51
|
Roggy JL, Bangs JD. Molecular cloning and biochemical characterization of a VCP homolog in African trypanosomes. Mol Biochem Parasitol 1999; 98:1-15. [PMID: 10029305 DOI: 10.1016/s0166-6851(98)00114-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Through reverse transcription-polymerase chain reaction using degenerate oligonucleotide primers, a VCP homolog was identified in African trypanosomes. Sequence analysis shows a 72 and 64% deduced amino acid identity, respectively, with mouse VCP and yeast Cdc48p. Southern analysis indicates tbVCP to have a single locus with two alleles. Antibodies generated against recombinant protein recognize a 95 kDa protein in whole cell lysates of both procyclic and bloodstream trypanosomes. There is an approximately four-fold greater expression of TbVCP protein in the procyclic stage of the trypanosome life cycle. Subcellular fractionation and immunofluorescence with anti-TbVCP antibodies indicate the majority of TbVCP to be cytoplasmically localized with a small subset associated with membranes. Sucrose velocity sedimentation and gel filtration size analysis studies suggest that TbVCP is a homohexameric particle as has been demonstrated with other VCP homologs. Also like other VCP homologs, TbVCP contains an NEM-inhibitable ATPase activity. This is the first characterization of an AAA (ATPases Associated with a variety of cellular Activities) family member in African trypanosomes.
Collapse
Affiliation(s)
- J L Roggy
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison Medical School, 53706, USA
| | | |
Collapse
|
52
|
Wang RF, O'Hara EB, Aldea M, Bargmann CI, Gromley H, Kushner SR. Escherichia coli mrsC is an allele of hflB, encoding a membrane-associated ATPase and protease that is required for mRNA decay. J Bacteriol 1998; 180:1929-38. [PMID: 9537394 PMCID: PMC107109 DOI: 10.1128/jb.180.7.1929-1938.1998] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mrsC gene of Escherichia coli is required for mRNA turnover and cell growth, and strains containing the temperature-sensitive mrsC505 allele have longer half-lives than wild-type controls for total pulse-labeled and individual mRNAs (L. L. Granger et al., J. Bacteriol. 180:1920-1928, 1998). The cloned mrsC gene contains a long open reading frame beginning at an initiator UUG codon, confirmed by N-terminal amino acid sequencing, encoding a 70,996-Da protein with a consensus ATP-binding domain. mrsC is identical to the independently identified ftsH gene except for three additional amino acids at the N terminus (T. Tomoyasu et al., J. Bacteriol. 175:1344-1351, 1993). The purified protein had a Km of 28 microM for ATP and a Vmax of 21.2 nmol/microg/min. An amino-terminal glutathione S-transferase-MrsC fusion protein retained ATPase activity but was not biologically active. A glutamic acid replacement of the highly conserved lysine within the ATP-binding motif (mrsC201) abolished the complementation of the mrsC505 mutation, confirming that the ATPase activity is required for MrsC function in vivo. In addition, the mrsC505 allele conferred a temperature-sensitive HflB phenotype, while the hflB29 mutation promoted mRNA stability at both 30 and 44 degrees C, suggesting that the inviability associated with the mrsC505 allele is not related to the defect in mRNA decay. The data presented provide the first direct evidence for the involvement of a membrane-bound protein in mRNA decay in E. coli.
Collapse
Affiliation(s)
- R F Wang
- Department of Genetics, University of Georgia, Athens 30602-7223, USA
| | | | | | | | | | | |
Collapse
|
53
|
Dai RM, Chen E, Longo DL, Gorbea CM, Li CC. Involvement of valosin-containing protein, an ATPase Co-purified with IkappaBalpha and 26 S proteasome, in ubiquitin-proteasome-mediated degradation of IkappaBalpha. J Biol Chem 1998; 273:3562-73. [PMID: 9452483 DOI: 10.1074/jbc.273.6.3562] [Citation(s) in RCA: 262] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The inactivation of the prototype NF-kappaB inhibitor, IkappaBalpha, occurs through a series of ordered processes including phosphorylation, ubiquitin conjugation, and proteasome-mediated degradation. We identify valosin-containing protein (VCP), an AAA (ATPases associated with a variety of cellular activities) family member, that co-precipitates with IkappaBalpha immune complexes. The ubiquitinated IkappaBalpha conjugates readily associate with VCP both in vivo and in vitro, and this complex appears dissociated from NF-kappaB. In ultracentrifugation analysis, physically associated VCP and ubiquitinated IkappaBalpha complexes sediment in the 19 S fractions, while the unmodified IkappaBalpha sediments in the 4.5 S fractions deficient in VCP. Phosphorylation and ubiquitination of IkappaBalpha are critical for VCP binding, which in turn is necessary but not sufficient for IkappaBalpha degradation; while the N-terminal domain of IkappaBalpha is required in all three reactions, both N- and C-terminal domains are required in degradation. Further, VCP co-purifies with the 26 S proteasome on two-dimensional gels and co-immunoprecipitates with subunits of the 26 S proteasome. Our results suggest that VCP may provide a physical and functional link between IkappaBalpha and the 26 S proteasome and play an important role in the proteasome-mediated degradation of IkappaBalpha.
Collapse
Affiliation(s)
- R M Dai
- Intramural Research Support Program, SAIC Frederick, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland 21702, USA
| | | | | | | | | |
Collapse
|
54
|
Pintér M, Jékely G, Szepesi RJ, Farkas A, Theopold U, Meyer HE, Lindholm D, Nässel DR, Hultmark D, Friedrich P. TER94, a Drosophila homolog of the membrane fusion protein CDC48/p97, is accumulated in nonproliferating cells: in the reproductive organs and in the brain of the imago. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 1998; 28:91-98. [PMID: 9639875 DOI: 10.1016/s0965-1748(97)00095-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We have cloned a Drosophila homolog of the membrane fusion protein CDC48/p97. The open reading frame of the Drosophila homolog encodes an 801 amino acid long protein (TER94), which shows high similarity to the known CDC48/p97 sequences. The chromosomal position of TER94 is 46 C/D. TER94 is expressed in embryo, in pupae and in imago, but is suppressed in larva. In the imago, the immunoreactivity was exclusively present in the head and in the gonads of both sexes. In the head the most striking staining was observed in the entire neuropil of the mushroom body and in the antennal glomeruli. Besides TER94, sex-specific forms were also detected in the gonads of the imago: p47 in the ovaries and p98 in the testis. TER94/p47 staining was observed in the nurse cells and often in the oöcytes, while TER94/p98 staining was present in the sperm bundles. On the basis of its distribution we suggest that TER94 functions in the protein transport utilizing endoplasmic reticulum and Golgi derived vesicles.
Collapse
Affiliation(s)
- M Pintér
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Madeo F, Schlauer J, Zischka H, Mecke D, Fröhlich KU. Tyrosine phosphorylation regulates cell cycle-dependent nuclear localization of Cdc48p. Mol Biol Cell 1998; 9:131-41. [PMID: 9436996 PMCID: PMC25228 DOI: 10.1091/mbc.9.1.131] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cdc48p from Saccharomyces cerevisiae and its highly conserved mammalian homologue VCP (valosin-containing protein) are ATPases with essential functions in cell division and homotypic fusion of endoplasmic reticulum vesicles. Both are mainly attached to the endoplasmic reticulum, but relocalize in a cell cycle-dependent manner: Cdc48p enters the nucleus during late G1; VCP aggregates at the centrosome during mitosis. The nuclear import signal sequence of Cdc48p was localized near the amino terminus and its function demonstrated by mutagenesis. The nuclear import is regulated by a cell cycle-dependent phosphorylation of a tyrosine residue near the carboxy terminus. Two-hybrid studies indicate that the phosphorylation results in a conformational change of the protein, exposing the nuclear import signal sequence previously masked by a stretch of acidic residues.
