51
|
Dohnalkova E, Bayer RL, Guo Q, Bamidele AO, Kim Lee HS, Valenzuela-Pérez L, Krishnan A, Pavelko KD, Guisot NES, Bunyard P, Kim YB, Ibrahim SH, Gores GJ, Hirsova P. Rho-associated protein kinase 1 inhibition in hepatocytes attenuates nonalcoholic steatohepatitis. Hepatol Commun 2023; 7:02009842-202306010-00031. [PMID: 37267252 DOI: 10.1097/hc9.0000000000000171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/28/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND NASH is the progressive form of NAFLD characterized by lipotoxicity, hepatocyte injury, tissue inflammation, and fibrosis. Previously, Rho-associated protein kinase (ROCK) 1 has been implicated in lipotoxic signaling in hepatocytes in vitro and high-fat diet-induced lipogenesis in vivo. However, whether ROCK1 plays a role in liver inflammation and fibrosis during NASH is unclear. Here, we hypothesized that pathogenic activation of ROCK1 promotes murine NASH pathogenesis. METHODS AND RESULTS Patients with NASH had increased hepatic ROCK1 expression compared with patients with fatty liver. Similarly, hepatic ROCK1 levels and activity were increased in mice with NASH induced by a western-like diet that is high in fat, fructose, and cholesterol (FFC). Hepatocyte-specific ROCK1 knockout mice on the FFC diet displayed a decrease in liver steatosis, hepatic cell death, liver inflammation, and fibrosis compared with littermate FFC-fed controls. Mechanistically, these effects were associated with a significant attenuation of myeloid cell recruitment. Interestingly, myeloid cell-specific ROCK1 deletion did not affect NASH development in FFC-fed mice. To explore the therapeutic opportunities, mice with established NASH received ROCKi, a novel small molecule kinase inhibitor of ROCK1/2, which preferentially accumulates in liver tissue. ROCK inhibitor treatment ameliorated insulin resistance and decreased liver injury, inflammation, and fibrosis. CONCLUSIONS Genetic or pharmacologic inhibition of ROCK1 activity attenuates murine NASH, suggesting that ROCK1 may be a therapeutic target for treating human NASH.
Collapse
Affiliation(s)
- Ester Dohnalkova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biological and Medical Sciences, Charles University, Hradec Kralove, Czech Republic
| | - Rachel L Bayer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Qianqian Guo
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Adebowale O Bamidele
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Hyun Se Kim Lee
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Anuradha Krishnan
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kevin D Pavelko
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Samar H Ibrahim
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
- Division of Pediatric Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
52
|
Park JW, Tyl MD, Cristea IM. Orchestration of Mitochondrial Function and Remodeling by Post-Translational Modifications Provide Insight into Mechanisms of Viral Infection. Biomolecules 2023; 13:biom13050869. [PMID: 37238738 DOI: 10.3390/biom13050869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The regulation of mitochondria structure and function is at the core of numerous viral infections. Acting in support of the host or of virus replication, mitochondria regulation facilitates control of energy metabolism, apoptosis, and immune signaling. Accumulating studies have pointed to post-translational modification (PTM) of mitochondrial proteins as a critical component of such regulatory mechanisms. Mitochondrial PTMs have been implicated in the pathology of several diseases and emerging evidence is starting to highlight essential roles in the context of viral infections. Here, we provide an overview of the growing arsenal of PTMs decorating mitochondrial proteins and their possible contribution to the infection-induced modulation of bioenergetics, apoptosis, and immune responses. We further consider links between PTM changes and mitochondrial structure remodeling, as well as the enzymatic and non-enzymatic mechanisms underlying mitochondrial PTM regulation. Finally, we highlight some of the methods, including mass spectrometry-based analyses, available for the identification, prioritization, and mechanistic interrogation of PTMs.
Collapse
Affiliation(s)
- Ji Woo Park
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Matthew D Tyl
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Lewis Thomas Laboratory, Department of Molecular Biology, Princeton University, Washington Road, Princeton, NJ 08544, USA
| |
Collapse
|
53
|
Johnson V, Vasu S, Kumar US, Kumar M. Surface-Engineered Extracellular Vesicles in Cancer Immunotherapy. Cancers (Basel) 2023; 15:2838. [PMID: 37345176 PMCID: PMC10216164 DOI: 10.3390/cancers15102838] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/23/2023] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed bodies secreted by all cell types. EVs carry bioactive materials, such as proteins, lipids, metabolites, and nucleic acids, to communicate and elicit functional alterations and phenotypic changes in the counterpart stromal cells. In cancer, cells secrete EVs to shape a tumor-promoting niche. Tumor-secreted EVs mediate communications with immune cells that determine the fate of anti-tumor therapeutic effectiveness. Surface engineering of EVs has emerged as a promising tool for the modulation of tumor microenvironments for cancer immunotherapy. Modification of EVs' surface with various molecules, such as antibodies, peptides, and proteins, can enhance their targeting specificity, immunogenicity, biodistribution, and pharmacokinetics. The diverse approaches sought for engineering EV surfaces can be categorized as physical, chemical, and genetic engineering strategies. The choice of method depends on the specific application and desired outcome. Each has its advantages and disadvantages. This review lends a bird's-eye view of the recent progress in these approaches with respect to their rational implications in the immunomodulation of tumor microenvironments (TME) from pro-tumorigenic to anti-tumorigenic ones. The strategies for modulating TME using targeted EVs, their advantages, current limitations, and future directions are discussed.
Collapse
Affiliation(s)
- Vinith Johnson
- Department of Chemical Engineering, Indian Institute of Technology, Tirupati 517619, India
| | - Sunil Vasu
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Uday S. Kumar
- Department of Chemical Engineering, Indian Institute of Technology, Tirupati 517619, India
| | - Manoj Kumar
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
54
|
Wu HW, Chen HD, Chen YH, Mao XL, Feng YY, Li SW, Zhou XB. The Effects of Programmed Cell Death of Mesenchymal Stem Cells on the Development of Liver Fibrosis. Stem Cells Int 2023; 2023:4586398. [PMID: 37214784 PMCID: PMC10195177 DOI: 10.1155/2023/4586398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/06/2023] [Accepted: 04/02/2023] [Indexed: 05/24/2023] Open
Abstract
Mesenchymal stem cells have shown noticeable potential for unlimited self-renewal. They can differentiate into specific somatic cells, integrate into target tissues via cell-cell contact, paracrine effects, exosomes, and other processes and then regulate the target cells and tissues. Studies have demonstrated that transplantation of MSCs could decrease the expression and concentration of collagen in the liver, thereby reducing liver fibrosis. A growing body of evidence indicates that apoptotic MSCs could inhibit harmful immune responses and reduce inflammatory responses more effectively than viable MSCs. Accumulating evidence suggests that mitochondrial transfer from MSCs is a novel strategy for the regeneration of various damaged cells via the rescue of their respiratory activities. This study is aimed at reviewing the functions of MSCs and the related roles of the programmed cell death of MSCs, including autophagy, apoptosis, pyroptosis, and ferroptosis, as well as the regulatory pathogenic mechanisms of MSCs in liver fibrosis. Research has demonstrated that the miR-200B-3p gene is differentially expressed gene between LF and normal liver samples, and that the miR-200B-3p gene expression is positively correlated with the degree of liver fibrosis, suggesting that MSCs could inhibit liver fibrosis through pyroptosis. It was confirmed that circulating monocytes could deliver MSC-derived immunomodulatory molecules to different sites by phagocytosis of apoptotic MSCs, thereby achieving systemic immunosuppression. Accordingly, it was suggested that characterization of the programmed cell death-mediated immunomodulatory signaling pathways in MSCs should be a focus of research.
Collapse
Affiliation(s)
- Hong-wei Wu
- Department of Infectious Diseases, Taizhou Enze Medical Center (Group) Enze Hospital, Taizhou, Zhejiang, China
| | - He-dan Chen
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ya-hong Chen
- Health Management Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xin-li Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yu-yi Feng
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shao-wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xian-bin Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
55
|
Purohit MP, Kar AK, Kumari M, Ghosh D, Patnaik S. Heparin Biofunctionalized Selenium Nanoparticles as Potential Antiangiogenic-Chemotherapeutic Agents for Targeted Doxorubicin Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19904-19920. [PMID: 37046174 DOI: 10.1021/acsami.3c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Combining antiangiogenic and chemotherapeutic agents has shown promising clinical benefits in cancer cures when the therapeutic intervention takes into account the tissue and molecular targets. Moreover, the risk of induced drug resistance is minimized when multiple pathways are involved in the treatment regimen, yielding a better therapeutic outcome. Nanodrug delivery systems have proven to be a prudent approach to treating complex disease pathologies. As such, combining antiangiogenic and chemotherapeutic drugs within multimodal nanocarriers synergistically augments the clinical efficiency of the drugs. This study reports the combinatorial efficacy of heparin (Hep), selenium NPs (SeNPs), and doxorubicin (Dox) to inhibit tumor growth and progression. Both Se@Hep-NPs and Se@Hep-Dox-NPs with excellent water dispersity having a size and charge in the range of 250 ± 5 and 253 ± 5 nm and -53 ± 0.4 and -48.4 ± 6.4 mV, respectively, showed strong anticancer potential assessed through in vitro assays like cell viability, specificity, colony formation, and wound scratch in MCF7 cells. Strong synergistic interactions among SeNPs, Hep, and Dox in Se@Hep-Dox-NPs render it to be an antiangiogenic and proapoptotic cancer cell death inducers. In vivo imaging highlights the dual-mode attributes of Se@Hep-NPs with desirable passive tumor targeting and biomedical imaging ability when tagged with Cy7.5, while Se@Hep-Dox-NPs significantly reduce the tumor burden and prolong the longevity of subcutaneous EAC-bearing mice. Histopathology studies reveal no signs of toxicity in major organs. Collectively, these results qualify Se@Hep-Dox-NPs as a plausible clinical therapeutic candidate.
Collapse
Affiliation(s)
- Mahaveer P Purohit
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Aditya K Kar
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Manisha Kumari
- Nucleic Acid Research Lab, CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Debabrata Ghosh
- Immunotoxicology laboratory, Food, Drug, and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Luck now, Uttar Pradesh 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Satyakam Patnaik
- Water Analysis Laboratory, System Toxicology, and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
56
|
Purnama CA, Meiliana A, Barliana MI, Lestari K. Update of cellular responses to the efferocytosis of necroptosis and pyroptosis. Cell Div 2023; 18:5. [PMID: 37032375 PMCID: PMC10084608 DOI: 10.1186/s13008-023-00087-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/01/2023] [Indexed: 04/11/2023] Open
Abstract
Cell death is a basic physiological process that occurs in all living organisms. A few key players in these mechanisms, as well as various forms of cell death programming, have been identified. Apoptotic cell phagocytosis, also known as apoptotic cell clearance, is a well-established process regulated by a number of molecular components, including 'find-me', 'eat-me' and engulfment signals. Efferocytosis, or the rapid phagocytic clearance of cell death, is a critical mechanism for tissue homeostasis. Despite having similar mechanism to phagocytic clearance of infections, efferocytosis differs from phagocytosis in that it induces a tissue-healing response and is immunologically inert. However, as field of cell death has rapid expanded, much attention has recently been drawn to the efferocytosis of additional necrotic-like cell types, such as necroptosis and pyroptosis. Unlike apoptosis, this method of cell suicide allows the release of immunogenic cellular material and causes inflammation. Regardless of the cause of cell death, the clearance of dead cells is a necessary function to avoid uncontrolled synthesis of pro-inflammatory molecules and inflammatory disorder. We compare and contrast apoptosis, necroptosis and pyroptosis, as well as the various molecular mechanisms of efferocytosis in each type of cell death, and investigate how these may have functional effects on different intracellular organelles and signalling networks. Understanding how efferocytic cells react to necroptotic and pyroptotic cell uptake can help us understand how to modulate these cell death processes for therapeutic purposes.
