51
|
van Weering JRT, Cullen PJ. Membrane-associated cargo recycling by tubule-based endosomal sorting. Semin Cell Dev Biol 2014; 31:40-7. [PMID: 24641888 DOI: 10.1016/j.semcdb.2014.03.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/09/2014] [Accepted: 03/11/2014] [Indexed: 01/27/2023]
Abstract
The endosome system is a collection of organelles that sort membrane-associated proteins and lipids for lysosomal degradation or recycling back to their target organelle. Recycling cargo is captured in a network of membrane tubules emanating from endosomes where tubular carriers pinch off. These tubules are formed and stabilized through the scaffolding properties of cytosolic Bin/Amphiphysin/Rvs (BAR) proteins that comprise phosphoinositide-detecting moieties, recruiting these proteins to specific endosomal membrane areas. These include the protein family of sorting nexins that remodel endosome membrane into tubules by an evolutionary conserved mechanism of dimerization, local membrane curvature detection/induction and oligomerization. How the formation of such a tubular membrane carrier is coordinated with cargo capture is largely unknown. The tubular structure of the membrane carriers could sequester membrane-bound cargo through an iterative mechanism of geometric sorting. Furthermore, the recent identification of cargo adaptors for the endosome protein sorting complex retromer has expanded the sorting signals that retrieve specific sets of cargo away from lysosomal degradation through distinct membrane trafficking pathways.
Collapse
Affiliation(s)
- Jan R T van Weering
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University and VU Medical Center, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Peter J Cullen
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
52
|
Krüger DM, Ignacio Garzón J, Chacón P, Gohlke H. DrugScorePPI knowledge-based potentials used as scoring and objective function in protein-protein docking. PLoS One 2014; 9:e89466. [PMID: 24586799 PMCID: PMC3931789 DOI: 10.1371/journal.pone.0089466] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/20/2014] [Indexed: 02/06/2023] Open
Abstract
The distance-dependent knowledge-based DrugScorePPI potentials, previously developed for in silico alanine scanning and hot spot prediction on given structures of protein-protein complexes, are evaluated as a scoring and objective function for the structure prediction of protein-protein complexes. When applied for ranking “unbound perturbation” (“unbound docking”) decoys generated by Baker and coworkers a 4-fold (1.5-fold) enrichment of acceptable docking solutions in the top ranks compared to a random selection is found. When applied as an objective function in FRODOCK for bound protein-protein docking on 97 complexes of the ZDOCK benchmark 3.0, DrugScorePPI/FRODOCK finds up to 10% (15%) more high accuracy solutions in the top 1 (top 10) predictions than the original FRODOCK implementation. When used as an objective function for global unbound protein-protein docking, fair docking success rates are obtained, which improve by ∼2-fold to 18% (58%) for an at least acceptable solution in the top 10 (top 100) predictions when performing knowledge-driven unbound docking. This suggests that DrugScorePPI balances well several different types of interactions important for protein-protein recognition. The results are discussed in view of the influence of crystal packing and the type of protein-protein complex docked. Finally, a simple criterion is provided with which to estimate a priori if unbound docking with DrugScorePPI/FRODOCK will be successful.
Collapse
Affiliation(s)
- Dennis M. Krüger
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Düsseldorf, Germany
| | - José Ignacio Garzón
- Rocasolano Physical Chemistry Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pablo Chacón
- Rocasolano Physical Chemistry Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
53
|
Wang H, Zhang Y, Zhang Z, Jin WL, Wu G. Purification, crystallization and preliminary X-ray analysis of the inverse F-BAR domain of the human srGAP2 protein. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2014; 70:123-6. [PMID: 24419634 DOI: 10.1107/s2053230x13033712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/12/2013] [Indexed: 11/10/2022]
Abstract
Bin-Amphiphysin-Rvs (BAR) domain proteins play essential roles in diverse cellular processes by inducing membrane invaginations or membrane protrusions. Among the BAR superfamily, the `classical' BAR and Fes/CIP4 homology BAR (F-BAR) subfamilies of proteins usually promote membrane invaginations, whereas the inverse BAR (I-BAR) subfamily generally incur membrane protrusions. Despite possessing an N-terminal F-BAR domain, the srGAP2 protein regulates neurite outgrowth and neuronal migration by causing membrane protrusions reminiscent of the activity of I-BAR domain proteins. In this study, the inverse F-BAR (IF-BAR) domain of human srGAP2 was overexpressed, purified and crystallized. The crystals of the srGAP2 IF-BAR domain protein diffracted to 3.50 Å resolution and belonged to space group P2(1). These results will facilitate further structural determination of the srGAP2 IF-BAR domain and the ultimate elucidation of its peculiar behaviour of inducing membrane protrusions rather than membrane invaginations.
Collapse
Affiliation(s)
- Hongpeng Wang
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yan Zhang
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Zhenyi Zhang
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wei Lin Jin
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
54
|
Lefebvre M, Tetaud E, Thonnus M, Salin B, Boissier F, Blancard C, Sauvanet C, Metzler C, Espiau B, Sahin A, Merlin G. LdFlabarin, a new BAR domain membrane protein of Leishmania flagellum. PLoS One 2013; 8:e76380. [PMID: 24086735 PMCID: PMC3785460 DOI: 10.1371/journal.pone.0076380] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022] Open
Abstract
During the Leishmania life cycle, the flagellum undergoes successive assembly and disassembly of hundreds of proteins. Understanding these processes necessitates the study of individual components. Here, we investigated LdFlabarin, an uncharacterized L. donovani flagellar protein. The gene is conserved within the Leishmania genus and orthologous genes only exist in the Trypanosoma genus. LdFlabarin associates with the flagellar plasma membrane, extending from the base to the tip of the flagellum as a helicoidal structure. Site-directed mutagenesis, deletions and chimera constructs showed that LdFlabarin flagellar addressing necessitates three determinants: an N-terminal potential acylation site and a central BAR domain for membrane targeting and the C-terminal domain for flagellar specificity. In vitro, the protein spontaneously associates with liposomes, triggering tubule formation, which suggests a structural/morphogenetic function. LdFlabarin is the first characterized Leishmania BAR domain protein, and the first flagellum-specific BAR domain protein.
Collapse
Affiliation(s)
- Michèle Lefebvre
- CNRS UMR 5290, Montpellier, France
- Université Montpellier 1, Montpellier, France
- Centre Hospitalier Universitaire La Colombière, Montpellier, France
- IRD 224, Montpellier, France
| | - Emmanuel Tetaud
- CNRS UMR 5095, Institut de Biochimie Génétique et Cellulaire, Bordeaux, France
- Université Bordeaux Segalen, Bordeaux, France
| | - Magali Thonnus
- CNRS UMR 5234, Bordeaux, France
- Université Bordeaux Segalen, Bordeaux, France
| | - Bénédicte Salin
- CNRS UMR 5095, Institut de Biochimie Génétique et Cellulaire, Bordeaux, France
- Université Bordeaux Segalen, Bordeaux, France
| | - Fanny Boissier
- CNRS UMR 5095, Institut de Biochimie Génétique et Cellulaire, Bordeaux, France
- Université Bordeaux Segalen, Bordeaux, France
| | - Corinne Blancard
- CNRS UMR 5095, Institut de Biochimie Génétique et Cellulaire, Bordeaux, France
- Université Bordeaux Segalen, Bordeaux, France
| | - Cécile Sauvanet
- CNRS UMR 5095, Institut de Biochimie Génétique et Cellulaire, Bordeaux, France
- Université Bordeaux Segalen, Bordeaux, France
| | | | - Benoît Espiau
- CNRS-EPHE USR 3278, Papetoai, Moorea, Polynésie Française
| | - Annelise Sahin
- CNRS UMR 5234, Bordeaux, France
- Université Bordeaux Segalen, Bordeaux, France
| | - Gilles Merlin
- CNRS UMR 5290, Montpellier, France
- Université Montpellier 1, Montpellier, France
- Centre Hospitalier Universitaire La Colombière, Montpellier, France
- IRD 224, Montpellier, France
- * E-mail:
| |
Collapse
|
55
|
Vannier C, Pesty A, San-Roman MJ, Schmidt AA. The Bin/amphiphysin/Rvs (BAR) domain protein endophilin B2 interacts with plectin and controls perinuclear cytoskeletal architecture. J Biol Chem 2013; 288:27619-27637. [PMID: 23921385 DOI: 10.1074/jbc.m113.485482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Proteins of the Bin/amphiphysin/Rvs (BAR) domain superfamily are essential in controlling the shape and dynamics of intracellular membranes. Here, we present evidence for the unconventional function of a member of the endophilin family of BAR and Src homology 3 domain-containing proteins, namely endophilin B2, in the perinuclear organization of intermediate filaments. Using mass spectrometry analysis based on capturing endophilin B2 partners in in situ pre-established complexes in cells, we unravel the interaction of endophilin B2 with plectin 1, a variant of the cytoskeleton linker protein plectin as well as with vimentin. Endophilin B2 directly binds the N-terminal region of plectin 1 via Src homology 3-mediated interaction and vimentin indirectly via plectin-mediated interaction. The relevance of these interactions is strengthened by the selective and drastic reorganization of vimentin around nuclei upon overexpression of endophilin B2 and by the extensive colocalization of both proteins in a meshwork of perinuclear filamentous structures. By generating mutants of the endophilin B2 BAR domain, we show that this phenotype requires the BAR-mediated membrane binding activity of endophilin B2. Plectin 1 or endophilin B2 knockdown using RNA interference disturbed the perinuclear organization of vimentin. Altogether, these data suggest that the endophilin B2-plectin 1 complex functions as a membrane-anchoring device organizing and stabilizing the perinuclear network of vimentin filaments. Finally, we present evidence for the involvement of endophilin B2 and plectin 1 in nuclear positioning in individual cells. This points to the potential importance of the endophilin B2-plectin complex in the biological functions depending on nuclear migration and positioning.