Collapse
Affiliation(s)
- F Madeo
- Physiologisch-chemisches Institut der Universität Tübingen, Germany
| | | | | | | | | |
Collapse
|
56
|
Yamaguchi T, Yamamoto A, Furuno A, Hatsuzawa K, Tani K, Himeno M, Tagaya M. Possible involvement of heterotrimeric G proteins in the organization of the Golgi apparatus. J Biol Chem 1997; 272:25260-6. [PMID: 9312142 DOI: 10.1074/jbc.272.40.25260] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Nordihydroguaiaretic acid (NDGA) caused disassembly of the Golgi apparatus of NRK cells in a dose-, time-, and energy-dependent manner but not in a microtubule-dependent manner. In contrast to brefeldin A, NDGA did not cause release of beta-COP, a component of Golgi-derived vesicles. However, NDGA-induced disassembly was blocked by AlF4-, an activator of the heterotrimeric but not the small GTP-binding proteins. In digitonin-permeabilized cells, guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) as well as AlF4- blocked the NDGA-promoted disassembly of the Golgi apparatus, and Gbetagamma (betagamma subunits of heterotrimeric G proteins) reversed this effect. Our present results suggest the possible involvement of heterotrimeric G proteins in the organization of the Golgi apparatus.
Collapse
Affiliation(s)
- T Yamaguchi
- Division of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-82, Japan
| | | | | | | | | | | | | |
Collapse
|
57
|
Germain-Lee EL, Obie C, Valle D. NVL: a new member of the AAA family of ATPases localized to the nucleus. Genomics 1997; 44:22-34. [PMID: 9286697 DOI: 10.1006/geno.1997.4856] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We report the cloning of NVL, a newly recognized human gene that encodes an approximately 110-kDa nuclear protein designated NVLp (nuclear VCP-like protein), which is a member of a rapidly growing family of ATP-binding proteins recently denoted the AAA family (ATPases associated with diverse cellular activities) (W. H. Kunau et al., 1993, Biochimie 75:209-224). NVL was isolated by degenerate PCR using oligonucleotides corresponding to the yeast PEX1 gene, which is necessary for peroxisomal biogenesis. Two cDNAs, designated NVL.1 and NVL.2, may represent alternatively spliced forms of a single gene that maps to chromosome 1q41-q42.2. NVL has greatest similarity to the VCP subfamily of AAA proteins, is widely expressed, and encodes a nuclear protein with two highly similar ATP-binding domains. We speculate that NVLp is involved in an ATP-dependent nuclear process.
Collapse
Affiliation(s)
- E L Germain-Lee
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
58
|
Abstract
Proteins that function in transport vesicle docking are being identified at a rapid rate. So-called v- and t-SNAREs form the core of a vesicle docking complex. Additional accessory proteins are required to protect SNAREs from promiscuous binding and to deprotect SNAREs under conditions in which transport vesicle docking should occur. Because access to SNAREs must be regulated, other proteins must also contain specificity determinants to accomplish delivery of transport vesicles to their distinct and specific membrane targets.
Collapse
Affiliation(s)
- S R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, California 94305-5307, USA
| |
Collapse
|
59
|
Yamashita M, Ojima N, Sakamoto T. Induction of proteins in response to cold acclimation of rainbow trout cells. FEBS Lett 1996; 382:261-4. [PMID: 8605981 DOI: 10.1016/0014-5793(96)00172-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The in vitro translation of poly(A)-RNA isolated from control and cold-treated cells showed that low temperatures induced changes in the population of translatable mRNAs. When cellular proteins extracted from cold-treated cells were subjected to two-dimensional gel electrophoresis, the 70 kDa protein was found to be synthesized during the cold treatment. N-terminal sequence analysis showed that the 70 kDa cold-inducible protein was a homolog of the mammalian valosin-containing protein and yeast CDC48p. The changes in mRNA and protein contents during cold acclimation may result from the expression of genes involved in the adjustment of cellular metabolism to low temperature or the induced proteins may be directly involved in the cold acclimation.
Collapse
Affiliation(s)
- M Yamashita
- National Research Institute of Fisheries Science, Yokohama, Japan
| | | | | |
Collapse
|
60
|
Tsukamoto T, Miura S, Nakai T, Yokota S, Shimozawa N, Suzuki Y, Orii T, Fujiki Y, Sakai F, Bogaki A, Yasumo H, Osumi T. Peroxisome assembly factor-2, a putative ATPase cloned by functional complementation on a peroxisome-deficient mammalian cell mutant. Nat Genet 1995; 11:395-401. [PMID: 7493019 DOI: 10.1038/ng1295-395] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Rat peroxisome assembly factor-2 (PAF-2) cDNA was isolated by functional complementation of peroxisome deficiency of a mutant CHO cell line, ZP92, using transient transfection assay. This cDNA encodes a 978-amino acid protein with two putative ATP-binding sites. PAF-2 is a member of a putative ATPase family, including two yeast gene products essential for peroxisome assembly. A stable transformant of ZP92 with the cDNA was morphologically and biochemically restored for peroxisome biogenesis. Fibroblasts derived from patients deficient in peroxisome biogenesis (complementation group C) were also complemented with PAF-2 cDNA, indicating that PAF-2 is a strong candidate for the pathogenic gene of group C peroxisome deficiency.
Collapse
Affiliation(s)
- T Tsukamoto
- Department of Life Science, Himeji Institute of Technology, Hyogo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Fröhlich KU, Fries HW, Peters JM, Mecke D. The ATPase activity of purified CDC48p from Saccharomyces cerevisiae shows complex dependence on ATP-, ADP-, and NADH-concentrations and is completely inhibited by NEM. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1253:25-32. [PMID: 7492595 DOI: 10.1016/0167-4838(95)00136-i] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The cell cycle protein CDC48p from Saccharomyces cerevisiae is a member of a protein superfamily (AAA superfamily) characterized by a common region of approximately 200 amino-acid residues including an ATP binding consensus. CDC48p purified to homogeneity showed considerable ATPase activity which could be completely abolished by preincubation with NEM in the absence of ATP. ATP protects the protein from NEM and stabilizes the otherwise labile enzyme. The ATPase activity is reversibly inhibited by NADH and shows cooperativity with its substrate ATP. The application of the in vitro ATPase activity to the identification of physiologically interacting molecules is discussed. By electron microscopy, the enzyme was shown to consist of hexameric ring structures similar to its vertebrate homologue.
Collapse
Affiliation(s)
- K U Fröhlich
- Physiologisch-chemisches Institut, Tübingen, Germany
| | | | | | | |
Collapse
|
62
|
Rabouille C, Levine TP, Peters JM, Warren G. An NSF-like ATPase, p97, and NSF mediate cisternal regrowth from mitotic Golgi fragments. Cell 1995; 82:905-14. [PMID: 7553851 DOI: 10.1016/0092-8674(95)90270-8] [Citation(s) in RCA: 297] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Golgi cisternae regrew in a cell-free system from mitotic Golgi fragments incubated with buffer alone. Pretreatment with NEM or salt washing inhibited regrowth, but this could be restored either by p97, an NSF-like ATPase, or by NSF together with SNAPs and p115, a vesicle docking protein. The morphology of cisternae regrown with p97 and NSF-SNAPs-p115 differed, suggesting that they play distinct roles in rebuilding Golgi cisternae after mitosis.