Collapse
Affiliation(s)
- Chandra Agung Purnama
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno Km 21, Jatinangor, 45363, Indonesia
- Prodia Clinical Laboratory, Jl. Supratman No. 43, Bandung, 40114, Indonesia
| | - Anna Meiliana
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno Km 21, Jatinangor, 45363, Indonesia
- Prodia Clinical Laboratory, Jl. Supratman No. 43, Bandung, 40114, Indonesia
- Prodia Education and Research Institute, Jl. Kramat Raya No 150, Jakarta, Indonesia
| | - Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno Km 21, Jatinangor, 45363, Indonesia.
- Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jl. Ir. Soekarno Km 21, Jatinangor, 45363, Indonesia.
| | - Keri Lestari
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Ir. Soekarno Km 21, Jatinangor, 45363, Indonesia
- Centre of Excellence for Pharmaceutical Care Innovation, Universitas Padjadjaran, Jl. Ir. Soekarno Km 21, Jatinangor, 45363, Indonesia
| |
Collapse
|
57
|
Hill C, Dellar ER, Baena‐Lopez LA. Caspases help to spread the message via extracellular vesicles. FEBS J 2023; 290:1954-1972. [PMID: 35246932 PMCID: PMC10952732 DOI: 10.1111/febs.16418] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022]
Abstract
Cell-cell communication is an essential aspect of multicellular life, key for coordinating cell proliferation, growth, and death in response to environmental changes. Whilst caspases are well-known for facilitating apoptotic and pyroptotic cell death, several recent investigations are uncovering new roles for these enzymes in biological scenarios requiring long-range intercellular signalling mediated by extracellular vesicles (EVs). EVs are small membrane-bound nanoparticles released from cells that may carry and deliver cargo between distant cells, thus helping to coordinate their behaviour. Intriguingly, there is emerging evidence indicating a key contribution of caspases in the biogenesis of EVs, the selection of their cargo content, and EV uptake/function in recipient cells. Here, we discuss the latest findings supporting the interplay between caspases and EVs, and the biological relevance of this molecular convergence for cellular signalling, principally in non-apoptotic scenarios.
Collapse
Affiliation(s)
- Claire Hill
- Sir William Dunn School of PathologyUniversity of OxfordUK
| | - Elizabeth R. Dellar
- Sir William Dunn School of PathologyUniversity of OxfordUK
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordUK
| | | |
Collapse
|
58
|
Xing N, Du Q, Guo S, Xiang G, Zhang Y, Meng X, Xiang L, Wang S. Ferroptosis in lung cancer: a novel pathway regulating cell death and a promising target for drug therapy. Cell Death Discov 2023; 9:110. [PMID: 37005430 PMCID: PMC10067943 DOI: 10.1038/s41420-023-01407-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/04/2023] Open
Abstract
Lung cancer is a common malignant tumor that occurs in the human body and poses a serious threat to human health and quality of life. The existing treatment methods mainly include surgical treatment, chemotherapy, and radiotherapy. However, due to the strong metastatic characteristics of lung cancer and the emergence of related drug resistance and radiation resistance, the overall survival rate of lung cancer patients is not ideal. There is an urgent need to develop new treatment strategies or new effective drugs to treat lung cancer. Ferroptosis, a novel type of programmed cell death, is different from the traditional cell death pathways such as apoptosis, necrosis, pyroptosis and so on. It is caused by the increase of iron-dependent reactive oxygen species due to intracellular iron overload, which leads to the accumulation of lipid peroxides, thus inducing cell membrane oxidative damage, affecting the normal life process of cells, and finally promoting the process of ferroptosis. The regulation of ferroptosis is closely related to the normal physiological process of cells, and it involves iron metabolism, lipid metabolism, and the balance between oxygen-free radical reaction and lipid peroxidation. A large number of studies have confirmed that ferroptosis is a result of the combined action of the cellular oxidation/antioxidant system and cell membrane damage/repair, which has great potential application in tumor therapy. Therefore, this review aims to explore potential therapeutic targets for ferroptosis in lung cancer by clarifying the regulatory pathway of ferroptosis. Based on the study of ferroptosis, the regulation mechanism of ferroptosis in lung cancer was understood and the existing chemical drugs and natural compounds targeting ferroptosis in lung cancer were summarized, with the aim of providing new ideas for the treatment of lung cancer. In addition, it also provides the basis for the discovery and clinical application of chemical drugs and natural compounds targeting ferroptosis to effectively treat lung cancer.
Collapse
Affiliation(s)
- Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gelin Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- State Key Laboratory of Southwestern Chinese Medicine Resources, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, China.
| |
Collapse
|
59
|
Huang X, Wang H, Wang C, Cao Z. The Applications and Potentials of Extracellular Vesicles from Different Cell Sources in Periodontal Regeneration. Int J Mol Sci 2023; 24:ijms24065790. [PMID: 36982864 PMCID: PMC10058679 DOI: 10.3390/ijms24065790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Periodontitis is a chronic infectious disease worldwide that can cause damage to periodontal supporting tissues including gingiva, bone, cementum and periodontal ligament (PDL). The principle for the treatment of periodontitis is to control the inflammatory process. Achieving structural and functional regeneration of periodontal tissues is also essential and remains a major challenge. Though many technologies, products, and ingredients were applied in periodontal regeneration, most of the strategies have limited outcomes. Extracellular vesicles (EVs) are membranous particles with a lipid structure secreted by cells, containing a large number of biomolecules for the communication between cells. Numerous studies have demonstrated the beneficial effects of stem cell-derived EVs (SCEVs) and immune cell-derived EVs (ICEVs) on periodontal regeneration, which may be an alternative strategy for cell-based periodontal regeneration. The production of EVs is highly conserved among humans, bacteria and plants. In addition to eukaryocyte-derived EVs (CEVs), a growing body of literature suggests that bacterial/plant-derived EVs (BEVs/PEVs) also play an important role in periodontal homeostasis and regeneration. The purpose of this review is to introduce and summarize the potential therapeutic values of BEVs, CEVs and PEVs in periodontal regeneration, and discuss the current challenges and prospects for EV-based periodontal regeneration.
Collapse
Affiliation(s)
- Xin Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Huiyi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Chuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
60
|
Braddick HJ, Tipping WJ, Wilson LT, Jaconelli HS, Grant EK, Faulds K, Graham D, Tomkinson NCO. Determination of Intracellular Esterase Activity Using Ratiometric Raman Sensing and Spectral Phasor Analysis. Anal Chem 2023; 95:5369-5376. [PMID: 36926851 PMCID: PMC10061367 DOI: 10.1021/acs.analchem.2c05708] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Carboxylesterases (CEs) are a class of enzymes that catalyze the hydrolysis of esters in a variety of endogenous and exogenous molecules. CEs play an important role in drug metabolism, in the onset and progression of disease, and can be harnessed for prodrug activation strategies. As such, the regulation of CEs is an important clinical and pharmaceutical consideration. Here, we report the first ratiometric sensor for CE activity using Raman spectroscopy based on a bisarylbutadiyne scaffold. The sensor was shown to be highly sensitive and specific for CE detection and had low cellular cytotoxicity. In hepatocyte cells, the ratiometric detection of esterase activity was possible, and the result was validated by multimodal imaging with standard viability stains used for fluorescence microscopy within the same cell population. In addition, we show that the detection of localized ultraviolet damage in a mixed cell population was possible using stimulated Raman scattering microscopy coupled with spectral phasor analysis. This sensor demonstrates the practical advantages of low molecular weight sensors that are detected using ratiometric Raman imaging and will have applications in drug discovery and biomedical research.
Collapse
Affiliation(s)
- Henry J Braddick
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - William J Tipping
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K
| | - Liam T Wilson
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| | - Harry S Jaconelli
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K
| | - Emma K Grant
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | - Karen Faulds
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K
| | - Duncan Graham
- Centre for Molecular Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, 99 George Street, Glasgow G1 1RD, U.K
| | - Nicholas C O Tomkinson
- Department of Pure and Applied Chemistry, Thomas Graham Building, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, U.K
| |
Collapse
|
61
|
de Queiroz LN, Da Fonseca ACC, Wermelinger GF, da Silva DPD, Pascoal ACRF, Sawaya ACHF, de Almeida ECP, do Amaral BS, de Lima Moreira D, Robbs BK. New substances of Equisetum hyemale L. extracts and their in vivo antitumoral effect against oral squamous cell carcinoma. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:116043. [PMID: 36535330 DOI: 10.1016/j.jep.2022.116043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
ETHNOBOTANICAL RELEVANCE Equisetum hyemale is used in traditional medicine as an anti-inflammatory, antioxidant, diuretic and anticancer agent. Recent studies have observed antiproliferative activity of this species in some tumor cell lines. AIM OF THE STUDY The aim of this study was to evaluate the antiproliferative activity of the ethanol extract of E. hyemale and its partitions in oral squamous carcinoma cell lines, the death pathways induced by the most active partition, the acute toxicity and therapeutic activity, and the identification of the main compounds. MATERIALS AND METHODS The ethanol crude extract was prepared from the stems of E. hyemale and partitions were obtained from this extract with n-hexane, dichloromethane and ethyl acetate. Cytotoxicity assays were performed using MTT on human oral tumor lines SCC-9, SCC4 and SCC-25, and normal primary fibroblasts. The main pathways of programmed cell death were analyzed. Acute toxicity in mice was performed using the most active partition, ethyl acetate. Antitumor activity was accessed in xenotransplants grafts of SCC-9 cells in Balb/nude mice. Phytochemical analysis was performed using UHPLC-MS/MS and dereplication was done using Global Natural Product Social Molecular Networking (GNPS) analysis. RESULTS Ethanol extract, n-hexane and ethyl acetate partitions showed dose-dependent activity and selectivity towards oral tumor cells, with the ethyl acetate being the most bioactive. This medium polarity partition was shown to induce tumor cell death through apoptosis due to the presence of activated caspase 3/7, DNA fragmentation, chromatin condensation and phosphatidylserine exposure. The ethyl acetate partition also produced low toxicity in mice, provoking mild hepatic changes, but without causing necrosis and significantly reduced tumors volume and weight in xenotransplants of SCC-9 cells. Phytochemical analysis allowed identification of kaempferol glycosides and cinnamic acid derivatives previously described for E. hyemale. In addition it was possible to identify 6 new non-glycolyzed flavonoids 5-Hydroxy-3',4',7,8-tetramethoxyflavone (14), 5,4'-Dihydroxy-7,8,3'-trimethoxyflavone (15), 5,7-Dihydroxy-3',4'-dimethoxyflavone (16), 3',4,5,7-Tretramethoxyflavone (17), 5-Hydroxy-3'4',7-trimethoxyflavone (18), and 5,4'-Dihydroxy-3'-7'-dimethoxyflavone (19); besides 5 compounds already determined to be cytotoxic in other species, Isoferulic acid (1), Ferulic acid (2), Atractylenolide III (6), Dihydroxy-3',4'-dimethoxyflavone (16), and 5-Hydroxy-3'4 ',7-trimethoxyflavone (18). CONCLUSION The results indicate that the E. hyemale extract and partitions inhibited 3 different cell lines of OSCC in a highly selective nontoxic way by inducing apoptosis of the cells. We identified 6 new non-glycosylated flavonoids and 5 other substances in this species.
