51
|
Qin W, Han C, Mai R, Yu T, Shang L, Ye X, Zhu G, Su H, Liao X, Liu Z, Yu L, Liu X, Yang C, Wang X, Peng M, Peng T. Establishment of a prognostic model for predicting short-term disease-free survival in cases of hepatitis B-related hepatocellular carcinoma with the TP53 249Ser mutation in southern China. Transl Cancer Res 2020; 9:4517-4533. [PMID: 35117817 PMCID: PMC8798450 DOI: 10.21037/tcr-19-2788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/17/2020] [Indexed: 12/14/2022]
Abstract
Background Hepatitis B virus (HBV) infection and dietary aflatoxin exposure are two major and synergistic carcinogenic factors of hepatocellular carcinoma (HCC) in southern China. Mutation of the TP53 gene at codon 249 (TP53 249Ser) is recognized as a fingerprint of aflatoxin B1 (AFB1) exposure. Methods A total of 485 HCC patients positive for serum hepatitis B surface antigen were enrolled. The clinicopathological information and survival time were collected. TP53 249Ser mutations in HCC were detected by Sanger DNA sequencing after PCR amplification. Immunohistochemical staining was used to evaluate TP53 expression. Propensity score matching (PSM) and Cox proportional hazards regression (CPHR) were conducted to identify independent risk factors for prognosis that were incorporated into the nomogram. Univariate logistic regression analysis was used to compare differences in clinical factors between the TP53 249Ser mutation group and the non-mutation group. A Kaplan-Meier plot, univariate and multivariate Cox proportional hazards models were used to assess the association between clinicopathological characteristics and survival outcomes. Results After PSM, a total of 322 cases were included in the analysis of clinical prognosis. Results of CPHR showed that the mutation group had a relatively higher risk of tumor recurrence within 2 years after undergoing hepatectomy (P=0.039, HR =1.47, 95% CI: 1.02–2.18). The prognostic model performed better in terms of 2-year DFS prediction than BCLC stage. Patients who had a nomogram score of more than 160 were considered to have a higher risk of recurrence within 2 years. Conclusions Our study found that the TP53 249Ser mutation may be a high risk factor of HBV-related HCC recurrence in the short term. And we initially established a nomogram scoring system for predicting 2-year recurrence in HBV-related HCC patients in southern China.
Collapse
Affiliation(s)
- Wei Qin
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Rongyun Mai
- Department of Hepatobiliary & Pancreatic Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tingdong Yu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liming Shang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xinping Ye
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hao Su
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhengtao Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Long Yu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoguang Liu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Minhao Peng
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
52
|
The Inhibitory Effect of Validamycin A on Aspergillus flavus. Int J Microbiol 2020; 2020:3972415. [PMID: 32676114 PMCID: PMC7336217 DOI: 10.1155/2020/3972415] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/08/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022] Open
Abstract
Aspergillus flavus is one of the most common isolates from patients with fungal infections. Aspergillus infection is usually treated with antifungal agents, but side effects of these agents are common. Trehalase is an essential enzyme involved in fungal metabolism, and the trehalase inhibitor, validamycin A, has been used to prevent fungal infections in agricultural products. In this study, we observed that validamycin A significantly increased trehalose levels in A. flavus conidia and delayed germination, including decreased fungal adherence. In addition, validamycin A and amphotericin B showed a combinatorial effect on A. flavus ATCC204304 and clinical isolates with high minimum inhibitory concentrations (MICs) of amphotericin B using checkerboard assays. We observed that validamycin A and amphotericin B had a synergistic effect on A. flavus strains resistant to amphotericin B. The MICs in the combination of validamycin A and amphotericin B were at 0.125 μg/mL and 2 μg/mL, respectively. The FICI of validamycin A and amphotericin B of these clinical isolates was about 0.25-0.28 with synergistic effects. No drug cytotoxicity was observed in human bronchial epithelial cells treated with validamycin A using LDH-cytotoxicity assays. In conclusion, this study demonstrated that validamycin A inhibited the growth of A. flavus and delayed conidial germination. Furthermore, the combined effect of validamycin A with amphotericin B increased A. flavus killing, without significant cytotoxicity to human bronchial epithelial cells. We propose that validamycin A could potentially be used in vivo as an alternative treatment for A. flavus infections.
Collapse
|
53
|
Venkatachalam K, Vinayagam R, Arokia Vijaya Anand M, Isa NM, Ponnaiyan R. Biochemical and molecular aspects of 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis: a review. Toxicol Res (Camb) 2020; 9:2-18. [PMID: 32440334 DOI: 10.1093/toxres/tfaa004] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 01/20/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
1,2-dimethylhydrazine (DMH) is a member in the class of hydrazines, strong DNA alkylating agent, naturally present in cycads. DMH is widely used as a carcinogen to induce colon cancer in animal models. Exploration of DMH-induced colon carcinogenesis in rodent models provides the knowledge to perceive the biochemical, molecular, and histological mechanisms of different stages of colon carcinogenesis. The procarcinogen DMH, after a series of metabolic reactions, finally reaches the colon, there produces the ultimate carcinogen and reactive oxygen species (ROS), which further alkylate the DNA and initiate the development of colon carcinogenesis. The preneolpastic lesions and histopathological observations of DMH-induced colon tumors may provide typical understanding about the disease in rodents and humans. In addition, this review discusses about the action of biotransformation and antioxidant enzymes involved in DMH intoxication. This understanding is essential to accurately identify and interpret alterations that occur in the colonic mucosa when evaluating natural or pharmacological compounds in DMH-induced animal colon carcinogenesis.
Collapse
Affiliation(s)
- Karthikkumar Venkatachalam
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain-17666, United Arab Emirates
| | - Ramachandran Vinayagam
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore, Tamilnadu 632 115, India
| | | | - Nurulfiza Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, 43400 Seri Kembangan, Selangor, Malaysia
| | - Rajasekar Ponnaiyan
- Department of Zoology, Jamal Mohamed College, Tiruchirappalli, Tamil Nadu 620020, India
| |
Collapse
|
54
|
Singal AG, Lampertico P, Nahon P. Epidemiology and surveillance for hepatocellular carcinoma: New trends. J Hepatol 2020; 72:250-261. [PMID: 31954490 PMCID: PMC6986771 DOI: 10.1016/j.jhep.2019.08.025] [Citation(s) in RCA: 755] [Impact Index Per Article: 151.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/28/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
Abstract
The burden of hepatocellular carcinoma (HCC) is highest in East Asia and Africa, although its incidence and mortality are rapidly rising in the United States and Europe. With the implementation of hepatitis B vaccination and hepatitis C treatment programmes worldwide, the epidemiology of HCC is shifting away from a disease predominated by viral hepatitis - an increasing proportion of cases are now attributable to non-alcoholic steatohepatitis. Surveillance using ultrasound, with or without alpha-fetoprotein, every 6 months has been associated with improved early detection and improved overall survival; however, limitations in implementation lead to a high proportion of HCC being detected at late stages in clinical practice. Herein, we review the current state of HCC surveillance and highlight areas for future research, including improved risk stratification of at-risk patients, surveillance tools with higher sensitivity and specificity for early HCC, and interventions to increase surveillance utilisation.
Collapse
Affiliation(s)
- Amit G Singal
- Division of Digestive and Liver Diseases, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Pietro Lampertico
- CRC "A. M. and A. Migliavacca" Center for the Study of Liver Disease, Division of Gastroenterology and Hepatology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Pierre Nahon
- Centre de Recherche des Cordeliers, Sorbonne Universités, Université Paris Descartes, Université Paris Diderot, Université Paris, Paris, France; Functional Genomics of Solid Tumors, USPC, Université Paris Descartes, Université Paris Diderot, Université Paris, Paris, France; Service d'hépatologie, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bondy, France; Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France
| |
Collapse
|
55
|
Nault JC, Cheng AL, Sangro B, Llovet JM. Milestones in the pathogenesis and management of primary liver cancer. J Hepatol 2020; 72:209-214. [PMID: 31954486 DOI: 10.1016/j.jhep.2019.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Jean-Charles Nault
- Service d'Hépatologie, Hôpital Jean Verdier, Hôpitaux universitaires Paris-Seine-Saint-Denis, Assistance publique Hôpitaux de Paris, Bondy, France; Unité mixte de Recherche 1162, Génomique fonctionnelle des Tumeurs solides, Institut national de la Santé et de la Recherche médicale, Paris, France; Unité de Formation et de Recherche Santé Médecine et Biologie humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France.
| | - Ann-Lii Cheng
- Department of Oncology, National Taiwan University Cancer Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Bruno Sangro
- Liver Unit, Clinica Universidad de Navarra-IDISNA and CIBEREHD, Pamplona, Spain
| | - Josep M Llovet
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Translational Research in Hepatic Oncology Group, Liver Unit, IDIBAPS, Hospital Clinic Barcelona, University of Barcelona, Barcelona, Catalonia, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain.
| |
Collapse
|
56
|
Molecular Analysis of Mutations in the Human HPRT Gene. Methods Mol Biol 2020. [PMID: 31989566 DOI: 10.1007/978-1-0716-0223-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The HPRT assay uses incorporation of toxic nucleotide analogues to select for cells lacking the purine scavenger enzyme hypoxanthine-guanine phosphoribosyl transferase. A major advantage of this assay is the ability to isolate mutant cells and determine the molecular basis for their functional deficiency. Many types of analyses have been performed at this locus: the current protocol involves generation of a cDNA and multiplex PCR of each exon, including the intron/exon junctions, followed by direct sequencing of the products. This analysis detects point mutations, small deletions and insertions within the gene, mutations affecting RNA splicing, and the products of illegitimate V(D)J recombination within the gene. Establishment of and comparisons with mutational spectra hold the promise of identifying exposures to mutation-inducing genotoxicants from their distinctive pattern of gene-specific DNA damage at this easily analyzed reporter gene.
Collapse
|
57
|
Abou-Alfa GK, Jarnagin W, El Dika I, D'Angelica M, Lowery M, Brown K, Ludwig E, Kemeny N, Covey A, Crane CH, Harding J, Shia J, O'Reilly EM. Liver and Bile Duct Cancer. ABELOFF'S CLINICAL ONCOLOGY 2020:1314-1341.e11. [DOI: 10.1016/b978-0-323-47674-4.00077-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
58
|
Xing M, Li P, Wang X, Li J, Shi J, Qin J, Zhang X, Ma Y, Francia G, Zhang JY. Overexpression of p62/IMP2 can Promote Cell Migration in Hepatocellular Carcinoma via Activation of the Wnt/β-Catenin Pathway. Cancers (Basel) 2019; 12:cancers12010007. [PMID: 31861402 PMCID: PMC7017416 DOI: 10.3390/cancers12010007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/24/2022] Open
Abstract
p62/IMP2 is an oncofetal protein that was first reported as a tumor-associated antigen in hepatocellular carcinoma (HCC). In our previous studies, we demonstrated a high frequency of p62/IMP2 autoantibodies appearing in various types of cancer. Therefore, we hypothesize that p62/IMP2 plays an important role in the progression of HCC, although the mechanism remains to be explored. In this study, we evaluated the expression of p62/IMP2 protein both in human tissues and liver cancer cell lines by immunohistochemistry and western blotting analysis and found that p62/IMP2 protein is overexpressed in human HCC tissue in comparison to normal human liver tissue. To explore the role that p62/IMP2 plays in HCC, p62/IMP2 was knocked out in two p62/IMP2-positive liver cancer cell lines (SNU449 and HepG2). Due to the low expression level of p62/IMP2 in SNU449, we overexpressed p62/IMP2 in this cell line. We subsequently demonstrated that high expression of p62/IMP2 in both cell lines can promote cell migration and invasion abilities in vitro by activating the Wnt/β-catenin pathway. We also used the Wnt/β-catenin pathway inhibitor, XAV 939, and a phosphoproteome assay to confirm our findings. Conclusion: Our results suggest that p62/IMP2 is an essential regulator of Wnt signaling pathways and plays an important role in HCC progression and metastasis.