Collapse
Affiliation(s)
- C Rabouille
- Cell Biology Laboratory, Imperial Cancer Research Fund, London, England
| | | | | | | |
Collapse
|
63
|
Latterich M, Fröhlich KU, Schekman R. Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell 1995; 82:885-93. [PMID: 7553849 DOI: 10.1016/0092-8674(95)90268-6] [Citation(s) in RCA: 308] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The fusion of endoplasmic reticulum (ER) membranes in yeast is an essential process required for normal progression of the nuclear cell cycle, karyogamy, and the maintenance of an intact organellar compartment. We showed previously that this process requires a novel fusion machinery distinct from the classic membrane docking/fusion machinery containing Sec17p (alpha-SNAP) and Sec18p (NSF). Here we show that Cdc48p, a cell-cycle protein with homology to Sec18p, is required in ER fusion. A temperature-sensitive cdc48 mutant is conditionally defective in ER fusion in vitro. Addition of purified Cdc48p restores the fusion of isolated cdc48 mutant ER membranes. We propose that Cdc48p is part of an evolutionarily conserved fusion/docking machinery involved in multiple homotypic fusion events.
Collapse
Affiliation(s)
- M Latterich
- Howard Hughes Medical Institute, University of California, Berkeley 94720, USA
| | | | | |
Collapse
|
64
|
Samelson LE, Donovan JA, Isakov N, Ota Y, Wange RL. Signal transduction mediated by the T-cell antigen receptor. Ann N Y Acad Sci 1995; 766:157-72. [PMID: 7486652 DOI: 10.1111/j.1749-6632.1995.tb26659.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- L E Samelson
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-5430, USA
| | | | | | | | | |
Collapse
|
65
|
Nakai T, Yasuhara T, Fujiki Y, Ohashi A. Multiple genes, including a member of the AAA family, are essential for degradation of unassembled subunit 2 of cytochrome c oxidase in yeast mitochondria. Mol Cell Biol 1995; 15:4441-52. [PMID: 7623837 PMCID: PMC230684 DOI: 10.1128/mcb.15.8.4441] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cytochrome c oxidase consists of three mitochondrion- and several nucleus-encoded subunits. We previously found that in a mutant of Saccharomyces cerevisiae lacking nucleus-encoded subunit 4 of this enzyme (CoxIV), subunits 2 and 3 (CoxII and CoxIII), both encoded by the mitochondrial DNA, were unstable and rapidly degraded in mitochondria, presumably because the subunits cannot assemble normally. To analyze the molecular machinery involved in this proteolytic pathway, we obtained four mutants defective in the degradation of unassembled CoxII (osd mutants) by screening CoxIV-deficient cells for the accumulation of CoxII. All of the mutants were recessive and were classified into three different complementation groups. Tetrad analyses revealed that the phenotype of each mutant was caused by a single nuclear mutation. These results suggest strongly that at least three nuclear genes (the OSD genes) are required for this degradation system. Interestingly, degradation of CoxIII was not affected in the mutants, implying that the two subunits are degraded by distinct pathways. We also cloned the OSD1 gene by complementation of the temperature sensitivity of osd1-1 mutants with a COXIV+ genetic background on a nonfermentable glycerol medium. We found it to encode a member of a family (the AAA family) of putative ATPases, which proved to be identical to recently described YME1 and YTA11. Immunological analyses revealed that Osd1 protein is localized to the mitochondrial inner membrane. Disruption of the predicted ATP-binding cassette by site-directed mutagenesis eliminated biological activities, thereby underscoring the importance of ATP for function.
Collapse
Affiliation(s)
- T Nakai
- Meiji Institute of Health Science, Kanagawa, Japan
| | | | | | | |
Collapse
|
66
|
Boulianne GL, Trimble WS. Identification of a second homolog of N-ethylmaleimide-sensitive fusion protein that is expressed in the nervous system and secretory tissues of Drosophila. Proc Natl Acad Sci U S A 1995; 92:7095-9. [PMID: 7624376 PMCID: PMC41478 DOI: 10.1073/pnas.92.15.7095] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
N-Ethylmaleimide-sensitive fusion protein (NSF) is an ATPase known to have an essential role in intracellular membrane transport events. Recently, cDNA clones encoding a Drosophila melanogaster homolog of this protein, named dNSF, were characterized and found to be expressed in the nervous system. We now report the identification of a second homolog of NSF, called dNSF-2 within this species and report evidence that this ubiquitous and widely utilized fusion protein belongs to a multigene family. The predicted amino acid sequence of dNSF-2 is 84.5% identical to dNSF (hereafter named dNSF-1), 59% identical to NSF from Chinese hamster, and 38.5% identical to the yeast homolog SEC18. The highest similarity was found in a region of dNSF-2 containing one of two ATP-binding sites; this region is most similar to members of a superfamily of ATPases. dNSF-2 is localized to a region between bands 87F12 and 88A3 on chromosome 3, and in situ hybridization techniques revealed expression in the nervous system during embryogenesis and in several imaginal discs and secretory structures in the larvae. Developmental modulation of dNSF-2 expression suggests that quantitative changes in the secretory apparatus are important in histogenesis.
Collapse
Affiliation(s)
- G L Boulianne
- Centre for Research in Neurodegenerative Diseases, University of Toronto, ON, Canada
| | | |
Collapse
|
67
|
Abstract
A fast growing family of ATPases has recently been highlighted. It was named the AAA family, for ATPases Associated to a variety of cellular Activities. The key feature of the family is a highly conserved module of 230 amino acids present in one or two copies in each protein. Despite extensive sequence conservation, the members of the family fulfil a large diversity of cellular functions: cell cycle regulation, gene expression in yeast and HIV, vesicle-mediated transport, peroxisome assembly, 26S protease function etc. In addition, several members of this family can be found in the same organism (up to 17 in S. cerevisiae). The contrast between functional diversity and structural conservation of the module, from archaebacteria to mammals, suggests that it plays an essential, but as yet unknown, role at key points of the cellular machinery. Two (non-exclusive) such possibilities are: (1) ATP-dependent proteasome function and (2) ATP-dependent anchorage of proteins. Finally, the basic biochemical activity of the AAA module is still a matter of speculation, and we propose that it acts as an ATP-dependent protein clamp.
Collapse
Affiliation(s)
- F Confalonieri
- Institut de Génétique et Microbiologie, CNRS-Université Paris, Orsay, France
| | | |
Collapse
|
68
|
Ikonen E, Tagaya M, Ullrich O, Montecucco C, Simons K. Different requirements for NSF, SNAP, and Rab proteins in apical and basolateral transport in MDCK cells. Cell 1995; 81:571-80. [PMID: 7758111 DOI: 10.1016/0092-8674(95)90078-0] [Citation(s) in RCA: 200] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We used an in vitro system based on streptolysin O-permeabilized MDCK cells to study the involvement of NSF, SNAP, SNAREs, and Rab proteins in polarized membrane transport of epithelial cells. In MDCK cells, transport from the trans-Golgi network (TGN) to the basolateral plasma membrane is inhibited by anti-NSF antibodies and stimulated by alpha-SNAP. In contrast, transport from the TGN to the apical cell surface is not affected by anti-NSF antibodies or alpha-SNAP. Furthermore, apical transport is insensitive to Rab-GDI and tetanus and botulinum neurotoxins, which inhibit basolateral transport. These results provide evidence that the Rab-NSF-SNAP-SNARE mechanism operates in basolateral transport, while other molecules constitute the machinery for vesicular delivery in the apical pathway.
