ion channels generally alter intrinsic gating properties such as activation, inactivation, and voltage dependence. We examined nine different mutations of the KCNT1 (Slack) Na(+)-activated K(+) channel that give rise to three distinct forms of epilepsy. All produced many-fold increases in current amplitude compared to the wild-type channel. This could not be accounted for by increases in the intrinsic open probability of individual channels. Rather, greatly increased opening was a consequence of cooperative interactions between multiple channels in a patch. The degree of cooperative gating was much greater for all of the mutant channels than for the wild-type channel, and could explain increases in current even in a mutant with reduced unitary conductance. We also found that the same mutation gave rise to different forms of epilepsy in different individuals. Our findings indicate that a major consequence of these mutations is to alter channel-channel interactions.
Collapse
Affiliation(s)
- Grace E Kim
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | - Jack Kronengold
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA
| | - Giulia Barcia
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Imran H Quraishi
- Comprehensive Epilepsy Center, Department of Neurology, Yale University, New Haven, CT 06520, USA
| | - Hilary C Martin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Edward Blair
- Oxford University Hospitals Trust, Oxford OX3 9DU, UK
| | - Jenny C Taylor
- Oxford Biomedical Research Centre, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Olivier Dulac
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Laurence Colleaux
- INSERM U781, Université Paris Descartes, Sorbonne Paris Cité, Institut Imagine, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | - Rima Nabbout
- Department of Pediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Leonard K Kaczmarek
- Department of Pharmacology, Yale University, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
65
|
Kuum M, Veksler V, Kaasik A. Potassium fluxes across the endoplasmic reticulum and their role in endoplasmic reticulum calcium homeostasis. Cell Calcium 2014; 58:79-85. [PMID: 25467968 DOI: 10.1016/j.ceca.2014.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 12/16/2022]
Abstract
There are a number of known and suspected channels and exchangers in the endoplasmic reticulum that may participate in potassium flux across its membrane. They include trimeric intracellular cation channels permeable for potassium, ATP-sensitive potassium channels, calcium-activated potassium channels and the potassium-hydrogen exchanger. Apart from trimeric intracellular cation channels, which are specific to the endoplasmic reticulum, other potassium channels are also expressed in the plasma membrane and/or mitochondria, and their specific role in the endoplasmic reticulum has not yet been fully established. In addition to these potassium-selective channels, the ryanodine receptor and, potentially, the inositol 1,4,5-trisphosphate receptor are permeable to potassium ions. Also, the role of potassium fluxes across the endoplasmic reticulum membrane has remained elusive. It has been proposed that their main role is to balance the charge movement that occurs during calcium release and uptake from or to the endoplasmic reticulum. This review aims to summarize current knowledge on endoplasmic reticulum potassium channels and fluxes and their potential role in endoplasmic reticulum calcium uptake and release.
Collapse
Affiliation(s)
- Malle Kuum
- Department of Pharmacology, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 19, Tartu, Estonia
| | - Vladimir Veksler
- INSERM, U-769, Châtenay-Malabry F-92296, France; Univ Paris-Sud, Châtenay-Malabry F-92296, France
| | - Allen Kaasik
- Department of Pharmacology, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 19, Tartu, Estonia.
| |
Collapse
|
66
|
Cell volume changes regulate slick (Slo2.1), but not slack (Slo2.2) K+ channels. PLoS One 2014; 9:e110833. [PMID: 25347289 PMCID: PMC4210196 DOI: 10.1371/journal.pone.0110833] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/05/2014] [Indexed: 01/10/2023] Open
Abstract
Slick (Slo2.1) and Slack (Slo2.2) channels belong to the family of high-conductance K+ channels and have been found widely distributed in the CNS. Both channels are activated by Na+ and Cl− and, in addition, Slick channels are regulated by ATP. Therefore, the roles of these channels in regulation of cell excitability as well as ion transport processes, like regulation of cell volume, have been hypothesized. It is the aim of this work to evaluate the sensitivity of Slick and Slack channels to small, fast changes in cell volume and to explore mechanisms, which may explain this type of regulation. For this purpose Slick and Slack channels were co-expressed with aquaporin 1 in Xenopus laevis oocytes and cell volume changes of around 5% were induced by exposure to hypotonic or hypertonic media. Whole-cell currents were measured by two electrode voltage clamp. Our results show that Slick channels are dramatically stimulated (196% of control) by cell swelling and inhibited (57% of control) by a decrease in cell volume. In contrast, Slack channels are totally insensitive to similar cell volume changes. The mechanism underlining the strong volume sensitivity of Slick channels needs to be further explored, however we were able to show that it does not depend on an intact actin cytoskeleton, ATP release or vesicle fusion. In conclusion, Slick channels, in contrast to the similar Slack channels, are the only high-conductance K+ channels strongly sensitive to small changes in cell volume.
Collapse
|
67
|
Kim GE, Kaczmarek LK. Emerging role of the KCNT1 Slack channel in intellectual disability. Front Cell Neurosci 2014; 8:209. [PMID: 25120433 PMCID: PMC4112808 DOI: 10.3389/fncel.2014.00209] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 07/10/2014] [Indexed: 01/15/2023] Open
Abstract
The sodium-activated potassium KNa channels Slack and Slick are encoded by KCNT1 and KCNT2, respectively. These channels are found in neurons throughout the brain, and are responsible for a delayed outward current termed I KNa. These currents integrate into shaping neuronal excitability, as well as adaptation in response to maintained stimulation. Abnormal Slack channel activity may play a role in Fragile X syndrome, the most common cause for intellectual disability and inherited autism. Slack channels interact directly with the fragile X mental retardation protein (FMRP) and I KNa is reduced in animal models of Fragile X syndrome that lack FMRP. Human Slack mutations that alter channel activity can also lead to intellectual disability, as has been found for several childhood epileptic disorders. Ongoing research is elucidating the relationship between mutant Slack channel activity, development of early onset epilepsies and intellectual impairment. This review describes the emerging role of Slack channels in intellectual disability, coupled with an overview of the physiological role of neuronal I KNa currents.