Collapse
Affiliation(s)
- Mengtao Xing
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
| | - Pei Li
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
| | - Xiao Wang
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
- Henan Medical and Pharmaceutical Institute, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jitian Li
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
| | - Jianxiang Shi
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
- Henan Medical and Pharmaceutical Institute, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Jiejie Qin
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
| | - Xiaojun Zhang
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
| | - Yangcheng Ma
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
| | - Giulio Francia
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
- Correspondence: (G.F.); (J.-Y.Z.)
| | - Jian-Ying Zhang
- Department of Biological Sciences & NIH-Sponsored Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA; (M.X.); (P.L.); (X.W.); (J.L.); (J.S.); (J.Q.); (X.Z.); (Y.M.)
- Correspondence: (G.F.); (J.-Y.Z.)
| |
Collapse
|
59
|
Chen W, Jiang J, Wang PP, Gong L, Chen J, Du W, Bi K, Diao H. Identifying Hepatocellular Carcinoma Driver Genes by Integrative Pathway Crosstalk and Protein Interaction Network. DNA Cell Biol 2019; 38:1112-1124. [PMID: 31464520 PMCID: PMC6791483 DOI: 10.1089/dna.2019.4869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
In this study, we mined out hepatocellular carcinoma (HCC) driver genes from MEDLINE literatures by bioinformatics methods of pathway crosstalk and protein interaction network. Furthermore, the relationship between driver genes and their clinicopathological characteristics, as well as classification effectiveness was verified in the public databases. We identified 560 human genes reported to be associated with HCC in 1074 published articles. Functional analysis revealed that biological processes and biochemical pathways relating to tumor pathogenesis, cancer disease, tumor cell molecule, and hepatic disease were enriched in these genes. Pathway crosstalk analysis indicated that significant pathways could be divided into three modules: cancer disease, virus infection, and tumor signaling pathway. The HCC-related protein-protein interaction network comprised 10,212 nodes, and 56,400 edges were mined out to identify 18 modules corresponding to 14 driver genes. We verified that these 14 driver genes have high classification effectiveness to distinguish cancer samples from normal samples and the classification effectiveness was better than that of randomly selected genes. Present study provided pathway crosstalk and protein interaction network for understanding potential tumorigenesis genes underlying HCC. The 14 driver genes identified from this study are of great translational value in HCC diagnosis and treatment, as well as in clinical study on the pathogenesis of HCC.
Collapse
Affiliation(s)
- Wenbiao Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingjing Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peizhong Peter Wang
- Division of Community Health and Humanities, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Canada
| | - Lan Gong
- St George and Sutherland Clinical School, University of New South Wales, Sydney, Australia
| | - Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weibo Du
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kefan Bi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
60
|
Shastri S, Chatterjee B, Thakur SS. Achievements in Cancer Research and its Therapeutics in Hundred Years. Curr Top Med Chem 2019; 19:1545-1562. [PMID: 31362690 DOI: 10.2174/1568026619666190730093034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 12/19/2022]
Abstract
Cancer research has progressed leaps and bounds over the years. This review is a brief overview of the cancer research, milestone achievements and therapeutic studies on it over the one hundred ten years which would give us an insight into how far we have come to understand and combat this fatal disease leading to millions of deaths worldwide. Modern biology has proved that cancer is a very complex disease as still we do not know precisely how it triggers. It involves several factors such as protooncogene, oncogene, kinase, tumor suppressor gene, growth factor, signalling cascade, micro RNA, immunity, environmental factors and carcinogens. However, modern technology now helps the cancer patient on the basis of acquired and established knowledge in the last hundred years to save human lives.
Collapse
Affiliation(s)
- Sravanthi Shastri
- Proteomics and Cell Signaling, Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Bhaswati Chatterjee
- National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Suman S Thakur
- Proteomics and Cell Signaling, Centre for Cellular and Molecular Biology, Hyderabad, India
| |
Collapse
|
61
|
Altinkaya SO, Avcioglu SN, Sezer SD, Ceylaner S. Analysis of TP53 gene in uterine myomas: No mutations but P72R polymorphism is associated with myoma development. J Obstet Gynaecol Res 2019; 45:2088-2094. [PMID: 31357239 DOI: 10.1111/jog.14071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/10/2019] [Indexed: 12/27/2022]
Abstract
AIM The aim of the present study was to investigate the familial and somatic mutations as well as polymorphisms of TP53 gene in patients with uterine leiomyoma. METHODS The study included 35 women with histologically diagnosed as uterine leiomyomas at the Gynecology Department of Adnan Menderes University Faculty of Medicine. Tissue and blood samples were analyzed for mutations and polymorphisms of TP53 gene by next generation sequencing (Miseq-Illumina). Acquired data was compared with the normal data in Ensembl database. Data from 1000 genome project and data from exome sequencing analyses in Intergen Genetic Diagnosis Center (Ankara) were used as controls for polymorphism analyses. RESULTS There were no mutations in tissue and blood samples. However, when the polymorphisms were evaluated, a significant difference was found in NM_000546.5(TP53):c.215C > G (p.Pro72Arg) polymorphism between the study and control groups. The results indicated that P72R/P72R genotype increased the risk of leiomyoma development by 6.3 fold (95% confidence interval [CI]: 2.880-13.793). There was a negative correlation between P72R/WT genotype and leiomyoma development (OR = 0.261, 95% CI: 0.114-0.596). P72R/P72R genotype was statistically higher in the patients with leiomyoma compared with the controls and 1000 genomes from Asian, European and World populations. CONCLUSION The results of the present study suggested that P72R/P72R genotype may be associated with development of uterine leiomyoma in the Turkish population in the Western part of the country.
Collapse
Affiliation(s)
- S Ozlem Altinkaya
- Department of Gynecology and Obstetrics, Adnan Menderes University, Faculty of Medicine, Aydin, Turkey
| | - Sumeyra N Avcioglu
- Department of Gynecology and Obstetrics, Adnan Menderes University, Faculty of Medicine, Aydin, Turkey
| | - Selda D Sezer
- Department of Gynecology and Obstetrics, Adnan Menderes University, Faculty of Medicine, Aydin, Turkey
| | | |
Collapse
|
62
|
p53-Mediated PI3K/AKT/mTOR Pathway Played a Role in Ptox Dpt-Induced EMT Inhibition in Liver Cancer Cell Lines. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2531493. [PMID: 31191795 PMCID: PMC6525883 DOI: 10.1155/2019/2531493] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/01/2019] [Accepted: 04/09/2019] [Indexed: 12/17/2022]
Abstract
Epithelial-mesenchymal transition (EMT) involves metastasis and drug resistance; thus, a new EMT reversing agent is required. It has shown that wild-type p53 can reverse EMT back to epithelial characteristics, and iron chelator acting as a p53 inducer has been demonstrated. Moreover, recent study revealed that etoposide could also inhibit EMT. Therefore, combination of etoposide with iron chelator might achieve better inhibition of EMT. To this end, we prepared di-2-pyridineketone hydrazone dithiocarbamate S-propionate podophyllotoxin ester (PtoxDpt) that combined the podophyllotoxin (Ptox) structural unit (etoposide) with the dithiocarbamate unit (iron chelator) through the hybridization strategy. The resulting PtoxDpt inherited characteristics from parent structural units, acting as both the p53 inducer and topoisomerase II inhibitor. In addition, the PtoxDpt exhibited significant inhibition in migration and invasion, which correlated with downregulation of matrix metalloproteinase (MMP). More importantly, PtoxDpt could inhibit EMT in the absence or presence of TGF-β1, concomitant to the ROS production, and the additional evidence revealed that PtoxDpt downregulated AKT/mTOR through upregulation of p53, indicating that PtoxDpt induced EMT inhibition through the p53/PI3K/AKT/mTOR pathway.
Collapse
|
63
|
McCullough AK, Lloyd RS. Mechanisms underlying aflatoxin-associated mutagenesis - Implications in carcinogenesis. DNA Repair (Amst) 2019; 77:76-86. [PMID: 30897375 PMCID: PMC6959417 DOI: 10.1016/j.dnarep.2019.03.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 01/07/2023]
Abstract
Chronic dietary exposure to aflatoxin B1 (AFB1), concomitant with hepatitis B infection is associated with a significant increased risk for hepatocellular carcinomas (HCCs) in people living in Southeast Asia and sub-Saharan Africa. Human exposures to AFB1 occur through the consumption of foods that are contaminated with pervasive molds, including Aspergillus flavus. Even though dietary exposures to aflatoxins constitute the second largest global environmental risk factor for cancer development, there are still significant questions concerning the molecular mechanisms driving carcinogenesis and what factors may modulate an individual's risk for HCC. The objective of this review is to summarize key discoveries that established the association of chronic inflammation (most commonly associated with hepatitis B viral (HBV) infection) and environmental exposures to aflatoxin with increased HCC risk. Special emphasis will be given to recent investigations that have: 1) refined the aflatoxin-associated mutagenic signature, 2) expanded the DNA repair mechanisms that limit mutagenesis via adduct removal prior to replication-induced mutagenesis, 3) implicated a specific DNA polymerase in the error-prone bypass and resulting mutagenesis, and 4) identified human polymorphic variants that may modulate individual susceptibility to aflatoxin-induced cancers. Collectively, these investigations revealed that specific sequence contexts are differentially resistant against, or prone to, aflatoxin-induced mutagenesis and that these associations are remarkably similar between in vitro and in vivo analyses. These recent investigations also established DNA polymerase ζ as the major polymerase that confers the G to T transversion signature. Additionally, although the nucleotide excision repair (NER) pathway has been previously shown to repair aflatoxin-induced DNA adducts, recent murine data demonstrated that NEIL1-initiated base excision repair was significantly more important than NER relative to the removal of the highly mutagenic AFB1-Fapy-dG adducts. These data suggest that inactivating polymorphic variants of NEIL1 could be a potential driver of HCCs in aflatoxin-exposed populations.
Collapse
Affiliation(s)
- Amanda K McCullough
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, United States
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, United States; Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
64
|
Wang H, Liao P, Zeng SX, Lu H. It takes a team: a gain-of-function story of p53-R249S. J Mol Cell Biol 2019; 11:277-283. [PMID: 30608603 PMCID: PMC6487778 DOI: 10.1093/jmcb/mjy086] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/03/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022] Open
Abstract
Gain-of-function (GOF), the most malicious oncogenic activity of a cancer-promoting protein, is well illustrated to three hotspot p53 mutations at R248, R175, and R273 with distinct molecular mechanisms. Yet, less is known about another hotspot p53 mutant, R249S (p53-R249S). p53-R249S is the sole hotspot mutation in hepatocellular carcinoma (HCC) that is highly associated with chronic hepatitis B virus (HBV) infection and dietary exposure to aflatoxin B1 (AFB1). Its GOF is suggested by the facts that this mutant is associated with earlier onset of HCC and poorer prognosis of cancer patients and that its overexpression drives HCC proliferation and tumorigenesis. By contrast, simply knocking in this mutant in normal mice did not show apparent GOF activity. Hence, the GOF activity for p53-R249S and its underlying mechanisms have been elusive until recent findings offered some new insights. This review will discuss these findings as well as their clinical significance and implications for the development of a strategy to target multiple molecules as a therapy for p53-R249S-harboring HCC.