Collapse
Affiliation(s)
- E Ikonen
- Cell Biology Programme, European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
69
|
Shi J, Dixon RA, Gonzales RA, Kjellbom P, Bhattacharyya MK. Identification of cDNA clones encoding valosin-containing protein and other plant plasma membrane-associated proteins by a general immunoscreening strategy. Proc Natl Acad Sci U S A 1995; 92:4457-61. [PMID: 7753826 PMCID: PMC41963 DOI: 10.1073/pnas.92.10.4457] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
An approach was developed for the isolation and characterization of soybean plasma membrane-associated proteins by immunoscreening of a cDNA expression library. An antiserum was raised against purified plasma membrane vesicles. In a differential screening of approximately 500,000 plaque-forming units with the anti-(plasma membrane) serum and DNA probes derived from highly abundant clones isolated in a preliminary screening, 261 clones were selected from approximately 1,200 antiserum-positive plaques. These clones were classified into 40 groups by hybridization analysis and 5'- and 3'-terminal sequencing. By searching nucleic acid and protein sequence data bases, 11 groups of cDNAs were identified, among which valosin-containing protein (VCP), clathrin heavy chain, phospholipase C, and S-adenosylmethionine:delta 24-sterol-C-methyltransferase have not to date been cloned from plants. The remaining 29 groups did not match any current data base entries and may, therefore, represent additional or yet uncharacterized genes. A full-length cDNA encoding the soybean VCP was sequenced. The high level of amino acid identity with vertebrate VCP and yeast CDC48 protein indicates that the soybean protein is a plant homolog of vertebrate VCP and yeast CDC48 protein.
Collapse
Affiliation(s)
- J Shi
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73402, USA
| | | | | | | | | |
Collapse
|
70
|
Dawson SP, Arnold JE, Mayer NJ, Reynolds SE, Billett MA, Gordon C, Colleaux L, Kloetzel PM, Tanaka K, Mayer RJ. Developmental changes of the 26 S proteasome in abdominal intersegmental muscles of Manduca sexta during programmed cell death. J Biol Chem 1995; 270:1850-8. [PMID: 7829521 DOI: 10.1074/jbc.270.4.1850] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
cDNA clone MS73 codes for an ATPase that is a regulatory subunit of the 26 S proteasome. Reverse transcriptase polymerase chain reaction analysis demonstrates that the expression of the gene dramatically increases in the pre-eclosion period. Western analyses show increases in other related. ATPases including MS73, MSS1, and mts2 but not TBP1. A similar increase in the 30-kDa subunit of the 20 S proteasome occurs. There are accompanying large changes in the peptidase activities of the 26 S proteasome. Relative to the 30-kDa subunit, there is no change in MSS1 and MS73, a 3-fold increase in mts2, and a 5-fold decline in TBP1. A large increase in the concentration of 26 S proteasomes together with extensive regulatory reprogramming may facilitate rapid muscular proteolysis.
Collapse
Affiliation(s)
- S P Dawson
- Department of Biochemistry, University of Nottingham Medical School, Queen's Medical Centre, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Dubiel W, Ferrell K, Rechsteiner M. Subunits of the regulatory complex of the 26S protease. Mol Biol Rep 1995; 21:27-34. [PMID: 7565660 DOI: 10.1007/bf00990967] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- W Dubiel
- Institut f. Biochemie, Universitätsklinikum Charité, Humboldt-Universität, Berlin, Germany
| | | | | |
Collapse
|
72
|
Zhang L, Ashendel CL, Becker GW, Morré DJ. Isolation and characterization of the principal ATPase associated with transitional endoplasmic reticulum of rat liver. J Cell Biol 1994; 127:1871-83. [PMID: 7806566 PMCID: PMC2120312 DOI: 10.1083/jcb.127.6.1871] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The transfer of membranes from the endoplasmic reticulum to the Golgi apparatus occurs via 50-70 nm transition vesicles which derive from part-rough, part-smooth transitional elements of the endoplasmic reticulum (TER). Vesicle budding from the TER is an ATP-dependent process both in vivo and in vitro. An ATPase with a monomer molecular weight of 100 kD by SDS-PAGE has been isolated from TER and designated as TER ATPase. The native TER ATPase has been characterized as a hexamer of six 100-kD subunits by gel filtration. The protein catalyzes the hydrolysis of [gamma 32-P]ATP and is phosphorylated in the presence of Mg2+. It is distinct from the classical transport ATPases based on pH optima, ion effects, and inhibitor specificity. Electron microscopy of negatively stained preparations revealed the TER ATPase to be a ring-shaped structure with six-fold rotational symmetry. A 19-amino acid sequence of TER ATPase having 84% identity with valosin-containing protein and 64% identity with a yeast cell-cycle control protein CDC48p was obtained. Anti-synthetic peptide antisera to a 15-amino acid portion of the sequence of TER ATPase recognized a 100-kD protein from TER. These antisera reduced the ATP-dependent cell-free formation of transition vesicles from isolated TER of rat liver. In a reconstituted membrane transfer system, TER ATPase antisera inhibited transfer of radiolabeled material from endoplasmic reticulum to Golgi apparatus, while preimmune sera did not. The results suggest that the TER ATPase is obligatorily involved in the ATP requirements for budding of transition vesicles from the TER. cDNA clones encoding TER ATPase were isolated by immunoscreening a rat liver cDNA library with the affinity-purified TER ATPase antibody. A computer search of deduced amino acid sequences revealed the cloned TER ATPase to be the rat equivalent of porcine valosin-containing protein, a member of a novel family of ATP binding, homo-oligomeric proteins including the N-ethylmaleimide-sensitive fusion protein.
Collapse
Affiliation(s)
- L Zhang
- Department of Medicinal Chemistry and Pharmacognosy, Purdue University, West Lafayette, Indiana 47907
| | | | | | | |
Collapse
|
73
|
Abstract
Several groups have reported the cloning and sequencing of genes involved in the biogenesis of yeast peroxisomes. Yeast strains bearing mutations in these genes are unable to grow on carbon sources whose metabolism requires peroxisomes, and these strains lack morphologically normal peroxisomes. We report the cloning of Pichia pastoris PAS1, the homologue (based on a high level of protein sequence similarity) of the Saccharomyces cerevisiae PAS1. We also describe the creation and characterization of P. pastoris pas1 strains. Electron microscopy on the P. pastoris pas1 cells revealed that they lack morphologically normal peroxisomes, and instead contain membrane-bound structures that appear to be small, mutant peroxisomes, or "peroxisome ghosts." These "ghosts" proliferated in response to induction on peroxisome-requiring carbon sources (oleic acid and methanol), and they were distributed to daughter cells. Biochemical analysis of cell lysates revealed that peroxisomal proteins are induced normally in pas1 cells. Peroxisome ghosts from pas1 cells were purified on sucrose gradients, and biochemical analysis showed that these ghosts, while lacking several peroxisomal proteins, did import varying amounts of several other peroxisomal proteins. The existence of detectable peroxisome ghosts in P. pastoris pas1 cells, and their ability to import some proteins, stands in contrast with the results reported by Erdmann et al. (1991) for the S. cerevisiae pas1 mutant, in which they were unable to detect peroxisome-like structures. We discuss the role of PAS1 in peroxisome biogenesis in light of the new information regarding peroxisome ghosts in pas1 cells.