Collapse
Affiliation(s)
- Grace E Kim
- Departments of Pharmacology and Cellular & Molecular Physiology, Yale University School of Medicine New Haven, CT, USA
| | - Leonard K Kaczmarek
- Departments of Pharmacology and Cellular & Molecular Physiology, Yale University School of Medicine New Haven, CT, USA
| |
Collapse
|
68
|
Martin HC, Kim GE, Pagnamenta AT, Murakami Y, Carvill GL, Meyer E, Copley RR, Rimmer A, Barcia G, Fleming MR, Kronengold J, Brown MR, Hudspith KA, Broxholme J, Kanapin A, Cazier JB, Kinoshita T, Nabbout R, Bentley D, McVean G, Heavin S, Zaiwalla Z, McShane T, Mefford HC, Shears D, Stewart H, Kurian MA, Scheffer IE, Blair E, Donnelly P, Kaczmarek LK, Taylor JC. Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Hum Mol Genet 2014; 23:3200-11. [PMID: 24463883 PMCID: PMC4030775 DOI: 10.1093/hmg/ddu030] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 01/20/2014] [Indexed: 11/13/2022] Open
Abstract
In severe early-onset epilepsy, precise clinical and molecular genetic diagnosis is complex, as many metabolic and electro-physiological processes have been implicated in disease causation. The clinical phenotypes share many features such as complex seizure types and developmental delay. Molecular diagnosis has historically been confined to sequential testing of candidate genes known to be associated with specific sub-phenotypes, but the diagnostic yield of this approach can be low. We conducted whole-genome sequencing (WGS) on six patients with severe early-onset epilepsy who had previously been refractory to molecular diagnosis, and their parents. Four of these patients had a clinical diagnosis of Ohtahara Syndrome (OS) and two patients had severe non-syndromic early-onset epilepsy (NSEOE). In two OS cases, we found de novo non-synonymous mutations in the genes KCNQ2 and SCN2A. In a third OS case, WGS revealed paternal isodisomy for chromosome 9, leading to identification of the causal homozygous missense variant in KCNT1, which produced a substantial increase in potassium channel current. The fourth OS patient had a recessive mutation in PIGQ that led to exon skipping and defective glycophosphatidyl inositol biosynthesis. The two patients with NSEOE had likely pathogenic de novo mutations in CBL and CSNK1G1, respectively. Mutations in these genes were not found among 500 additional individuals with epilepsy. This work reveals two novel genes for OS, KCNT1 and PIGQ. It also uncovers unexpected genetic mechanisms and emphasizes the power of WGS as a clinical tool for making molecular diagnoses, particularly for highly heterogeneous disorders.
Collapse
Affiliation(s)
- Hilary C Martin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Grace E Kim
- Departments of Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Alistair T Pagnamenta
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK, NIHR Biomedical Research Centre, Oxford, UK
| | - Yoshiko Murakami
- Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Gemma L Carvill
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
| | - Esther Meyer
- Neurosciences Unit, UCL-Institute of Child Health, London, UK, Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Richard R Copley
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK, NIHR Biomedical Research Centre, Oxford, UK
| | - Andrew Rimmer
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Giulia Barcia
- Department of Paediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Paris, France
| | - Matthew R Fleming
- Departments of Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Jack Kronengold
- Departments of Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Maile R Brown
- Departments of Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Karl A Hudspith
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK, NIHR Biomedical Research Centre, Oxford, UK
| | - John Broxholme
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alexander Kanapin
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Taroh Kinoshita
- Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Rima Nabbout
- Department of Paediatric Neurology, Centre de Reference Epilepsies Rares, Hôpital Necker-Enfants Malades, Paris, France
| | | | - Gil McVean
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sinéad Heavin
- Departments of Medicine and Paediatrics, Florey Institute, The University of Melbourne, Austin Health and Royal Children's Hospital, Melbourne, VIC, Australia
| | - Zenobia Zaiwalla
- Department of Clinical Neurophysiology, John Radcliffe Hospital, Oxford, UK
| | - Tony McShane
- Department of Paediatrics, Children's Hospital Oxford, John Radcliffe Hospital, Oxford, UK
| | - Heather C Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, USA
| | - Deborah Shears
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Helen Stewart
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Manju A Kurian
- Neurosciences Unit, UCL-Institute of Child Health, London, UK
| | - Ingrid E Scheffer
- Departments of Medicine and Paediatrics, Florey Institute, The University of Melbourne, Austin Health and Royal Children's Hospital, Melbourne, VIC, Australia
| | - Edward Blair
- Department of Clinical Genetics, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Peter Donnelly
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Leonard K Kaczmarek
- Departments of Cellular and Molecular Physiology and Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Jenny C Taylor
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK, NIHR Biomedical Research Centre, Oxford, UK,
| |
Collapse
|
69
|
Abstract
The field of mitochondrial ion channels has recently seen substantial progress, including the molecular identification of some of the channels. An integrative approach using genetics, electrophysiology, pharmacology, and cell biology to clarify the roles of these channels has thus become possible. It is by now clear that many of these channels are important for energy supply by the mitochondria and have a major impact on the fate of the entire cell as well. The purpose of this review is to provide an up-to-date overview of the electrophysiological properties, molecular identity, and pathophysiological functions of the mitochondrial ion channels studied so far and to highlight possible therapeutic perspectives based on current information.
Collapse
|
70
|
Milligan CJ, Li M, Gazina EV, Heron SE, Nair U, Trager C, Reid CA, Venkat A, Younkin DP, Dlugos DJ, Petrovski S, Goldstein DB, Dibbens LM, Scheffer IE, Berkovic SF, Petrou S. KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. Ann Neurol 2014; 75:581-90. [PMID: 24591078 DOI: 10.1002/ana.24128] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Mutations in KCNT1 have been implicated in autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) and epilepsy of infancy with migrating focal seizures (EIMFS). More recently, a whole exome sequencing study of epileptic encephalopathies identified an additional de novo mutation in 1 proband with EIMFS. We aim to investigate the electrophysiological and pharmacological characteristics of hKCNT1 mutations and examine developmental expression levels. METHODS Here we use a Xenopus laevis oocyte-based automated 2-electrode voltage clamp assay. The effects of quinidine (100 and 300 μM) are also tested. Using quantitative reverse transcriptase polymerase chain reaction, the relative levels of mouse brain mKcnt1 mRNA expression are determined. RESULTS We demonstrate that KCNT1 mutations implicated in epilepsy cause a marked increase in function. Importantly, there is a significant group difference in gain of function between mutations associated with ADNFLE and EIMFS. Finally, exposure to quinidine significantly reduces this gain of function for all mutations studied. INTERPRETATION These results establish direction for a targeted therapy and potentially exemplify a translational paradigm for in vitro studies informing novel therapies in a neuropsychiatric disease.
Collapse
Affiliation(s)
- Carol J Milligan
- Ion Channels and Disease Group, Epilepsy Division, Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Genetic heterogeneity in familial nocturnal frontal lobe epilepsy. PROGRESS IN BRAIN RESEARCH 2014; 213:1-15. [DOI: 10.1016/b978-0-444-63326-2.00001-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
72
|
González C, Baez-Nieto D, Valencia I, Oyarzún I, Rojas P, Naranjo D, Latorre R. K(+) channels: function-structural overview. Compr Physiol 2013; 2:2087-149. [PMID: 23723034 DOI: 10.1002/cphy.c110047] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Potassium channels are particularly important in determining the shape and duration of the action potential, controlling the membrane potential, modulating hormone secretion, epithelial function and, in the case of those K(+) channels activated by Ca(2+), damping excitatory signals. The multiplicity of roles played by K(+) channels is only possible to their mammoth diversity that includes at present 70 K(+) channels encoding genes in mammals. Today, thanks to the use of cloning, mutagenesis, and the more recent structural studies using x-ray crystallography, we are in a unique position to understand the origins of the enormous diversity of this superfamily of ion channels, the roles they play in different cell types, and the relations that exist between structure and function. With the exception of two-pore K(+) channels that are dimers, voltage-dependent K(+) channels are tetrameric assemblies and share an extremely well conserved pore region, in which the ion-selectivity filter resides. In the present overview, we discuss in the function, localization, and the relations between function and structure of the five different subfamilies of K(+) channels: (a) inward rectifiers, Kir; (b) four transmembrane segments-2 pores, K2P; (c) voltage-gated, Kv; (d) the Slo family; and (e) Ca(2+)-activated SK family, SKCa.