Collapse
Affiliation(s)
- Huai Wang
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
- School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Peng Liao
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
65
|
tRNA modification and cancer: potential for therapeutic prevention and intervention. Future Med Chem 2019; 11:885-900. [PMID: 30744422 DOI: 10.4155/fmc-2018-0404] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transfer RNAs (tRNAs) undergo extensive chemical modification within cells through the activity of tRNA methyltransferase enzymes (TRMs). Although tRNA modifications are dynamic, how they impact cell behavior after stress and during tumorigenesis is not well understood. This review discusses how tRNA modifications influence the translation of codon-biased transcripts involved in responses to oxidative stress. We further discuss emerging mechanistic details about how aberrant TRM activity in cancer cells can direct programs of codon-biased translation that drive cancer cell phenotypes. The studies reviewed here predict future preventative therapies aimed at augmenting TRM activity in individuals at risk for cancer due to exposure. They further predict that attenuating TRM-dependent translation in cancer cells may limit disease progression while leaving noncancerous cells unharmed.
Collapse
|
66
|
Delmonico L, Costa MASM, Fournier MV, Romano SDO, Nascimento CMD, Barbosa AS, Moreira ADS, Scherrer LR, Ornellas MHF, Alves G. Mutation profiling in the PIK3CA, TP53, and CDKN2A genes in circulating free DNA and impalpable breast lesions. Ann Diagn Pathol 2019; 39:30-35. [PMID: 30634138 DOI: 10.1016/j.anndiagpath.2018.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/21/2018] [Accepted: 12/30/2018] [Indexed: 01/05/2023]
Abstract
Breast impalpable lesions have become a clinical dilemma because they are small, presenting a heterogeneous cellular phenotype. The aim of this study was to evaluate the mutational profile of the PIK3CA, TP53, and CDKN2A genes, comparing the mammary tissue with the respective circulating free DNA (cfDNA). The PIK3CA, TP53, and CDKN2A genes were sequenced (PCR-Sanger) in 58 women with impalpable lesions (49 malignant and 9 benign) with the respective cfDNA. The chi-square or Fisher's exact test was used to evaluate statistical significance between the clinical variables and mutational profile. A total of 51 out of 58 samples generated successful mutation profiles in both breast lesion and cfDNA. Of the 37 mutations detected, 10 (27%) and 16 (43%) mutations were detected in benign and malignant breast lesions, respectively, while 2 (5%) and 9 (24%) were found in cfDNA of women with benign and malignant lesions, respectively. The lymph node involvement with mutations in the PIK3CA in malignant lesions (P = 0.001), and the relationship between mutations in PIK3CA, comparing ductal tumors with benign lesions (P = 0.05), were statistically significant. This study detected different mutations in PIK3CA, TP53, and CDKN2A genes, which represent, in part, the heterogeneity of impalpable lesions. The results confirm that more studies should be conducted on the functional role of cfDNA in the impalpable lesions.
Collapse
Affiliation(s)
- Lucas Delmonico
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil; Graduate Program in Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil.
| | | | | | | | | | | | - Aline Dos Santos Moreira
- Laboratory of Functional Genomics and Bioinformatics, PTDIS/FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | | | - Maria Helena Faria Ornellas
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil; Graduate Program in Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil
| | - Gilda Alves
- Circulating Biomarkers Laboratory, Faculty of Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil; Graduate Program in Medical Sciences, Rio de Janeiro State University, Rio de Janeiro 20550-170, Brazil.
| |
Collapse
|
67
|
Aflatoxin B₁⁻Formamidopyrimidine DNA Adducts: Relationships between Structures, Free Energies, and Melting Temperatures. Molecules 2019; 24:molecules24010150. [PMID: 30609733 PMCID: PMC6337653 DOI: 10.3390/molecules24010150] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 12/02/2022] Open
Abstract
Thermal stabilities of DNA duplexes containing Gua (g), α- (a) or β-anomer of formamidopyrimidine-N7-9-hydroxy-aflatoxin B1 (b) differ markedly (Tm: a<g<b), but the underlying molecular origin of this experimentally observed phenomenon is yet to be identified and determined. Here, by employing explicit-solvent molecular dynamics simulations coupled with free-energy calculations using a combined linear-interaction-energy/linear-response-approximation approach, we explain the quantitative differences in Tm in terms of three structural features (bulkiness, order, and compactness) and three energetical contributions (non-polar, electrostatic, and preorganized-electrostatic), and thus advance the current understanding of the relationships between structures, free energies, and thermal stabilities of DNA double helices.
Collapse
|
68
|
Hughes D, Al- Sarireh B. Hepatocellular carcinoma’s 100 most influential manuscripts: A bibliometric analysis. INTERNATIONAL JOURNAL OF HEPATOBILIARY AND PANCREATIC DISEASES 2019. [DOI: 10.5348/100083z04dh2019oa] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
69
|
Dhanasekaran R, Nault JC, Roberts LR, Zucman-Rossi J. Genomic Medicine and Implications for Hepatocellular Carcinoma Prevention and Therapy. Gastroenterology 2019; 156:492-509. [PMID: 30404026 PMCID: PMC6340723 DOI: 10.1053/j.gastro.2018.11.001] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is poorly understood, but recent advances in genomics have increased our understanding of the mechanisms by which hepatitis B virus, hepatitis C virus, alcohol, fatty liver disease, and other environmental factors, such as aflatoxin, cause liver cancer. Genetic analyses of liver tissues from patients have provided important information about tumor initiation and progression. Findings from these studies can potentially be used to individualize the management of HCC. In addition to sorafenib, other multi-kinase inhibitors have been approved recently for treatment of HCC, and the preliminary success of immunotherapy has raised hopes. Continued progress in genomic medicine could improve classification of HCCs based on their molecular features and lead to new treatments for patients with liver cancer.
Collapse
Affiliation(s)
| | - Jean-Charles Nault
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte De Recherche 1162, Génomique Fonctionnelle des Tumeurs Solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France; Liver Unit, Hôpital Jean Verdier, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, Bondy, France; Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris 13, Communauté d'Universités et Etablissements Sorbonne Paris Cité, Paris, France
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Jessica Zucman-Rossi
- Institut National de la Santé et de la Recherche Médicale, Unité Mixte De Recherche 1162, Génomique Fonctionnelle des Tumeurs Solides, Université Paris Descartes, Université Paris Diderot, Université Paris 13, Labex Immuno-Oncology, Paris, France; Hôpital Europeen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
70
|
Hung MH, Wang XW. Molecular Alterations and Heterogeneity in Hepatocellular Carcinoma. MOLECULAR AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/978-3-030-21540-8_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
71
|
Coskun E, Jaruga P, Vartanian V, Erdem O, Egner PA, Groopman JD, Lloyd RS, Dizdaroglu M. Aflatoxin-Guanine DNA Adducts and Oxidatively Induced DNA Damage in Aflatoxin-Treated Mice in Vivo as Measured by Liquid Chromatography-Tandem Mass Spectrometry with Isotope Dilution. Chem Res Toxicol 2018; 32:80-89. [PMID: 30525498 DOI: 10.1021/acs.chemrestox.8b00202] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dietary exposure to aflatoxin B1 (AFB1) is a significant contributor to the incidence of hepatocellular carcinomas globally. AFB1 exposure leads to the formation of AFB1-N7-guanine (AFB1-N7-Gua) and two diastereomers of the imidazole ring-opened 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1-FapyGua) in DNA. These adducts lead to G → T transversion mutations with the ring-opened adduct being more mutagenic than the cationic species. Accurate measurement of these three adducts as biomarkers in DNA and urine will help identify dietary exposure to AFB1 as a risk factor in the development of hepatocellular carcinoma worldwide. Herein, we report an improved methodology for the measurement of AFB1-N7-Gua and the two diastereomers of AFB1-FapyGua using liquid chromatography-tandem mass spectrometry with isotope dilution. We measured the levels of these compounds in liver DNA of six control mice and six AFB1-treated mice. Levels varying from 1.5 to 45 lesions/106 DNA bases in AFB1-treated mice were detected depending on the compound and animal. No background levels of these adducts were detected in control mice. We also tested whether the AFB1 treatment caused oxidatively induced DNA base damage using gas chromatography-tandem mass spectrometry with isotope dilution. Although background levels of several pyrimidine- and purine-derived lesions were detected, no increases in these levels were found upon AFB1 treatment of mice. On the other hand, significantly increased levels of (5' R)- and (5' S)-8,5'-cyclo-2'-deoxyadenosines were observed in liver DNA of AFB1-treated mice. The impact of this work is expected to achieve the accurate measurement of three AFB1-DNA adducts and oxidatively induced DNA lesions as biomarkers of AFB1 exposure as germane to investigations designed for the prevention of aflatoxin-related hepatocellular carcinomas and for determining the effects of genetic deficiencies in human populations.
Collapse
Affiliation(s)
- Erdem Coskun
- Biomolecular Measurement Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| | - Pawel Jaruga
- Biomolecular Measurement Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| | - Vladimir Vartanian
- Oregon Institute of Occupational Health Sciences , Oregon Health & Science University , Portland , Oregon 97239 , United States
| | - Onur Erdem
- Biomolecular Measurement Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States.,Department of Toxicology, Gülhane Faculty of Pharmacy , University of Health Sciences , Ankara 06010 , Turkey
| | - Patricia A Egner
- Department of Environmental Health and Engineering , Johns Hopkins University Bloomberg School of Public Health , Baltimore , Maryland 21205 , United States
| | - John D Groopman
- Department of Environmental Health and Engineering , Johns Hopkins University Bloomberg School of Public Health , Baltimore , Maryland 21205 , United States
| | - R Stephen Lloyd
- Department of Toxicology, Gülhane Faculty of Pharmacy , University of Health Sciences , Ankara 06010 , Turkey
| | - Miral Dizdaroglu
- Biomolecular Measurement Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| |
Collapse
|
72
|
Minko IG, Christov PP, Li L, Stone MP, McCullough AK, Lloyd RS. Processing of N 5-substituted formamidopyrimidine DNA adducts by DNA glycosylases NEIL1 and NEIL3. DNA Repair (Amst) 2018; 73:49-54. [PMID: 30448017 DOI: 10.1016/j.dnarep.2018.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/02/2018] [Accepted: 11/02/2018] [Indexed: 12/29/2022]
Abstract
A variety of agents cause DNA base alkylation damage, including the known hepatocarcinogen aflatoxin B1 (AFB1) and chemotherapeutic drugs derived from nitrogen mustard (NM). The N7 site of guanine is the primary site of alkylation, with some N7-deoxyguanosine adducts undergoing imidazole ring-opening to stable mutagenic N5-alkyl formamidopyrimidine (Fapy-dG) adducts. These adducts exist as a mixture of canonical β- and unnatural α-anomeric forms. The β species are predominant in double-stranded (ds) DNA. Recently, we have demonstrated that the DNA glycosylase NEIL1 can initiate repair of AFB1-Fapy-dG adducts both in vitro and in vivo, with Neil1-/- mice showing an increased susceptibility to AFB1-induced hepatocellular carcinoma. Here, we hypothesized that NEIL1 could excise NM-Fapy-dG and that NEIL3, a closely related DNA glycosylase, could excise both NM-Fapy-dG and AFB1-Fapy-dG. Product formation from the reaction of human NEIL1 with ds oligodeoxynucleotides containing a unique NM-Fapy-dG followed a bi-component exponential function under single turnover conditions. Thus, two adduct conformations were differentially recognized by hNEIL1. The excision rate of the major form (∼13.0 min-1), presumed to be the β-anomer, was significantly higher than that previously reported for 5-hydroxycytosine, 5-hydroxyuracil, thymine glycol (Tg), and AFB1-Fapy-dG. Product generation from the minor form was much slower (∼0.4 min-1), likely reflecting the rate of conversion of the α anomer into the β anomer. Mus musculus NEIL3 (MmuNEIL3Δ324) excised NM-Fapy-dG from single-stranded (ss) DNA (turnover rate of ∼0.4 min-1), but not from ds DNA. Product formation from ss substrate was incomplete, presumably because of a substantial presence of the α anomer. MmuNEIL3Δ324 could not initiate repair of AFB1-Fapy-dG in either ds or ss DNA. Overall, the data suggest that both NEIL1 and NEIL3 may protect cells against cytotoxic and mutagenic effects of NM-Fapy-dG, but NEIL1 may have a unique role in initiation of base excision repair of AFB1-Fapy-dG.