Collapse
Affiliation(s)
- Christian Vannier
- From CNRS, UMR7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion, F-75205 Paris Cedex 13, France
| | - Arlette Pesty
- From CNRS, UMR7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion, F-75205 Paris Cedex 13, France
| | - Mabel Jouve San-Roman
- From CNRS, UMR7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion, F-75205 Paris Cedex 13, France
| | - Anne A Schmidt
- From CNRS, UMR7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, 15 Rue Hélène Brion, F-75205 Paris Cedex 13, France.
| |
Collapse
|
56
|
Neumann S, Schmid SL. Dual role of BAR domain-containing proteins in regulating vesicle release catalyzed by the GTPase, dynamin-2. J Biol Chem 2013; 288:25119-25128. [PMID: 23861397 DOI: 10.1074/jbc.m113.490474] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Dynamin-2 (Dyn2) is ubiquitously expressed and catalyzes membrane fission during clathrin-mediated endocytosis in nonneuronal cells. We have previously shown that Dyn2 inefficiently generates membrane curvature and only mediates fission of highly curved membranes. This led to the hypothesis that other endocytic accessory proteins (EAPs) generate curvature needed to sculpt a sufficiently narrow neck to trigger Dyn2 assembly and fission. Candidates for this activity are EAPs that bind to the dynamin proline/arginine-rich domain (PRD) through their SH3 (src homology-3) domains and also encode curvature-generating BAR (Bin/Amphiphysin/Rvs) domains. We show that at low concentrations, amphiphysin and endophilin, but not SNX9 or the curvature-generating epsin N-terminal homology (ENTH) domain, are able to generate tubules from planar membrane templates and to synergize with Dyn2ΔPRD to catalyze vesicle release. Unexpectedly, SH3-PRD interactions were inhibitory and reciprocally regulate scaffold assembly. Of the three proteins studied, only full-length amphiphysin functions synergistically with full-length Dyn2 to catalyze vesicle release. The differential activity of these proteins correlates with the relative potency of their positive, curvature-generating activity, and the negative regulatory effects mediated by SH3 domain interactions. Our findings reveal opportunities for the spatio-temporal coordination of membrane curvature generation, dynamin assembly, and fission during clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Sylvia Neumann
- From the Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Sandra L Schmid
- From the Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037.
| |
Collapse
|
57
|
Chang L, Kreko T, Davison H, Cusmano T, Wu Y, Rothenfluh A, Eaton BA. Normal dynactin complex function during synapse growth in Drosophila requires membrane binding by Arfaptin. Mol Biol Cell 2013; 24:1749-64, S1-5. [PMID: 23596322 PMCID: PMC3667727 DOI: 10.1091/mbc.e12-09-0697] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 04/04/2013] [Accepted: 04/08/2013] [Indexed: 01/11/2023] Open
Abstract
Mutations in DCTN1, a component of the dynactin complex, are linked to neurodegenerative diseases characterized by a broad collection of neuropathologies. Because of the pleiotropic nature of dynactin complex function within the neuron, defining the causes of neuropathology in DCTN1 mutants has been difficult. We combined a genetic screen with cellular assays of dynactin complex function to identify genes that are critical for dynactin complex function in the nervous system. This approach identified the Drosophila homologue of Arfaptin, a multifunctional protein that has been implicated in membrane trafficking. We find that Arfaptin and the Drosophila DCTN1 homologue, Glued, function in the same pathway during synapse growth but not during axonal transport or synapse stabilization. Arfaptin physically associates with Glued and other dynactin complex components in the nervous system of both flies and mice and colocalizes with Glued at the Golgi in motor neurons. Mechanistically, membrane binding by Arfaptin mediates membrane association of the dynactin complex in motor neurons and is required for normal synapse growth. Arfaptin represents a novel dynactin complex-binding protein that specifies dynactin complex function during synapse growth.
Collapse
Affiliation(s)
- Leo Chang
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Tabita Kreko
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Holly Davison
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Tim Cusmano
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Yimin Wu
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Adrian Rothenfluh
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Benjamin A. Eaton
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| |
Collapse
|
58
|
Arf1 and membrane curvature cooperate to recruit Arfaptin2 to liposomes. PLoS One 2013; 8:e62963. [PMID: 23638170 PMCID: PMC3639266 DOI: 10.1371/journal.pone.0062963] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/27/2013] [Indexed: 11/19/2022] Open
Abstract
Arfaptin2 contains a Bin/Amphiphysin/Rvs (BAR) domain and directly interacts with proteins of the Arf/Arl family in their active GTP-bound state. It has been proposed that BAR domains are able to sense membrane curvature and to induce membrane tubulation. We report here that active Arf1 is required for the recruitment of Arfaptin2 to artificial liposomes mimicking the Golgi apparatus lipid composition. The Arf1-dependent recruitment of Arfaptin2 increases with membrane curvature, while the recruitment of Arf1 itself is not sensitive to curvature. At high protein concentrations, the binding of Arfaptin2 induces membrane tubulation. Finally, membrane-bound Arfaptin2 is released from the liposome when ArfGAP1 catalyzes the hydrolysis of GTP to GDP in Arf1. These results show that both Arf1 activation and high membrane curvature are required for efficient recruitment of Arfaptin2 to membranes.
Collapse
|
59
|
Adult neuronal Arf6 controls ethanol-induced behavior with Arfaptin downstream of Rac1 and RhoGAP18B. J Neurosci 2013; 32:17706-13. [PMID: 23223291 DOI: 10.1523/jneurosci.1944-12.2012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Alcohol use disorders affect millions of individuals. However, the genes and signaling pathways involved in behavioral ethanol responses and addiction are poorly understood. Here we identify a conserved biochemical pathway that underlies the sedating effects of ethanol in Drosophila. Mutations in the Arf6 small GTPase signaling pathway cause hypersensitivity to ethanol-induced sedation. We show that Arf6 functions in the adult nervous system to control ethanol-induced behavior. We also find that the Drosophila Arfaptin protein directly binds to the activated forms of Arf6 and Rac1 GTPases, and mutants in Arfaptin also display ethanol sensitivity. Arf6 acts downstream of Rac1 and Arfaptin to regulate ethanol-induced behaviors, and we thus demonstrate that this conserved Rac1/Arfaptin/Arf6 pathway is a major mediator of ethanol-induced behavioral responses.
Collapse
|
60
|
Abstract
Small GTPases are versatile temporal and spatial regulators of virtually all cellular processes including signal transduction, cytoskeleton dynamics and membrane trafficking. They function as molecular switches, aided by a multitude of regulatory and effector proteins that link them into functional networks. A picture is beginning to emerge whereupon scaffold proteins with many functional domains perform the regulatory and effector functions, thus allowing the ordered recruitment and activation of small GTPases. This leads to the formation of scaffolding patches that coordinate cargo concentration and capture, with the recruitment and activation of the membrane tethering complexes and fusion regulators. This review will focus on the crosstalk of Arf and Rab GTPases at the Golgi complex and the scaffolds that facilitate their activation during trafficking of sensory receptors to primary cilia. The evolutionary conservation of the GTPase cascades in ciliogenesis and yeast budding will be discussed.