Collapse
Affiliation(s)
- J A Heyman
- Department of Biology, University of California, San Diego, La Jolla 92093-0322
| | | | | |
Collapse
|
74
|
Hirtzlin J, Färber PM, Franklin RM. Isolation of a novel Plasmodium falciparum gene encoding a protein homologous to the Tat-binding protein family. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 226:673-80. [PMID: 8001584 DOI: 10.1111/j.1432-1033.1994.tb20095.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have cloned a Plasmodium falciparum gene that belongs to the nuclear Tat-binding protein (TBP) gene family. This gene, PfTBP, is (A + T)-rich and encodes a 49.5-kDa protein. The predicted protein encoded by this gene has highest similarity to the slime mold protein DdTBP10 (86%) and to the yeast protein SUG1 (81.8%), both of which belong to the Tat-binding protein family. In agreement with the characteristics of this family, PfTBP contains a highly conserved domain of approximately 200 amino acids, in which are found the motifs A and B of ATPases, and amino acid sequences characteristic of a large family of RNA or DNA helicases, suggesting a role in RNA or DNA unwinding. Like DdTBP10, the PfTBP protein has a heptad repeat of four leucine residues, reminiscent of a leucine zipper motif known to mediate dimerization. We have further characterized PfTBP gene expression by Northern-blot analysis. This gene is expressed in a stage-specific manner, with higher expression in the late trophozoite stage. The recombinant PfTBP gene has been expressed in Escherichia coli and a polyclonal antiserum has been raised in rabbits against the recombinant protein. This antibody has been used to study the protein in the parasite. The gene product is expressed in a stage-specific manner with higher expression in the late trophozoite and schizont stages, and is localized in the nucleus of the erythrocytic stage parasite. Thus the protein might have a function in DNA synthesis and/or in transcription, as is the case for other Tat-binding proteins.
Collapse
Affiliation(s)
- J Hirtzlin
- Department of Structural Biology, University of Basel, Switzerland
| | | | | |
Collapse
|
75
|
Démolis N, Mallet L, Jacquet M. A 12.5 kb fragment of the yeast chromosome II contains two adjacent genes encoding ribosomal proteins and six putative new genes, one of which encodes a putative transcriptional factor. Yeast 1994; 10:1511-25. [PMID: 7871891 DOI: 10.1002/yea.320101116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The nucleotide sequence of a 12.5 kb fragment localized to the right arm of chromosome II of Saccharomyces cerevisiae has been determined. The sequence contains eight putative genes. Two of them are contiguous and represent two ribosomal protein genes: SUP46 and URP1. SUP46 is implicated in translation fidelity and encodes the ribosomal protein S13. URP1 is homologous to the rat ribosomal protein gene L21. The open reading frame (ORF) YBR1245 is similar in its N-terminal part to transcription factors like SRF and MCM1. The ORF YBR1308 shows homology with proteins of the AAA-family (ATPases Associated with diverse cellular Activities). Two genes are predicted to encode putative membrane proteins.
Collapse
Affiliation(s)
- N Démolis
- Université Paris-Sud, U.R.A. 1354 du CNRS, Orsay, France
| | | | | |
Collapse
|
76
|
A new member of a family of ATPases is essential for assembly of mitochondrial respiratory chain and ATP synthetase complexes in Saccharomyces cerevisiae. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47170-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
77
|
Périer F, Coulter KL, Liang H, Radeke CM, Gaber RF, Vandenberg CA. Identification of a novel mammalian member of the NSF/CDC48p/Pas1p/TBP-1 family through heterologous expression in yeast. FEBS Lett 1994; 351:286-90. [PMID: 8082782 DOI: 10.1016/0014-5793(94)00879-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two suppressors of the growth deficiency of a potassium transport mutant of Saccharomyces cerevisiae were isolated from a mouse cDNA expression library. These suppressors, SKD1 and SKD2 (suppressor of K+ transport growth defect), were cDNAs encoding members of a family of ATPases involved in membrane fusion (N-ethylmaleimide-sensitive fusion protein, NSF), cell division cycle regulation (CDC48p), peroxisome assembly (Pas1p), and transcriptional regulation (TBP-1). The SKD1 protein constitutes a novel member of this family with 49-58% amino acid sequence similarity with other family members, and contains a single ATP binding site. The SKD2 polypeptide is the mouse homolog of NSF.
Collapse
Affiliation(s)
- F Périer
- Department of Biological Sciences, University of California, Santa Barbara 93106
| | | | | | | | | | | |
Collapse
|
78
|
Schnall R, Mannhaupt G, Stucka R, Tauer R, Ehnle S, Schwarzlose C, Vetter I, Feldmann H. Identification of a set of yeast genes coding for a novel family of putative ATPases with high similarity to constituents of the 26S protease complex. Yeast 1994; 10:1141-55. [PMID: 7754704 DOI: 10.1002/yea.320100903] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
There is accumulating evidence for a large, highly conserved gene family of putative ATPases. We have identified 12 different members of this novel gene family (the YTA family) in yeast and determined the nucleotide sequences of nine of these genes. All of the putative gene products are characterized by the presence of a highly conserved domain of 300 amino acids containing specialized forms of the A and B boxes of ATPases. YTA1, YTA2, YTA3 and YTA5 exhibit significant similarity to proteins involved in human immunodeficiency virus Tat-mediated gene expression but more significantly to subunits of the human 26S proteasome. YTA1 and YTA2 are essential genes in yeast. Remarkably, the cDNA of human TBP-1 can compensate for the loss of YTA1. Preliminary experiments indicate that YTA1 is a component of the 26S protease complex from yeast. Our findings lead us to propose that YTA1, YTA2, YTA3 and YTA5 function as regulatory subunits of the yeast 26S proteasome. YTA10, YTA11 and YTA12 share significant homology with the Escherichia coli FtsH protein, and together with YTA4 and YTA6 may constitute a separate subclass within this family of putative ATPases.
Collapse
Affiliation(s)
- R Schnall
- Institut für Physiologische Chemie, Universität München, Germany
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Michael H, Schmidt H, Fleck O, Gutz H, Liedtke C, Lorentz A, Ostermann K. The mating-type region of Schizosaccharomyces pombe contains an essential gene encoding a protein homologous to human modulators of HIV transactivation. Gene 1994; 145:205-10. [PMID: 8056332 DOI: 10.1016/0378-1119(94)90006-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In Schizosaccharomyces pombe, an intrachromosomal crossover between the mating type (MT) expression locus and one of the silent donor cassettes is lethal due to the loss of the intervening L region. The region contains one essential gene, let1. This gene was cloned and sequenced. The deduced amino acid (aa) sequence of let1 shows extensive homologies with SUG1 from Saccharomyces cerevisiae. Significant homologies were also found with the human HIV transactivation modulators, MSS1 and TBP-1, as well as with subunit 4 of the mammalian 26 S protease. The data indicate that let1 is a member of a recently defined multigene family of ATPases.
Collapse
Affiliation(s)
- H Michael
- Institut für Genetik, Technische Universität Braunschweig, Germany
| | | | | | | | | | | | | |
Collapse
|
80
|
Whiteheart SW, Rossnagel K, Buhrow SA, Brunner M, Jaenicke R, Rothman JE. N-ethylmaleimide-sensitive fusion protein: a trimeric ATPase whose hydrolysis of ATP is required for membrane fusion. J Biophys Biochem Cytol 1994; 126:945-54. [PMID: 8051214 PMCID: PMC2120109 DOI: 10.1083/jcb.126.4.945] [Citation(s) in RCA: 345] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The NEM-sensitive fusion protein, NSF, together with SNAPs (soluble NSF attachment proteins) and the SNAREs (SNAP receptors), is thought to be generally used for the fusion of transport vesicles to their target membranes. NSF is a homotrimer whose polypeptide subunits are made up of three distinct domains: an amino-terminal domain (N) and two homologous ATP-binding domains (D1 and D2). Mutants of NSF were produced in which either the order or composition of the three domains were altered. These mutants could not support intra-Golgi transport, but they indicated that the D2 domain was required for trimerization of the NSF subunits. Mutations of the first ATP-binding site that affected either the binding (K266A) or hydrolysis (E329Q) of ATP completely eliminated NSF activity. The hydrolysis mutant was an effective, reversible inhibitor of Golgi transport with an IC50 of 125 ng/50 microliters assay. Mutants in the second ATP-binding site (binding, K549A; hydrolysis, D604Q) had either 14 or 42% the specific activity of the wild-type protein, respectively. Using coexpression of an inactive mutant with wild-type subunits, it was possible to produce a recombinant form of trimeric NSF that contained a mixture of subunits. The mixed NSF trimers were inactive, even when only one mutant subunit was present, suggesting that NSF action requires each of the three subunits in a concerted mechanism. These studies demonstrate that the ability of the D1 domain to hydrolyze ATP is required for NSF activity and, therefore is required for membrane fusion. The D2 domain is required for trimerization, but its ability to hydrolyze ATP is not absolutely required for NSF function.