Collapse
Affiliation(s)
- Irina G Minko
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States
| | - Plamen P Christov
- Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN 37235, United States
| | - Liang Li
- Department of Chemistry and Biochemistry, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, United States
| | - Michael P Stone
- Department of Chemistry and Biochemistry, Vanderbilt-Ingram Cancer Center, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, United States
| | - Amanda K McCullough
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, United States
| | - R Stephen Lloyd
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, United States; Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, United States; Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, United States.
| |
Collapse
|
73
|
Giacomelli AO, Yang X, Lintner RE, McFarland JM, Duby M, Kim J, Howard TP, Takeda DY, Ly SH, Kim E, Gannon HS, Hurhula B, Sharpe T, Goodale A, Fritchman B, Steelman S, Vazquez F, Tsherniak A, Aguirre AJ, Doench JG, Piccioni F, Roberts CWM, Meyerson M, Getz G, Johannessen CM, Root DE, Hahn WC. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat Genet 2018; 50:1381-1387. [PMID: 30224644 PMCID: PMC6168352 DOI: 10.1038/s41588-018-0204-y] [Citation(s) in RCA: 360] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 07/26/2018] [Indexed: 12/11/2022]
Abstract
Unlike most tumor suppressor genes, the most common genetic alterations in TP53 are missense mutations1,2. Mutant p53 protein is often abundantly expressed in cancers, and specific allelic variants exhibit dominant-negative or gain-of-function activities in experimental models3–8. To gain a systematic view of p53 function, we interrogated loss-of-function screens conducted in hundreds of human cancer cell lines and performed TP53 saturation mutagenesis screens in an isogenic pair of TP53-wild-type and -null cell lines. We found that loss or dominant-negative inhibition of p53 function reliably enhanced cellular fitness. By integrating these data with the COSMIC mutational signatures database9,10, we developed a statistical model that describes the TP53 mutational spectrum as a function of the baseline probability of acquiring each mutation and the fitness advantage conferred by attenuation of p53 activity. Collectively, these observations show that widely-acting and tissue-specific mutational processes combine with phenotypic selection to dictate the frequencies of recurrent TP53 mutations.
Collapse
Affiliation(s)
- Andrew O Giacomelli
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiaoping Yang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Marc Duby
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jaegil Kim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thomas P Howard
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - David Y Takeda
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Seav Huong Ly
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eejung Kim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hugh S Gannon
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brian Hurhula
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ted Sharpe
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy Goodale
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Francisca Vazquez
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Andrew J Aguirre
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Charles W M Roberts
- Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Matthew Meyerson
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA.,Massachusetts General Hospital Center for Cancer Research, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - William C Hahn
- Dana-Farber Cancer Institute, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Harvard Medical School, Boston, MA, USA. .,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
74
|
Groehler AS, Najjar D, Pujari SS, Sangaraju D, Tretyakova NY. N 6-(2-Deoxy-d- erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5- N-(2-hydroxy-3-buten-1-yl)-formamidopyrimidine Adducts of 1,3-Butadiene: Synthesis, Structural Identification, and Detection in Human Cells. Chem Res Toxicol 2018; 31:885-897. [PMID: 30016111 DOI: 10.1021/acs.chemrestox.8b00123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
1,3-Butadiene (BD) is an environmental and occupational toxicant classified as a human carcinogen. BD is metabolically activated by cytochrome P450 monooxygenases to 3,4-epoxy-1-butene (EB), which alkylates DNA to form a range of nucleobase adducts. Among these, the most abundant are the hydrolytically labile N7-guanine adducts such as N7-(2-hydroxy-3-buten-1-yl)-guanine (N7-EB-dG). We now report that N7-EB-dG can be converted to the corresponding ring open N6-(2-deoxy-d- erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5- N-(2-hydroxy-3-buten-1-yl)-formamidopyrimidine (EB-Fapy-dG) adducts. EB-Fapy-dG lesions were detected in EB-treated calf thymus DNA and in EB-treated mammalian cells using quantitative isotope dilution nanoLC-ESI+-MS/MS. EB-Fapy-dG adduct formation in EB-treated calf thymus DNA was concentration dependent and was greatly accelerated at an increased pH. EB-FAPy-dG adduct amounts were 2-fold higher in base excision repair-deficient NEIL1-/- mouse embryonic fibroblasts (MEF) as compared to isogenic controls (NEIL1+/+), suggesting that this lesion may be a substrate for NEIL1. Furthermore, NEIL1-/- cells were sensitized to EB treatment as compared to NEIL1+/+ fibroblasts. Overall, our results indicate that ring-opened EB-FAPy-dG adducts form under physiological conditions, prompting future studies to determine their contributions to genotoxicity and mutagenicity of BD.
Collapse
Affiliation(s)
- Arnold S Groehler
- Department of Medicinal Chemistry and Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Dominic Najjar
- Department of Medicinal Chemistry and Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Suresh S Pujari
- Department of Medicinal Chemistry and Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Dewakar Sangaraju
- Department of Medicinal Chemistry and Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Natalia Y Tretyakova
- Department of Medicinal Chemistry and Masonic Cancer Center , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
75
|
Lee WY, Bachtiar M, Choo CCS, Lee CG. Comprehensive review of Hepatitis B Virus-associated hepatocellular carcinoma research through text mining and big data analytics. Biol Rev Camb Philos Soc 2018; 94:353-367. [PMID: 30105774 DOI: 10.1111/brv.12457] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023]
Abstract
PubMed was text mined to glean insights into the role of Hepatitis B virus (HBV) in hepatocellular carcinoma (HCC) from the massive number of publications (9249) available to date. Reports from ∼70 countries identified >1300 human genes associated with either the Core, Surface or X gene in HBV-associated HCC. One hundred and forty-three of these host genes, which can potentially yield 1180 biomolecular interactions, each were reported in at least three different publications to be associated with the same HBV. These 143 genes function in 137 pathways, involved mainly in the cell cycle, apoptosis, inflammation and signalling. Fourteen of these molecules, primarily transcriptional regulators or kinases, play roles in several pathways pertinent to the hallmarks of cancers. 'Chronic' was the most frequent word used across the 9249 abstracts. A key event in chronic HBV infection is the integration of HBV into the host genome. The advent of cost-effective, next-generation sequencing technology facilitated the employment of big-data analytics comprehensively to characterize HBV-host integration within HCC patients. A total of 5331 integration events were reported across seven publications, with most of these integrations observed between the Core/X gene and the introns of genes. Nearly one-quarter of the intergenic integrations are within repeats, especially long interspersed nuclear elements (LINE) repeats. Integrations within 13 genes were each reported by at least three different studies. The human gene with the most HBV integrations observed is the TERT gene where a total of 224 integrations, primarily at its promoter and within the tumour tissue, were reported by six of seven publications. This unique review, which employs state-of-the-art text-mining and data-analytics tools, represents the most complete, systematic and comprehensive review of nearly all the publications associated with HBV-associated HCC research. It provides important resources to either focus future research or develop therapeutic strategies to target key molecules reported to play important roles in key pathways of HCC, through the systematic analyses of the commonly reported molecules associated with the various HBV genes in HCC, including information about the interactions amongst these commonly reported molecules, the pathways in which they reside as well as detailed information regarding the viral and host genes associated with HBV integration in HCC patients. Hence this review, which highlights pathways and key human genes associated with HBV in HCC, may facilitate the deeper elucidation of the role of HBV in hepato-carcinogenesis, potentially leading to timely intervention against this deadly disease.
Collapse
Affiliation(s)
- Wai Yeow Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Maulana Bachtiar
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore.,Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Cheryl C S Choo
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119077, Singapore.,Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore
| | - Caroline G Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 119077, Singapore.,Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610, Singapore.,Duke-National University of Singapore Graduate Medical School, Singapore, 169547, Singapore
| |
Collapse
|
76
|
Morgillo F, Dallio M, Della Corte CM, Gravina AG, Viscardi G, Loguercio C, Ciardiello F, Federico A. Carcinogenesis as a Result of Multiple Inflammatory and Oxidative Hits: a Comprehensive Review from Tumor Microenvironment to Gut Microbiota. Neoplasia 2018; 20:721-733. [PMID: 29859426 PMCID: PMC6014569 DOI: 10.1016/j.neo.2018.05.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Floriana Morgillo
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy.
| | - Marcello Dallio
- Gastroenterologia, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Carminia Maria Della Corte
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonietta Gerarda Gravina
- Gastroenterologia, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Viscardi
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Carmelina Loguercio
- Gastroenterologia, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Fortunato Ciardiello
- Oncologia Medica, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Federico
- Gastroenterologia, Dipartimento di Internistica Clinica e Sperimentale "F.Magrassi", Università della Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
77
|
Galle PR, Forner A, Llovet JM, Mazzaferro V, Piscaglia F, Raoul JL, Schirmacher P, Vilgrain V. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J Hepatol 2018; 69:182-236. [PMID: 29628281 DOI: 10.1016/j.jhep.2018.03.019] [Citation(s) in RCA: 5931] [Impact Index Per Article: 847.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
|
78
|
Manda P, Adépo AJB, Kouassi M’bengue A, Konan M, Verdier N’gbe J, Doumbia M, Toutou T, Djédjé Dano S. Évaluation du rôle de l’aflatoxine B1 dans l’apparition du carcinome hépatocellulaire en Côte d’Ivoire : étude préliminaire. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2018. [DOI: 10.1016/j.toxac.2018.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
79
|
Ilic Z, Mondal TK, Guest I, Crawford DR, Sell S. Participation of liver stem cells in cholangiocarcinogenesis after aflatoxin B1 exposure of glutathione S-transferase A3 knockout mice. Tumour Biol 2018; 40:1010428318777344. [DOI: 10.1177/1010428318777344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aflatoxin B1, arguably the most potent human carcinogen, induces liver cancer in humans, rats, trout, ducks, and so on, but adult mice are totally resistant. This resistance is because of a detoxifying enzyme, mouse glutathione S-transferase A3, which binds to and inactivates aflatoxin B1 epoxide, preventing the epoxide from binding to DNA and causing mutations. Glutathione S-transferase A3 or its analog has not been detected in any of the sensitive species, including humans. The generation of a glutathione S-transferase A3 knockout (represented as KO or -/-) mice has allowed us to study the induction of liver cancer in mice by aflatoxin B1. In contrast to the induction of hepatocellular carcinomas in other species, aflatoxin B1 induces cholangiocarcinomas in GSTA3-/- mice. In other species and in knockout mice, the induction of liver cancer is preceded by extensive proliferation of small oval cells, providing additional evidence that oval cells are bipolar stem cells and may give rise to either hepatocellular carcinoma or cholangiocarcinoma depending on the nature of the hepatocarcinogen and the species of animal. The recent development of mouse oval cell lines in our laboratory from aflatoxin B1-treated GSTA3-/- mice should provide a new venue for study of the properties and potential of putative mouse liver stem cells.