Collapse
Affiliation(s)
- Lucas Nicolau de Queiroz
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para Saúde, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Anna Carolina Carvalho Da Fonseca
- Programa de Pós-graduação em Odontologia, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, CEP 28625-650, Nova Friburgo, RJ, Brazil.
| | - Guilherme Freimann Wermelinger
- Departamento de Ciência Básica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, CEP 28625-650, Nova Friburgo, RJ, Brazil.
| | - Diego Polo Dutra da Silva
- Departamento de Ciência Básica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, CEP 28625-650, Nova Friburgo, RJ, Brazil.
| | | | | | - Elan Cardozo Paes de Almeida
- Departamento de Ciência Básica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, CEP 28625-650, Nova Friburgo, RJ, Brazil.
| | - Bruno Sergio do Amaral
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, São Paulo, CEP 05110-000, Brazil
| | - Davyson de Lima Moreira
- Laboratório de Produtos Naturais, Departamento de Pesquisa, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, CEP 22460-030, Brazil.
| | - Bruno Kaufmann Robbs
- Departamento de Ciência Básica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, CEP 28625-650, Nova Friburgo, RJ, Brazil.
| |
Collapse
|
62
|
Affiliation(s)
- Laura M Machesky
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
- CRUK Beatson Institute, University of Glasgow, Glasgow, UK.
| |
Collapse
|
63
|
Barcelo J, Samain R, Sanz-Moreno V. Preclinical to clinical utility of ROCK inhibitors in cancer. Trends Cancer 2023; 9:250-263. [PMID: 36599733 DOI: 10.1016/j.trecan.2022.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 01/03/2023]
Abstract
ROCK belongs to the AGC family of Ser/Thr protein kinases that are involved in many cellular processes. ROCK-driven actomyosin contractility regulates cytoskeletal dynamics underpinning cell migration, proliferation, and survival in many cancer types. ROCK1/2 play key protumorigenic roles in several subtypes and stages of cancer development. Therefore, successfully targeting ROCK and its downstream effectors presents an interesting avenue for cancer treatment. Because local use of ROCK inhibitors will reduce the side effects of systemic administration, we propose different therapeutic strategies and latest-generation ROCK inhibitors for use in the clinic.
Collapse
Affiliation(s)
- Jaume Barcelo
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Remi Samain
- Barts Cancer Institute, Queen Mary University of London, London, UK
| | | |
Collapse
|
64
|
Nanavati BN, Noordstra I, Verma S, Duszyc K, Green KJ, Yap AS. Desmosome-anchored intermediate filaments facilitate tension-sensitive RhoA signaling for epithelial homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529786. [PMID: 36865131 PMCID: PMC9980054 DOI: 10.1101/2023.02.23.529786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Epithelia are subject to diverse forms of mechanical stress during development and post-embryonic life. They possess multiple mechanisms to preserve tissue integrity against tensile forces, which characteristically involve specialized cell-cell adhesion junctions coupled to the cytoskeleton. Desmosomes connect to intermediate filaments (IF) via desmoplakin (DP)1,2, while the E-cadherin complex links to the actomyosin cytoskeleton in adherens junctions (AJ)3. These distinct adhesion-cytoskeleton systems support different strategies to preserve epithelial integrity, especially against tensile stress. IFs coupled to desmosomes can passively respond to tension by strain-stiffening4-10, whereas for AJs a variety of mechanotransduction mechanisms associated with the E-cadherin apparatus itself11,12, or proximate to the junctions13, can modulate the activity of its associated actomyosin cytoskeleton by cell signaling. We now report a pathway where these systems collaborate for active tension-sensing and epithelial homeostasis. We found that DP was necessary for epithelia to activate RhoA at AJ on tensile stimulation, an effect that required its capacity to couple IF to desmosomes. DP exerted this effect by facilitating the association of Myosin VI with E-cadherin, the mechanosensor for the tension-sensitive RhoA pathway at AJ12. This connection between the DP-IF system and AJ-based tension-sensing promoted epithelial resilience when contractile tension was increased. It further facilitated epithelial homeostasis by allowing apoptotic cells to be eliminated by apical extrusion. Thus, active responses to tensile stress in epithelial monolayers reflect an integrated response of the IF- and actomyosin-based cell-cell adhesion systems.
Collapse
Affiliation(s)
- Bageshri Naimish Nanavati
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| | - Ivar Noordstra
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| | - Suzie Verma
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| | - Kinga Duszyc
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| | - Kathleen J. Green
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago IL 06011 USA
| | - Alpha S. Yap
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland
| |
Collapse
|
65
|
Nössing C, Ryan KM. 50 years on and still very much alive: 'Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics'. Br J Cancer 2023; 128:426-431. [PMID: 36369364 PMCID: PMC9938139 DOI: 10.1038/s41416-022-02020-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/13/2022] Open
Abstract
Cell death is part of the lifecycle of every multicellular organism. Nineteenth-century pathologists already recognised that organised forms of cell death must exist to explain the demise and turnover of cells during metamorphosis (of insects), embryogenesis and normal tissue homoeostasis [1]. Nevertheless, Kerr, Wyllie and Currie in their seminal paper of 1972, were the first to collate and define the distinct morphological features of controlled cell death in different contexts [2]. To describe the processes of cell deletion observed under both physiological and pathological conditions, they coined the term 'Apoptosis' (derived from the Greek word 'ἀπόπτωσις', meaning 'dropping off or falling off' of petals from flowers). Kerr, Wyllie and Currie defined apoptosis as a mechanism 'complementary to mitosis in the regulation of animal cell populations'. In addition, they already recognised the potential to use this programmed form of cell death for cancer therapy, but they also emphasised the occurrence of apoptosis during cancer development. In this article, some 50 years after its initial publication in The British Journal of Cancer, we revaluate and put the authors initial assumptions and general concepts about apoptosis into the context of modern-day biology.
Collapse
Affiliation(s)
- Christoph Nössing
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
66
|
Heyn J, Heuschkel MA, Goettsch C. Mitochondrial-Derived Vesicles-Link to Extracellular Vesicles and Implications in Cardiovascular Disease. Int J Mol Sci 2023; 24:ijms24032637. [PMID: 36768960 PMCID: PMC9917113 DOI: 10.3390/ijms24032637] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are dynamic organelles regulating metabolism, cell death, and energy production. Therefore, maintaining mitochondrial health is critical for cellular homeostasis. Mitophagy and mitochondrial reorganization via fission and fusion are established mechanisms for ensuring mitochondrial quality. In recent years, mitochondrial-derived vesicles (MDVs) have emerged as a novel cellular response. MDVs are shed from the mitochondrial surface and can be directed to lysosomes or peroxisomes for intracellular degradation. MDVs may contribute to cardiovascular disease (CVD) which is characterized by mitochondrial dysfunction. In addition, evidence suggests that mitochondrial content is present in extracellular vesicles (EVs). Herein, we provide an overview of the current knowledge on MDV formation and trafficking. Moreover, we review recent findings linking MDV and EV biogenesis and discuss their role in CVD. Finally, we discuss the role of vesicle-mediated mitochondrial transfer and its potential cardioprotective effects.
Collapse
|
67
|
Harper MT. Platelet-Derived Extracellular Vesicles in Arterial Thrombosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:259-275. [PMID: 37603285 DOI: 10.1007/978-981-99-1443-2_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Blood platelets are necessary for normal haemostasis but also form life-threatening arterial thrombi when atherosclerotic plaques rupture. Activated platelets release many extracellular vesicles during thrombosis. Phosphatidylserine-exposing microparticles promote coagulation. Small exosomes released during granule secretion deliver cargoes including microRNAs to cells throughout the cardiovascular system. Here, we discuss the mechanisms by which platelets release these extracellular vesicles, together with the possibility of inhibiting this release as an antithrombotic strategy.
Collapse
Affiliation(s)
- Matthew T Harper
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
68
|
Fortner A, Chera A, Tanca A, Bucur O. Apoptosis regulation by the tyrosine-protein kinase CSK. Front Cell Dev Biol 2022; 10:1078180. [PMID: 36578781 PMCID: PMC9792154 DOI: 10.3389/fcell.2022.1078180] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
C-terminal Src kinase (CSK) is a cytosolic tyrosine-protein kinase with an important role in regulating critical cellular decisions, such as cellular apoptosis, survival, proliferation, cytoskeletal organization and many others. Current knowledge on the CSK mechanisms of action, regulation and functions is still at an early stage, most of CSK's known actions and functions being mediated by the negative regulation of the SRC family of tyrosine kinases (SFKs) through phosphorylation. As SFKs play a vital role in apoptosis, cell proliferation and survival regulation, SFK inhibition by CSK has a pro-apoptotic effect, which is mediated by the inhibition of cellular signaling cascades controlled by SFKs, such as the MAPK/ERK, STAT3 and PI3K/AKT signaling pathways. Abnormal functioning of CSK and SFK activation can lead to diseases such as cancer, cardiovascular and neurological manifestations. This review describes apoptosis regulation by CSK, CSK inhibition of the SFKs and further explores the clinical relevance of CSK in important pathologies, such as cancer, autoimmune, autoinflammatory, neurologic diseases, hypertension and HIV/AIDS.
Collapse
Affiliation(s)
- Andra Fortner
- Victor Babes National Institute of Pathology, Bucharest, Romania,Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Alexandra Chera
- Victor Babes National Institute of Pathology, Bucharest, Romania,Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Antoanela Tanca
- Victor Babes National Institute of Pathology, Bucharest, Romania,Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania,*Correspondence: Octavian Bucur, ; Antoanela Tanca,
| | - Octavian Bucur
- Victor Babes National Institute of Pathology, Bucharest, Romania,Viron Molecular Medicine Institute, Boston, MA, United States,*Correspondence: Octavian Bucur, ; Antoanela Tanca,
| |
Collapse
|
69
|
Actin remodeling mediates ROS production and JNK activation to drive apoptosis-induced proliferation. PLoS Genet 2022; 18:e1010533. [DOI: 10.1371/journal.pgen.1010533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/15/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Stress-induced cell death, mainly apoptosis, and its subsequent tissue repair is interlinked although our knowledge of this connection is still very limited. An intriguing finding is apoptosis-induced proliferation (AiP), an evolutionary conserved mechanism employed by apoptotic cells to trigger compensatory proliferation of their neighboring cells. Studies using Drosophila as a model organism have revealed that apoptotic caspases and c-Jun N-terminal kinase (JNK) signaling play critical roles to activate AiP. For example, the initiator caspase Dronc, the caspase-9 ortholog in Drosophila, promotes activation of JNK leading to release of mitogenic signals and AiP. Recent studies further revealed that Dronc relocates to the cell cortex via Myo1D, an unconventional myosin, and stimulates production of reactive oxygen species (ROS) to trigger AiP. During this process, ROS can attract hemocytes, the Drosophila macrophages, which further amplify JNK signaling cell non-autonomously. However, the intrinsic components connecting Dronc, ROS and JNK within the stressed signal-producing cells remain elusive. Here, we identified LIM domain kinase 1 (LIMK1), a kinase promoting cellular F-actin polymerization, as a novel regulator of AiP. F-actin accumulates in a Dronc-dependent manner in response to apoptotic stress. Suppression of F-actin polymerization in stressed cells by knocking down LIMK1 or expressing Cofilin, an inhibitor of F-actin elongation, blocks ROS production and JNK activation, hence AiP. Furthermore, Dronc and LIMK1 genetically interact. Co-expression of Dronc and LIMK1 drives F-actin accumulation, ROS production and JNK activation. Interestingly, these synergistic effects between Dronc and LIMK1 depend on Myo1D. Therefore, F-actin remodeling plays an important role mediating caspase-driven ROS production and JNK activation in the process of AiP.