Collapse
Affiliation(s)
- S W Whiteheart
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York 10021
| | | | | | | | | | | |
Collapse
|
81
|
Abstract
An NADH oxidase activity of animal and plant plasma membrane is described that is stimulated by hormones and growth factors. In plasma membranes of cancer cells and tissues, the activity appears to be constitutively activated and no longer hormone responsive. With drugs that inhibit the activity, cells are unable to grow although growth inhibition may be more related to a failure of the cells to enlarge than to a direct inhibition of mitosis. The hormone-stimulated activity in plasma membranes of plants and the constitutively activated NADH oxidase in tumor cell plasma membranes is inhibited by thiol reagents whereas the basal activity is not. These findings point to a thiol involvement in the action of the activated form of the oxidase. NADH oxidase oxidation by Golgi apparatus of rat liver is inhibited by brefeldin A plus GDP. Brefeldin A is a macrolide antibiotic inhibitor of membrane trafficking. A model is presented where the NADH oxidase functions as a thiol-disulfide oxidoreductase activity involved in the formation and breakage of disulfide bonds. The thiol-disulfide interchange is postulated as being associated with physical membrane displacement as encountered in cell enlargement or in vesicle budding. The model, although speculative, does provide a basis for further experimentation to probe a potential function for this enzyme system which, under certain conditions, exhibits a hormone- and growth factor-stimulated oxidation of NADH.
Collapse
Affiliation(s)
- D J Morré
- Department of Medicinal Chemistry and Pharmacognosy, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
82
|
Confalonieri F, Marsault J, Duguet M. SAV, an archaebacterial gene with extensive homology to a family of highly conserved eukaryotic ATPases. J Mol Biol 1994; 235:396-401. [PMID: 8289263 DOI: 10.1016/s0022-2836(05)80047-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nucleotide sequencing of a region of the hyperthermophilic archaebacterium Sulfolobus acidocaldarius allowed us to identify an open reading frame of 780 amino acids strikingly similar to a family of eukaryotic ATPases, involved in a variety of biological functions. Sequence analysis of the predicted polypeptide revealed 63 to 66% similarity with S. cerevisiae CDC 48p and its related genes in amphibians (p97ATPase) and mammals (Valosin Containing Protein, VCP), all possibly involved in the regulation of the cell cycle. The finding of an archaebacterial equivalent of these proteins with a high degree of similarity suggests that it represents the same gene in these various species. The new archaebacterial ORF, called SAV (S. acidocaldarius VCP-like) exhibited the usual signature of all members of the family, a highly conserved domain of about 200 amino acids, which is duplicated. Thus, apart from the VCP-like proteins, SAV also appeared similar, although less clearly, to other ATPases, members of the family, involved in vesicle-mediated transport (NSF, Sec18p), peroxysome assembly (PAS1p), and gene expression in yeast (SUG1p) and in human immunodeficiency virus (TBP-1). Finally, the discovery of the archaebacterial gene could enlighten not only the evolutionary relationships between the members of this complex ATPase family, but also the cellular function of these proteins, that is presently obscure.
Collapse
Affiliation(s)
- F Confalonieri
- Laboratoire d'Enzymologie des acides Nucléiques, Université Paris-Sud, Orsay, France
| | | | | |
Collapse
|
83
|
Nuttley W, Brade A, Eitzen G, Veenhuis M, Aitchison J, Szilard R, Glover J, Rachubinski R. PAY4, a gene required for peroxisome assembly in the yeast Yarrowia lipolytica, encodes a novel member of a family of putative ATPases. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42385-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
84
|
Spong AP, Subramani S. Cloning and characterization of PAS5: a gene required for peroxisome biogenesis in the methylotrophic yeast Pichia pastoris. J Biophys Biochem Cytol 1993; 123:535-48. [PMID: 8227124 PMCID: PMC2200126 DOI: 10.1083/jcb.123.3.535] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The biogenesis and maintenance of cellular organelles is of fundamental importance in all eukaryotic cells. One such organelle is the peroxisome. The establishment of a genetic system to study peroxisome biogenesis in the methylotrophic yeast Pichia pastoris has yielded many different complementation groups of peroxisomal assembly (pas) or peroxisome-deficient (per) mutants. Each appears to be deficient in functional peroxisomes. One of these mutants, pas5, has been characterized, complemented, and the gene sequenced. Ultrastructural studies show that normal peroxisomes are not present in pas5, but aberrant peroxisomal structures resembling "membranous ghosts" are frequently observed. The "peroxisome ghosts" appear to be induced and segregated to daughter cells normally. Biochemical fractionation analysis of organelles of the pas5 mutant reveals that peroxisomal matrix enzymes are induced normally but are found mostly in the cytosol. However, purification of peroxisome ghosts from the mutant shows that small amounts (< 5%) of matrix enzymes are imported. The PAS5 gene was cloned and found to encode a 127-kD protein, which contains a 200-amino acid-long region of homology with PAS1, NEM-sensitive factor (NSF), and other related ATPases. Weak homology to a yeast myosin was also observed. The gene is not essential for growth on glucose but is essential for growth on oleic acid and methanol. The role of PAS5 in peroxisome biogenesis is discussed.
Collapse
Affiliation(s)
- A P Spong
- Department of Biology, University of California, San Diego, La Jolla 92093-0322
| | | |
Collapse
|
85
|
Thorsness PE, White KH, Ong WC. AFG2, an essential gene in yeast, encodes a new member of the Sec18p, Pas1p, Cdc48p, TBP-1 family of putative ATPases. Yeast 1993; 9:1267-71. [PMID: 8109176 DOI: 10.1002/yea.320091114] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A gene from Saccharomyces cerevisiae was sequenced that encodes a protein with homology to a family of putative ATPases. These homologous proteins include the yeast cell division cycle protein Cdc48p and its mammalian homologues VCP and p97; Sec18p and its mammalian homologue NSF, proteins necessary for fusion of transport vesicles to target membranes in the secretory pathway; Pas1p, a protein necessary for peroxisome biosynthesis in yeast; Yme1p, a yeast mitochondrial protein that influences the rate of DNA escape from mitochondria; and TBP-1, MSS1 and Sug1p, proteins that interact with transcription factors. This newly sequenced gene, named AFG2 for ATPase family gene, is located on chromosome XII 5' to the SLP1/VPS33 open reading frame and encodes an essential protein of 780 amino acids that is most homologous to Cdc48p.