Collapse
Affiliation(s)
- Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | | | | | | | | | | |
Collapse
|
73
|
Hayashi M, Novak I. Molecular basis of potassium channels in pancreatic duct epithelial cells. Channels (Austin) 2013; 7:432-41. [PMID: 23962792 PMCID: PMC4042478 DOI: 10.4161/chan.26100] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Potassium channels regulate excitability, epithelial ion transport, proliferation, and apoptosis. In pancreatic ducts, K+ channels hyperpolarize the membrane potential and provide the driving force for anion secretion. This review focuses on the molecular candidates of functional K+ channels in pancreatic duct cells, including KCNN4 (KCa3.1), KCNMA1 (KCa1.1), KCNQ1 (Kv7.1), KCNH2 (Kv11.1), KCNH5 (Kv10.2), KCNT1 (KCa4.1), KCNT2 (KCa4.2), and KCNK5 (K2P5.1). We will give an overview of K+ channels with respect to their electrophysiological and pharmacological characteristics and regulation, which we know from other cell types, preferably in epithelia, and, where known, their identification and functions in pancreatic ducts and in adenocarcinoma cells. We conclude by pointing out some outstanding questions and future directions in pancreatic K+ channel research with respect to the physiology of secretion and pancreatic pathologies, including pancreatitis, cystic fibrosis, and cancer, in which the dysregulation or altered expression of K+ channels may be of importance.
Collapse
Affiliation(s)
- Mikio Hayashi
- Department of Biology; University of Copenhagen; Copenhagen, Denmark
| | - Ivana Novak
- Department of Biology; University of Copenhagen; Copenhagen, Denmark
| |
Collapse
|
74
|
Huang F, Wang X, Ostertag EM, Nuwal T, Huang B, Jan YN, Basbaum AI, Jan LY. TMEM16C facilitates Na(+)-activated K+ currents in rat sensory neurons and regulates pain processing. Nat Neurosci 2013; 16:1284-90. [PMID: 23872594 PMCID: PMC4034143 DOI: 10.1038/nn.3468] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 06/09/2013] [Indexed: 01/28/2023]
Abstract
TMEM16C belongs to the TMEM16 family, which includes the Ca2+-activated Cl– channels (CaCCs) TMEM16A and TMEM16B and a small conductance Ca2+-activated, non-selective cation channel (SCAN), TMEM16F. Here we report that in rat dorsal root ganglia (DRG) TMEM16C is expressed mainly in the IB4 positive, non-peptidergic nociceptors that also express the sodium-activated potassium (KNa) channel Slack. Together these channel proteins promote KNa channel activity and dampen neuronal excitability. DRG from TMEM16C knock out rats have reduced Slack expression, broadened action potential and increased excitability. Moreover, the TMEM16C knock out rats as well as rats with Slack knockdown via intrathecal injection of siRNA exhibit increased thermal and mechanical sensitivity. Experiments involving heterologous expression in HEK293 cells further show that TMEM16C modulates the single channel activity of Slack channels and increases its sodium sensitivity. Our study thus reveals that TMEM16C enhances KNa channel activity in DRG neurons and regulate the processing of pain messages.
Collapse
Affiliation(s)
- Fen Huang
- Department of Physiology, University of California, San Francisco, San Francisco, California, USA
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Abstract
The Slack and Slick genes encode potassium channels that are very widely expressed in the central nervous system. These channels are activated by elevations in intracellular sodium, such as those that occur during trains of one or more action potentials, or following activation of non-selective cationic neurotransmitter receptors such as AMPA receptors. This review covers the cellular and molecular properties of Slack and Slick channels and compares them with findings on the properties of sodium-activated potassium currents (termed KNa currents) in native neurons. Human mutations in Slack channels produce extremely severe defects in learning and development, suggesting that KNa channels play a central role in neuronal plasticity and intellectual function.
Collapse
|
76
|
Markham MR, Kaczmarek LK, Zakon HH. A sodium-activated potassium channel supports high-frequency firing and reduces energetic costs during rapid modulations of action potential amplitude. J Neurophysiol 2013; 109:1713-23. [PMID: 23324315 DOI: 10.1152/jn.00875.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the ionic mechanisms that allow dynamic regulation of action potential (AP) amplitude as a means of regulating energetic costs of AP signaling. Weakly electric fish generate an electric organ discharge (EOD) by summing the APs of their electric organ cells (electrocytes). Some electric fish increase AP amplitude during active periods or social interactions and decrease AP amplitude when inactive, regulated by melanocortin peptide hormones. This modulates signal amplitude and conserves energy. The gymnotiform Eigenmannia virescens generates EODs at frequencies that can exceed 500 Hz, which is energetically challenging. We examined how E. virescens meets that challenge. E. virescens electrocytes exhibit a voltage-gated Na(+) current (I(Na)) with extremely rapid recovery from inactivation (τ(recov) = 0.3 ms) allowing complete recovery of Na(+) current between APs even in fish with the highest EOD frequencies. Electrocytes also possess an inwardly rectifying K(+) current and a Na(+)-activated K(+) current (I(KNa)), the latter not yet identified in any gymnotiform species. In vitro application of melanocortins increases electrocyte AP amplitude and the magnitudes of all three currents, but increased I(KNa) is a function of enhanced Na(+) influx. Numerical simulations suggest that changing I(Na) magnitude produces corresponding changes in AP amplitude and that K(Na) channels increase AP energy efficiency (10-30% less Na(+) influx/AP) over model cells with only voltage-gated K(+) channels. These findings suggest the possibility that E. virescens reduces the energetic demands of high-frequency APs through rapidly recovering Na(+) channels and the novel use of KNa channels to maximize AP amplitude at a given Na(+) conductance.
Collapse
Affiliation(s)
- Michael R Markham
- Section of Neurobiology and Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA.
| | | | | |
Collapse
|
77
|
Regulation of neuronal excitability by interaction of fragile X mental retardation protein with slack potassium channels. J Neurosci 2013; 32:15318-27. [PMID: 23115170 DOI: 10.1523/jneurosci.2162-12.2012] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Loss of the RNA-binding protein fragile X mental retardation protein (FMRP) represents the most common form of inherited intellectual disability. Studies with heterologous expression systems indicate that FMRP interacts directly with Slack Na(+)-activated K(+) channels (K(Na)), producing an enhancement of channel activity. We have now used Aplysia bag cell (BC) neurons, which regulate reproductive behaviors, to examine the effects of Slack and FMRP on excitability. FMRP and Slack immunoreactivity were colocalized at the periphery of isolated BC neurons, and the two proteins could be reciprocally coimmunoprecipitated. Intracellular injection of FMRP lacking its mRNA binding domain rapidly induced a biphasic outward current, with an early transient tetrodotoxin-sensitive component followed by a slowly activating sustained component. The properties of this current matched that of the native Slack potassium current, which was identified using an siRNA approach. Addition of FMRP to inside-out patches containing native Aplysia Slack channels increased channel opening and, in current-clamp recordings, produced narrowing of action potentials. Suppression of Slack expression did not alter the ability of BC neurons to undergo a characteristic prolonged discharge in response to synaptic stimulation, but prevented recovery from a prolonged inhibitory period that normally follows the discharge. Recovery from the inhibited period was also inhibited by the protein synthesis inhibitor anisomycin. Our studies indicate that, in BC neurons, Slack channels are required for prolonged changes in neuronal excitability that require new protein synthesis, and raise the possibility that channel-FMRP interactions may link changes in neuronal firing to changes in protein translation.