Collapse
Affiliation(s)
- Dusanka Deretic
- Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
61
|
Tsai YR, Huang LJ, Lin HY, Hung YJ, Lee MR, Kuo SC, Hsu MF, Wang JP. Inhibition of formyl peptide-stimulated phospholipase D activation by Fal-002-2 via blockade of the Arf6, RhoA and protein kinase C signaling pathways in rat neutrophils. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:507-19. [PMID: 23525454 DOI: 10.1007/s00210-013-0851-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/11/2013] [Indexed: 01/09/2023]
Abstract
Three recently developed selective phospholipase D (PLD) inhibitors N-(2-(4-(2-oxo-2,3-dihydro-1H-benzo[d]imidazol-1-yl)piperidin-1-yl)ethyl)-2-naphthamide (VU0155056), (S)-N-(1-(4-(5-chloro-2-oxo-2,3-dihydro-1H-benzo[d]imidazol-1-yl)piperidin-1-yl)propan-2-yl)-2-naphthamide (VU0155069), and N-(2-(4-oxo-1-phenyl-1,3,8-triazaspiro[4,5]decan-8-yl)ethyl)quinoline-3-carboxamide (VU0285655-1) inhibited O2 (•-) generation in formyl-Met-Leu-Phe (fMLP)-stimulated rat neutrophils. A novel 2-phenyl-4-quinolone compound 6-chloro-2-(2-chlorophenyl)-4-oxo-1,4-dihydroquinoline-3-carboxylate (Fal-002-2), which inhibited O2 (•-) generation, also reduced the fMLP- but not phorbol ester-stimulated PLD activity (IC50 16.0 ± 5.0 μM). Fal-002-2 attenuated the interaction of PLD1 with ADP-ribosylation factor (Arf) 6, Ras homology (Rho) A and protein kinase C (PKC) isoforms (α, βI, and βII), and also inhibited the membrane recruitment of Arf6 and RhoA in fMLP-stimulated neutrophils, but not in GTPγS-stimulated cell-free system. The cellular levels of GTP-bound Arf6 and GTP-bound RhoA were reduced by Fal-002-2. Fal-002-2 also attenuated the membrane recruitment of Rho-associated protein kinase 1, phosphorylation of myosin light chain 2 at Thr18/Ser19 and PLD1 at Thr147, and the interaction of Arf6 with both arfaptin 1 and phosphatidylinositol 4-phosphate 5-kinase 1A. The association between RhoA and Vav, the interaction of Vav with both Lyn and Lck, the membrane recruitment of Vav, and the phosphorylation of Vav at Tyr174, but not Src family at Tyr416, were all attenuated by Fal-002-2 in fMLP-stimulated neutrophils. These results indicate that Fal-002-2 is not a direct PLD inhibitor, but the inhibition of fMLP-stimulated PLD activity by Fal-002-2, which partly accounts for its suppression of O2 (•-) generation, is attributable to the blockade of both Arf6 and RhoA activation and attenuation of the interaction of Arf6, RhoA and PKC isoforms with PLD1 in rat neutrophils.
Collapse
Affiliation(s)
- Ya-Ru Tsai
- Department of Medical Research, Taichung Veterans General Hospital, 160, Section 3, Chung Kang Road, Taichung, 407, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Behera PM, Behera DK, Panda A, Dixit A, Padhi P. In silico expressed sequence tag analysis in identification of probable diabetic genes as virtual therapeutic targets. BIOMED RESEARCH INTERNATIONAL 2013; 2013:704818. [PMID: 23509765 PMCID: PMC3582052 DOI: 10.1155/2013/704818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/12/2012] [Accepted: 12/17/2012] [Indexed: 11/18/2022]
Abstract
The expressed sequence tags (ESTs) are major entities for gene discovery, molecular transcripts, and single nucleotide polymorphism (SNPs) analysis as well as functional annotation of putative gene products. In our quest for identification of novel diabetic genes as virtual targets for type II diabetes, we searched various publicly available databases and found 7 reported genes. The in silico EST analysis of these reported genes produced 6 consensus contigs which illustrated some good matches to a number of chromosomes of the human genome. Again the conceptual translation of these contigs produced 3 protein sequences. The functional and structural annotations of these proteins revealed some important features which may lead to the discovery of novel therapeutic targets for the treatment of diabetes.
Collapse
Affiliation(s)
- Pabitra Mohan Behera
- Centre of Biotechnology, Siksha O Anusandhan University, Bhubaneswar, Odisha 751030, India
| | - Deepak Kumar Behera
- Hi-Tech Research and Development Centre, Konark Institute of Science and Technology, Techno Park, Jatni, Bhubaneswar, Odisha 752050, India
| | - Aparajeya Panda
- Hi-Tech Research and Development Centre, Konark Institute of Science and Technology, Techno Park, Jatni, Bhubaneswar, Odisha 752050, India
| | - Anshuman Dixit
- Department of Translational Research and Technology Development, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha 751023, India
| | - Payodhar Padhi
- Hi-Tech Research and Development Centre, Konark Institute of Science and Technology, Techno Park, Jatni, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
63
|
Chen Y, Aardema J, Corey SJ. Biochemical and functional significance of F-BAR domain proteins interaction with WASP/N-WASP. Semin Cell Dev Biol 2013; 24:280-6. [PMID: 23384583 DOI: 10.1016/j.semcdb.2013.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 01/16/2013] [Indexed: 01/17/2023]
Abstract
The Bin-Amphiphysin-Rvs (BAR) domain family of proteins includes groups which promote positive (classical BAR, N-BAR, and F-BAR) and negative (I-BAR) membrane deformation. Of these groups, the F-BAR subfamily is the most diverse in its biochemical properties. F-BAR domain proteins dimerize to form a tight scaffold about the membrane. The F-BAR domain provides a banana-shaped, alpha-helical structure that senses membrane curvature. Different types of F-BAR domain proteins contain tyrosine kinase or GTPase activities; some interact with phosphatases and RhoGTPases. Most possess an SH3 domain that facilitates the recruitment and activation of WASP/N-WASP. Thus, F-BAR domain proteins affect remodeling of both membrane and the actin cytoskeleton. The purpose of this review is to highlight the role of F-BAR proteins in coupling WASP/N-WASP to cytoskeletal remodeling. A role for F-BAR/WASP interaction in human diseases affecting nervous, blood, and neoplastic tissues is discussed.
Collapse
Affiliation(s)
- Yolande Chen
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, United States
| | | | | |
Collapse
|
64
|
Chen PW, Jian X, Yoon HY, Randazzo PA. ARAP2 signals through Arf6 and Rac1 to control focal adhesion morphology. J Biol Chem 2013; 288:5849-60. [PMID: 23295182 DOI: 10.1074/jbc.m112.415778] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Focal adhesions (FAs) are dynamic structures that connect the actin cytoskeleton with the extracellular matrix. At least six ADP-ribosylation factor (Arf) GTPase-activating proteins (GAPs), including ARAP2 (an Arf6 GAP), are implicated in regulation of FAs but the mechanisms for most are not well defined. Although Rac1 has been reported to function downstream of Arf6 to control membrane ruffling and cell migration, this pathway has not been directly examined as a regulator of FAs. Here we test the hypothesis that ARAP2 promotes the growth of FAs by converting Arf6·GTP to Arf6·GDP thereby preventing the activation of the Rho family GTP-binding protein Rac1. Reduced expression of ARAP2 decreased the number and size of FAs in cells and increased cellular Arf6·GTP and Rac1·GTP levels. Overexpression of ARAP2 had the opposite effects. The effects of ARAP2 on FAs and Rac1 were dependent on a functional ArfGAP domain. Constitutively active Arf6 affected FAs in the same way as did reduced ARAP2 expression and dominant negative mutants of Arf6 and Rac1 reversed the effect of reduced ARAP2 expression. However, neither dominant negative Arf6 nor Rac1 had the same effect as ARAP2 overexpression. We conclude that changes in Arf6 and Rac1 activities are necessary but not sufficient for ARAP2 to promote the growth of FAs and we speculate that ARAP2 has additional functions that are effector in nature to promote or stabilize FAs.