Collapse
Affiliation(s)
- P E Thorsness
- Department of Molecular Biology, University of Wyoming, Laramie 82071-3944
| | | | | |
Collapse
|
86
|
Inactivation of YME1, a member of the ftsH-SEC18-PAS1-CDC48 family of putative ATPase-encoding genes, causes increased escape of DNA from mitochondria in Saccharomyces cerevisiae. Mol Cell Biol 1993. [PMID: 8355690 DOI: 10.1128/mcb.13.9.5418] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast nuclear gene YME1 was one of six genes recently identified in a screen for mutations that elevate the rate at which DNA escapes from mitochondria and migrates to the nucleus. yme1 mutations, including a deletion, cause four known recessive phenotypes: an elevation in the rate at which copies of TRP1 and ARS1, integrated into the mitochondrial genome, escape to the nucleus; a heat-sensitive respiratory-growth defect; a cold-sensitive growth defect on rich glucose medium; and synthetic lethality in rho- (cytoplasmic petite) cells. The cloned YME1 gene complements all of these phenotypes. The gene product, Yme1p, is immunologically detectable as an 82-kDa protein present in mitochondria. Yme1p is a member of a family of homologous putative ATPases, including Sec18p, Pas1p, Cdc48p, TBP-1, and the FtsH protein. Yme1p is most similar to the Escherichia coli FtsH protein, an essential protein involved in septum formation during cell division. This observation suggests the hypothesis that Yme1p may play a role in mitochondrial fusion and/or division.
Collapse
|
87
|
Thorsness PE, White KH, Fox TD. Inactivation of YME1, a member of the ftsH-SEC18-PAS1-CDC48 family of putative ATPase-encoding genes, causes increased escape of DNA from mitochondria in Saccharomyces cerevisiae. Mol Cell Biol 1993; 13:5418-26. [PMID: 8355690 PMCID: PMC360248 DOI: 10.1128/mcb.13.9.5418-5426.1993] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The yeast nuclear gene YME1 was one of six genes recently identified in a screen for mutations that elevate the rate at which DNA escapes from mitochondria and migrates to the nucleus. yme1 mutations, including a deletion, cause four known recessive phenotypes: an elevation in the rate at which copies of TRP1 and ARS1, integrated into the mitochondrial genome, escape to the nucleus; a heat-sensitive respiratory-growth defect; a cold-sensitive growth defect on rich glucose medium; and synthetic lethality in rho- (cytoplasmic petite) cells. The cloned YME1 gene complements all of these phenotypes. The gene product, Yme1p, is immunologically detectable as an 82-kDa protein present in mitochondria. Yme1p is a member of a family of homologous putative ATPases, including Sec18p, Pas1p, Cdc48p, TBP-1, and the FtsH protein. Yme1p is most similar to the Escherichia coli FtsH protein, an essential protein involved in septum formation during cell division. This observation suggests the hypothesis that Yme1p may play a role in mitochondrial fusion and/or division.
Collapse
Affiliation(s)
- P E Thorsness
- Department of Molecular Biology, University of Wyoming, Laramie 82071-3944
| | | | | |
Collapse
|
88
|
Sequence similarities between cell regulation factors, heat shock proteins and RNA helicases. Trends Biochem Sci 1993. [DOI: 10.1016/s0968-0004(11)80001-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
89
|
Tomoyasu T, Yuki T, Morimura S, Mori H, Yamanaka K, Niki H, Hiraga S, Ogura T. The Escherichia coli FtsH protein is a prokaryotic member of a protein family of putative ATPases involved in membrane functions, cell cycle control, and gene expression. J Bacteriol 1993; 175:1344-51. [PMID: 8444796 PMCID: PMC193220 DOI: 10.1128/jb.175.5.1344-1351.1993] [Citation(s) in RCA: 180] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The ftsH gene is essential for cell viability in Escherichia coli. We cloned and sequenced the wild-type ftsH gene and the temperature-sensitive ftsH1(Ts) gene. It was suggested that FtsH protein was an integral membrane protein of 70.7 kDa (644 amino acid residues) with a putative ATP-binding domain. The ftsH1(Ts) gene was found to have two base substitutions within the coding sequence corresponding to the amino acid substitutions Glu-463 by Lys and Pro-587 by Ala. Homology search revealed that an approximately 200-amino-acid domain, including the putative ATP-binding sequence, is highly homologous (35 to 48% identical) to the domain found in members of a novel, eukaryotic family of putative ATPases, e.g., Sec18p, Pas1p, CDC48p, and TBP-1, which function in protein transport pathways, peroxisome assembly, cell division cycle, and gene expression, respectively. Possible implications of these observations are discussed.
Collapse
Affiliation(s)
- T Tomoyasu
- Department of Molecular Cell Biology, Kumamoto University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Stimulatory effects of the protein tyrosine phosphatase inhibitor, pervanadate, on T-cell activation events. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53403-7] [Citation(s) in RCA: 224] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
91
|
Domain structure of an N-ethylmaleimide-sensitive fusion protein involved in vesicular transport. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53825-4] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
92
|
Ohana B, Moore PA, Ruben SM, Southgate CD, Green MR, Rosen CA. The type 1 human immunodeficiency virus Tat binding protein is a transcriptional activator belonging to an additional family of evolutionarily conserved genes. Proc Natl Acad Sci U S A 1993; 90:138-42. [PMID: 8419915 PMCID: PMC45615 DOI: 10.1073/pnas.90.1.138] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The type 1 human immunodeficiency virus Tat protein is a powerful transcriptional activator when bound to an RNA structure (TAR) present at the extreme 5' terminus of viral mRNA. Since transcriptional activation requires binding of Tat to RNA, it has been suggested that Tat enhances initiation or elongation through a direct interaction with cellular transcription factors. Here we show through protein fusion experiments that the previously identified cellular Tat binding protein, TBP-1, although unable to bind DNA, is a strong transcriptional activator when brought into proximity of several promoter elements. Transcriptional activity depends upon the integrity of at least two highly conserved domains: one resembling a nucleotide-binding motif and the other motif common to proteins with helicase activity. Our studies further reveal that TBP-1 represents one member of a large, highly conserved gene family that encodes proteins demonstrating strong amino acid conservation across species. Finally, we identified a second family member that, although 77% similar to TBP-1, does not activate transcription from the promoters examined. This finding, together with the observation that TBP-1 does not activate each promoter examined, suggests that this gene family may encode promoter-specific transcriptional activators.
Collapse
MESH Headings
- ATPases Associated with Diverse Cellular Activities
- Amino Acid Sequence
- Animals
- Biological Evolution
- Blotting, Western
- Cell Line
- Chloramphenicol O-Acetyltransferase/genetics
- Chloramphenicol O-Acetyltransferase/metabolism
- Cloning, Molecular
- DNA, Viral/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Gene Products, tat/metabolism
- Genes, Viral
- HIV-1/genetics
- Molecular Sequence Data
- Multigene Family
- Open Reading Frames
- Plasmids
- Proteasome Endopeptidase Complex
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/metabolism
- Restriction Mapping
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins
- Sequence Deletion
- Sequence Homology, Amino Acid
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors
- Transcription, Genetic
- Transfection
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- B Ohana
- Department of Gene Regulation, Roche Institute of Molecular Biology, Nutley, NJ 07110
| | | | | | | | | | | |
Collapse
|
93
|
Kunau WH, Beyer A, Franken T, Götte K, Marzioch M, Saidowsky J, Skaletz-Rorowski A, Wiebel FF. Two complementary approaches to study peroxisome biogenesis in Saccharomyces cerevisiae: forward and reversed genetics. Biochimie 1993; 75:209-24. [PMID: 8507683 DOI: 10.1016/0300-9084(93)90079-8] [Citation(s) in RCA: 144] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In order to investigate the mechanisms of peroxisome biogenesis and to identify components of the peroxisomal import machinery we studied these processes in the yeast Saccharomyces cerevisiae. The forward genetic approach has led to pas-mutants (peroxisomal assembly) which fall into 12 complementation groups and allowed to identify 10 of the corresponding wild-type PAS genes (PAS 1-7, 9, 11 and 12). Recent sequence analysis data of some of these genes are beginning to provide first hints as to the possible function of their gene products. The PAS genes and their corresponding mutants are presently used to address some important questions of peroxisomal biogenesis. Reversed genetics has been started as a complementary approach to characterize especially the function of peroxisomal membrane proteins. For this purpose we describe a technique to isolate highly purified peroxisomes. This led to the identification of 21 polypeptides as constituents of this organelle. Some of them are presently sequenced.