Collapse
|
70
|
Ikenouchi J, Aoki K. A Clockwork Bleb: cytoskeleton, calcium, and cytoplasmic fluidity. FEBS J 2022; 289:7907-7917. [PMID: 34614290 DOI: 10.1111/febs.16220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 01/14/2023]
Abstract
When the plasma membrane (PM) detaches from the underlying actin cortex, the PM expands according to intracellular pressure and a spherical membrane protrusion called a bleb is formed. This bleb retracts when the actin cortex is reassembled underneath the PM. Whereas this phenomenon seems simple at first glance, there are many interesting, unresolved cell biological questions in each process. For example, what is the membrane source to enlarge the surface area of the PM during rapid bleb expansion? What signals induce actin reassembly for bleb retraction, and how is cytoplasmic fluidity regulated to allow rapid membrane deformation during bleb expansion? Furthermore, emerging evidence indicates that cancer cells use blebs for invasion, but little is known about how molecules that are involved in bleb formation, expansion, and retraction are coordinated for directional amoeboid migration. In this review, we discuss the molecular mechanisms involved in the regulation of blebs, which have been revealed by various experimental systems.
Collapse
Affiliation(s)
- Junichi Ikenouchi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Kana Aoki
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
71
|
Zhang Y, Jiang N, Gan Z. Poly(ε-Caprolactone) Substrates with Micro/Nanohierarchical Patterned Structures for Cell Culture. Macromol Biosci 2022; 22:e2200300. [PMID: 36086924 DOI: 10.1002/mabi.202200300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/23/2022] [Indexed: 01/15/2023]
Abstract
A simple, efficient and controllable one-step template method is proposed to fabricate poly(ε-caprolactone) substrates with micro/nanohierarchical patterned structures. Two kinds of geometric patterns with and without nanowires, i.e., hexagonal and strip with controllable island size and spacing are designed and fabricated. Furthermore, the influence of geometric patterns, island size, island spacing, and patterned nanowires (pNW) on the growth behavior of MG-63 cells is studied in terms of cell density, distribution, proliferation, morphogenesis, and cellular alignment. It is found that MG-63 cells prefer to adhere and grow on the substrate with smaller island size or spacing. Moreover, unlike the hexagonal structure, the strip structure can guide cellular alignment on its surface. In addition, the microisland structures and the pNW play different roles in promoting cell proliferation, distribution, and morphogenesis. It is concluded that the growth behavior of MG-63 cells can be well controlled by precisely adjusting the micro/nanostructure of the substrate surface. A simple and effective method is provided here for the regulation of cell growth behavior.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ni Jiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhihua Gan
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
72
|
Naylor G, Julian L, Watson-Bryce S, Mullin M, Nibbs RJ, Olson MF. Immunogenic Death of Hepatocellular Carcinoma Cells in Mice Expressing Caspase-Resistant ROCK1 Is Not Replicated by ROCK Inhibitors. Cancers (Basel) 2022; 14:cancers14235943. [PMID: 36497425 PMCID: PMC9740421 DOI: 10.3390/cancers14235943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
The morphological changes during apoptosis help facilitate "immunologically silent" cell death. Caspase cleavage of the ROCK1 kinase results in its activation, which drives the forceful contraction of apoptotic cells. We previously showed that when ROCK1 was mutated to render it caspase-resistant, there was greater liver damage and neutrophil recruitment after treatment with the hepatotoxin diethylnitrosamine (DEN). We now show that acute DEN-induced liver damage induced higher levels of pro-inflammatory cytokines/chemokines, indicative of immunogenic cell death (ICD), in mice expressing non-cleavable ROCK1 (ROCK1nc). Hepatocellular carcinoma (HCC) tumours in ROCK1nc mice had more neutrophils and CD8+ T cells relative to mice expressing wild-type ROCK1, indicating that spontaneous tumour cell death also was more immunogenic. Since ICD induction has been proposed to be tumour-suppressive, the effects of two distinct ROCK inhibitors on HCC tumours was examined. Both fasudil and AT13148 significantly decreased tumour numbers, areas and volumes, but neither resulted in greater numbers of neutrophils or CD8+ T cells to be recruited. In the context of acute DEN-induced liver damage, AT13148 inhibited the recruitment of dendritic, natural killer and CD8+ T cells to livers. These observations indicate that there is an important role for ROCK1 cleavage to limit immunogenic cell death, which was not replicated by systemic ROCK inhibitor administration. As a result, concomitant administration of ROCK inhibitors with cancer therapeutics would be unlikely to result in therapeutic benefit by inducing ICD to increase anti-tumour immune responses.
Collapse
Affiliation(s)
- Gregory Naylor
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Linda Julian
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Steven Watson-Bryce
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Margaret Mullin
- Electron Microscopy Facility, School of Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Robert J. Nibbs
- Institute of Infection, Immunity and Inflammation, School of Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Michael F. Olson
- Department of Chemistry and Biology, Toronto Metropolitan University, 661 University Avenue Suite 1105, Toronto, ON M5G 1M1, Canada
- Correspondence:
| |
Collapse
|
73
|
Ren J, Yu R, Xue J, Tang Y, Su S, Liao C, Guo Q, Guo W, Zheng J. How Do Extracellular Vesicles Play a Key Role in the Maintenance of Bone Homeostasis and Regeneration? A Comprehensive Review of Literature. Int J Nanomedicine 2022; 17:5375-5389. [PMID: 36419718 PMCID: PMC9677931 DOI: 10.2147/ijn.s377598] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2023] Open
Abstract
The maintenance of bone homeostasis includes both bone resorption by osteoclasts and bone formation by osteoblasts. These two processes are in dynamic balance to maintain a constant amount of bone for accomplishing its critical functions in daily life. Multiple cell type communications are involved in these two complex and continuous processes. In recent decades, an increasing number of studies have shown that osteogenic and osteoclastic extracellular vesicles play crucial roles in regulating bone homeostasis through paracrine, autosecretory and endocrine signaling. Elucidating the functional roles of extracellular vesicles in the maintenance of bone homeostasis may contribute to the design of new strategies for bone regeneration. Hence, we review the recent understandings of the classification, production process, extraction methods, structure, contents, functions and applications of extracellular vesicles in bone homeostasis. We highlight the contents of various bone-derived extracellular vesicles and their interactions with different cells in the bone microenvironment during bone homeostasis. We also summarize the recent advances in EV-loaded biomaterial scaffolds for bone regeneration and repair.
Collapse
Affiliation(s)
- Junxian Ren
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
| | - Rongcheng Yu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
| | - Jingyan Xue
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
| | - Yiqi Tang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
| | - Sihui Su
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
| | - Chenxi Liao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Key Laboratory of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing, 100853, People’s Republic of China
| | - Weimin Guo
- Department of Orthopedic Surgery, Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
| | - Jinxuan Zheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, People’s Republic of China
| |
Collapse
|
74
|
Day ZI, Mayfosh AJ, Giel MC, Hong Y, Williams SA, Santavanond JP, Rau TF, Poon IK, Hulett MD. Novel Formulation of Undecylenic Acid induces Tumor Cell Apoptosis. Int J Mol Sci 2022; 23:ijms232214170. [PMID: 36430646 PMCID: PMC9692760 DOI: 10.3390/ijms232214170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/28/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
Undecylenic acid, a monounsaturated fatty acid, is currently in clinical use as a topical antifungal agent, however the potential for therapeutic application in other disease settings has not been investigated. In this study, we describe a novel platform for the solubilization of fatty acids using amino acids and utilize this approach to define a tumoricidal activity and underlying mechanism for undecylenic acid. We examined a novel formulation of undecylenic acid compounded with L-Arginine, called GS-1, that induced concentration-dependent tumor cell death, with undecylenic acid being the cytotoxic component. Further investigation revealed that GS-1-mediated cell death was caspase-dependent with a reduction in mitochondrial membrane potential, suggesting a pro-apoptotic mechanism of action. Additionally, GS-1 was found to localize intracellularly to lipid droplets. In contrast to previous studies where lipid droplets have been shown to be protective against fatty acid-induced cell death, we showed that lipid droplets could not protect against GS-1-induced cytotoxicity. We also found a role for Fatty Acid Transport Protein 2 (FATP2) in the uptake of this compound. Collectively, this study demonstrates that GS-1 has effective pro-apoptotic antitumor activity in vitro and, together with the novel platform of fatty acid solubilization, contributes to the re-emerging field of fatty acids as potential anti-cancer therapeutics.
Collapse
Affiliation(s)
- Zoe I. Day
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Alyce J. Mayfosh
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
- Wintermute Biomedical, 789 Bauer Lane, Corvallis, MT 59828, USA
| | - Marie-Claire Giel
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Yuning Hong
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Scott A. Williams
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jascinta P. Santavanond
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Thomas F. Rau
- Wintermute Biomedical, 789 Bauer Lane, Corvallis, MT 59828, USA
| | - Ivan K. Poon
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - Mark D. Hulett
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
- Correspondence: ; Tel.: +61-9479-1266
| |
Collapse
|
75
|
Matsumoto T, Kim MH, Kino-oka M. Effect of Rho-Associated Kinase Inhibitor on Growth Behaviors of Human Induced Pluripotent Stem Cells in Suspension Culture. Bioengineering (Basel) 2022; 9:613. [PMID: 36354524 PMCID: PMC9687832 DOI: 10.3390/bioengineering9110613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 10/15/2023] Open
Abstract
Rho-associated protein kinase (ROCK) inhibitors are used for the survival of single-dissociated human induced pluripotent stem cells (hiPSCs); however, their effects on the growth behaviors of hiPSCs in suspension culture are unexplored. Therefore, we investigated the effect of ROCK inhibitor on growth behaviors of two hiPSC lines (Tic and 1383D2) with different formation of aggregate that attached between single cells in suspension culture. The apparent specific growth rate by long-term exposure to Y-27632, a ROCK inhibitor, was maintained throughout the culture. Long-term exposure to ROCK inhibitor led to an increase in cell division throughout the culture in both lines. Immunofluorescence staining confirmed that hiPSCs forming spherical aggregates showed localization of collagen type I on its periphery. In addition, phosphorylated myosin (pMLC) was localized at the periphery in culture under short-term exposure to ROCK inhibitor, whereas pMLC was not detected at whole the aggregate in culture under long-term exposure. Scanning electron microscopy indicated that long-term exposure to ROCK inhibitor blocked the structural alteration on the surface of cell aggregates. These results indicate that pMLC inhibition by long-term ROCK inhibition leads to enhanced growth abilities of hiPSCs in suspension culture by maintaining the structures of extracellular matrices.