Collapse
Affiliation(s)
- Pei-Wen Chen
- Laboratory of Cellular and Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
65
|
King GJ, Stöckli J, Hu SH, Winnen B, Duprez WGA, Meoli CC, Junutula JR, Jarrott RJ, James DE, Whitten AE, Martin JL. Membrane curvature protein exhibits interdomain flexibility and binds a small GTPase. J Biol Chem 2012; 287:40996-1006. [PMID: 23055524 DOI: 10.1074/jbc.m112.349803] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The APPL1 and APPL2 proteins (APPL (adaptor protein, phosphotyrosine interaction, pleckstrin homology (PH) domain, and leucine zipper-containing protein)) are localized to their own endosomal subcompartment and interact with a wide range of proteins and small molecules at the cell surface and in the nucleus. They play important roles in signal transduction through their ability to act as Rab effectors. (Rabs are a family of Ras GTPases involved in membrane trafficking.) Both APPL1 and APPL2 comprise an N-terminal membrane-curving BAR (Bin-amphiphysin-Rvs) domain linked to a PH domain and a C-terminal phosphotyrosine-binding domain. The structure and interactions of APPL1 are well characterized, but little is known about APPL2. Here, we report the crystal structure and low resolution solution structure of the BARPH domains of APPL2. We identify a previously undetected hinge site for rotation between the two domains and speculate that this motion may regulate APPL2 functions. We also identified Rab binding partners of APPL2 and show that these differ from those of APPL1, suggesting that APPL-Rab interaction partners have co-evolved over time. Isothermal titration calorimetry data reveal the interaction between APPL2 and Rab31 has a K(d) of 140 nM. Together with other biophysical data, we conclude the stoichiometry of the complex is 2:2.
Collapse
Affiliation(s)
- Gordon J King
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Zhu C, Das SL, Baumgart T. Nonlinear sorting, curvature generation, and crowding of endophilin N-BAR on tubular membranes. Biophys J 2012; 102:1837-45. [PMID: 22768939 DOI: 10.1016/j.bpj.2012.03.039] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 03/10/2012] [Accepted: 03/20/2012] [Indexed: 11/19/2022] Open
Abstract
The curvature of biological membranes is controlled by membrane-bound proteins. For example, during endocytosis, the sorting of membrane components, vesicle budding, and fission from the plasma membrane are mediated by adaptor and accessory proteins. Endophilin is a peripherally binding membrane protein that functions as an endocytic accessory protein. Endophilin's membrane tubulation capacity is well known. However, to understand the thermodynamic and mechanical aspects of endophilin function, experimental measurements need to be compared to quantitative theoretical models. We present measurements of curvature sorting and curvature generation of the endophilin A1 N-BAR domain on tubular membranes pulled from giant unilamellar vesicles. At low concentration, endophilin functions primarily as a membrane curvature sensor; at high concentrations, it also generates curvature. We determine the spontaneous curvature induced by endophilin and observe sigmoidal curvature/composition coupling isotherms that saturate at high membrane tensions and protein solution concentrations. The observation of saturation is supported by a strong dependence of lateral diffusion coefficients on protein density on the tether membrane. We develop a nonlinear curvature/composition coupling model that captures our experimental observations. Our model predicts a curvature-induced phase transition among two states with varying protein density and membrane curvature. This transition could act as a switch during endocytosis.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
67
|
Membrane curvature and its generation by BAR proteins. Trends Biochem Sci 2012; 37:526-33. [PMID: 23058040 DOI: 10.1016/j.tibs.2012.09.001] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 01/26/2023]
Abstract
Membranes are flexible barriers that surround the cell and its compartments. To execute vital functions such as locomotion or receptor turnover, cells need to control the shapes of their membranes. In part, this control is achieved through membrane-bending proteins, such as the Bin/amphiphysin/Rvs (BAR) domain proteins. Many open questions remain about the mechanisms by which membrane-bending proteins function. Addressing this shortfall, recent structures of BAR protein:membrane complexes support existing mechanistic models, but also produced novel insights into how BAR domain proteins sense, stabilize, and generate curvature. Here we review these recent findings, focusing on how BAR proteins interact with the membrane, and how the resulting scaffold structures might aid the recruitment of other proteins to the sites where membranes are bent.
Collapse
|
68
|
Gehart H, Goginashvili A, Beck R, Morvan J, Erbs E, Formentini I, De Matteis M, Schwab Y, Wieland F, Ricci R. The BAR Domain Protein Arfaptin-1 Controls Secretory Granule Biogenesis at the trans-Golgi Network. Dev Cell 2012; 23:756-68. [DOI: 10.1016/j.devcel.2012.07.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/02/2012] [Accepted: 07/24/2012] [Indexed: 12/29/2022]
|
69
|
Nakamura K, Man Z, Xie Y, Hanai A, Makyio H, Kawasaki M, Kato R, Shin HW, Nakayama K, Wakatsuki S. Structural basis for membrane binding specificity of the Bin/Amphiphysin/Rvs (BAR) domain of Arfaptin-2 determined by Arl1 GTPase. J Biol Chem 2012; 287:25478-89. [PMID: 22679020 DOI: 10.1074/jbc.m112.365783] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Membrane-sculpting BAR (Bin/Amphiphysin/Rvs) domains form a crescent-shaped homodimer that can sense and induce membrane curvature through its positively charged concave face. We have recently shown that Arfaptin-2, which was originally identified as a binding partner for the Arf and Rac1 GTPases, binds to Arl1 through its BAR domain and is recruited onto Golgi membranes. There, Arfaptin-2 induces membrane tubules. Here, we report the crystal structure of the Arfaptin-2 BAR homodimer in complex with two Arl1 molecules bound symmetrically to each side, leaving the concave face open for membrane association. The overall structure of the Arl1·Arfaptin-2 BAR complex closely resembles that of the PX-BAR domain of sorting nexin 9, suggesting similar mechanisms underlying BAR domain targeting to specific organellar membranes. The Arl1·Arfaptin-2 BAR structure suggests that one of the two Arl1 molecules competes with Rac1, which binds to the concave face of the Arfaptin-2 BAR homodimer and may hinder its membrane association.
Collapse
Affiliation(s)
- Kensuke Nakamura
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, KEK, Tsukuba, Ibaraki 305-0801, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Wong KA, Wilson J, Russo A, Wang L, Okur MN, Wang X, Martin NP, Scappini E, Carnegie GK, O'Bryan JP. Intersectin (ITSN) family of scaffolds function as molecular hubs in protein interaction networks. PLoS One 2012; 7:e36023. [PMID: 22558309 PMCID: PMC3338775 DOI: 10.1371/journal.pone.0036023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/28/2012] [Indexed: 11/29/2022] Open
Abstract
Members of the intersectin (ITSN) family of scaffold proteins consist of multiple modular domains, each with distinct ligand preferences. Although ITSNs were initially implicated in the regulation of endocytosis, subsequent studies have revealed a more complex role for these scaffold proteins in regulation of additional biochemical pathways. In this study, we performed a high throughput yeast two-hybrid screen to identify additional pathways regulated by these scaffolds. Although several known ITSN binding partners were identified, we isolated more than 100 new targets for the two mammalian ITSN proteins, ITSN1 and ITSN2. We present the characterization of several of these new targets which implicate ITSNs in the regulation of the Rab and Arf GTPase pathways as well as regulation of the disrupted in schizophrenia 1 (DISC1) interactome. In addition, we demonstrate that ITSN proteins form homomeric and heteromeric complexes with each other revealing an added level of complexity in the function of these evolutionarily conserved scaffolds.
Collapse
Affiliation(s)
- Katy A. Wong
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- UIC Cancer Center, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Jessica Wilson
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- UIC Cancer Center, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Angela Russo
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- UIC Cancer Center, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Li Wang
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Mustafa Nazir Okur
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- UIC Cancer Center, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Xuerong Wang
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- UIC Cancer Center, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Negin P. Martin
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Erica Scappini
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, United States of America
| | - Graeme K. Carnegie
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - John P. O'Bryan
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- UIC Cancer Center, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
71
|
Oh E, Robinson I. Barfly: sculpting membranes at the Drosophila neuromuscular junction. Dev Neurobiol 2012; 72:33-56. [PMID: 21630471 DOI: 10.1002/dneu.20923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ability of a cell to change the shape of its membranes is intrinsic to many cellular functions. Proteins that can alter or recognize curved membrane structures and those that can act to recruit other proteins which stabilize the membrane curvature are likely to be essential in cell functions. The BAR (Bin, amphiphysin, RVS167 homology) domain is a protein domain that can either induce lipidic membranes to curve or can sense curved membranes. BAR domains are found in several proteins at neuronal synapses. We will review BAR domain structure and the role that BAR domain containing proteins play in regulating the morphology and function of the Drosophila neuromuscular junction. In flies the BAR domain containing proteins, endophilin and syndapin affect synaptic vesicle endocytosis, whereas CIP4, dRich, nervous wreck and syndapin affect synaptic morphology. We will review the growing evidence implicating mutations in BAR domain containing proteins being the cause of human pathologies.