Collapse
Affiliation(s)
- W H Kunau
- Institut für Physiologische Chemie, Medizinische Fakultät, Ruhr-Universität Bochum, Germany
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Dubiel W, Ferrell K, Pratt G, Rechsteiner M. Subunit 4 of the 26 S protease is a member of a novel eukaryotic ATPase family. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)50002-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
95
|
Goyer C, Lee HS, Malo D, Sonenberg N. Isolation of a yeast gene encoding a protein homologous to the human Tat-binding protein TBP-1. DNA Cell Biol 1992; 11:579-85. [PMID: 1388730 DOI: 10.1089/dna.1992.11.579] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We have cloned a putative yeast homolog of the gene encoding the human Tat-binding protein, TBP-1. The gene termed TBPY encodes a 45,243-dalton protein displaying a heptad repeat of hydrophobic amino acids reminiscent of a leucine zipper. Secondary structure predictions suggest the possibility of formation of an amphipathic helix that could further be organized into a coiled-coil. Additionally, the protein product of TBPY shows amino acid signatures characteristic of a large family of RNA and DNA helicases. We propose that the hydrophobic region of yTBP-1 participates in self-dimerization or heterodimerization.
Collapse
Affiliation(s)
- C Goyer
- Department of Biochemistry, McGill University, Montreal, Quebec
| | | | | | | |
Collapse
|
96
|
Erdmann R, Kunau WH. A genetic approach to the biogenesis of peroxisomes in the yeast Saccharomyces cerevisiae. Cell Biochem Funct 1992; 10:167-74. [PMID: 1423897 DOI: 10.1002/cbf.290100306] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- R Erdmann
- Institut für Physiologische Chemie, Medizinische Fakultät der Ruhr-Universität Bochum, Federal Republic of Germany
| | | |
Collapse
|
97
|
Lee YJ, Wickner RB. AFG1, a new member of the SEC18-NSF, PAS1, CDC48-VCP, TBP family of ATPases. Yeast 1992; 8:787-90. [PMID: 1441755 DOI: 10.1002/yea.320080912] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have sequenced a gene that encodes a 377 amino acid putative protein with an ATPase motif typical of the protein family including SEC18p (NSF = N-ethyl maleimide-sensitive fusion protein; vesicle-mediated endoplasmic reticulum to Golgi protein transfer), PAS1p (peroxisome assembly), CDC48p (VCP = valosin-containing protein; cell cycle) and TBP1 (Tat-binding protein). This gene, AFG1 for ATPase family gene, also has substantial homology to these proteins outside the ATPase domain. AFG1 is located on chromosome V immediately centromere-proximal to MAK10.
Collapse
Affiliation(s)
- Y J Lee
- Laboratory of Biochemical Pharmacology, National Institute of Diabetes, Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD 20892
| | | |
Collapse
|
98
|
Swaffield JC, Bromberg JF, Johnston SA. Alterations in a yeast protein resembling HIV Tat-binding protein relieve requirement for an acidic activation domain in GAL4. Nature 1992; 357:698-700. [PMID: 1614516 DOI: 10.1038/357698a0] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The acidic transcriptional activation motif functions in all eukaryotes, which suggests that it makes contact with some universal component of the transcriptional apparatus. Transcriptional activation by the yeast regulatory protein GAL4 requires an acidic region at its carboxyl terminus. Here we implement a selection scheme to determine whether GAL4 can still function when this C-terminal domain has been deleted. It can, when accompanied by a mutation in the SUG1 gene which is an essential gene in yeast. Analysis of mutant SUG1 in combination with various alleles of GAL4 indicates that SUG1 acts through a transcriptional pathway that depends on GAL4, but requires a region of GAL4 other than the C-terminal acidic activation domain. The predicted amino-acid sequence of SUG1 closely resembles that of two human proteins, TBP1 and MSS1, which modulate expression mediated by the human immunodeficiency virus tat gene.
Collapse
Affiliation(s)
- J C Swaffield
- Department of Medicine, University of Texas Southwestern Medical Center, Dallas 75235-8573
| | | | | |
Collapse
|
99
|
Abstract
We showed previously that the increased rate of mRNA turnover associated with premature translational termination in the yeast Saccharomyces cerevisiae requires a functional UPF1 gene product. In this study, we show that the UPF1 gene codes for a 109-kDa primary translation product whose function is not essential for growth. The protein contains a potential zinc-dependent nucleic acid-binding domain and a nucleoside triphosphate-binding domain. A 300-amino-acid segment of the UPF1 protein is 36% identical to a segment of the yeast SEN1 protein, which is required for endonucleolytic processing of intron-containing pre-tRNAs. The same region is 32% identical to a segment of Mov-10, a mouse protein of unknown function. Dominant-negative upf1 mutations were isolated following in vitro mutagenesis of a plasmid containing the UPF1 gene. They mapped exclusively at conserved positions within the sequence element common to all three proteins, whereas the recessive upf1-2 mutation maps outside this region. The clustering of dominant-negative mutations suggests the presence of a functional domain in UPF1 that may be shared by all three proteins. We also identified upf mutations in three other genes designated UPF2, UPF3, and UPF4. When alleles of each gene were screened for effects on mRNA accumulation, we found that the recessive mutation upf3-1 causes increased accumulation of mRNA containing a premature stop codon. When mRNA half-lives were measured, we found that excess mRNA accumulation was due to mRNA stabilization. On the basis of these results, we suggest that the products of at least two genes, UPF1 and UPF3, are responsible for the accelerated rate of mRNA decay associated with premature translational termination.
Collapse
|
100
|
Leeds P, Wood JM, Lee BS, Culbertson MR. Gene products that promote mRNA turnover in Saccharomyces cerevisiae. Mol Cell Biol 1992; 12:2165-77. [PMID: 1569946 PMCID: PMC364388 DOI: 10.1128/mcb.12.5.2165-2177.1992] [Citation(s) in RCA: 131] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We showed previously that the increased rate of mRNA turnover associated with premature translational termination in the yeast Saccharomyces cerevisiae requires a functional UPF1 gene product. In this study, we show that the UPF1 gene codes for a 109-kDa primary translation product whose function is not essential for growth. The protein contains a potential zinc-dependent nucleic acid-binding domain and a nucleoside triphosphate-binding domain. A 300-amino-acid segment of the UPF1 protein is 36% identical to a segment of the yeast SEN1 protein, which is required for endonucleolytic processing of intron-containing pre-tRNAs. The same region is 32% identical to a segment of Mov-10, a mouse protein of unknown function. Dominant-negative upf1 mutations were isolated following in vitro mutagenesis of a plasmid containing the UPF1 gene. They mapped exclusively at conserved positions within the sequence element common to all three proteins, whereas the recessive upf1-2 mutation maps outside this region. The clustering of dominant-negative mutations suggests the presence of a functional domain in UPF1 that may be shared by all three proteins. We also identified upf mutations in three other genes designated UPF2, UPF3, and UPF4. When alleles of each gene were screened for effects on mRNA accumulation, we found that the recessive mutation upf3-1 causes increased accumulation of mRNA containing a premature stop codon. When mRNA half-lives were measured, we found that excess mRNA accumulation was due to mRNA stabilization. On the basis of these results, we suggest that the products of at least two genes, UPF1 and UPF3, are responsible for the accelerated rate of mRNA decay associated with premature translational termination.
Collapse
Affiliation(s)
- P Leeds
- Laboratory of Genetics, University of Wisconsin, Madison 53706
| | | | | | | |
Collapse
|