Collapse
|
78
|
De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat Genet 2012; 44:1255-9. [PMID: 23086397 DOI: 10.1038/ng.2441] [Citation(s) in RCA: 336] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 09/17/2012] [Indexed: 12/14/2022]
Abstract
Malignant migrating partial seizures of infancy (MMPSI) is a rare epileptic encephalopathy of infancy that combines pharmacoresistant seizures with developmental delay. We performed exome sequencing in three probands with MMPSI and identified de novo gain-of-function mutations affecting the C-terminal domain of the KCNT1 potassium channel. We sequenced KCNT1 in 9 additional individuals with MMPSI and identified mutations in 4 of them, in total identifying mutations in 6 out of 12 unrelated affected individuals. Functional studies showed that the mutations led to constitutive activation of the channel, mimicking the effects of phosphorylation of the C-terminal domain by protein kinase C. In addition to regulating ion flux, KCNT1 has a non-conducting function, as its C terminus interacts with cytoplasmic proteins involved in developmental signaling pathways. These results provide a focus for future diagnostic approaches and research for this devastating condition.
Collapse
|
79
|
Yan Y, Yang Y, Bian S, Sigworth FJ. Expression, purification and functional reconstitution of slack sodium-activated potassium channels. J Membr Biol 2012; 245:667-74. [PMID: 22729647 DOI: 10.1007/s00232-012-9425-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/15/2012] [Indexed: 11/25/2022]
Abstract
The slack (slo2.2) gene codes for a potassium-channel α-subunit of the 6TM voltage-gated channel family. Expression of slack results in Na(+)-activated potassium channel activity in various cell types. We describe the purification and reconstitution of Slack protein and show that the Slack α-subunit alone is sufficient for potassium channel activity activated by sodium ions as assayed in planar bilayer membranes and in membrane vesicles.
Collapse
Affiliation(s)
- Yangyang Yan
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520-8026, USA
| | | | | | | |
Collapse
|
80
|
Hamilton KL, Devor DC. Basolateral membrane K+ channels in renal epithelial cells. Am J Physiol Renal Physiol 2012; 302:F1069-81. [PMID: 22338089 DOI: 10.1152/ajprenal.00646.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The major function of epithelial tissues is to maintain proper ion, solute, and water homeostasis. The tubule of the renal nephron has an amazingly simple structure, lined by epithelial cells, yet the segments (i.e., proximal tubule vs. collecting duct) of the nephron have unique transport functions. The functional differences are because epithelial cells are polarized and thus possess different patterns (distributions) of membrane transport proteins in the apical and basolateral membranes of the cell. K(+) channels play critical roles in normal physiology. Over 90 different genes for K(+) channels have been identified in the human genome. Epithelial K(+) channels can be located within either or both the apical and basolateral membranes of the cell. One of the primary functions of basolateral K(+) channels is to recycle K(+) across the basolateral membrane for proper function of the Na(+)-K(+)-ATPase, among other functions. Mutations of these channels can cause significant disease. The focus of this review is to provide an overview of the basolateral K(+) channels of the nephron, providing potential physiological functions and pathophysiology of these channels, where appropriate. We have taken a "K(+) channel gene family" approach in presenting the representative basolateral K(+) channels of the nephron. The basolateral K(+) channels of the renal epithelia are represented by members of the KCNK, KCNJ, KCNQ, KCNE, and SLO gene families.
Collapse
Affiliation(s)
- Kirk L Hamilton
- Department of Physiology, Otago School of Medical Sciences, University of Otago, PO Box 913, Dunedin, New Zealand.
| | | |
Collapse
|
81
|
Wojtovich AP, Sherman TA, Nadtochiy SM, Urciuoli WR, Brookes PS, Nehrke K. SLO-2 is cytoprotective and contributes to mitochondrial potassium transport. PLoS One 2011; 6:e28287. [PMID: 22145034 PMCID: PMC3228735 DOI: 10.1371/journal.pone.0028287] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/04/2011] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial potassium channels are important mediators of cell protection against stress. The mitochondrial large-conductance "big" K(+) channel (mBK) mediates the evolutionarily-conserved process of anesthetic preconditioning (APC), wherein exposure to volatile anesthetics initiates protection against ischemic injury. Despite the role of the mBK in cardioprotection, the molecular identity of the channel remains unknown. We investigated the attributes of the mBK using C. elegans and mouse genetic models coupled with measurements of mitochondrial K(+) transport and APC. The canonical Ca(2+)-activated BK (or "maxi-K") channel SLO1 was dispensable for both mitochondrial K(+) transport and APC in both organisms. Instead, we found that the related but physiologically-distinct K(+) channel SLO2 was required, and that SLO2-dependent mitochondrial K(+) transport was triggered directly by volatile anesthetics. In addition, a SLO2 channel activator mimicked the protective effects of volatile anesthetics. These findings suggest that SLO2 contributes to protection from hypoxic injury by increasing the permeability of the mitochondrial inner membrane to K(+).
Collapse
Affiliation(s)
- Andrew P. Wojtovich
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Teresa A. Sherman
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Sergiy M. Nadtochiy
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - William R. Urciuoli
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Paul S. Brookes
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Keith Nehrke
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
82
|
Brown MR, Kaczmarek LK. Potassium channel modulation and auditory processing. Hear Res 2011; 279:32-42. [PMID: 21414395 DOI: 10.1016/j.heares.2011.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/02/2011] [Accepted: 03/07/2011] [Indexed: 02/03/2023]
Abstract
For accurate processing of auditory information, neurons in auditory brainstem nuclei have to fire at high rates with high temporal accuracy. These two requirements can only be fulfilled when the intrinsic electrical properties of these neurons are matched to the pattern of incoming synaptic stimulation. This review article focuses on three families of potassium channels that are critical to shaping the firing pattern and accuracy of neurons. Changes in the auditory environment can trigger very rapid changes in the phosphorylation state of potassium channels in auditory brainstem nuclei. Longer lasting changes in the auditory environment produce changes in the rates of translation and transcription of genes encoding these channels. A key protein that plays a role in setting the overall sensitivity of the auditory system to sound stimuli is FMRP (Fragile X Mental Retardation Protein), which binds channels directly and also regulates the translation of mRNAs for the channels.
Collapse
Affiliation(s)
- Maile R Brown
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520-8066, USA
| | | |
Collapse
|
83
|
PKA-induced internalization of slack KNa channels produces dorsal root ganglion neuron hyperexcitability. J Neurosci 2010; 30:14165-72. [PMID: 20962237 DOI: 10.1523/jneurosci.3150-10.2010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Inflammatory mediators through the activation of the protein kinase A (PKA) pathway sensitize primary afferent nociceptors to mechanical, thermal, and osmotic stimuli. However, it is unclear which ion conductances are responsible for PKA-induced nociceptor hyperexcitability. We have previously shown the abundant expression of Slack sodium-activated potassium (K(Na)) channels in nociceptive dorsal root ganglion (DRG) neurons. Here we show using cultured DRG neurons, that of the total potassium current, I(K), the K(Na) current is predominantly inhibited by PKA. We demonstrate that PKA modulation of K(Na) channels does not happen at the level of channel gating but arises from the internal trafficking of Slack channels from DRG membranes. Furthermore, we found that knocking down the Slack subunit by RNA interference causes a loss of firing accommodation analogous to that observed during PKA activation. Our data suggest that the change in nociceptive firing occurring during inflammation is the result of PKA-induced Slack channel trafficking.