Collapse
Affiliation(s)
- Takaki Matsumoto
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Mee-Hae Kim
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| | - Masahiro Kino-oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
- Research Base for Cell Manufacturability, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Osaka, Japan
| |
Collapse
|
76
|
Kholodenko IV, Kholodenko RV, Majouga AG, Yarygin KN. Apoptotic MSCs and MSC-Derived Apoptotic Bodies as New Therapeutic Tools. Curr Issues Mol Biol 2022; 44:5153-5172. [PMID: 36354663 PMCID: PMC9688732 DOI: 10.3390/cimb44110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
Over the past two decades, mesenchymal stem cells (MSCs) have shown promising therapeutic effects both in preclinical studies (in animal models of a wide range of diseases) and in clinical trials. However, the efficacy of MSC-based therapy is not always predictable. Moreover, despite the large number of studies, the mechanisms underlying the regenerative potential of MSCs are not fully elucidated. Recently, it has been reliably established that transplanted MSCs can undergo rapid apoptosis and clearance from the recipient's body, still exhibiting therapeutic effects, especially those associated with their immunosuppressive/immunomodulating properties. The mechanisms underlying these effects can be mediated by the efferocytosis of apoptotic MSCs by host phagocytic cells. In this concise review, we briefly describe three types of MSC-generated extracellular vesicles, through which their therapeutic functions can potentially be carried out; we focused on reviewing recent data on apoptotic MSCs and MSC-derived apoptotic bodies (MSC-ApoBDs), their functions, and the mechanisms of their therapeutic effects.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander G. Majouga
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Products, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
77
|
Sethi A, Wei H, Mishra N, Segos I, Lambie EJ, Zanin E, Conradt B. A caspase-RhoGEF axis contributes to the cell size threshold for apoptotic death in developing Caenorhabditis elegans. PLoS Biol 2022; 20:e3001786. [PMID: 36201522 PMCID: PMC9536578 DOI: 10.1371/journal.pbio.3001786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022] Open
Abstract
A cell's size affects the likelihood that it will die. But how is cell size controlled in this context and how does cell size impact commitment to the cell death fate? We present evidence that the caspase CED-3 interacts with the RhoGEF ECT-2 in Caenorhabditis elegans neuroblasts that generate "unwanted" cells. We propose that this interaction promotes polar actomyosin contractility, which leads to unequal neuroblast division and the generation of a daughter cell that is below the critical "lethal" size threshold. Furthermore, we find that hyperactivation of ECT-2 RhoGEF reduces the sizes of unwanted cells. Importantly, this suppresses the "cell death abnormal" phenotype caused by the partial loss of ced-3 caspase and therefore increases the likelihood that unwanted cells die. A putative null mutation of ced-3 caspase, however, is not suppressed, which indicates that cell size affects CED-3 caspase activation and/or activity. Therefore, we have uncovered novel sequential and reciprocal interactions between the apoptosis pathway and cell size that impact a cell's commitment to the cell death fate.
Collapse
Affiliation(s)
- Aditya Sethi
- Faculty of Biology, Center for Integrative Protein Sciences Munich (CIPSM), Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
- Department of Cell & Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Hai Wei
- Faculty of Biology, Center for Integrative Protein Sciences Munich (CIPSM), Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Nikhil Mishra
- Faculty of Biology, Center for Integrative Protein Sciences Munich (CIPSM), Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Ioannis Segos
- Department of Cell & Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Eric J. Lambie
- Department of Cell & Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Esther Zanin
- Faculty of Biology, Center for Integrative Protein Sciences Munich (CIPSM), Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
- Department Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Conradt
- Department of Cell & Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
78
|
Gustafson CM, Gammill LS. Extracellular Vesicles and Membrane Protrusions in Developmental Signaling. J Dev Biol 2022; 10:39. [PMID: 36278544 PMCID: PMC9589955 DOI: 10.3390/jdb10040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 02/08/2023] Open
Abstract
During embryonic development, cells communicate with each other to determine cell fate, guide migration, and shape morphogenesis. While the relevant secreted factors and their downstream target genes have been characterized extensively, how these signals travel between embryonic cells is still emerging. Evidence is accumulating that extracellular vesicles (EVs), which are well defined in cell culture and cancer, offer a crucial means of communication in embryos. Moreover, the release and/or reception of EVs is often facilitated by fine cellular protrusions, which have a history of study in development. However, due in part to the complexities of identifying fragile nanometer-scale extracellular structures within the three-dimensional embryonic environment, the nomenclature of developmental EVs and protrusions can be ambiguous, confounding progress. In this review, we provide a robust guide to categorizing these structures in order to enable comparisons between developmental systems and stages. Then, we discuss existing evidence supporting a role for EVs and fine cellular protrusions throughout development.
Collapse
Affiliation(s)
- Callie M. Gustafson
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Laura S. Gammill
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
79
|
The Protective Effect of Simvastatin on the Systolic Function of the Heart in the Model of Acute Ischemia and Reperfusion Is Due to Inhibition of the RhoA Pathway and Independent of Reduction of MMP-2 Activity. Biomolecules 2022; 12:biom12091291. [PMID: 36139129 PMCID: PMC9496379 DOI: 10.3390/biom12091291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
The present study investigated whether Rho-associated protein kinase (RhoA/ROCK) signaling pathway inhibitor simvastatin inhibits matrix metalloproteinase 2 (MMP-2) activity in a rat ischemia-reperfusion injury (I/Ri) model by inhibiting the RhoA/ROCK pathway and reducing MMP-2 mRNA levels. Isolated rat hearts were subjected to aerobic perfusion or I/Ri control. The effect of simvastatin was assessed in hearts subjected to I/Ri. We determined cardiac mechanical function, the content of RhoA, phosphorylated myosin light chain subunit 1 (phospho-MYL9), troponin I, MMP-2, and MMP-2 mRNA in the heart homogenates, as well as MMP-2 activity in heart tissue. We showed that treatment with simvastatin caused improvement in the contractile function of the heart subjected to I/Ri which was accompanied by a decrease of MMP-2 activity in heart tissue along with inhibition of RhoA pathway, expressed in a reduction in both RhoA and its downstream product—phosphorylated myosin light chain (phospho-MYL9) in hearts treated with simvastatin. MMP-2 inactivation is not due to inhibition of MMP-2 m-RNA synthesis caused by inhibition of RhoA/ROCK pathway and is due, at least in part, to the direct drug action. The protective effect of simvastatin on systolic function in the acute ischemia-reperfusion model does not appear to be related to reduced MMP-2 activation, but other mechanisms related with the inhibition RhoA/ROCK pathway.
Collapse
|
80
|
Pond KW, Morris JM, Alkhimenok O, Varghese RP, Cabel CR, Ellis NA, Chakrabarti J, Zavros Y, Merchant JL, Thorne CA, Paek AL. Live-cell imaging in human colonic monolayers reveals ERK waves limit the stem cell compartment to maintain epithelial homeostasis. eLife 2022; 11:e78837. [PMID: 36094159 PMCID: PMC9499537 DOI: 10.7554/elife.78837] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/11/2022] [Indexed: 11/13/2022] Open
Abstract
The establishment and maintenance of different cellular compartments in tissues is a universal requirement across all metazoans. Maintaining the correct ratio of cell types in time and space allows tissues to form patterned compartments and perform complex functions. Patterning is especially evident in the human colon, where tissue homeostasis is maintained by stem cells in crypt structures that balance proliferation and differentiation. Here, we developed a human 2D patient derived organoid screening platform to study tissue patterning and kinase pathway dynamics in single cells. Using this system, we discovered that waves of ERK signaling induced by apoptotic cells play a critical role in maintaining tissue patterning and homeostasis. If ERK is activated acutely across all cells instead of in wave-like patterns, then tissue patterning and stem cells are lost. Conversely, if ERK activity is inhibited, then stem cells become unrestricted and expand dramatically. This work demonstrates that the colonic epithelium requires coordinated ERK signaling dynamics to maintain patterning and tissue homeostasis. Our work reveals how ERK can antagonize stem cells while supporting cell replacement and the function of the gut.
Collapse
Affiliation(s)
- Kelvin W Pond
- Department of Cellular and Molecular Medicine, University of ArizonaTucsonUnited States
- Department of Molecular and Cellular Biology, The University of ArizonaTucsonUnited States
- University of Arizona Cancer CenterTucsonUnited States
| | - Julia M Morris
- Department of Cellular and Molecular Medicine, University of ArizonaTucsonUnited States
| | - Olga Alkhimenok
- Department of Molecular and Cellular Biology, The University of ArizonaTucsonUnited States
| | - Reeba P Varghese
- Department of Cellular and Molecular Medicine, University of ArizonaTucsonUnited States
- Cancer Biology Graduate Interdisciplinary Program, University of ArizonaTucsonUnited States
| | - Carly R Cabel
- Department of Cellular and Molecular Medicine, University of ArizonaTucsonUnited States
- Cancer Biology Graduate Interdisciplinary Program, University of ArizonaTucsonUnited States
| | - Nathan A Ellis
- Department of Cellular and Molecular Medicine, University of ArizonaTucsonUnited States
- University of Arizona Cancer CenterTucsonUnited States
| | - Jayati Chakrabarti
- Department of Cellular and Molecular Medicine, University of ArizonaTucsonUnited States
| | - Yana Zavros
- Department of Cellular and Molecular Medicine, University of ArizonaTucsonUnited States
- University of Arizona Cancer CenterTucsonUnited States
| | | | - Curtis A Thorne
- Department of Cellular and Molecular Medicine, University of ArizonaTucsonUnited States
- University of Arizona Cancer CenterTucsonUnited States
| | - Andrew L Paek
- Department of Molecular and Cellular Biology, The University of ArizonaTucsonUnited States
| |
Collapse
|
81
|
Barot S, Stephenson OJ, Priya Vemana H, Yadav A, Bhutkar S, Trombetta LD, Dukhande VV. Metabolic alterations and mitochondrial dysfunction underlie hepatocellular carcinoma cell death induced by a glycogen metabolic inhibitor. Biochem Pharmacol 2022; 203:115201. [PMID: 35926650 PMCID: PMC10039449 DOI: 10.1016/j.bcp.2022.115201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths. There is an urgent need for new targets to treat HCC due to limited treatment options and drug resistance. Many cancer cells are known to have high amount of glycogen than their tissue of origin and inhibition of glycogen catabolism induces cancer cell death by apoptosis. To further understand the role of glycogen in HCC and target it for pharmacotherapy, we studied metabolic adaptations and mitochondrial function in HepG2 cells after pharmacological inhibition of glycogen phosphorylase (GP) by CP-91149 (CP). GP inhibition increased the glycogen levels in HepG2 cells without affecting overall glucose uptake. Glycolytic capacity and importantly glycolytic reserve decreased significantly. Electron microscopy revealed that CP treatment altered mitochondrial morphology leading to mitochondrial swelling with less defined cristae. A concomitant decrease in mitochondrial oxygen consumption and mitochondria-linked ATP generation was observed. Metabolomics and enzyme activity / expression studies showed a decrease in the pentose phosphate pathway. In addition, CP treatment decreased the growth of HepG2 3D tumor spheroids in a dose- and time-dependent manner. Taken together, our study provides insights into metabolic alterations and mitochondrial dysfunction accompanying apoptosis in HepG2 cells upon GP inhibition. Our study can aid in the understanding of the mechanism and development of metabolic inhibitors to treat HCC.