Collapse
Affiliation(s)
- Zoran Ilic
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Tapan K Mondal
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Ian Guest
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | | | - Stewart Sell
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| |
Collapse
|
80
|
Jeyaramraja P, Meenakshi SN, Woldesenbet F. Relationship between drought and preharvest aflatoxin contamination in groundnut (Arachis hypogaea L.). WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Groundnut is a commercial oilseed crop that is prone to infection by Aspergillus flavus or Aspergillus parasiticus. Drought impairs the defence mechanism of the plant and favours the production of aflatoxin by the fungus. Aflatoxin is a carcinogen and its presence in food and feed causes significant economic loss. The answer to the question, ‘how drought tolerance and aflatoxin resistance are related?’ is not clear. In this review paper, the relationship of drought and preharvest aflatoxin contamination (AC), the relationship of drought tolerance traits and AC, and the approaches to enhance resistance to AC are discussed using up-to-date literature. Factors leading to AC are drought, high geocarposphere temperature, kernel/pod damage, and reduced phytoalexin synthesis by the plant. If the fungus colonises a kernel with reduced water activity, the plant cannot synthesise phytoalexin and then, the fungus synthesises aflatoxin. Breeding for resistance to AC is complicated because aflatoxin concentration is costly to measure, highly variable, and influenced by the environment. Since drought tolerant cultivars have resistance to AC, traits of drought tolerance have been used as indirect selection tools for reduced AC. The genetics of aflatoxin resistance mechanisms have not been made clear as the environment influences the host-pathogen relationship. Host-pathogen interactions under the influence of environment should be studied at molecular level to identify plant resistant factors using the tools of genomics, proteomics, and metabolomics in order to develop cultivars with durable resistance. Many candidate genes involved in host-pathogen interactions have been identified due to improvements in fungal expressed sequence tags, microarrays, and genome sequencing techniques. Moreover, research projects are underway on identifying genes coding for antifungal compounds, resistance associated proteins and quantitative trait loci associated with aflatoxin resistance. This review is expected to help those who wish to work on reducing AC in groundnuts.
Collapse
Affiliation(s)
- P.R. Jeyaramraja
- Department of Biology, College of Natural Sciences, Arba Minch University, P.O. Box 21, Arba Minch, Gamo Gofa Zone, Ethiopia
| | - S. Nithya Meenakshi
- Department of Botany, PSGR Krishnammal College for Women, Peelamedu, Coimbatore 641 004, Tamilnadu, India
| | - F. Woldesenbet
- Department of Biology, College of Natural Sciences, Arba Minch University, P.O. Box 21, Arba Minch, Gamo Gofa Zone, Ethiopia
| |
Collapse
|
81
|
Azer SA. MDM2-p53 Interactions in Human Hepatocellular Carcinoma: What Is the Role of Nutlins and New Therapeutic Options? J Clin Med 2018; 7:64. [PMID: 29584707 PMCID: PMC5920438 DOI: 10.3390/jcm7040064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
Human hepatocellular carcinoma (HCC) is the fifth most common cancer and is associated with poor prognosis worldwide. The molecular mechanisms underlying the pathogenesis of HCC have been an area of continuing interest, and recent studies using next generation sequencing (NGS) have revealed much regarding previously unsettled issues. Molecular studies using HCC samples have been mainly targeted with the aim to identify the fundamental mechanisms contributing to HCC and identify more effective treatments. In response to cellular stresses (e.g., DNA damage or oncogenes), activated p53 elicits appropriate responses that aim at DNA repair, genetic stability, cell cycle arrest, and the deletion of DNA-damaged cells. On the other hand, the murine double minute 2 (MDM2) oncogene protein is an important cellular antagonist of p53. MDM2 negatively regulates p53 activity through the induction of p53 protein degradation. However, current research has shown that the mechanisms underlying MDM2-p53 interactions are more complex than previously thought. Microarray data have added new insight into the transcription changes in HCC. Recently, Nutlin-3 has shown potency against p53-MDM2 binding and the enhancement of p53 stabilization as well as an increment of p53 cellular accumulation with potential therapeutic effects. This review outlines the molecular mechanisms involved in the p53-MDM2 pathways, the biological factors influencing these pathways, and their roles in the pathogenesis of HCC. It also discusses the action of Nutlin-3 treatment in inducing growth arrest in HCC and elaborates on future directions in research in this area. More research on the biology of p53-MDM2 interactions may offer a better understanding of these mechanisms and discover new biomarkers, sensitive prognostic indicators as well as new therapeutic interventions in HCC.
Collapse
Affiliation(s)
- Samy A Azer
- Professor of Medical Education and Gastroenterologist, The Chair of Curriculum Development and Research Unit, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia.
| |
Collapse
|
82
|
Moore MM, Schoeny RS, Becker RA, White K, Pottenger LH. Development of an adverse outcome pathway for chemically induced hepatocellular carcinoma: case study of AFB1, a human carcinogen with a mutagenic mode of action. Crit Rev Toxicol 2018; 48:312-337. [PMID: 29431554 DOI: 10.1080/10408444.2017.1423462] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adverse outcome pathways (AOPs) are frameworks starting with a molecular initiating event (MIE), followed by key events (KEs) linked by KE relationships (KERs), ultimately resulting in a specific adverse outcome. Relevant data for the pathway and each KE/KER are evaluated to assess biological plausibility, weight-of-evidence, and confidence. We aimed to describe an AOP relevant to chemicals directly inducing mutation in cancer critical gene(s), via the formation of chemical-specific pro-mutagenic DNA adduct(s), as an early critical step in tumor etiology. Such chemicals have mutagenic modes-of-action (MOA) for tumor induction. To assist with developing this AOP, Aflatoxin B1 (AFB1) was selected as a case study because it has a rich database and is considered to have a mutagenic MOA. AFB1 information was used to define specific KEs, KERs, and to inform development of a generic AOP for mutagen-induced hepatocellular carcinoma (HCC). In assessing the AFB1 information, it became clear that existing data are, in fact, not optimal and for some KEs/KERs, the definitive data are not available. In particular, while there is substantial information that AFB1 can induce mutations (based on a number of mutation assays), the definitive evidence - the ability to induce mutation in the cancer critical gene(s) in the tumor target tissue - is not available. Thus, it is necessary to consider the patterns of results in the weight-of-evidence for KEs and KERs. It was important to determine whether there was sufficient evidence that AFB1 can induce the necessary critical mutations early in the carcinogenic process, which was the case.
Collapse
Affiliation(s)
- Martha M Moore
- a Ramboll Environ US Corporation , Little Rock , AR , USA
| | | | | | | | | |
Collapse
|
83
|
Kancherla V, Abdullazade S, Matter MS, Lanzafame M, Quagliata L, Roma G, Hoshida Y, Terracciano LM, Ng CKY, Piscuoglio S. Genomic Analysis Revealed New Oncogenic Signatures in TP53-Mutant Hepatocellular Carcinoma. Front Genet 2018; 9:2. [PMID: 29456550 PMCID: PMC5801302 DOI: 10.3389/fgene.2018.00002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/03/2018] [Indexed: 01/04/2023] Open
Abstract
The TP53 gene is the most commonly mutated gene in human cancers and mutations in TP53 have been shown to have either gain-of-function or loss-of-function effects. Using the data generated by The Cancer Genome Atlas, we sought to define the spectrum of TP53 mutations in hepatocellular carcinomas (HCCs) and their association with clinicopathologic features, and to determine the oncogenic and mutational signatures in TP53-mutant HCCs. Compared to other cancer types, HCCs harbored distinctive mutation hotspots at V157 and R249, whereas common mutation hotspots in other cancer types, R175 and R273, were extremely rare in HCCs. In terms of clinicopathologic features, in addition to the associations with chronic viral infection and high Edmondson grade, we found that TP53 somatic mutations were less frequent in HCCs with cholestasis or tumor infiltrating lymphocytes, but were more frequent in HCCs displaying necrotic areas. An analysis of the oncogenic signatures based on the genetic alterations found in genes recurrently altered in HCCs identified four distinct TP53-mutant subsets, three of which were defined by CTNNB1 mutations, 1q amplifications or 8q24 amplifications, respectively, that co-occurred with TP53 mutations. We also found that mutational signature 12, a liver cancer-specific signature characterized by T>C substitutions, was prevalent in HCCs with wild-type TP53 or with missense TP53 mutations, but not in HCCs with deleterious TP53 mutations. Finally, whereas patients with HCCs harboring deleterious TP53 mutations had worse overall and disease-free survival than patients with TP53-wild-type HCCs, patients with HCCs harboring missense TP53 mutations did not have worse prognosis. In conclusion, our results highlight the importance to consider the genetic heterogeneity among TP53-mutant HCCs in studies of biomarkers and molecular characterization of HCCs.
Collapse
Affiliation(s)
| | - Samir Abdullazade
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Matthias S Matter
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Manuela Lanzafame
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Luca Quagliata
- Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Guglielmo Roma
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Yujin Hoshida
- Division of Liver Diseases, Department of Medicine, Liver Cancer Program, Tisch Cancer Institute, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Charlotte K Y Ng
- Institute of Pathology, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine, University of Basel, Basel, Switzerland
| | | |
Collapse
|
84
|
Jiao J, Niu W, Wang Y, Baggerly K, Ye Y, Wu X, Davenport D, Almeda JL, Betancourt-Garcia MM, Forse RA, Stevenson HL, Watt GP, McCormick JB, Fisher-Hoch SP, Beretta L. Prevalence of Aflatoxin-Associated TP53R249S Mutation in Hepatocellular Carcinoma in Hispanics in South Texas. Cancer Prev Res (Phila) 2018. [DOI: 10.1158/1940-6207.capr-17-0235-at] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
85
|
Liao P, Zeng SX, Zhou X, Chen T, Zhou F, Cao B, Jung JH, Del Sal G, Luo S, Lu H. Mutant p53 Gains Its Function via c-Myc Activation upon CDK4 Phosphorylation at Serine 249 and Consequent PIN1 Binding. Mol Cell 2017; 68:1134-1146.e6. [PMID: 29225033 PMCID: PMC6204219 DOI: 10.1016/j.molcel.2017.11.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/24/2017] [Accepted: 11/07/2017] [Indexed: 12/15/2022]
Abstract
TP53 missense mutations significantly influence the development and progression of various human cancers via their gain of new functions (GOF) through different mechanisms. Here we report a unique mechanism underlying the GOF of p53-R249S (p53-RS), a p53 mutant frequently detected in human hepatocellular carcinoma (HCC) that is highly related to hepatitis B infection and aflatoxin B1. A CDK inhibitor blocks p53-RS's nuclear translocation in HCC, whereas CDK4 interacts with p53-RS in the G1/S phase of the cells, phosphorylates it, and enhances its nuclear localization. This is coupled with binding of a peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1) to p53-RS, but not the p53 form with mutations of four serines/threonines previously shown to be crucial for PIN1 binding. As a result, p53-RS interacts with c-Myc and enhances c-Myc-dependent rDNA transcription key for ribosomal biogenesis. These results unveil a CDK4-PIN1-p53-RS-c-Myc pathway as a novel mechanism for the GOF of p53-RS in HCC.