Collapse
|
84
|
Zhang L, Kolaj M, Renaud LP. Ca2+-Dependent and Na+-Dependent K+ Conductances Contribute to a Slow AHP in Thalamic Paraventricular Nucleus Neurons: A Novel Target for Orexin Receptors. J Neurophysiol 2010; 104:2052-62. [DOI: 10.1152/jn.00320.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Thalamic paraventricular nucleus (PVT) neurons exhibit a postburst apamin-resistant slow afterhyperpolarization (sAHP) that is unique to midline thalamus, displays activity dependence, and is abolished in tetrodotoxin. Analysis of the underlying s IAHP confirmed a requirement for Ca2+ influx with contributions from P/Q-, N-, L-, and R subtype channels, a reversal potential near EK+ and a significant reduction by UCL-2077, barium or TEA, consistent with a role for KCa channels. s IAHP was significantly reduced by activation of either the cAMP or the protein kinase C (PKC) signaling pathway. Further analysis of the sAHP revealed an activity-dependent but Ca2+-independent component that was reduced in high [K+]o and blockable after Na+ substitution with Li+ or in the presence of quinidine, suggesting a role for KNa channels. The Ca2+-independent sAHP component was selectively reduced by activation of the PKC signaling pathway. The sAHP contributed to spike frequency adaptation, which was sensitive to activation of either cAMP or PKC signaling pathways and, near the peak of membrane hyperpolarization, was sufficient to cause de-inactivation of low threshold T-Type Ca2+ channels, thus promoting burst firing. PVT neurons are densely innervated by orexin-immunoreactive fibers, and depolarized by exogenously applied orexins. We now report that orexin A significantly reduced both Ca2+-dependent and -independent s IAHP, and spike frequency adaptation. Furthermore orexin A-induced s IAHP inhibition was mediated through activation of PKC but not PKA. Collectively, these observations suggest that KCa and KNa channels have a role in a sAHP that contributes to spike frequency adaptation and neuronal excitability in PVT neurons and that the sAHP is a novel target for modulation by the arousal- and feeding-promoting orexin neuropeptides.
Collapse
Affiliation(s)
- Li Zhang
- Neurosciences Program, Ottawa Hospital Research Institute and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Miloslav Kolaj
- Neurosciences Program, Ottawa Hospital Research Institute and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Leo P. Renaud
- Neurosciences Program, Ottawa Hospital Research Institute and Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
85
|
Ouyang Q, Patel V, Vanderburgh J, Harris-Warrick RM. Cloning and distribution of Ca2+-activated K+ channels in lobster Panulirus interruptus. Neuroscience 2010; 170:692-702. [PMID: 20682332 DOI: 10.1016/j.neuroscience.2010.07.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/27/2010] [Accepted: 07/29/2010] [Indexed: 11/25/2022]
Abstract
Large conductance Ca(2+)-activated potassium (BK) channels play important roles in controlling neuronal excitability. We cloned the PISlo gene encoding BK channels from the spiny lobster, Panulirus interruptus. This gene shows 81-98% sequence identity to Slo genes previously found in other organisms. We isolated a number of splice variants of the PISlo cDNA within Panulirus interruptus nervous tissue. Sequence analysis indicated that there are at least seven alternative splice sites in PISlo, each with multiple alternative segments. Using immunohistochemistry, we found that the PISlo proteins are distributed in the synaptic neuropil, axon and soma of stomatogastric ganglion (STG) neurons.
Collapse
Affiliation(s)
- Q Ouyang
- Department of Neurobiology and Behavior, Cornell University, Ithaca,NY 14853, USA.
| | | | | | | |
Collapse
|
86
|
Lu S, Das P, Fadool DA, Kaczmarek LK. The slack sodium-activated potassium channel provides a major outward current in olfactory neurons of Kv1.3-/- super-smeller mice. J Neurophysiol 2010; 103:3311-9. [PMID: 20393063 DOI: 10.1152/jn.00607.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Kv1.3 voltage-dependent potassium channel is expressed at high levels in mitral cells of the olfactory bulb (OB). Deletion of the Kv1.3 potassium channel gene (Kv1.3-/-) in mice lowers the threshold for detection of odors, increases the ability to discriminate between odors, and alters the firing pattern of mitral cells. We have now found that loss of Kv1.3 produces a compensatory increase in Na(+)-activated K(+) currents (K(Na)) in mitral cells. Levels of the K(Na) channel subunit Slack-B determined by Western blotting are substantially increased in the OB from Kv1.3-/- animals compared with those of wildtype animals. In voltage-clamp recordings of OB slices, elevation of intracellular sodium from 0 to 60 mM increased mean outward currents by 15% in mitral cells from wildtype animals and by 40% in cells from Kv1.3-/- animals. In Kv1.3-/- cells, K(Na) current could even be detected with 0 mM Na(+) internal solutions, provided extracellular Na(+) was present, and this current could be abolished by TTX and ZD7288, blockers of Na(+) influx through voltage-dependent Na(+) channels and H-channels, respectively. The role of enhanced expression of Slack subunits in the increase of K(Na) current in Kv1.3-/- cells was also confirmed using an RNA interference (RNA(i)) approach to suppress Slack expression in primary cultures of olfactory neurons. In Kv1.3-/- neurons, treatment with Slack-specific RNA(i) inhibited approximately 75% of the net outward current, whereas in wildtype cells, the same treatment suppressed only about 25% of the total current. Scrambled and mismatched RNA(i) oligonucleotides failed to suppress currents. Our findings raise the possibility that the olfactory phenotype of Kv1.3-/- animals results in part from an enhancement of K(Na) currents.
Collapse
Affiliation(s)
- Songqing Lu
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520-8066, USA
| | | | | | | |
Collapse
|
87
|
Nanou E, El Manira A. Mechanisms of modulation of AMPA-induced Na+-activated K+ current by mGluR1. J Neurophysiol 2009; 103:441-5. [PMID: 19889851 DOI: 10.1152/jn.00584.2009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Na(+)-activated K(+) (K(Na)) channels can be activated by Na(+) influx via ionotropic receptors and play a role in shaping synaptic transmission. In expression systems, K(Na) channels are modulated by G protein-coupled receptors, but such a modulation has not been shown for the native channels. In this study, we examined whether K(Na) channels coupled to AMPA receptors are modulated by metabotropic glutamate receptors (mGluRs) in lamprey spinal cord neurons. Activation of mGluR1 strongly inhibited the AMPA-induced K(Na) current. However, when intracellular Ca(2+) was chelated with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), the K(Na) current was enhanced by mGluR1. Activation of protein kinase C (PKC) mimicked the inhibitory effect of mGluR1 on the K(Na) current. Blockade of PKC prevented the mGluR1-induced inhibition of the K(Na) current, but did not affect the enhancement of the current seen in BAPTA. Together these results suggest that mGluR1 can differentially modulate AMPA-induced K(Na) current in a Ca(2+)- and PKC-dependent manner.