Collapse
Affiliation(s)
- Eugene Oh
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | |
Collapse
|
72
|
Knezevic I, Predescu D, Bardita C, Wang M, Sharma T, Keith B, Neamu R, Malik AB, Predescu S. Regulation of dynamin-2 assembly-disassembly and function through the SH3A domain of intersectin-1s. J Cell Mol Med 2012; 15:2364-76. [PMID: 21129155 PMCID: PMC3072443 DOI: 10.1111/j.1582-4934.2010.01226.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Intersectin-1s (ITSN-1s), a five Src homology 3 (SH3) domain-containing protein, is critically required for caveolae and clathrin-mediated endocytosis (CME), due to its interactions with dynamin (dyn). Of the five SH3A-E domains, SH3A is unique because of its high affinity for dyn and potent inhibition of CME. However, the molecular mechanism by which SH3A integrates in the overall function of ITSN-1s to regulate the endocytic process is not understood. Using biochemical and functional approaches as well as high-resolution electron microscopy, we show that SH3A exogenously expressed in human lung endothelial cells caused abnormal endocytic structures, distorted caveolae clusters, frequent staining-dense rings around the caveolar necks and 60% inhibition of caveolae internalization. In vitro studies further revealed that SH3A, similar to full-length ITSN-1s stimulates dyn2 oligomerization and guanosine triphosphatase (GTP)ase activity, effects not detected when other SH3 domains of ITSN-1s were used as controls. Strikingly, in the presence of SH3A, dyn2-dyn2 interactions are stabilized and despite continuous GTP hydrolysis, dyn2 oligomers cannot disassemble. SH3A may hold up caveolae release from the plasma membrane and formation of free-transport vesicles, by prolonging the lifetime of assembled dyn2. Altogether, our results indicate that ITSN-1s, via its SH3A has the unique ability to regulate dyn2 assembly-disassembly and function during endocytosis.
Collapse
Affiliation(s)
- Ivana Knezevic
- Department of Pharmacology, Rush University Medical Center, Medical College, Vascular Biology Section, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Shin HW, Takatsu H, Nakayama K. Mechanisms of membrane curvature generation in membrane traffic. MEMBRANES 2012; 2:118-33. [PMID: 24957965 PMCID: PMC4021884 DOI: 10.3390/membranes2010118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 02/20/2012] [Accepted: 02/21/2012] [Indexed: 11/17/2022]
Abstract
During the vesicular trafficking process, cellular membranes undergo dynamic morphological changes, in particular at the vesicle generation and fusion steps. Changes in membrane shape are regulated by small GTPases, coat proteins and other accessory proteins, such as BAR domain-containing proteins. In addition, membrane deformation entails changes in the lipid composition as well as asymmetric distribution of lipids over the two leaflets of the membrane bilayer. Given that P4-ATPases, which catalyze unidirectional flipping of lipid molecules from the exoplasmic to the cytoplasmic leaflets of the bilayer, are crucial for the trafficking of proteins in the secretory and endocytic pathways, changes in the lipid composition are involved in the vesicular trafficking process. Membrane remodeling is under complex regulation that involves the composition and distribution of lipids as well as assembly of proteins.
Collapse
Affiliation(s)
- Hye-Won Shin
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Hiroyuki Takatsu
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
74
|
The BAR Domain Superfamily Proteins from Subcellular Structures to Human Diseases. MEMBRANES 2012; 2:91-117. [PMID: 24957964 PMCID: PMC4021885 DOI: 10.3390/membranes2010091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 02/07/2012] [Accepted: 02/15/2012] [Indexed: 12/11/2022]
Abstract
Eukaryotic cells have complicated membrane systems. The outermost plasma membrane contains various substructures, such as invaginations and protrusions, which are involved in endocytosis and cell migration. Moreover, the intracellular membrane compartments, such as autophagosomes and endosomes, are essential for cellular viability. The Bin-Amphiphysin-Rvs167 (BAR) domain superfamily proteins are important players in membrane remodeling through their structurally determined membrane binding surfaces. A variety of BAR domain superfamily proteins exist, and each family member appears to be involved in the formation of certain subcellular structures or intracellular membrane compartments. Most of the BAR domain superfamily proteins contain SH3 domains, which bind to the membrane scission molecule, dynamin, as well as the actin regulatory WASP/WAVE proteins and several signal transduction molecules, providing possible links between the membrane and the cytoskeleton or other machineries. In this review, we summarize the current information about each BAR superfamily protein with an SH3 domain(s). The involvement of BAR domain superfamily proteins in various diseases is also discussed.
Collapse
|
75
|
Gortat A, San-Roman MJ, Vannier C, Schmidt AA. Single point mutation in Bin/Amphiphysin/Rvs (BAR) sequence of endophilin impairs dimerization, membrane shaping, and Src homology 3 domain-mediated partnership. J Biol Chem 2011; 287:4232-47. [PMID: 22167186 DOI: 10.1074/jbc.m111.325837] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bin/Amphiphysin/Rvs (BAR) domain-containing proteins are essential players in the dynamics of intracellular compartments. The BAR domain is an evolutionarily conserved dimeric module characterized by a crescent-shaped structure whose intrinsic curvature, flexibility, and ability to assemble into highly ordered oligomers contribute to inducing the curvature of target membranes. Endophilins, diverging into A and B subgroups, are BAR and SH3 domain-containing proteins. They exert activities in membrane dynamic processes such as endocytosis, autophagy, mitochondrial dynamics, and permeabilization during apoptosis. Here, we report on the involvement of the third α-helix of the endophilin A BAR sequence in dimerization and identify leucine 215 as a key residue within a network of hydrophobic interactions stabilizing the entire BAR dimer interface. With the combination of N-terminal truncation retaining the high dimerization capacity of the third α-helices of endophilin A and leucine 215 substitution by aspartate (L215D), we demonstrate the essential role of BAR sequence-mediated dimerization on SH3 domain partnership. In comparison with wild type, full-length endophilin A2 heterodimers with one protomer bearing the L215D substitution exhibit very significant changes in membrane binding and shaping activities as well as a dramatic decrease of SH3 domain partnership. This suggests that subtle changes in the conformation and/or rigidity of the BAR domain impact both the control of membrane curvature and downstream binding to effectors. Finally, we show that expression, in mammalian cells, of endophilin A2 bearing the L215D substitution impairs the endocytic recycling of transferrin receptors.
Collapse
Affiliation(s)
- Anna Gortat
- CNRS, UMR7592, Institut Jacques Monod, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | | | | | | |
Collapse
|
76
|
Rao Y, Haucke V. Membrane shaping by the Bin/amphiphysin/Rvs (BAR) domain protein superfamily. Cell Mol Life Sci 2011; 68:3983-93. [PMID: 21769645 PMCID: PMC11114942 DOI: 10.1007/s00018-011-0768-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 06/27/2011] [Accepted: 06/30/2011] [Indexed: 01/27/2023]
Abstract
BAR domain superfamily proteins have emerged as central regulators of dynamic membrane remodeling, thereby playing important roles in a wide variety of cellular processes, such as organelle biogenesis, cell division, cell migration, secretion, and endocytosis. Here, we review the mechanistic and structural basis for the membrane curvature-sensing and deforming properties of BAR domain superfamily proteins. Moreover, we summarize the present state of knowledge with respect to their regulation by autoinhibitory mechanisms or posttranslational modifications, and their interactions with other proteins, in particular with GTPases, and with membrane lipids. We postulate that BAR superfamily proteins act as membrane-deforming scaffolds that spatiotemporally orchestrate membrane remodeling.