Collapse
Affiliation(s)
- Shrikant Barot
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Olivia J Stephenson
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Hari Priya Vemana
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Anjali Yadav
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Shraddha Bhutkar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Louis D Trombetta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Vikas V Dukhande
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
82
|
Loureiro AV, Moura-Neto LI, Martins CS, Silva PIM, Lopes MB, Leitão RFC, Coelho-Aguiar JM, Moura-Neto V, Warren CA, Costa DV, Brito GAC. Role of Pannexin-1-P2X7R signaling on cell death and pro-inflammatory mediator expression induced by Clostridioides difficile toxins in enteric glia. Front Immunol 2022; 13:956340. [PMID: 36072579 PMCID: PMC9442043 DOI: 10.3389/fimmu.2022.956340] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Clostridioides difficile (C. difficile) produces toxins A (TcdA) and B (TcdB), both associated with intestinal damage and diarrhea. Pannexin-1 (Panx1) channels allows the passage of messenger molecules, such as adenosine triphosphate (ATP), which in turn activate the P2X7 receptors (P2X7R) that regulate inflammation and cell death in inflammatory bowel diseases. The aim of this study was to verify the effect of C. difficile infection (CDI) in the expression of Panx1 and P2X7R in intestinal tissues of mice, as well as their role in cell death and IL-6 expression induced by TcdA and TcdB in enteric glial cells (EGCs). Male C57BL/6 mice (8 weeks of age) were infected with C. difficile VPI10463, and the control group received only vehicle per gavage. After three days post-infection (p.i.), cecum and colon samples were collected to evaluate the expression of Panx1 by immunohistochemistry. In vitro, EGCs (PK060399egfr) were challenged with TcdA or TcdB, in the presence or absence of the Panx1 inhibitor (10Panx trifluoroacetate) or P2X7R antagonist (A438079), and Panx1 and P2X7R expression, caspase-3/7 activity and phosphatidylserine binding to annexin-V, as well as IL-6 expression were assessed. CDI increased the levels of Panx1 in cecum and colon of mice compared to the control group. Panx1 inhibitor decreased caspase-3/7 activity and phosphatidylserine-annexin-V binding, but not IL-6 gene expression in TcdA and TcdB-challenged EGCs. P2X7 receptor antagonist accentually reduced caspase-3/7 activity, phosphatidylserine-annexin-V binding, and IL-6 gene expression in TcdA and TcdB-challenged EGCs. In conclusion, Panx1 is increased during CDI and plays an important role in the effects of C. difficile toxins in EGCs, participating in cell death induced by both toxins by promoting caspase-3/7 activation via P2X7R, which is also involved in IL-6 expression induced by both toxins.
Collapse
Affiliation(s)
- Andrea V. Loureiro
- Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Lauro I. Moura-Neto
- Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Conceição S. Martins
- Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Pedro I. M. Silva
- Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Matheus B.S. Lopes
- Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Renata F. C. Leitão
- Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Juliana M. Coelho-Aguiar
- Paulo Niemeyer Brain Institute, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivaldo Moura-Neto
- Paulo Niemeyer Brain Institute, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cirle A. Warren
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
| | - Deiziane V.S. Costa
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, United States
- *Correspondence: Gerly A. C. Brito, ; Deiziane V.S. Costa,
| | - Gerly A. C. Brito
- Department of Morphology, School of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceara, Fortaleza, Ceara, Brazil
- *Correspondence: Gerly A. C. Brito, ; Deiziane V.S. Costa,
| |
Collapse
|
83
|
Alipour M, Hajipour-Verdom B, Javan M, Abdolmaleki P. Static and Electromagnetic Fields Differently Affect Proliferation and Cell Death Through Acid Enhancement of ROS Generation in Mesenchymal Stem Cells. Radiat Res 2022; 198:384-395. [PMID: 35867630 DOI: 10.1667/rade-21-00037.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/17/2022] [Indexed: 11/03/2022]
Abstract
Magnetic fields remotely influence cellular homeostasis as a physical agent through the changes in cell physicochemical reactions. Magnetic fields affect cell fate, which may provide an important and interesting challenge in stem cell behaviors. Here, we investigated the effects of the static magnetic field (SMF, 20 mT) and electromagnetic field (EMF, 20 mT-50 Hz) on reactive oxygen species (ROS) production and the acidic pH conditions as stimuli to change cell cycle progression and cell death in mesenchymal stem cells. Results show that SMF, EMF, and their simultaneous (SMF+EMF) administration increase ROS and expression of nuclear factor erythroid 2-related factor 2 (Nrf2), superoxide dismutase 2 (SOD2), and glutathione-S-transferase (GST) as an antioxidant defense system. Besides, intracellular pH (pHi) decreases in presence of either EMF or SMF+EMF, but not SMF. Decreased ROS content using ascorbic acid in these treatments leads to increased pH compared to the magnetic field treatments alone. Furthermore, each magnetic field has different effects on the cellular process of stem cells, including cell cycle, apoptosis and necrosis. Moreover, treatment by SMF enhances the cell viability after 24 h, while EMF or SMF+EMF decreases it. These observations indicate that fluctuations of ROS generation and acid enhancement during SMF and EMF treatments may reveal their beneficial and adverse effects on the molecular and cellular mechanisms involved in the growth, death, and differentiation of stem cells.
Collapse
Affiliation(s)
| | | | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, 14115-154, Iran
| | | |
Collapse
|
84
|
Sun J, Zhang D, Li Y. Extracellular Vesicles in Pathogenesis and Treatment of Metabolic Associated Fatty Liver Disease. Front Physiol 2022; 13:909518. [PMID: 35770186 PMCID: PMC9234305 DOI: 10.3389/fphys.2022.909518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) is the most common chronic liver disease worldwide due to the sedentary and overeating lifestyle. Yet, the pathophysiology of MAFLD is still unclear and no drug has been approved for MAFLD treatment. Extracellular vesicles (EVs) are heterogenous membrane-bound particles released from almost all types of cells. These nano-sized particles mediate intercellular communication through their bioactive cargos including nucleic acids, proteins, and lipids. The EVs modulate metabolic homeostasis via communication between adipose tissue and liver. The dysregulation of lipid metabolism leads to inflammation in liver and the number and compounds of EVs are changed during MAFLD. The injured hepatocytes secrete EVs to induce the migration of bone marrow-derived monocytes and the activation of macrophages in liver. The EVs secreted by different cells regulate the alteration of hepatic stellate cell (HSC) phenotypes and HSC activation gives rise to liver fibrosis. Based on the participation of EVs in MAFLD progression, we discuss the prospects of EVs as a therapeutic target and their application in drug delivery.
Collapse
Affiliation(s)
- Ji Sun
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Dianbao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, China
- *Correspondence: Yiling Li, ; Dianbao Zhang,
| | - Yiling Li
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Yiling Li, ; Dianbao Zhang,
| |
Collapse
|
85
|
Gurunathan S, Kang MH, Song H, Kim NH, Kim JH. The role of extracellular vesicles in animal reproduction and diseases. J Anim Sci Biotechnol 2022; 13:62. [PMID: 35681164 PMCID: PMC9185900 DOI: 10.1186/s40104-022-00715-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/05/2022] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are nanosized membrane-enclosed compartments that serve as messengers in cell-to-cell communication, both in normal physiology and in pathological conditions. EVs can transfer functional proteins and genetic information to alter the phenotype and function of recipient cells, which undergo different changes that positively affect their structural and functional integrity. Biological fluids are enriched with several subpopulations of EVs, including exosomes, microvesicles (MVs), and apoptotic bodies carrying several cargoes, such as lipids, proteins, and nucleic acids. EVs associated with the reproductive system are actively involved in the regulation of different physiological events, including gamete maturation, fertilization, and embryo and fetal development. EVs can influence follicle development, oocyte maturation, embryo production, and endometrial-conceptus communication. EVs loaded with cargoes are used to diagnose various diseases, including pregnancy disorders; however, these are dependent on the type of cell of origin and pathological characteristics. EV-derived microRNAs (miRNAs) and proteins in the placenta regulate inflammatory responses and trophoblast invasion through intercellular delivery in the placental microenvironment. This review presents evidence regarding the types of extracellular vesicles, and general aspects of isolation, purification, and characterization of EVs, particularly from various types of embryos. Further, we discuss EVs as mediators and messengers in reproductive biology, the effects of EVs on placentation and pregnancy disorders, the role of EVs in animal reproduction, in the male reproductive system, and mother and embryo cross-communication. In addition, we emphasize the role of microRNAs in embryo implantation and the role of EVs in reproductive and therapeutic medicine. Finally, we discuss the future perspectives of EVs in reproductive biology.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Nam Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
86
|
Chen K, Li Y, Xu L, Qian Y, Liu N, Zhou C, Liu J, Zhou L, Xu Z, Jia R, Ge YZ. Comprehensive insight into endothelial progenitor cell-derived extracellular vesicles as a promising candidate for disease treatment. Stem Cell Res Ther 2022; 13:238. [PMID: 35672766 PMCID: PMC9172199 DOI: 10.1186/s13287-022-02921-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/29/2022] [Indexed: 12/21/2022] Open
Abstract
Endothelial progenitor cells (EPCs), which are a type of stem cell, have been found to have strong angiogenic and tissue repair capabilities. Extracellular vesicles (EVs) contain many effective components, such as cellular proteins, microRNAs, messenger RNAs, and long noncoding RNAs, and can be secreted by different cell types. The functions of EVs depend mainly on their parent cells. Many researchers have conducted functional studies of EPC-derived EVs (EPC-EVs) and showed that they exhibit therapeutic effects on many diseases, such as cardiovascular disease, acute kidney injury, acute lung injury, and sepsis. In this review article, we comprehensively summarized the biogenesis and functions of EPCs and EVs and the potent role of EPC-EVs in the treatment of various diseases. Furthermore, the current problems and future prospects have been discussed, and further studies are needed to compare the therapeutic effects of EVs derived from various stem cells, which will contribute to the accelerated translation of these applications in a clinical setting.
Collapse
Affiliation(s)
- Ke Chen
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Yang Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Yiguan Qian
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Ning Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Changcheng Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China.
| | - Yu-Zheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China.
| |
Collapse
|
87
|
Teng T, Teng CS, Kaartinen V, Bush JO. A unique form of collective epithelial migration is crucial for tissue fusion in the secondary palate and can overcome loss of epithelial apoptosis. Development 2022; 149:275520. [PMID: 35593401 PMCID: PMC9188751 DOI: 10.1242/dev.200181] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
Abstract
Tissue fusion frequently requires the removal of an epithelium that intervenes distinct primordia to form one continuous structure. In the mammalian secondary palate, a midline epithelial seam (MES) forms between two palatal shelves and must be removed to allow mesenchymal confluence. Abundant apoptosis and cell extrusion support their importance in MES removal. However, genetically disrupting the intrinsic apoptotic regulators BAX and BAK within the MES results in complete loss of cell death and cell extrusion, but successful removal of the MES. Novel static- and live-imaging approaches reveal that the MES is removed through streaming migration of epithelial trails and islands to reach the oral and nasal epithelial surfaces. Epithelial trail cells that express the basal epithelial marker ΔNp63 begin to express periderm markers, suggesting that migration is concomitant with differentiation. Live imaging reveals anisotropic actomyosin contractility within epithelial trails, and genetic ablation of actomyosin contractility results in dispersion of epithelial collectives and failure of normal MES migration. These findings demonstrate redundancy between cellular mechanisms of morphogenesis, and reveal a crucial and unique form of collective epithelial migration during tissue fusion. Summary: Multiple cellular processes mediate secondary palate fusion, including a unique form of streaming collective epithelial migration driven by pulsatile actomyosin contractility.