Collapse
Affiliation(s)
- Evanthia Nanou
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
88
|
Nagy N, Szűts V, Horváth Z, Seprényi G, Farkas AS, Acsai K, Prorok J, Bitay M, Kun A, Pataricza J, Papp JG, Nánási PP, Varró A, Tóth A. Does small-conductance calcium-activated potassium channel contribute to cardiac repolarization? J Mol Cell Cardiol 2009; 47:656-63. [DOI: 10.1016/j.yjmcc.2009.07.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Revised: 06/19/2009] [Accepted: 07/16/2009] [Indexed: 11/27/2022]
|
89
|
Fleming MR, Kaczmarek LK. Use of optical biosensors to detect modulation of Slack potassium channels by G protein-coupled receptors. J Recept Signal Transduct Res 2009; 29:173-81. [PMID: 19640220 DOI: 10.1080/10799890903056883] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ion channels control the electrical properties of neurons and other excitable cell types by selectively allowing ion to flow through the plasma membrane. To regulate neuronal excitability, the biophysical properties of ion channels are modified by signaling proteins and molecules, which often bind to the channels themselves to form a heteromeric channel complex. Traditional assays examining the interaction between channels and regulatory proteins generally provide little information on the time-course of interactions in living cells. We have now used a novel label-free technology to detect changes in the distribution of mass close to the plasma membrane following modulation of potassium channels by G protein-coupled receptors (GPCRs). This technology uses optical sensors embedded in microplates to detect changes in the refractive index at the surface of cells. Although the activation of GPCRs has been studied with this system, protein-protein interactions due to modulation of ion channels have not yet been characterized. Here we present data that the characteristic pattern of mass distribution following GPCR activation is significantly modified by the presence of a sodium-activated potassium channel, Slack-B, a channel that is known to be potently modulated by activation of these receptors.
Collapse
Affiliation(s)
- Matthew R Fleming
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
90
|
Nuwer MO, Picchione KE, Bhattacharjee A. cAMP-dependent kinase does not modulate the Slack sodium-activated potassium channel. Neuropharmacology 2009; 57:219-26. [PMID: 19540251 DOI: 10.1016/j.neuropharm.2009.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 04/24/2009] [Accepted: 06/10/2009] [Indexed: 11/25/2022]
Abstract
The Slack gene encodes a Na(+)-activated K(+) channel and is expressed in many different types of neurons. Like the prokaryotic Ca(2+)-gated K(+) channel MthK, Slack contains two 'regulator of K(+) conductance' (RCK) domains within its carboxy terminal, domains likely involved in Na(+) binding and channel gating. It also contains multiple consensus protein kinase C (PKC) and protein kinase A (PKA) phosphorylation sites and although regulated by protein kinase C (PKC) phosphorylation, modulation by PKA has not been determined. To test if PKA directly regulates Slack, nystatin-perforated patch whole-cell currents were recorded from a human embryonic kidney (HEK-293) cell line stably expressing Slack. Bath application of forskolin, an adenylate cyclase activator, caused a rapid and complete inhibition of Slack currents however, the inactive homolog of forskolin, 1,9-dideoxyforskolin caused a similar effect. In contrast, bath application of 8-bromo-cAMP did not affect the amplitude nor the activation kinetics of Slack currents. In excised inside-out patch recordings, direct application of the PKA catalytic subunit to patches did not affect the open probability of Slack channels nor was open probability affected by direct application of protein phosphatase 2B. Preincubation of cells with the protein kinase A inhibitor KT5720 also did not change current density. Finally, mutating the consensus phosphorylation site located between RCK domain 1 and domain 2 from serine to glutamate did not affect current activation kinetics. We conclude that unlike PKC, phosphorylation by PKA does not acutely modulate the function and gating activation kinetics of Slack channels.
Collapse
Affiliation(s)
- Megan O Nuwer
- Program in Neuroscience, The State University of New York, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
91
|
The N-terminal domain of Slack determines the formation and trafficking of Slick/Slack heteromeric sodium-activated potassium channels. J Neurosci 2009; 29:5654-65. [PMID: 19403831 DOI: 10.1523/jneurosci.5978-08.2009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Potassium channels activated by intracellular Na(+) ions (K(Na)) play several distinct roles in regulating the firing patterns of neurons, and, at the single channel level, their properties are quite diverse. Two known genes, Slick and Slack, encode K(Na) channels. We have now found that Slick and Slack subunits coassemble to form heteromeric channels that differ from the homomers in their unitary conductance, kinetic behavior, subcellular localization, and response to activation of protein kinase C. Heteromer formation requires the N-terminal domain of Slack-B, one of the alternative splice variants of the Slack channel. This cytoplasmic N-terminal domain of Slack-B also facilitates the localization of heteromeric K(Na) channels to the plasma membrane. Immunocytochemical studies indicate that Slick and Slack-B subunits are coexpressed in many central neurons. Our findings provide a molecular explanation for some of the diversity in reported properties of neuronal K(Na) channels.
Collapse
|
92
|
Brown MR, Kronengold J, Gazula VR, Spilianakis CG, Flavell RA, von Hehn CAA, Bhattacharjee A, Kaczmarek LK. Amino-termini isoforms of the Slack K+ channel, regulated by alternative promoters, differentially modulate rhythmic firing and adaptation. J Physiol 2008; 586:5161-79. [PMID: 18787033 DOI: 10.1113/jphysiol.2008.160861] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The rates of activation and unitary properties of Na+-activated K+ (K(Na)) currents have been found to vary substantially in different types of neurones. One class of K(Na) channels is encoded by the Slack gene. We have now determined that alternative RNA splicing gives rise to at least five different transcripts for Slack, which produce Slack channels that differ in their predicted cytoplasmic amino-termini and in their kinetic properties. Two of these, termed Slack-A channels, contain an amino-terminus domain closely resembling that of another class of K(Na) channels encoded by the Slick gene. Neuronal expression of Slack-A channels and of the previously described Slack isoform, now called Slack-B, are driven by independent promoters. Slack-A mRNAs were enriched in the brainstem and olfactory bulb and detected at significant levels in four different brain regions. When expressed in CHO cells, Slack-A channels activate rapidly upon depolarization and, in single channel recordings in Xenopus oocytes, are characterized by multiple subconductance states with only brief transient openings to the fully open state. In contrast, Slack-B channels activate slowly over hundreds of milliseconds, with openings to the fully open state that are approximately 6-fold longer than those for Slack-A channels. In numerical simulations, neurones in which outward currents are dominated by a Slack-A-like conductance adapt very rapidly to repeated or maintained stimulation over a wide range of stimulus strengths. In contrast, Slack-B currents promote rhythmic firing during maintained stimulation, and allow adaptation rate to vary with stimulus strength. Using an antibody that recognizes all amino-termini isoforms of Slack, Slack immunoreactivity is present at locations that have no Slack-B-specific staining, including olfactory bulb glomeruli and the dendrites of hippocampal neurones, suggesting that Slack channels with alternate amino-termini such as Slack-A channels are present at these locations. Our data suggest that alternative promoters of the Slack gene differentially modulate the properties of neurones.