Collapse
Affiliation(s)
- Yijian Rao
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- Present Address: Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Volker Haucke
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany
- NeuroCure Cluster of Excellence, Charité Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Leibniz-Institut für Molekulare Pharmakologie (FMP), Robert-Rössle-Straße 10, 13125 Berlin, Germany
| |
Collapse
|
77
|
Pirozzi F, Di Raimo FR, Zanni G, Bertini E, Billuart P, Tartaglione T, Tabolacci E, Brancaccio A, Neri G, Chiurazzi P. Insertion of 16 amino acids in the BAR domain of the oligophrenin 1 protein causes mental retardation and cerebellar hypoplasia in an Italian family. Hum Mutat 2011; 32:E2294-307. [PMID: 21796728 DOI: 10.1002/humu.21567] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 07/07/2011] [Indexed: 11/10/2022]
Abstract
We observed a three-generation family with two maternal cousins and an uncle affected by mental retardation (MR) with cerebellar hypoplasia. X-linked inheritance and the presence of cerebellar malformation suggested a mutation in the OPHN1 gene. In fact, mutational screening revealed a 2-bp deletion that abolishes a donor splicing site, resulting in the inclusion of the initial 48 nucleotides of intron 7 in the mRNA. This mutation determines the production of a mutant oligophrenin 1 protein with 16 extra amino acids inserted in-frame in the N-terminal BAR (Bin1/amphiphysin/Rvs167) domain. This is the first case of a mutation in OPHN1 that does not result in the production of a truncated protein or in its complete loss. OPHN1 (ARHGAP41) encodes a GTPase-activating (GAP) protein belonging to the GRAF subfamily characterized by an N-terminal BAR domain, followed by a pleckstrin-homology (PH) domain and the GAP domain. GRAF proteins play a role in endocytosis and are supposed to dimerize via their BAR domain, that induces membrane curvature. The extra 16 amino acids cause the insertion of 4.4 turns in the third alpha-helix of the BAR domain and apparently impair the protein function. In fact, the clinical phenotype of these patients is identical to that of patients with loss-of-function mutations.
Collapse
|
78
|
Kabaso D, Gongadze E, Jorgačevski J, Kreft M, Van Rienen U, Zorec R, Iglič A. Exploring the binding dynamics of BAR proteins. Cell Mol Biol Lett 2011; 16:398-411. [PMID: 21614490 PMCID: PMC6275656 DOI: 10.2478/s11658-011-0013-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 05/11/2011] [Indexed: 11/20/2022] Open
Abstract
We used a continuum model based on the Helfrich free energy to investigate the binding dynamics of a lipid bilayer to a BAR domain surface of a crescent-like shape of positive (e.g. I-BAR shape) or negative (e.g. F-BAR shape) intrinsic curvature. According to structural data, it has been suggested that negatively charged membrane lipids are bound to positively charged amino acids at the binding interface of BAR proteins, contributing a negative binding energy to the system free energy. In addition, the cone-like shape of negatively charged lipids on the inner side of a cell membrane might contribute a positive intrinsic curvature, facilitating the initial bending towards the crescent-like shape of the BAR domain. In the present study, we hypothesize that in the limit of a rigid BAR domain shape, the negative binding energy and the coupling between the intrinsic curvature of negatively charged lipids and the membrane curvature drive the bending of the membrane. To estimate the binding energy, the electric potential at the charged surface of a BAR domain was calculated using the Langevin-Bikerman equation. Results of numerical simulations reveal that the binding energy is important for the initial instability (i.e. bending of a membrane), while the coupling between the intrinsic shapes of lipids and membrane curvature could be crucial for the curvature-dependent aggregation of negatively charged lipids near the surface of the BAR domain. In the discussion, we suggest novel experiments using patch clamp techniques to analyze the binding dynamics of BAR proteins, as well as the possible role of BAR proteins in the fusion pore stability of exovesicles.
Collapse
Affiliation(s)
- Doron Kabaso
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000, Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
79
|
Qualmann B, Koch D, Kessels MM. Let's go bananas: revisiting the endocytic BAR code. EMBO J 2011; 30:3501-15. [PMID: 21878992 DOI: 10.1038/emboj.2011.266] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/15/2011] [Indexed: 12/27/2022] Open
Abstract
Against the odds of membrane resistance, members of the BIN/Amphiphysin/Rvs (BAR) domain superfamily shape membranes and their activity is indispensable for a plethora of life functions. While crystal structures of different BAR dimers advanced our understanding of membrane shaping by scaffolding and hydrophobic insertion mechanisms considerably, especially life-imaging techniques and loss-of-function studies of clathrin-mediated endocytosis with its gradually increasing curvature show that the initial idea that solely BAR domain curvatures determine their functions is oversimplified. Diagonal placing, lateral lipid-binding modes, additional lipid-binding modules, tilde shapes and formation of macromolecular lattices with different modes of organisation and arrangement increase versatility. A picture emerges, in which BAR domain proteins create macromolecular platforms, that recruit and connect different binding partners and ensure the connection and coordination of the different events during the endocytic process, such as membrane invagination, coat formation, actin nucleation, vesicle size control, fission, detachment and uncoating, in time and space, and may thereby offer mechanistic explanations for how coordination, directionality and effectiveness of a complex process with several steps and key players can be achieved.
Collapse
Affiliation(s)
- Britta Qualmann
- Institute for Biochemistry I, University Hospital Jena-Friedrich Schiller University Jena, Germany.
| | | | | |
Collapse
|
80
|
de Kreuk BJ, Nethe M, Fernandez-Borja M, Anthony EC, Hensbergen PJ, Deelder AM, Plomann M, Hordijk PL. The F-BAR domain protein PACSIN2 associates with Rac1 and regulates cell spreading and migration. J Cell Sci 2011; 124:2375-88. [PMID: 21693584 DOI: 10.1242/jcs.080630] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Rac1 GTPase controls cytoskeletal dynamics and is a key regulator of cell spreading and migration mediated by signaling through effector proteins, such as the PAK kinases and the Scar and WAVE proteins. We previously identified a series of regulatory proteins that associate with Rac1 through its hypervariable C-terminal domain, including the Rac1 activator β-Pix (also known as Rho guanine-nucleotide-exchange factor 7) and the membrane adapter caveolin-1. Here, we show that Rac1 associates, through its C-terminus, with the F-BAR domain protein PACSIN2, an inducer of membrane tubulation and a regulator of endocytosis. We show that Rac1 localizes with PACSIN2 at intracellular tubular structures and on early endosomes. Active Rac1 induces a loss of PACSIN2-positive tubular structures. By contrast, Rac1 inhibition results in an accumulation of PACSIN2-positive tubules. In addition, PACSIN2 appears to regulate Rac1 signaling; siRNA-mediated loss of PACSIN2 increases the levels of Rac1-GTP and promotes cell spreading and migration in a wound healing assay. Moreover, ectopic expression of PACSIN2 reduces Rac1-GTP levels in a fashion that is dependent on the PACSIN2-Rac1 interaction, on the membrane-tubulating capacity of PACSIN2 and on dynamin. These data identify the BAR-domain protein PACSIN2 as a Rac1 interactor that regulates Rac1-mediated cell spreading and migration.
Collapse
Affiliation(s)
- Bart-Jan de Kreuk
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Ziółkowska NE, Karotki L, Rehman M, Huiskonen JT, Walther TC. Eisosome-driven plasma membrane organization is mediated by BAR domains. Nat Struct Mol Biol 2011; 18:854-6. [PMID: 21685922 DOI: 10.1038/nsmb.2080] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Accepted: 04/27/2011] [Indexed: 11/09/2022]
Abstract
Plasma membranes are organized into domains of different protein and lipid composition. Eisosomes are key complexes for yeast plasma membrane organization, containing primarily Pil1 and Lsp1. Here we show that both proteins consist mostly of a banana-shaped BAR domain common to membrane sculpting proteins, most similar to the ones of amphiphysin, arfaptin 2 and endophilin 2. Our data reveal a previously unrecognized family of BAR-domain proteins involved in plasma membrane organization.
Collapse
Affiliation(s)
- Natasza E Ziółkowska
- Max Planck Institute of Biochemistry, Organelle Architecture and Dynamics, Martinsried, Germany
| | | | | | | | | |
Collapse
|
82
|
Emig D, Sander O, Mayr G, Albrecht M. Structure collisions between interacting proteins. PLoS One 2011; 6:e19581. [PMID: 21655095 PMCID: PMC3107212 DOI: 10.1371/journal.pone.0019581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 04/12/2011] [Indexed: 11/24/2022] Open
Abstract
Protein-protein interactions take place at defined binding interfaces. One protein may bind two or more proteins at different interfaces at the same time. So far it has been commonly accepted that non-overlapping interfaces allow a given protein to bind other proteins simultaneously while no collisions occur between the binding protein structures. To test this assumption, we performed a comprehensive analysis of structural protein interactions to detect potential collisions. Our results did not indicate cases of biologically relevant collisions in the Protein Data Bank of protein structures. However, we discovered a number of collisions that originate from alternative protein conformations or quaternary structures due to different experimental conditions.