Collapse
Affiliation(s)
- Peng Liao
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Xiang Zhou
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Tianjian Chen
- Haywood Genetics Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Fen Zhou
- Center for Experimental Medicine, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bo Cao
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ji Hoon Jung
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Giannino Del Sal
- Laboratorio Nazionale CIB, Area Science Park Padriciano and Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Trieste, Italy
| | - Shiwen Luo
- Center for Experimental Medicine, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
86
|
Jiao J, Niu W, Wang Y, Baggerly K, Ye Y, Wu X, Davenport D, Almeda JL, Betancourt-Garcia MM, Forse RA, Stevenson HL, Watt GP, McCormick JB, Fisher-Hoch SP, Beretta L. Prevalence of Aflatoxin-Associated TP53R249S Mutation in Hepatocellular Carcinoma in Hispanics in South Texas. Cancer Prev Res (Phila) 2017; 11:103-112. [PMID: 29089331 DOI: 10.1158/1940-6207.capr-17-0235] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/21/2017] [Accepted: 10/26/2017] [Indexed: 02/07/2023]
Abstract
We aimed to determine whether aflatoxin dietary exposure plays a role in the high incidence of hepatocellular carcinoma (HCC) observed among Hispanics in South Texas. We measured TP53R249S somatic mutation, hallmark of aflatoxin etiology in HCC, using droplet digital PCR and RFLP. TP53R249S mutation was detected in 3 of 41 HCC tumors from Hispanics in South Texas (7.3%). We also measured TP53R249S mutation in plasma cell-free DNA (cfDNA) from 218 HCC patients and 96 Hispanic subjects with advanced fibrosis or cirrhosis, from South Texas. The mutation was detected only in Hispanic and Asian HCC patients, and patients harboring TP53R249S mutation were significantly younger and had a shorter overall survival. The mutation was not detected in any Hispanic subject with advanced fibrosis or cirrhosis. Genes involved in cell-cycle control of chromosomal replication and in BRCA1-dependent DNA damage response were enriched in HCCs with TP53R249S mutation. The E2F1 family members, E2F1 and E2F4, were identified as upstream regulators. TP53R249S mutation was detected in 5.7% to 7.3% of Hispanics with HCC in South Texas. This mutation was associated with a younger age and worse prognosis. TP53R249S was however not detected in Hispanics in South Texas with cirrhosis or advanced fibrosis. Aflatoxin exposure may contribute to a small number of HCCs in Hispanics in South Texas, but the detection of TP53R249S mutation in plasma cfDNA is not a promising biomarker of risk assessment for HCC in subjects with cirrhosis or advanced fibrosis in this population. Cancer Prev Res; 11(2); 103-12. ©2017 AACR.
Collapse
Affiliation(s)
- Jingjing Jiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Weibo Niu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ying Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keith Baggerly
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dewitt Davenport
- Doctor's Hospital at Renaissance, Edinburg, Texas.,University of Texas Rio Grande Valley School of Medicine, Edinburg, Texas
| | - Jose Luis Almeda
- Doctor's Hospital at Renaissance, Edinburg, Texas.,University of Texas Rio Grande Valley School of Medicine, Edinburg, Texas
| | | | - R Armour Forse
- Doctor's Hospital at Renaissance, Edinburg, Texas.,University of Texas Rio Grande Valley School of Medicine, Edinburg, Texas
| | - Heather L Stevenson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Gordon P Watt
- School of Public Health, University of Texas Health Science Center at Houston, Brownsville Regional Campus, Brownsville, Texas
| | - Joseph B McCormick
- School of Public Health, University of Texas Health Science Center at Houston, Brownsville Regional Campus, Brownsville, Texas
| | - Susan P Fisher-Hoch
- School of Public Health, University of Texas Health Science Center at Houston, Brownsville Regional Campus, Brownsville, Texas
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
87
|
Ladeira C, Frazzoli C, Orisakwe OE. Engaging One Health for Non-Communicable Diseases in Africa: Perspective for Mycotoxins. Front Public Health 2017; 5:266. [PMID: 29085817 PMCID: PMC5650707 DOI: 10.3389/fpubh.2017.00266] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/15/2017] [Indexed: 01/14/2023] Open
Abstract
The role of mycotoxins-e.g., aflatoxins, ochratoxins, trichothecenes, zearalenone, fumonisins, tremorgenic toxins, and ergot alkaloids-has been recognized in the etiology of a number of diseases. In many African countries, the public health impact of chronic (indoor) and/or repeated (dietary) mycotoxin exposure is largely ignored hitherto, with impact on human health, food security, and export of African agricultural food products. Notwithstanding, African scientific research reached milestones that, when linked to findings gained by the international scientific community, make the design and implementation of science-driven governance schemes feasible. Starting from Nigeria as leading African Country, this article (i) overviews available data on mycotoxins exposure in Africa; (ii) discusses new food safety issues, such as the environment-feed-food chain and toxic exposures of food producing animals in risk assessment and management; (iii) identifies milestones for mycotoxins risk management already reached in West Africa; and (iv) points out preliminary operationalization aspects for shielding communities from direct (on health) and indirect (on trade, economies, and livelihoods) effects of mycotoxins. An African science-driven engaging of scientific knowledge by development actors is expected therefore. In particular, One health/One prevention is suggested, as it proved to be a strategic and sustainable development framework.
Collapse
Affiliation(s)
- Carina Ladeira
- Environment and Health Research Group, Escola Superior de Tecnologia da Saúde de Lisboa – Instituto Politécnico de Lisboa (ESTeSL – IPL), Lisboa, Portugal
- Grupo de Investigação em Genética e Metabolismo, Escola Superior de Tecnologia da Saúde de Lisboa – Instituto Politécnico de Lisboa (ESTeSL – IPL), Lisboa, Portugal
- Centro de Investigação e Estudos em Saúde Pública, Escola Nacional de Saúde Pública, ENSP, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Chiara Frazzoli
- Department for Cardiovascular, Dysmetabolic and Aging-Associated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Orish Ebere Orisakwe
- Toxicology Unit, Faculty of Pharmacy, University of Port Harcourt, Port Harcourt, Nigeria
| |
Collapse
|
88
|
Innovative Disease Model: Zebrafish as an In Vivo Platform for Intestinal Disorder and Tumors. Biomedicines 2017; 5:biomedicines5040058. [PMID: 28961226 PMCID: PMC5744082 DOI: 10.3390/biomedicines5040058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the world’s most common cancers and is the second leading cause of cancer deaths, causing more than 50,000 estimated deaths each year. Several risk factors are highly associated with CRC, including being overweight, eating a diet high in red meat and over-processed meat, having a history of inflammatory bowel disease, and smoking. Previous zebrafish studies have demonstrated that multiple oncogenes and tumor suppressor genes can be regulated through genetic or epigenetic alterations. Zebrafish research has also revealed that the activation of carcinogenesis-associated signal pathways plays an important role in CRC. The biology of cancer, intestinal disorders caused by carcinogens, and the morphological patterns of tumors have been found to be highly similar between zebrafish and humans. Therefore, the zebrafish has become an important animal model for translational medical research. Several zebrafish models have been developed to elucidate the characteristics of gastrointestinal diseases. This review article focuses on zebrafish models that have been used to study human intestinal disorders and tumors, including models involving mutant and transgenic fish. We also report on xenograft models and chemically-induced enterocolitis. This review demonstrates that excellent zebrafish models can provide novel insights into the pathogenesis of gastrointestinal diseases and help facilitate the evaluation of novel anti-tumor drugs.
Collapse
|
89
|
Rinninella E, Cerrito L, Spinelli I, Cintoni M, Mele MC, Pompili M, Gasbarrini A. Chemotherapy for Hepatocellular Carcinoma: Current Evidence and Future Perspectives. J Clin Transl Hepatol 2017; 5:235-248. [PMID: 28936405 PMCID: PMC5606970 DOI: 10.14218/jcth.2017.00002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/29/2017] [Accepted: 04/29/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocarcinogenesis is a multistep process, heralded by abnormalities in cell differentiation and proliferation and sustained by an aberrant neoangiogenesis. Understanding the underlying molecular pathogenesis leading to hepatocellular carcinoma is a prerequisite to develop new drugs that will hamper or block the steps of these pathways. As hepatocellular carcinoma has higher arterial vascularization than normal liver, this could be a good target for novel molecular therapies. Introduction of the antiangiogenic drug sorafenib into clinical practice since 2008 has led to new perspectives in the management of this tumor. The importance of this drug lies not only in the modest gain of patients' survival, but in having opened a roadmap towards the development of new molecules and targets. Unfortunately, after the introduction of sorafenib, during the last years, a wide number of clinical trials on antiangiogenic therapies failed in achieving significant results. However, many of these trials are still ongoing and promise to improve overall survival and progression-free survival. A recent clinical trial has proven regorafenib effective in patients showing tumor progression under sorafenib, thus opening new interesting therapeutic perspectives. Many other expectations have been borne from the discovery of the immune checkpoint blockade, already known in other solid malignancies. Furthermore, a potential role in hepatocellular carcinoma therapy may derive from the use of branched-chain amino acids and of nutritional support. This review analyses the biomolecular pathways of hepatocellular carcinoma and the ongoing studies, the actual evidence and the future perspectives concerning drug therapy in this open field.
Collapse
Affiliation(s)
- Emanuele Rinninella
- Internal Medicine and Gastroenterology Unit, Gastroenterology Area, Fondazione Policlinico Universitario Agostino Gemelli, Catholic University of Sacred Heart, Rome, Italy
- Clinical Nutrition Unit, Gastroenterology Area, Fondazione Policlinico Universitario Agostino Gemelli, Catholic University of Sacred Heart, Rome, Italy
| | - Lucia Cerrito
- Internal Medicine and Gastroenterology Unit, Gastroenterology Area, Fondazione Policlinico Universitario Agostino Gemelli, Catholic University of Sacred Heart, Rome, Italy
| | - Irene Spinelli
- Internal Medicine and Gastroenterology Unit, Gastroenterology Area, Fondazione Policlinico Universitario Agostino Gemelli, Catholic University of Sacred Heart, Rome, Italy
| | - Marco Cintoni
- Clinical Nutrition Unit, Gastroenterology Area, Fondazione Policlinico Universitario Agostino Gemelli, Catholic University of Sacred Heart, Rome, Italy
| | - Maria Cristina Mele
- Clinical Nutrition Unit, Gastroenterology Area, Fondazione Policlinico Universitario Agostino Gemelli, Catholic University of Sacred Heart, Rome, Italy
| | - Maurizio Pompili
- Internal Medicine and Gastroenterology Unit, Gastroenterology Area, Fondazione Policlinico Universitario Agostino Gemelli, Catholic University of Sacred Heart, Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology Unit, Gastroenterology Area, Fondazione Policlinico Universitario Agostino Gemelli, Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
90
|
Berretta M, Cavaliere C, Alessandrini L, Stanzione B, Facchini G, Balestreri L, Perin T, Canzonieri V. Serum and tissue markers in hepatocellular carcinoma and cholangiocarcinoma: clinical and prognostic implications. Oncotarget 2017; 8:14192-14220. [PMID: 28077782 PMCID: PMC5355172 DOI: 10.18632/oncotarget.13929] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 10/28/2016] [Indexed: 12/12/2022] Open
Abstract
HCC represents the sixth most common cancer worldwide and the second leading cause of cancer-related death. Despite the high incidence, treatment options for advanced HCC remain limited and unsuccessful, resulting in a poor prognosis. Despite the major advances achieved in the diagnostic management of HCC, only one third of the newly diagnosed patients are presently eligible for curative treatments. Advances in technology and an increased understanding of HCC biology have led to the discovery of novel biomarkers. Improving our knowledge about serum and tissutal markers could ultimately lead to an early diagnosis and better and early treatment strategies for this deadly disease. Serum biomarkers are striking potential tools for surveillance and early diagnosis of HCC thanks to the non-invasive, objective, and reproducible assessments they potentially enable. To date, many biomarkers have been proposed in the diagnosis of HCC. Cholangiocarcinoma (CCA) is an aggressive malignancy, characterized by early lymph node involvement and distant metastasis, with 5-year survival rates of 5%-10%. The identification of new biomarkers with diagnostic, prognostic or predictive value is especially important as resection (by surgery or combined with a liver transplant) has shown promising results and novel therapies are emerging. However, the relatively low incidence of CCA, high frequency of co-existing cholestasis or cholangitis (primary sclerosing cholangitis –PSC- above all), and difficulties with obtaining adequate samples, despite advances in sampling techniques and in endoscopic visualization of the bile ducts, have complicated the search for accurate biomarkers. In this review, we attempt to analyze the existing literature on this argument.