Collapse
Affiliation(s)
- Maile R Brown
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Aoki K, Kosakai K, Yoshino M. Monoaminergic modulation of the Na+-activated K+ channel in Kenyon cells isolated from the mushroom body of the cricket (Gryllus bimaculatus) brain. J Neurophysiol 2008; 100:1211-22. [PMID: 18550722 DOI: 10.1152/jn.90459.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have suggested that octopamine (OA) and dopamine (DA) play important roles in mediating the reward and punishment signals, respectively, in olfactory learning in insect. However, their target molecules and the signaling mechanisms are not fully understood. In this study, we showed for the first time that OA and DA modulate the Na+-activated K+ (KNa) channels in an opposite way in Kenyon cells isolated from the mushroom body of the cricket, Gryllus bimaculatus. Patch-clamp recordings showed that the single-channel conductance of the KNa channel was about 122 pS with high K+ in the patch pipettes. The channel was found to be activated by intracellular Na+ but less activated by Li+. K+ channel blockers TEA and quinidine reduced the open probability (Po) of this channel. Bath application of OA and DA respectively increased and decreased the Po of KNa channel currents. An increase and a decrease in Po of KNa channels were also observed by applying the membrane-permeable analogs 8-Br-cyclic-AMP and 8-Br-cGMP, respectively. Furthermore, it was revealed that cAMP-induced increase and cGMP-induced decrease in Po were attenuated by the specific protein kinase A (PKA) inhibitor H-89 and protein kinase G (PKG) inhibitor KT5823, respectively. These results indicate that the KNa channel is a target molecule for OA and DA and that cAMP/PKA and cGMP/PKG signaling pathways are also involved in the modulation of KNa channels.
Collapse
Affiliation(s)
- Kozue Aoki
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | | | | |
Collapse
|
94
|
Ruffin VA, Gu XQ, Zhou D, Douglas RM, Sun X, Trouth CO, Haddad GG. The sodium-activated potassium channel Slack is modulated by hypercapnia and acidosis. Neuroscience 2007; 151:410-8. [PMID: 18082331 DOI: 10.1016/j.neuroscience.2007.10.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Revised: 10/26/2007] [Accepted: 11/02/2007] [Indexed: 01/12/2023]
Abstract
Slack (Slo 2.2), a member of the Slo potassium channel family, is activated by both voltage and cytosolic factors, such as Na(+) ([Na(+)](i)) and Cl(-) ([Cl(-)](i)). Since the Slo family is known to play a role in hypoxia, and since hypoxia/ischemia is associated with an increase in H(+) and CO(2) intracellularly, we hypothesized that the Slack channel may be affected by changes in intracellular concentrations of CO(2) and H(+). To examine this, we expressed the Slack channel in Xenopus oocytes and the Slo 2.2 protein was allowed to be inserted into the plasma membrane. Inside-out patch recordings were performed to examine the response of Slack to different CO(2) concentrations (0.038%, 5%, 12%) and to different pH levels (6.3, 6.8, 7.3, 7.8, 8.3). In the presence of low [Na(+)](i) (5 mM), the Slack channel open probability decreased when exposed to decreased pH or increased CO(2) in a dose-dependent fashion (from 0.28+/-0.03, n=3, at pH 7.3 to 0.006+/-0.005, n=3, P=0.0004, at pH 6.8; and from 0.65+/-0.17, n=3, at 0.038% CO(2) to 0.22+/-0.07, n=3, P=0.04 at 12% CO(2)). In the presence of high [Na(+)](i) (45 mM), Slack open probability increased (from 0.03+/-0.01 at 5 mM [Na(+)](i), n=3, to 0.11+/-0.01, n=3, P=0.01) even in the presence of decreased pH (6.3). Since Slack activity increases significantly when exposed to increased [Na(+)](i), even in presence of increased H(+), we propose that Slack may play an important role in pathological conditions during which there is an increase in the intracellular concentrations of both acid and Na(+), such as in ischemia/hypoxia.
Collapse
Affiliation(s)
- V A Ruffin
- Department of Physiology and Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Zhang Y, Paterson WG. Functional evidence for Na+-activated K+ channels in circular smooth muscle of the opossum lower esophageal sphincter. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1600-6. [PMID: 17332470 DOI: 10.1152/ajpgi.00561.2005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Na(+) reduction induces contraction of opossum lower esophageal sphincter (LES) circular smooth muscle strips in vitro; however, the mechanism(s) by which this occurs is unknown. The purpose of the present study was to investigate the electrophysiological effects of low Na(+) on opossum LES circular smooth muscle. In the presence of atropine, quanethidine, nifedipine, and substance P, conventional intracellular electrodes recorded a resting membrane potential (RMP) of -37.5 +/- 0.9 mV (n = 4). Decreasing [Na(+)] from 144.1 to 26.1 mM by substitution of equimolar NaCl with choline Cl depolarized the RMP by 7.1 +/- 1.1 mV. Whole cell patch-clamp recordings revealed outward K(+) currents that began to activate at -60 mV using 400-ms stepped test pulses (-120 to +100 mV) with increments of 20 mV from holding potential of -80 mV. Reduction of [Na(+)] in the bath solution inhibited K(+) currents in a concentration-dependent manner. Single channels with conductance of 49-60 pS were recorded using cell-attached patch-clamp configurations. The channel open probability was significantly decreased by substitution of bath Na(+) with equimolar choline. A 10-fold increase of [K(+)] in the pipette shifted the reversal potential of the single channels to the positive by -50 mV. These data suggest that Na(+)-activated K(+) channels exist in the circular smooth muscle of the opossum LES.
Collapse
Affiliation(s)
- Yong Zhang
- Div. of Gastroenterology, Hotel Dieu Hospital, 166 Brock St., Kingston, ON, Canada
| | | |
Collapse
|
96
|
Yang B, Desai R, Kaczmarek LK. Slack and Slick K(Na) channels regulate the accuracy of timing of auditory neurons. J Neurosci 2007; 27:2617-27. [PMID: 17344399 PMCID: PMC6672517 DOI: 10.1523/jneurosci.5308-06.2007] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The Slack (sequence like a calcium-activated K channel) and Slick (sequence like an intermediate conductance K channel) genes, which encode sodium-activated K+ (K(Na)) channels, are expressed at high levels in neurons of the medial nucleus of the trapezoid body (MNTB) in the auditory brainstem. These neurons lock their action potentials to incoming stimuli with a high degree of temporal precision. Channels with unitary properties similar to those of Slack and/or Slick channels, which are gated by [Na+]i and [Cl-]i and by changes in cytoplasmic ATP levels, are present in MNTB neurons. Manipulations of the level of K(Na) current in MNTB neurons, either by increasing levels of internal Na+ or by exposure to a pharmacological activator of Slack channels, significantly enhance the accuracy of timing of action potentials at high frequencies of stimulation. These findings suggest that such fidelity of timing at high frequencies may be attributed in part to high-conductance K(Na) channels.