Collapse
Affiliation(s)
- Teng Teng
- University of California San Francisco 1 Department of Cell and Tissue Biology , , San Francisco, CA 94143 , USA
- University of California San Francisco 2 Program in Craniofacial Biology , , San Francisco, CA 94143 , USA
- Institute for Human Genetics, University of California San Francisco 3 , San Francisco, CA 94143 , USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco 4 , San Francisco, CA 94143 , USA
| | - Camilla S. Teng
- University of California San Francisco 1 Department of Cell and Tissue Biology , , San Francisco, CA 94143 , USA
- University of California San Francisco 2 Program in Craniofacial Biology , , San Francisco, CA 94143 , USA
- Institute for Human Genetics, University of California San Francisco 3 , San Francisco, CA 94143 , USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco 4 , San Francisco, CA 94143 , USA
| | - Vesa Kaartinen
- University of Michigan School of Dentistry 5 Department of Biologic and Materials Sciences , , Ann Arbor, MI 48109 , USA
| | - Jeffrey O. Bush
- University of California San Francisco 1 Department of Cell and Tissue Biology , , San Francisco, CA 94143 , USA
- University of California San Francisco 2 Program in Craniofacial Biology , , San Francisco, CA 94143 , USA
- Institute for Human Genetics, University of California San Francisco 3 , San Francisco, CA 94143 , USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco 4 , San Francisco, CA 94143 , USA
| |
Collapse
|
88
|
Kanakalakshmi ST, Swaminathan SM, Basthi Mohan P, Nagaraju SP, Bhojaraja MV, Koulmane Laxminarayana SL. Microparticles in Diabetic Kidney Disease. Clin Chim Acta 2022; 531:418-425. [PMID: 35568209 DOI: 10.1016/j.cca.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/17/2022]
Abstract
Diabetickidneydisease(DKD)isthemostcommoncauseofrenal failure and a major contributor to the socioeconomic burden in chronic kidney disease (CKD) patients worldwide. The pathogenesis of DKD involves all the structures in the nephron, and it is indicated by proteinuria, hypertension, and progressive decline in renal function, leading tosubstantialmorbidityandmortality. Due to the limitations of currently available standard markers (albuminuria and glomerular filtration rate) in the diagnosis and clinical grading of DKD, it's time to have novel biomarkers for early detection, targeted and effective therapy to prevent the progression. Microparticles (MPs) are extracellular vesicles measuring 0.1 to 1 micron derived by cytoskeletal reorganization in the form of cytoplasmic blebs which alters the phospholipid cytochemistry of the cell membrane. They are shed during cell activation and apoptosis as well as plays an important role in cell-to-cell communication. Over the last few decades, both plasma and urinary MPs have been investigated, validated and the preliminary research looks promising. With alterations in their number and composition documented in clinical situations involving both Type1 and 2 diabetes mellitus, microparticles assay appears to be promising in early diagnosis and prognostication of DKD. WecoverthebasicsofmicroparticlesandtheirinvolvementinDKDinthisreviewarticle.
Collapse
Affiliation(s)
- Sushma Thimmaiah Kanakalakshmi
- Department of Anaesthesiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shilna Muttickal Swaminathan
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Pooja Basthi Mohan
- Department of Gastroenterology and Hepatology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shankar Prasad Nagaraju
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Mohan V Bhojaraja
- Department of Nephrology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | | |
Collapse
|
89
|
Rother N, Yanginlar C, Pieterse E, Hilbrands L, van der Vlag J. Microparticles in Autoimmunity: Cause or Consequence of Disease? Front Immunol 2022; 13:822995. [PMID: 35514984 PMCID: PMC9065258 DOI: 10.3389/fimmu.2022.822995] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/25/2022] [Indexed: 12/15/2022] Open
Abstract
Microparticles (MPs) are small (100 nm - 1 um) extracellular vesicles derived from the plasma membrane of dying or activated cells. MPs are important mediators of intercellular communication, transporting proteins, nucleic acids and lipids from the parent cell to other cells. MPs resemble the state of their parent cells and are easily accessible when released into the blood or urine. MPs also play a role in the pathogenesis of different diseases and are considered as potential biomarkers. MP isolation and characterization is technically challenging and results in different studies are contradictory. Therefore, uniform guidelines to isolate and characterize MPs should be developed. Our understanding of MP biology and how MPs play a role in different pathological mechanisms has greatly advanced in recent years. MPs, especially if derived from apoptotic cells, possess strong immunogenic properties due to the presence of modified proteins and nucleic acids. MPs are often found in patients with autoimmune diseases where MPs for example play a role in the break of immunological tolerance and/or induction of inflammatory conditions. In this review, we describe the main techniques to isolate and characterize MPs, define the characteristics of MPs generated during cell death, illustrate different mechanism of intercellular communication via MPs and summarize the role of MPs in pathological mechanisms with a particular focus on autoimmune diseases.
Collapse
Affiliation(s)
- Nils Rother
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cansu Yanginlar
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Elmar Pieterse
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Luuk Hilbrands
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
90
|
Ida Y, Umetsu A, Furuhashi M, Watanabe M, Tsugeno Y, Suzuki S, Hikage F, Ohguro H. ROCK 1 and 2 affect the spatial architecture of 3D spheroids derived from human corneal stromal fibroblasts in different manners. Sci Rep 2022; 12:7419. [PMID: 35523828 PMCID: PMC9076620 DOI: 10.1038/s41598-022-11407-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/20/2022] [Indexed: 11/27/2022] Open
Abstract
The objective of the current study was to examine the roles of ROCK1 and 2 on the spatial architecture of human corneal stroma. We examined the effects of a pan-ROCK inhibitor (pan-ROCK-i), ripasudil, and a ROCK2 inhibitor (ROCK2-i), KD025 on the expression of genes that encode for ECM proteins including collagen (COL) 1, 4, 6, and fibronectin (FN), their regulators, a tissue inhibitor of metalloproteinase (TIMP) 1-4, matrix metalloproteinase (MMP) 2, 9 and 14, and ER stress-related factors of two- and three-dimensional (2D and 3D) cultures of human corneal stroma fibroblasts (HCSFs), and the physical properties of 3D HCSF spheroids. A gene expression analysis using ROCK-is indicated that KD025 (ROCK2 selective ROCK inhibitor) induced more significant changes than Rip (ripasudil, pan-ROCK inhibitor), suggesting that ROCK2 might be more extensively involved in the metabolism of ECM proteins and cell architectures of the 2D cultured HCSFs than ROCK1. In terms of the physical properties, size and stiffness of the 3D HCSFs spheroids, Rip caused a significant enlargement and this enhancement was concentration-dependent while KD025 also exerted a similar but less pronounced effect. In contrast, Rip and KD025 modulated physical stiffness differently, in that Rip caused a substantial decrease and KD025 caused an increase. Such diverse effects between Rip and KD025 were also observed for the gene expressions of ECM proteins, their regulators, and ER-stress related factors. The findings presented herein suggest that the ROCK1 and 2 influence the spatial architecture of 3D HCFS spheroids in different manners.
Collapse
Affiliation(s)
- Yosuke Ida
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Araya Umetsu
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masato Furuhashi
- Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuri Tsugeno
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Soma Suzuki
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Fumihito Hikage
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| |
Collapse
|
91
|
Su Y, Huang H, Luo T, Zheng Y, Fan J, Ren H, Tang M, Niu Z, Wang C, Wang Y, Zhang Z, Liang J, Ruan B, Gao L, Chen Z, Melino G, Wang X, Sun Q. Cell-in-cell structure mediates in-cell killing suppressed by CD44. Cell Discov 2022; 8:35. [PMID: 35436988 PMCID: PMC9016064 DOI: 10.1038/s41421-022-00387-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/28/2022] [Indexed: 12/30/2022] Open
Abstract
Penetration of immune cells into tumor cells was believed to be immune-suppressive via cell-in-cell (CIC) mediated death of the internalized immune cells. We unexpectedly found that CIC formation largely led to the death of the host tumor cells, but not the internalized immune cells, manifesting typical features of death executed by NK cells; we named this "in-cell killing" which displays the efficacy superior to the canonical way of "kiss-killing" from outside. By profiling isogenic cells, CD44 on tumor cells was identified as a negative regulator of "in-cell killing" via inhibiting CIC formation. CD44 functions to antagonize NK cell internalization by reducing N-cadherin-mediated intercellular adhesion and by enhancing Rho GTPase-regulated cellular stiffness as well. Remarkably, antibody-mediated blockade of CD44 signaling potentiated the suppressive effects of NK cells on tumor growth associated with increased heterotypic CIC formation. Together, we identified CIC-mediated "in-cell killing" as a promising strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Yan Su
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Tianzhi Luo
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, China
| | - You Zheng
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Jie Fan
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - He Ren
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Meng Tang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing, China
| | - Zubiao Niu
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Chenxi Wang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Yuqi Wang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Zhengrong Zhang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Jianqing Liang
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Banzhan Ruan
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Lihua Gao
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Zhaolie Chen
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China
| | - Gerry Melino
- Departments of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- DZNE German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Xiaoning Wang
- National Research Center of Geriatrics Diseases, Chinese PLA General Hospital, Beijing, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qiang Sun
- Beijing Institute of Biotechnology, Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, 20 Dongda Street, Beijing, China.
| |
Collapse
|
92
|
Ngo PA, Neurath MF, López-Posadas R. Impact of Epithelial Cell Shedding on Intestinal Homeostasis. Int J Mol Sci 2022; 23:ijms23084160. [PMID: 35456978 PMCID: PMC9027054 DOI: 10.3390/ijms23084160] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
The gut barrier acts as a first line of defense in the body, and plays a vital role in nutrition and immunoregulation. A layer of epithelial cells bound together via intercellular junction proteins maintains intestinal barrier integrity. Based on a tight equilibrium between cell extrusion and cell restitution, the renewal of the epithelium (epithelial turnover) permits the preservation of cell numbers. As the last step within the epithelial turnover, cell shedding occurs due to the pressure of cell division and migration from the base of the crypt. During this process, redistribution of tight junction proteins enables the sealing of the epithelial gap left by the extruded cell, and thereby maintains barrier function. Disturbance in cell shedding can create transient gaps (leaky gut) or cell accumulation in the epithelial layer. In fact, numerous studies have described the association between dysregulated cell shedding and infection, inflammation, and cancer; thus epithelial cell extrusion is considered a key defense mechanism. In the gastrointestinal tract, altered cell shedding has been observed in mouse models of intestinal inflammation and appears as a potential cause of barrier loss in human inflammatory bowel disease (IBD). Despite the relevance of this process, there are many unanswered questions regarding cell shedding. The investigation of those mechanisms controlling cell extrusion in the gut will definitely contribute to our understanding of intestinal homeostasis. In this review, we summarized the current knowledge about intestinal cell shedding under both physiological and pathological circumstances.
Collapse
Affiliation(s)
- Phuong A. Ngo
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (P.A.N.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Markus F. Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (P.A.N.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
| | - Rocío López-Posadas
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (P.A.N.); (M.F.N.)
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
93
|
Safety assessment of graphene oxide and microcystin-LR complex: a toxicological scenario beyond physical mixture. Part Fibre Toxicol 2022; 19:26. [PMID: 35392949 PMCID: PMC8988332 DOI: 10.1186/s12989-022-00466-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background Nanomaterials have been widely used in electrochemistry, sensors, medicine among others applications, causing its inevitable environmental exposure. A raising question is the “carrier” effect due to unique surface properties of nanomaterials, which may collectively impact the bioavailability, toxicokinetic, distribution and biological effects of classic toxicants. Noteworthy, this aspect of information remains largely unexplored. Methods Here, we deliberately selected two entities to mimic this scenario. One is graphene oxide (GO), which is made in ton quantity with huge surface-area that provides hydrophilicity and π–π interaction to certain chemicals of unique structures. The other is Microcystin-LR (MCLR), a representative double-bond rich liver-toxic endotoxin widely distributed in aquatic-system. Firstly, the adsorption of GO and MCLR after meeting under environmental conditions was explored, and then we focused on the toxicological effect and related mechanism of GO-MCLR complex on human skin cutin forming cells (HaCaT cells) and normal liver cells (L02 cells). Results Abiotically, our study demonstrated that GO could effectively adsorb MCLR through hydrogen bonding and π–π interaction, the oxidation degree of GO-MCLR decreased significantly and surface defect level raised. Compared to GO or MCLR, GO-MCLR was found to induce more remarkable apoptosis and ferroptosis in both HaCaT and L02 cells. The underlying mechanism was that GO-MCLR induced stronger intracellular reactive oxygen species (ROS) and mtROS generation, followed by Fe2+ accumulation, mitochondrial dysfunction and cytoskeletal damage. Conclusions These results suggest that the GO-MCLR complex formed by GO adsorption of MCLR may exhibit more toxic effects than the single material, which demonstrates the necessity for assessing nano-toxicant complexity. Our discovery may serve as a new toxicological paradigm in which nanomaterial mediated surface adsorption effects could impact the degree of cytotoxicity and toxicological mechanisms of classic toxins. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00466-x.