Collapse
Affiliation(s)
| | - Carla Cavaliere
- Department of Onco-Ematology Medical Oncology, S.G. Moscati Hospital of Taranto Taranto, Italy
| | - Lara Alessandrini
- Division of Pathology, National Cancer Institute, Aviano (PN), Italy
| | - Brigida Stanzione
- Department of Medical Oncology, National Cancer Institute, Aviano (PN), Italy
| | - Gaetano Facchini
- Department of Medical Oncology, National Cancer Institute, "G. Pascale" Foundation, Naples, Italy
| | - Luca Balestreri
- Department of Radiology, National Cancer Institute, Aviano (PN), Italy
| | - Tiziana Perin
- Division of Pathology, National Cancer Institute, Aviano (PN), Italy
| | | |
Collapse
|
91
|
Zhang X, Wan JX, Ke ZP, Wang F, Chai HX, Liu JQ. TMEM88, CCL14 and CLEC3B as prognostic biomarkers for prognosis and palindromia of human hepatocellular carcinoma. Tumour Biol 2017; 39:1010428317708900. [PMID: 28718365 DOI: 10.1177/1010428317708900] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hepatocellular carcinoma is one of the most mortal and prevalent cancers with increasing incidence worldwide. Elucidating genetic driver genes for prognosis and palindromia of hepatocellular carcinoma helps managing clinical decisions for patients. In this study, the high-throughput RNA sequencing data on platform IlluminaHiSeq of hepatocellular carcinoma were downloaded from The Cancer Genome Atlas with 330 primary hepatocellular carcinoma patient samples. Stable key genes with differential expressions were identified with which Kaplan-Meier survival analysis was performed using Cox proportional hazards test in R language. Driver genes influencing the prognosis of this disease were determined using clustering analysis. Functional analysis of driver genes was performed by literature search and Gene Set Enrichment Analysis. Finally, the selected driver genes were verified using external dataset GSE40873. A total of 5781 stable key genes were identified, including 156 genes definitely related to prognoses of hepatocellular carcinoma. Based on the significant key genes, samples were grouped into five clusters which were further integrated into high- and low-risk classes based on clinical features. TMEM88, CCL14, and CLEC3B were selected as driver genes which clustered high-/low-risk patients successfully (generally, p = 0.0005124445). Finally, survival analysis of the high-/low-risk samples from external database illustrated significant difference with p value 0.0198. In conclusion, TMEM88, CCL14, and CLEC3B genes were stable and available in predicting the survival and palindromia time of hepatocellular carcinoma. These genes could function as potential prognostic genes contributing to improve patients' outcomes and survival.
Collapse
Affiliation(s)
- Xin Zhang
- 1 Department of Radiology, the Fourth People's Hospital of Huai'an, Huai'an, China
| | - Jin-Xiang Wan
- 2 Department of Medical Ultrasonics, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Zun-Ping Ke
- 3 Department of Cardiology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Feng Wang
- 4 Department of Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Hai-Xia Chai
- 5 Department of Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Jia-Qiang Liu
- 6 Department of Oral and Cranio-Maxillofacial, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
92
|
Zhang W, He H, Zang M, Wu Q, Zhao H, Lu LL, Ma P, Zheng H, Wang N, Zhang Y, He S, Chen X, Wu Z, Wang X, Cai J, Liu Z, Sun Z, Zeng YX, Qu C, Jiao Y. Genetic Features of Aflatoxin-Associated Hepatocellular Carcinoma. Gastroenterology 2017; 153:249-262.e2. [PMID: 28363643 DOI: 10.1053/j.gastro.2017.03.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 03/19/2017] [Accepted: 03/20/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Dietary exposure to aflatoxin is an important risk factor for hepatocellular carcinoma (HCC). However, little is known about the genomic features and mutations of aflatoxin-associated HCCs compared with HCCs not associated with aflatoxin exposure. We investigated the genetic features of aflatoxin-associated HCC that can be used to differentiate them from HCCs not associated with this carcinogen. METHODS We obtained HCC tumor tissues and matched non-tumor liver tissues from 49 patients, collected from 1990 through 2016, at the Qidong Liver Cancer Hospital Institute in China-a high-risk region for aflatoxin exposure (38.2% of food samples test positive for aflatoxin contamination). Somatic variants were identified using GATK Best Practices Pipeline. We validated part of the mutations from whole-genome sequencing and whole-exome sequencing by Sanger sequencing. We also analyzed genomes of 1072 HCCs, obtained from 5 datasets from China, the United States, France, and Japan. Mutations in 49 aflatoxin-associated HCCs and 1072 HCCs from other regions were analyzed using the Wellcome Trust Sanger Institute mutational signatures framework with non-negative matrix factorization. The mutation landscape and mutational signatures from the aflatoxin-associated HCC and HCC samples from general population were compared. We identified genetic features of aflatoxin-associated HCC, and used these to identify aflatoxin-associated HCCs in datasets from other regions. Tumor samples were analyzed by immunohistochemistry to determine microvessel density and levels of CD34 and CD274 (PD-L1). RESULTS Aflatoxin-associated HCCs frequently contained C>A transversions, the sequence motif GCN, and strand bias. In addition to previously reported mutations in TP53, we found frequent mutations in the adhesion G protein-coupled receptor B1 gene (ADGRB1), which were associated with increased capillary density of tumor tissue. Aflatoxin-associated HCC tissues contained high-level potential mutation-associated neoantigens, and many infiltrating lymphocytes and tumors cells that expressed PD-L1, compared to HCCs not associated with aflatoxin. Of the HCCs from China, 9.8% contained the aflatoxin-associated genetic features, whereas 0.4%-3.5% of HCCs from other regions contained these genetic features. CONCLUSIONS We identified specific genetic and mutation features of HCCs associated with aflatoxin exposure, including mutations in ADGRB1, compared to HCCs from general populations. We associated these mutations with increased vascularization and expression of PD-L1 in HCC tissues. These findings might be used to identify patients with HCC due to aflatoxin exposure, and select therapies.
Collapse
Affiliation(s)
- Weilong Zhang
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; Collaborative Innovation Center for Cancer Medicine; Third Hospital, Peking University, Beijing, China
| | - Huan He
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengya Zang
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qifeng Wu
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Zhao
- Department of Abdominal Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ling-Ling Lu
- Qidong People's Hospital and Qidong Liver Cancer Institute, Qidong, Jiangsu Province, China
| | - Peiqing Ma
- Department of Pathology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongwei Zheng
- Qidong People's Hospital and Qidong Liver Cancer Institute, Qidong, Jiangsu Province, China
| | - Nengjin Wang
- Qidong People's Hospital and Qidong Liver Cancer Institute, Qidong, Jiangsu Province, China
| | - Ying Zhang
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siyuan He
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Chen
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiyuan Wu
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyue Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jianqiang Cai
- Department of Abdominal Surgical Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihua Liu
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zongtang Sun
- State Key Lab of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Xin Zeng
- National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong Province, China.
| | - Chunfeng Qu
- State Key Lab of Molecular Oncology, Immunology Department, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical Colleges, Beijing, China.
| | - Yuchen Jiao
- State Key Lab of Molecular Oncology, Laboratory of Cell and Molecular Biology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College; Collaborative Innovation Center for Cancer Medicine, Beijing, China.
| |
Collapse
|
93
|
Abstract
Aflatoxin B1 (AFB1) is widely distributed in nature, especially in a variety of food commodities. It is confirmed to be the most toxic of all the aflatoxins. The toxicity of AFB1 has been well investigated, and it may result in severe health problems including carcinogenesis, mutagenesis, growth retardation, and immune suppression. Epigenetic modifications including DNA methylation, histone modifications and regulation of non-coding RNA play an important role in AFB1-induced disease and carcinogenesis. To better understand the evidence for AFB1-induced epigenetic alterations and the potential mechanisms of the toxicity of AFB1, we conducted a review of published studies of AFB1-induced epigenetic alterations.
Collapse
Affiliation(s)
- Yaqi Dai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, 100083, Beijing, China
| | - Boyang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Liye Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, 100083, Beijing, China.
| |
Collapse
|
94
|
Ranđelović M, Center of microbiology, Institut for public Health, Niš, Serbia, Kostić J, Stošić N, Đorđević I, Spasić A, Ranđelović G. AFLATOXINS: MEDICAL SIGNIFICANCE, VULNERABLE POPULATION GROUPS AND POSSIBLE PREVENTIVE MEASURES. ACTA MEDICA MEDIANAE 2017. [DOI: 10.5633/amm.2017.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
95
|
Udomkun P, Wiredu AN, Nagle M, Müller J, Vanlauwe B, Bandyopadhyay R. Innovative technologies to manage aflatoxins in foods and feeds and the profitability of application - A review. Food Control 2017; 76:127-138. [PMID: 28701823 PMCID: PMC5484778 DOI: 10.1016/j.foodcont.2017.01.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/21/2016] [Accepted: 01/14/2017] [Indexed: 12/29/2022]
Abstract
Aflatoxins are mainly produced by certain strains of Aspergillus flavus, which are found in diverse agricultural crops. In many lower-income countries, aflatoxins pose serious public health issues since the occurrence of these toxins can be considerably common and even extreme. Aflatoxins can negatively affect health of livestock and poultry due to contaminated feeds. Additionally, they significantly limit the development of international trade as a result of strict regulation in high-value markets. Due to their high stability, aflatoxins are not only a problem during cropping, but also during storage, transport, processing, and handling steps. Consequently, innovative evidence-based technologies are urgently required to minimize aflatoxin exposure. Thus far, biological control has been developed as the most innovative potential technology of controlling aflatoxin contamination in crops, which uses competitive exclusion of toxigenic strains by non-toxigenic ones. This technology is commercially applied in groundnuts maize, cottonseed, and pistachios during pre-harvest stages. Some other effective technologies such as irradiation, ozone fumigation, chemical and biological control agents, and improved packaging materials can also minimize post-harvest aflatoxins contamination in agricultural products. However, integrated adoption of these pre- and post-harvest technologies is still required for sustainable solutions to reduce aflatoxins contamination, which enhances food security, alleviates malnutrition, and strengthens economic sustainability.