Collapse
Affiliation(s)
- Bo Yang
- Departments of Pharmacology and
| | | | - Leonard K. Kaczmarek
- Departments of Pharmacology and
- Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
97
|
Gittis AH, du Lac S. Firing properties of GABAergic versus non-GABAergic vestibular nucleus neurons conferred by a differential balance of potassium currents. J Neurophysiol 2007; 97:3986-96. [PMID: 17392422 DOI: 10.1152/jn.00141.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neural circuits are composed of diverse cell types, the firing properties of which reflect their intrinsic ionic currents. GABAergic and non-GABAergic neurons in the medial vestibular nuclei, identified in GIN and YFP-16 lines of transgenic mice, respectively, exhibit different firing properties in brain slices. The intrinsic ionic currents of these cell types were investigated in acutely dissociated neurons from 3- to 4-wk-old mice, where differences in spontaneous firing and action potential parameters observed in slice preparations are preserved. Both GIN and YFP-16 neurons express a combination of four major outward currents: Ca(2+)-dependent K(+) currents (I(KCa)), 1 mM TEA-sensitive delayed rectifier K(+) currents (I(1TEA)), 10 mM TEA-sensitive delayed rectifier K(+) currents (I(10TEA)), and A-type K(+) currents (I(A)). The balance of these currents varied across cells, with GIN neurons tending to express proportionately more I(KCa) and I(A), and YFP-16 neurons tending to express proportionately more I(1TEA) and I(10TEA). Correlations in charge densities suggested that several currents were coregulated. Variations in the kinetics and density of I(1TEA) could account for differences in repolarization rates observed both within and between cell types. These data indicate that diversity in the firing properties of GABAergic and non-GABAergic vestibular nucleus neurons arises from graded differences in the balance and kinetics of ionic currents.
Collapse
Affiliation(s)
- Aryn H Gittis
- University of California, San Diego Graduate Program in Neuroscience, The Salk Institute for Biological Studies, Howard Hughes Medical Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
98
|
Saleh SN, Angermann JE, Sones WR, Leblanc N, Greenwood IA. Stimulation of Ca2+-gated Cl- currents by the calcium-dependent K+ channel modulators NS1619 [1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one] and isopimaric acid. J Pharmacol Exp Ther 2007; 321:1075-84. [PMID: 17347326 DOI: 10.1124/jpet.106.118786] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Because chloride (Cl(-)) channel blockers such as niflumic acid enhance large-conductance Ca(2+)-activated potassium channels (BK(Ca)), the aim of this study was to determine whether there is a reciprocal modification of Ca(2+)-activated chloride Cl(-) currents (I(ClCa)) by two selective activators of BK(Ca). Single smooth muscle cells were isolated by enzymatic digestion from murine portal vein and rabbit pulmonary artery. The BK(Ca) activators NS1619 [1,3-dihydro-1-[2-hydroxy-5-(trifluoromethyl-)phenyl]-5-(trifluoromethyl)-2H-benzimidazol-2-one] and isopimaric acid (IpA) augmented macroscopic I(ClCa) elicited by pipette solutions containing [Ca(2+)](i) > 100 nM without any alteration in current kinetics. Enhanced currents recorded in the presence of NS1619 or IpA reversed at the theoretical Cl(-) equilibrium potential, which was shifted by approximately -40 mV upon replacement of the external anion with the more permeable thiocyanate anion. NS1619 increased the sensitivity of calcium-activated chloride channel (Cl(Ca)) to Ca(2+) (approximately 100 nM at +60 mV) and induced a leftward shift in their voltage dependence (approximately 80 mV with 1 micro Ca(2+)). Single-channel experiments revealed that NS1619 increased the number of open channels times the open probability of small-conductance (1.8-3.1 pS) Cl(Ca) without any alteration in their unitary amplitude or number of observable unitary levels of activity. These data, in addition to the established stimulatory effects of niflumic acid on BK(Ca), show that there is similarity in the pharmacology of calcium-activated chloride and potassium channels. Although nonspecific interactions are possible, one alternative hypothesis is that the channel underlying vascular I(ClCa) shares some structural similarity to the BK(Ca) or that the latter K(+) channel physically interacts with Cl(Ca).
Collapse
Affiliation(s)
- Sohag N Saleh
- Ion Channels and Cell Signaling Research Centre, Division of Basic Medical Sciences, St. George's, University of London, SW17 0RE London, UK
| | | | | | | | | |
Collapse
|
99
|
Salkoff L, Butler A, Ferreira G, Santi C, Wei A. High-conductance potassium channels of the SLO family. Nat Rev Neurosci 2007; 7:921-31. [PMID: 17115074 DOI: 10.1038/nrn1992] [Citation(s) in RCA: 409] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
High-conductance, 'big' potassium (BK) channels encoded by the Slo gene family are among the largest and most complex of the extended family of potassium channels. The family of SLO channels apparently evolved from voltage-dependent potassium channels, but acquired a large conserved carboxyl extension, which allows channel gating to be altered in response to the direct sensing of several different intracellular ions, and by other second-messenger systems, such as those activated following neurotransmitter binding to G-protein-coupled receptors (GPCRs). This versatility has been exploited to serve many cellular roles, both within and outside the nervous system.
Collapse
Affiliation(s)
- Lawrence Salkoff
- Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 S. Euclid Avenue, Saint Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|
100
|
Beisel KW, Rocha-Sanchez SM, Ziegenbein SJ, Morris KA, Kai C, Kawai J, Carninci P, Hayashizaki Y, Davis RL. Diversity of Ca2+-activated K+ channel transcripts in inner ear hair cells. Gene 2006; 386:11-23. [PMID: 17097837 DOI: 10.1016/j.gene.2006.07.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 07/13/2006] [Accepted: 07/18/2006] [Indexed: 10/24/2022]
Abstract
Hair cells express a complement of ion channels, representing shared and distinct channels that confer distinct electrophysiological signatures for each cell. This diversity is generated by the use of alternative splicing in the alpha subunit, formation of heterotetrameric channels, and combinatorial association with beta subunits. These channels are thought to play a role in the tonotopic gradient observed in the mammalian cochlea. Mouse Kcnma1 transcripts, 5' and 3' ESTs, and genomic sequences were examined for the utilization of alternative splicing in the mouse transcriptome. Comparative genomic analyses investigated the conservation of KCNMA1 splice sites. Genomes of mouse, rat, human, opossum, chicken, frog and zebrafish established that the exon-intron structure and mechanism of KCNMA1 alternative splicing were highly conserved with 6-7 splice sites being utilized. The murine Kcnma1 utilized 6 out of 7 potential splice sites. RT-PCR experiments using murine gene-specific oligonucleotide primers analyzed the scope and variety of Kcnma1 and Kcnmb1-4 expression profiles in the cochlea and inner ear hair cells. In the cochlea splice variants were present representing sites 3, 4, 6, and 7, while site 1 was insertionless and site 2 utilized only exon 10. However, site 5 was not present. Detection of KCNMA1 transcripts and protein exhibited a quantitative longitudinal gradient with a reciprocal gradient found between inner and outer hair cells. Differential expression was also observed in the usage of the long form of the carboxy-terminus tail. These results suggest that a diversity of splice variants exist in rodent cochlear hair cells and this diversity is similar to that observed for non-mammalian vertebrate hair cells, such as chicken and turtle.
Collapse
Affiliation(s)
- Kirk W Beisel
- Department of Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | | | | | | | | | | | | | | | | |
Collapse
|