Collapse
Affiliation(s)
- Dorothea Emig
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Oliver Sander
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Gabriele Mayr
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
| | - Mario Albrecht
- Department of Computational Biology and Applied Algorithmics, Max Planck Institute for Informatics, Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
83
|
Kabaso D, Gongadze E, Elter P, van Rienen U, Gimsa J, Kralj-Iglič V, Iglič A. Attachment of rod-like (BAR) proteins and membrane shape. Mini Rev Med Chem 2011; 11:272-82. [PMID: 21428902 PMCID: PMC3343385 DOI: 10.2174/138955711795305353] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 03/03/2011] [Accepted: 12/24/2010] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that cellular function depends on rod-like membrane proteins, among them Bin/Amphiphysin/Rvs (BAR) proteins may curve the membrane leading to physiologically important membrane invaginations and membrane protrusions. The membrane shaping induced by BAR proteins has a major role in various biological processes such as cell motility and cell growth. Different models of binding of BAR domains to the lipid bilayer are described. The binding includes hydrophobic insertion loops and electrostatic interactions between basic amino acids at the concave region of the BAR domain and negatively charged lipids. To shed light on the elusive binding dynamics, a novel experiment is proposed to expand the technique of single-molecule AFM for the traction of binding energy of a single BAR domain.
Collapse
Affiliation(s)
- D Kabaso
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, SI-1000 Ljubljana, Slovenia.
| | | | | | | | | | | | | |
Collapse
|
84
|
Prosser DC, Tran D, Schooley A, Wendland B, Ngsee JK. A novel, retromer-independent role for sorting nexins 1 and 2 in RhoG-dependent membrane remodeling. Traffic 2011; 11:1347-62. [PMID: 20604901 DOI: 10.1111/j.1600-0854.2010.01100.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The sorting nexins SNX1 and SNX2 are members of the retromer complex involved in protein sorting within the endocytic pathway. While retromer-dependent functions of SNX1 and SNX2 have been well documented, potential retromer-independent roles remain unclear. Here, we show that SNX1 and SNX2 interact with the Rac1 and RhoG guanine nucleotide exchange factor Kalirin-7. Simultaneous overexpression of SNX1 or SNX2 and Kalirin-7 in epithelial cells causes partial redistribution of both SNX isoforms to the plasma membrane, and results in RhoG-dependent lamellipodia formation that requires functional Phox homology (PX) and Bin/Amphiphysin/Rvs (BAR) domains of SNX, but is Rac1- and retromer-independent. Conversely, depletion of endogenous SNX1 or SNX2 inhibits Kalirin-7-mediated lamellipodia formation. Finally, we demonstrate that SNX1 and SNX2 interact directly with inactive RhoG, suggesting a novel role for these SNX proteins in recruiting an inactive Rho GTPase to its exchange factor.
Collapse
Affiliation(s)
- Derek C Prosser
- Department of Cellular and Molecular Medicine, Ottawa Hospital Research Institute, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada
| | | | | | | | | |
Collapse
|
85
|
Kwon E, Kim DY, Gross CA, Gross JD, Kim KK. The crystal structure Escherichia coli Spy. Protein Sci 2011; 19:2252-9. [PMID: 20799348 DOI: 10.1002/pro.489] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Escherichia coli spheroplast protein y (EcSpy) is a small periplasmic protein that is homologous with CpxP, an inhibitor of the extracytoplasmic stress response. Stress conditions such as spheroplast formation induce the expression of Spy via the Cpx or the Bae two-component systems in E. coli, though the function of Spy is unknown. Here, we report the crystal structure of EcSpy, which reveals a long kinked hairpin-like structure of four α-helices that form an antiparallel dimer. The dimer contains a curved oval shape with a highly positively charged concave surface that may function as a ligand binding site. Sequence analysis reveals that Spy is highly conserved over the Enterobacteriaceae family. Notably, three conserved regions that contain identical residues and two LTxxQ motifs are placed at the horizontal end of the dimer structure, stabilizing the overall fold. CpxP also contains the conserved sequence motifs and has a predicted secondary structure similar to Spy, suggesting that Spy and CpxP likely share the same fold.
Collapse
Affiliation(s)
- Eunju Kwon
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | | | | | | | | |
Collapse
|
86
|
Man Z, Kondo Y, Koga H, Umino H, Nakayama K, Shin HW. Arfaptins are localized to the trans-Golgi by interaction with Arl1, but not Arfs. J Biol Chem 2011; 286:11569-78. [PMID: 21239483 DOI: 10.1074/jbc.m110.201442] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arfaptins (arfaptin-1 and arfaptin-2/POR1) were originally identified as binding partners of the Arf small GTPases. Both proteins contain a BAR (Bin/Amphiphysin/Rvs) domain, which participates in membrane deformation. Here we show that arfaptins associate with trans-Golgi membranes. Unexpectedly, Arl1 (Arf-like 1), but not Arfs, determines the trans-Golgi association of arfaptins. We also demonstrate that arfaptins interact with Arl1 through their BAR domain-containing region and compete for Arl1 binding with golgin-97 and golgin-245/p230, both of which also bind to Arl1 through their GRIP (golgin-97/RanBP2/Imh1p/p230) domains. However, arfaptins and these golgins show only limited colocalization at the trans-Golgi. Time-lapse imaging of cells overexpressing fluorescent protein-tagged arfaptins and golgin-97 reveals that arfaptins, but not golgin-97, are included in vesicular and tubular structures emanating from the Golgi region. These observations indicate that arfaptins are recruited onto trans-Golgi membranes by interacting with Arl1, and capable of inducing membrane deformation via their BAR domains.
Collapse
Affiliation(s)
- Zhiqiu Man
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
87
|
Anitei M, Wassmer T, Stange C, Hoflack B. Bidirectional transport between the trans-Golgi network and the endosomal system. Mol Membr Biol 2010; 27:443-56. [DOI: 10.3109/09687688.2010.522601] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
88
|
He Y, Liwo A, Weinstein H, Scheraga HA. PDZ binding to the BAR domain of PICK1 is elucidated by coarse-grained molecular dynamics. J Mol Biol 2010; 405:298-314. [PMID: 21050858 DOI: 10.1016/j.jmb.2010.10.051] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 10/22/2010] [Accepted: 10/27/2010] [Indexed: 11/28/2022]
Abstract
A key regulator of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor traffic, PICK1 is known to interact with over 40 other proteins, including receptors, transporters and ionic channels, and to be active mostly as a homodimer. The current lack of a complete PICK1 structure determined at atomic resolution hinders the elucidation of its functional mechanisms. Here, we identify interactions between the component PDZ and BAR domains of PICK1 by calculating possible binding sites for the PDZ domain of PICK1 (PICK1-PDZ) to the homology-modeled, crescent-shaped dimer of the PICK1-BAR domain using multiplexed replica-exchange molecular dynamics (MREMD) and canonical molecular dynamics simulations with the coarse-grained UNRES force field. The MREMD results show that the preferred binding site for the single PDZ domain is the concave cavity of the BAR dimer. A second possible binding site is near the N-terminus of the BAR domain that is linked directly to the PDZ domain. Subsequent short canonical molecular dynamics simulations used to determine how the PICK1-PDZ domain moves to the preferred binding site on the BAR domain of PICK1 revealed that initial hydrophobic interactions drive the progress of the simulated binding. Thus, the concave face of the BAR dimer accommodates the PDZ domain first by weak hydrophobic interactions and then the PDZ domain slides to the center of the concave face, where more favorable hydrophobic interactions take over.