Collapse
Affiliation(s)
- Patchimaporn Udomkun
- International Institute of Tropical Agriculture (IITA), Bukavu, The Democratic Republic of Congo
| | | | - Marcus Nagle
- Universität Hohenheim, Institute of Agricultural Engineering, Tropics and Subtropics Group, Stuttgart, Germany
| | - Joachim Müller
- Universität Hohenheim, Institute of Agricultural Engineering, Tropics and Subtropics Group, Stuttgart, Germany
| | - Bernard Vanlauwe
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| | | |
Collapse
|
96
|
Pezzuto F, Buonaguro L, Buonaguro FM, Tornesello ML. Frequency and geographic distribution of TERT promoter mutations in primary hepatocellular carcinoma. Infect Agent Cancer 2017; 12:27. [PMID: 28529542 PMCID: PMC5437489 DOI: 10.1186/s13027-017-0138-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/11/2017] [Indexed: 02/07/2023] Open
Abstract
Primary hepatocellular carcinoma (HCC) mainly develops in subjects chronically infected with hepatitis B (HBV) and C (HCV) viruses through a multistep process characterized by the accumulation of genetic alterations in the human genome. Nucleotide changes in coding regions (i.e. TP53, CTNNB1, ARID1A and ARID2) as well as in non-coding regions (i.e. TERT promoter) are considered cancer drivers for HCC development with variable frequencies in different geographic regions depending on the etiology and environmental factors. Recurrent hot spot mutations in TERT promoter (G > A at-124 bp; G > A at -146 bp), have shown to be common events in many tumor types including HCC and to up regulate the expression of telomerases. We performed a comprehensive review of the literature evaluating the differential distribution of TERT promoter mutations in 1939 primary HCC from four continents. Mutation rates were found higher in Europe (56.6%) and Africa (53.3%) than America (40%) and Asia (42.5%). In addition, HCV-related HCC were more frequently mutated (44.8% in US and 69.7% in Asia) than HBV-related HCC (21.4% in US and 45.5% in Africa). HCC cases associated to factors other than hepatitis viruses are also frequently mutated in TERT promoter (43.6%, 52.6% and 57.7% in USA, Asia and Europe, respectively). These results support a major role for telomere elongation in HCV-related and non-viral related hepatic carcinogenesis and suggest that TERT promoter mutations could represent a candidate biomarker for the early detection of liver cancer in subjects with HCV infection or with metabolic liver diseases.
Collapse
Affiliation(s)
- Francesca Pezzuto
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G Pascale”, 80131 Napoli, Italy
| | - Luigi Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G Pascale”, 80131 Napoli, Italy
| | - Franco M. Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G Pascale”, 80131 Napoli, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G Pascale”, 80131 Napoli, Italy
| |
Collapse
|
97
|
Fasullo M, Freedland J, St John N, Cera C, Egner P, Hartog M, Ding X. An in vitro system for measuring genotoxicity mediated by human CYP3A4 in Saccharomyces cerevisiae. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:217-227. [PMID: 28436563 PMCID: PMC5479318 DOI: 10.1002/em.22093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
P450 activity is required to metabolically activate many chemical carcinogens, rendering them highly genotoxic. CYP3A4 is the most abundantly expressed P450 enzyme in the liver, accounting for most drug metabolism and constituting 50% of all hepatic P450 activity. CYP3A4 is also expressed in extrahepatic tissues, including the intestine. However, the role of CYP3A4 in activating chemical carcinogens into potent genotoxins is unclear. To facilitate efforts to determine whether CYP3A4, per se, can activate carcinogens into potent genotoxins, we expressed human CYP3A4 in the DNA-repair mutant (rad4 rad51) strain of budding yeast Saccharomyces cerevisiae and tested the novel, recombinant yeast strain for ability to report CYP3A4-mediated genotoxicity of a well-known genotoxin, aflatoxin B1 (AFB1 ). Yeast microsomes containing human CYP3A4, but not those that do not contain CYP3A4, were active in hydroxylation of diclofenac, a known CYP3A4 substrate drug, a result confirming CYP3A4 activity in the recombinant yeast strain. In cells exposed to AFB1 , the expression of CYP3A4 supported DNA adduct formation, chromosome rearrangements, cell death, and expression of the large subunit of ribonucleotide reductase, Rnr3, a marker of DNA damage. Expression of CYP3A4 also conferred sensitivity in rad4 rad51 mutants exposed to colon carcinogen, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx). These data confirm the ability of human CYP3A4 to mediate the genotoxicity of AFB1 , and illustrate the usefulness of the CYP3A4-expressing, DNA-repair mutant yeast strain for screening other chemical compounds that are CYP3A4 substrates, for potential genotoxicity. Environ. Mol. Mutagen. 58:217-227, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael Fasullo
- College of Nanoscale Sciences and Engineering, State University of New York Polytechnic Institute, Albany, New York 12205
- Department of Biomedical Sciences, State University of New York at Albany, 150 New Scotland Avenue, Albany, New York 12209
| | - Julian Freedland
- College of Nanoscale Sciences and Engineering, State University of New York Polytechnic Institute, Albany, New York 12205
| | | | - Cinzia Cera
- College of Nanoscale Sciences and Engineering, State University of New York Polytechnic Institute, Albany, New York 12205
| | - Patricia Egner
- Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, Maryland 21205
| | - Matt Hartog
- College of Nanoscale Sciences and Engineering, State University of New York Polytechnic Institute, Albany, New York 12205
| | - Xinxin Ding
- College of Nanoscale Sciences and Engineering, State University of New York Polytechnic Institute, Albany, New York 12205
| |
Collapse
|
98
|
NEIL1 protects against aflatoxin-induced hepatocellular carcinoma in mice. Proc Natl Acad Sci U S A 2017; 114:4207-4212. [PMID: 28373545 PMCID: PMC5402411 DOI: 10.1073/pnas.1620932114] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Global distribution of hepatocellular carcinomas (HCCs) is dominated by its incidence in developing countries, accounting for >700,000 estimated deaths per year, with dietary exposures to aflatoxin (AFB1) and subsequent DNA adduct formation being a significant driver. Genetic variants that increase individual susceptibility to AFB1-induced HCCs are poorly understood. Herein, it is shown that the DNA base excision repair (BER) enzyme, DNA glycosylase NEIL1, efficiently recognizes and excises the highly mutagenic imidazole ring-opened AFB1-deoxyguanosine adduct (AFB1-Fapy-dG). Consistent with this in vitro result, newborn mice injected with AFB1 show significant increases in the levels of AFB1-Fapy-dG in Neil1-/- vs. wild-type liver DNA. Further, Neil1-/- mice are highly susceptible to AFB1-induced HCCs relative to WT controls, with both the frequency and average size of hepatocellular carcinomas being elevated in Neil1-/- The magnitude of this effect in Neil1-/- mice is greater than that previously measured in Xeroderma pigmentosum complementation group A (XPA) mice that are deficient in nucleotide excision repair (NER). Given that several human polymorphic variants of NEIL1 are catalytically inactive for their DNA glycosylase activity, these deficiencies may increase susceptibility to AFB1-associated HCCs.
Collapse
|
99
|
Mutational spectra of aflatoxin B 1 in vivo establish biomarkers of exposure for human hepatocellular carcinoma. Proc Natl Acad Sci U S A 2017; 114:E3101-E3109. [PMID: 28351974 DOI: 10.1073/pnas.1700759114] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aflatoxin B1 (AFB1) and/or hepatitis B and C viruses are risk factors for human hepatocellular carcinoma (HCC). Available evidence supports the interpretation that formation of AFB1-DNA adducts in hepatocytes seeds a population of mutations, mainly G:C→T:A, and viral processes synergize to accelerate tumorigenesis, perhaps via inflammation. Responding to a need for early-onset evidence predicting disease development, highly accurate duplex sequencing was used to monitor acquisition of high-resolution mutational spectra (HRMS) during the process of hepatocarcinogenesis. Four-day-old male mice were treated with AFB1 using a regimen that induced HCC within 72 wk. For analysis, livers were separated into tumor and adjacent cellular fractions. HRMS of cells surrounding the tumors revealed predominantly G:C→T:A mutations characteristic of AFB1 exposure. Importantly, 25% of all mutations were G→T in one trinucleotide context (CGC; the underlined G is the position of the mutation), which is also a hotspot mutation in human liver tumors whose incidence correlates with AFB1 exposure. The technology proved sufficiently sensitive that the same distinctive spectrum was detected as early as 10 wk after dosing, well before evidence of neoplasia. Additionally, analysis of tumor tissue revealed a more complex pattern than observed in surrounding hepatocytes; tumor HRMS were a composite of the 10-wk spectrum and a more heterogeneous set of mutations that emerged during tumor outgrowth. We propose that the 10-wk HRMS reflects a short-term mutational response to AFB1, and, as such, is an early detection metric for AFB1-induced liver cancer in this mouse model that will be a useful tool to reconstruct the molecular etiology of human hepatocarcinogenesis.
Collapse
|
100
|
Narkwa PW, Blackbourn DJ, Mutocheluh M. Aflatoxin B 1 inhibits the type 1 interferon response pathway via STAT1 suggesting another mechanism of hepatocellular carcinoma. Infect Agent Cancer 2017; 12:17. [PMID: 28344639 PMCID: PMC5360051 DOI: 10.1186/s13027-017-0127-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/10/2017] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Aflatoxin B1 (AFB1) contamination of food is very high in most sub-Saharan African countries. AFB1 is known to cause hepatocellular carcinoma (HCC) by inducing mutation in the tumour suppressor gene TP53. The number of new HCC cases is high in West Africa with an accompanying high mortality. The type I interferon (IFN) pathway of the innate immune system limits viral infections and exerts its anti-cancer property by up-regulating tumour suppressor activities and pro-apoptotic pathways. Indeed, IFN-α is reported to show significant protective effects against hepatic fibrogenesis and carcinogenesis. However, the mechanism behind AFB1 deregulation of the type I interferon (IFN) signalling pathway, with consequent HCC is largely unknown. This current study seeks to test the hypothesis that AFB1 inhibits the type I IFN response by directly interfering with key signalling proteins and thus increase the risk of HCC in humans. METHODS We evaluated the effects of AFB1 on the type I IFN signalling pathway using IFN stimulated response element (ISRE)-based luciferase reporter gene assay. In addition, the effects of AFB1 on the transcript levels of JAK1, STAT1 and OAS3 were assessed by real-time quantitative polymerase chain reaction (RT-qPCR) and confirmed by immunoblot assay. RESULTS Our results indicated that AFB1 inhibited the type I IFN signalling pathway in human hepatoma cell line HepG2 cells by suppressing the transcript levels of JAK1, STAT1 and OAS3. AFB1 also decreased the accumulation of STAT1 protein. CONCLUSION The inhibition of the type I IFN anti-cancer response pathway by AFB1 suggest a novel mechanism by which AFB1 may induce hepatocellular carcinoma in humans.
Collapse
Affiliation(s)
- Patrick W. Narkwa
- Department of Clinical Microbiology, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - David J. Blackbourn
- Department of Microbial and Cellular Sciences, School of Biosciences and Medicine, University of Surrey, Surrey, GU2 7XH UK
| | - Mohamed Mutocheluh
- Department of Clinical Microbiology, School of Medical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|