Collapse
|
94
|
Heib M, Weiß J, Saggau C, Hoyer J, Fuchslocher Chico J, Voigt S, Adam D. Ars moriendi: Proteases as sculptors of cellular suicide. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119191. [PMID: 34973300 DOI: 10.1016/j.bbamcr.2021.119191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The Ars moriendi, which translates to "The Art of Dying," encompasses two Latin texts that gave advice on how to die well and without fear according to the Christian precepts of the late Middle Ages. Given that ten to hundred billion cells die in our bodies every day, it is obvious that the concept of a well and orderly ("regulated") death is also paramount at the cellular level. In apoptosis, as the most well-studied form of regulated cell death, proteases of the caspase family are the central mediators. However, caspases are not the only proteases that act as sculptors of cellular suicide, and therefore, we here provide an overview of the impact of proteases in apoptosis and other forms of regulated cell death.
Collapse
Affiliation(s)
- Michelle Heib
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Jonas Weiß
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Carina Saggau
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Justus Hoyer
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | | | - Susann Voigt
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Michaelisstr. 5, 24105 Kiel, Germany.
| |
Collapse
|
95
|
Schuster C, Wolpert N, Moustaid-Moussa N, Gollahon LS. Combinatorial Effects of the Natural Products Arctigenin, Chlorogenic Acid, and Cinnamaldehyde Commit Oxidation Assassination on Breast Cancer Cells. Antioxidants (Basel) 2022; 11:591. [PMID: 35326241 PMCID: PMC8945099 DOI: 10.3390/antiox11030591] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Major obstacles in current breast cancer treatment efficacy include the ability of breast cancer cells to develop resistance to chemotherapeutic drugs and the off-target cytotoxicity of these drugs on normal cells, leading to debilitating side effects. One major difference between cancer and normal cells is their metabolism, as cancer cells acquire glycolytic and mitochondrial metabolism alterations throughout tumorigenesis. In this study, we sought to exploit this metabolic difference by investigating alternative breast cancer treatment options based on the application of phytochemicals. Herein, we investigated three phytochemicals, namely cinnamaldehyde (CA), chlorogenic acid (CGA), and arctigenin (Arc), regarding their anti-breast-cancer properties. These phytochemicals were administered alone or in combination to MCF-7, MDA-MB-231, and HCC1419 breast cancer or normal MCF-10A and MCF-12F breast cells. Overall, our results indicated that the combination treatments showed stronger inhibitory effects on breast cancer cells versus single treatments. However, only treatments with CA (35 μM), CGA (250 μg/mL), and the combination of CA + CGA (35 μM + 250 μg/mL) showed no significant cytotoxic effects on normal mammary epithelial cells, suggesting that Arc was the driver of normal cell cytotoxicity in all other treatments. CA + CGA and, to a lesser extent, CGA alone effectively induced breast cancer cell death accompanied by decreases in mitochondrial membrane potential, increased mitochondrial superoxide, reduced mitochondrial and glycolytic ATP production, and led to significant changes in cellular and mitochondrial morphology. Altogether, the combination of CA + CGA was determined as the best anti-breast-cancer treatment strategy due to its strong anti-breast-cancer effects without strong adverse effects on normal mammary epithelial cells. This study provides evidence that targeting the mitochondria may be an effective anticancer treatment, and that using phytochemicals or combinations thereof offers new approaches in treating breast cancer that significantly reduce off-target effects on normal cells.
Collapse
Affiliation(s)
- Caroline Schuster
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.S.); (N.W.)
| | - Nicholas Wolpert
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.S.); (N.W.)
| | - Naima Moustaid-Moussa
- Nutritional Sciences Department, Texas Tech University, Lubbock, TX 79409, USA;
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Lauren S. Gollahon
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (C.S.); (N.W.)
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
96
|
Extracellular Vesicles—New Players in Cell-To-Cell Communication in Gestational Diabetes Mellitus. Biomedicines 2022; 10:biomedicines10020462. [PMID: 35203669 PMCID: PMC8962272 DOI: 10.3390/biomedicines10020462] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/17/2022] Open
Abstract
Research in extracellular vesicles (EVs) has contributed to a better understanding of physiological and pathophysiological conditions. Biologically active cargo, such as miRNAs and proteins, is critical in many different biological processes. In this context, pregnancy is one of the most complex physiological states, which needs a highly regulated system to ensure the correct nourishment and development of the baby. However, pre-existent maternal conditions and habits can modify the EV-cargo and dysregulate the system leading to pregnancy complications, with gestational diabetes mellitus (GDM) being one of the most reported and influential. Calcification and aging of muscle cells, protein modification in vascular control or variations in the levels of specific miRNAs are some of the changes observed or led by EV populations as adaptation to GDM. Interestingly, insulin sensitivity and glucose tolerance changes are not fully understood to date. Nevertheless, the increasing evidence generated has opened new possibilities in the biomarker discovery field but also in the understanding of cellular mechanisms modified and involved in GDM. This brief review aims to discuss some of the findings in GDM and models used for that purpose and their potential roles in the metabolic alterations during pregnancy, with a focus on insulin sensitivity and glucose tolerance.
Collapse
|
97
|
Modeling axonal regeneration by changing cytoskeletal dynamics in stem cell-derived motor nerve organoids. Sci Rep 2022; 12:2082. [PMID: 35136073 PMCID: PMC8827082 DOI: 10.1038/s41598-022-05645-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/10/2022] [Indexed: 01/13/2023] Open
Abstract
Oxidative stress triggers axon degeneration and cell death, leading to the development of neurodegenerative diseases. Spinal motor nerves project very long axons, increasing the burden on axonal transport and metabolism. As such, spinal motor nerves are expected to be susceptible to oxidative stress, but model systems for visualizing and investigating acutely degenerating motor axons are limited. In this study, we establish motor nerve organoids from human pluripotent stem cells (hPSCs) with properties similar to those of neuromesodermal progenitors (NMPs), a population of progenitor cells that comprise the caudal spinal cord. Three-dimensional differentiation of organoids efficiently gave rise to mature motor neurons within 18 days. Adherent organoids showed robust axon fascicles and active growth cones under normal conditions. In addition, more homogenous and efficient generation of motor neurons were achieved when organoids were dissociated into individual cells. Hydrogen peroxide-induced oxidative stress resulted in a broad range of signs of axon degeneration including the disappearance of growth cones and neurites, axon retraction, axon fragmentation and bleb formation, and apoptotic cell death, whose severity can be reliably quantifiable in our culture system. Remarkably, cytoskeletal drugs modulating actin or microtubule turnover differentially facilitated axon dynamics and increased axon regenerative potential. Taken together, our motor nerve organoid model could be potentially useful for drug screens evaluating the rearrangement of cytoskeletons in regenerating motor axons.
Collapse
|
98
|
Bonfim-Melo A, Duszyc K, Gomez GA, Yap AS. Regulating life after death: how mechanical communication mediates the epithelial response to apoptosis. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:9. [PMID: 35076820 PMCID: PMC8789724 DOI: 10.1140/epje/s10189-022-00163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
It is increasingly evident that cells in tissues and organs can communicate with one another using mechanical forces. Such mechanical signalling can serve as a basis for the assembly of cellular communities. For this to occur, there must be local instabilities in tissue mechanics that are the source of the signals, and mechanisms for changes in mechanical force to be transmitted and detected within tissues. In this review, we discuss these principles using the example of cell death by apoptosis, when it occurs in epithelia. This elicits the phenomenon of apical extrusion, which can rapidly eliminate apoptotic cells by expelling them from the epithelium. Apoptotic extrusion requires that epithelial cells detect the presence of nearby apoptotic cells, something which can be elicited by the mechanotransduction of tensile instabilities caused by the apoptotic cell. We discuss the central role that adherens junctions can play in the transmission and detection of mechanical signals from apoptotic cells.
Collapse
Affiliation(s)
- Alexis Bonfim-Melo
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4102, Australia
| | - Kinga Duszyc
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Guillermo A Gomez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, 5000, Australia
| | - Alpha S Yap
- Division of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
99
|
Shi J, Wei L. Rho Kinases in Embryonic Development and Stem Cell Research. Arch Immunol Ther Exp (Warsz) 2022; 70:4. [PMID: 35043239 PMCID: PMC8766376 DOI: 10.1007/s00005-022-00642-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
The Rho-associated coiled-coil containing kinases (ROCKs or Rho kinases) belong to the AGC (PKA/PKG/PKC) family of serine/threonine kinases and are major downstream effectors of small GTPase RhoA, a key regulator of actin-cytoskeleton reorganization. The ROCK family contains two members, ROCK1 and ROCK2, which share 65% overall identity and 92% identity in kinase domain. ROCK1 and ROCK2 were assumed to be functionally redundant, based largely on their major common activators, their high degree kinase domain homology, and study results from overexpression with kinase constructs or chemical inhibitors. ROCK signaling research has expanded to all areas of biology and medicine since its discovery in 1996. The rapid advance is befitting ROCK’s versatile functions in modulating various cell behavior, such as contraction, adhesion, migration, proliferation, polarity, cytokinesis, and differentiation. The rapid advance is noticeably driven by an extensive linking with clinical medicine, including cardiovascular abnormalities, aberrant immune responsive, and cancer development and metastasis. The rapid advance during the past decade is further powered by novel biotechnologies including CRISPR-Cas and single cell omics. Current consensus, derived mainly from gene targeting and RNA interference approaches, is that the two ROCK isoforms have overlapping and distinct cellular, physiological and pathophysiology roles. In this review, we present an overview of the milestone discoveries in ROCK research. We then focus on the current understanding of ROCK signaling in embryonic development, current research status using knockout and knockin mouse models, and stem cell research.
Collapse
Affiliation(s)
- Jianjian Shi
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| | - Lei Wei
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of Medicine, Indiana University, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
100
|
Cabrera JTO, Makino A. Efferocytosis of vascular cells in cardiovascular disease. Pharmacol Ther 2022; 229:107919. [PMID: 34171333 PMCID: PMC8695637 DOI: 10.1016/j.pharmthera.2021.107919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/21/2021] [Accepted: 06/03/2021] [Indexed: 12/20/2022]
Abstract
Cell death and the clearance of apoptotic cells are tightly regulated by various signaling molecules in order to maintain physiological tissue function and homeostasis. The phagocytic removal of apoptotic cells is known as the process of efferocytosis, and abnormal efferocytosis is linked to various health complications and diseases, such as cardiovascular disease, inflammatory diseases, and autoimmune diseases. During efferocytosis, phagocytic cells and/or apoptotic cells release signals, such as "find me" and "eat me" signals, to stimulate the phagocytic engulfment of apoptotic cells. Primary phagocytic cells are macrophages and dendritic cells; however, more recently, other neighboring cell types have also been shown to exhibit phagocytic character, including endothelial cells and fibroblasts, although they are comparatively slower in clearing dead cells. In this review, we focus on macrophage efferocytosis of vascular cells, such as endothelial cells, smooth muscle cells, fibroblasts, and pericytes, and its relation to the progression and development of cardiovascular disease. We also highlight the role of efferocytosis-related molecules and their contribution to the maintenance of vascular homeostasis.
Collapse
Affiliation(s)
- Jody Tori O Cabrera
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|