Collapse
Affiliation(s)
- Yi He
- Baker Laboratory of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301, USA
| | | | | | | |
Collapse
|
89
|
Chang LC, Huang TH, Chang CS, Tsai YR, Lin RH, Lee PW, Hsu MF, Huang LJ, Wang JP. Signaling mechanisms of inhibition of phospholipase D activation by CHS-111 in formyl peptide-stimulated neutrophils. Biochem Pharmacol 2010; 81:269-78. [PMID: 20965153 DOI: 10.1016/j.bcp.2010.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 10/07/2010] [Accepted: 10/08/2010] [Indexed: 11/25/2022]
Abstract
A selective phospholipase D (PLD) inhibitor 5-fluoro-2-indolyl des-chlorohalopemide (FIPI) inhibited the O(2)(-) generation and cell migration but not degranulation in formyl-Met-Leu-Phe (fMLP)-stimulated rat neutrophils. A novel benzyl indazole compound 2-benzyl-3-(4-hydroxymethylphenyl)indazole (CHS-111), which inhibited O(2)(-) generation and cell migration, also reduced the fMLP- but not phorbol ester-stimulated PLD activity (IC(50) 3.9±1.2μM). CHS-111 inhibited the interaction of PLD1 with ADP-ribosylation factor (Arf) 6 and Ras homology (Rho) A, and reduced the membrane recruitment of RhoA in fMLP-stimulated cells but not in GTPγS-stimulated cell-free system. CHS-111 reduced the cellular levels of GTP-bound RhoA, membrane recruitment of Rho-associated protein kinase 1 and the downstream myosin light chain 2 phosphorylation, and attenuated the interaction between phosphatidylinositol 4-phosphate 5-kinase (PIP5K) and Arf6, whereas it only slightly inhibited the guanine nucleotide exchange activity of human Dbs (DH/PH) protein and did not affect the arfaptin binding to Arf6. CHS-111 inhibited the interaction of RhoA with Vav, the membrane association and the phosphorylation of Vav. CHS-111 had no effect on the phosphorylation of Src family kinases (SFK) but attenuated the interaction of Vav with Lck, Hck, Fgr and Lyn. CHS-111 also inhibited the interaction of PLD1 with protein kinase C (PKC) α, βI and βII isoenzymes, and the phosphorylation of PLD1. These results indicate that inhibition of fMLP-stimulated PLD activity by CHS-111 is attributable to the blockade of RhoA activation via the interference with SFK-mediated Vav activation, attenuation of the interaction of Arf6 with PLD1 and PIP5K, and the activation of Ca(2+)-dependent PKC in rat neutrophils.
Collapse
Affiliation(s)
- Ling-Chu Chang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Campos-Parra A, Hernández-Cuevas N, Hernandez-Rivas R, Vargas M. EhNCABP166: A nucleocytoplasmic actin-binding protein from Entamoeba histolytica. Mol Biochem Parasitol 2010; 172:19-30. [DOI: 10.1016/j.molbiopara.2010.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/09/2010] [Accepted: 03/15/2010] [Indexed: 01/06/2023]
|
91
|
Masuda M, Mochizuki N. Structural characteristics of BAR domain superfamily to sculpt the membrane. Semin Cell Dev Biol 2010; 21:391-8. [DOI: 10.1016/j.semcdb.2010.01.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/07/2010] [Accepted: 01/08/2010] [Indexed: 11/28/2022]
|
92
|
Mizuno N, Jao CC, Langen R, Steven AC. Multiple modes of endophilin-mediated conversion of lipid vesicles into coated tubes: implications for synaptic endocytosis. J Biol Chem 2010; 285:23351-8. [PMID: 20484046 DOI: 10.1074/jbc.m110.143776] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endophilin A1 is a BAR (Bin/amphiphysin/Rvs) protein abundant in neural synapses that senses and induces membrane curvature, contributing to neck formation in presynaptic endocytic vesicles. To investigate its role in membrane remodeling, we used cryoelectron microscopy to characterize structural changes induced in lipid vesicles by exposure to endophilin. The vesicles convert rapidly to coated tubules whose morphology reflects the local concentration of endophilin. Their diameters and curvature resemble those of synaptic vesicles in situ. Three-dimensional reconstructions of quasicylindrical tubes revealed arrays of BAR dimers, flanked by densities that we equate with amphipathic helices whose folding and membrane insertion were attested by EPR. We also observed the compression of bulbous coated tubes into 70-A-wide cylindrical micelles, which appear to mimic the penultimate (hemi-fission) stage of endocytosis. Our findings suggest that the adaptability of endophilin-lipid interactions underlies dynamic changes of endocytic membranes.
Collapse
Affiliation(s)
- Naoko Mizuno
- Laboratory of Structural Biology, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
93
|
A hinge in the distal end of the PACSIN 2 F-BAR domain may contribute to membrane-curvature sensing. J Mol Biol 2010; 400:129-36. [PMID: 20471395 DOI: 10.1016/j.jmb.2010.05.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/03/2010] [Accepted: 05/05/2010] [Indexed: 11/23/2022]
Abstract
The protein kinase C and casein kinase 2 substrates in neurons (PACSINs) represent a subfamily of membrane-binding proteins characterized by an amino-terminal Bin-Amphiphysin-Rvs (F-BAR) domain. PACSINs link membrane trafficking with actin dynamics and regulate the localization of distinct cargo molecules. The F-BAR domain forms a dimer essential for lipid binding. We have obtained crystals of authentic murine PACSIN 2 that contain an ordered F-BAR domain, indicating that additional domains are flexibly connected to F-BAR. The structure shares similarity to other BAR domains and exhibits special features unique to PACSINs. These include the uneven distribution of charged residues on the concave molecular surface and a so-called wedge loop that is driven into the membrane upon binding of PACSIN. The murine PACSIN 2 F-BAR domain requires dimerization for sensing of curved membranes, and the present structure also provides a mechanism for higher-order oligomer formation. Importantly, comparison of murine with human and Drosophila PACSIN 2 F-BAR domains reveals stark differences in the orientation of distal helical segments leading to a wider crescent shape of murine PACSIN 2. We define hinge residues for these movements that may help PACSINs sense and concomitantly reinforce membrane curvature.
Collapse
|
94
|
Abstract
Bone resorption by osteoclasts depends on the assembly of a specialized, actin-rich adhesive 'sealing zone' that delimits the area designed for degradation. In this study, we show that the level of roughness of the underlying adhesive surface has a profound effect on the formation and stability of the sealing zone and the associated F-actin. As our primary model substrate, we use 'smooth' and 'rough' calcite crystals with average topography values of 12 nm and 530 nm, respectively. We show that the smooth surfaces induce the formation of small and unstable actin rings with a typical lifespan of approximately 8 minutes, whereas the sealing zones formed on the rough calcite surfaces are considerably larger, and remain stable for more than 6 hours. It was further observed that steps or sub-micrometer cracks on the smooth surface stimulate local ring formation, raising the possibility that similar imperfections on bone surfaces may stimulate local osteoclast resorptive activity. The mechanisms whereby the physical properties of the substrate influence osteoclast behavior and their involvement in osteoclast function are discussed.
Collapse
Affiliation(s)
- Dafna Geblinger
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
95
|
Abstract
The dynamic remolding of the actin cytoskeleton is a critical part of most cellular activities, and malfunction of cytoskeletal proteins results in various human diseases. The transition between two forms of actin, monomeric or G-actin and filamentous or F-actin, is tightly regulated in time and space by a large number of signaling, scaffolding and actin-binding proteins (ABPs). New ABPs are constantly being discovered in the post-genomic era. Most of these proteins are modular, integrating actin binding, protein-protein interaction, membrane-binding, and signaling domains. In response to extracellular signals, often mediated by Rho family GTPases, ABPs control different steps of actin cytoskeleton assembly, including filament nucleation, elongation, severing, capping, and depolymerization. This review summarizes structure-function relationships among ABPs in the regulation of actin cytoskeleton assembly.
Collapse
Affiliation(s)
- Sung Haeng Lee
- Chosun University School of Medicine, Department of Cellular and Molecular Medicine, Gwangju 501-759, Korea.
| | | |
Collapse
|
96
|
A mutational analysis of the endophilin-A N-BAR domain performed in living flies. PLoS One 2010; 5:e9492. [PMID: 20209138 PMCID: PMC2831065 DOI: 10.1371/journal.pone.0009492] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 02/11/2010] [Indexed: 12/15/2022] Open
Abstract
Background Endophilin is a cytoplasmic protein with an important function in clathrin-dependent endocytosis at synapses and elsewhere. Endophilin has a BAR (Bin/Amphiphysin/Rvs-homology) domain, which is implicated in the sensing and induction of membrane curvature. Previous structure-function studies of the endophilin-A BAR domain have almost exclusively been made in reduced systems, either in vitro or ex vivo in cultured cells. To extend and complement this work, we have analyzed the role played by the structural features of the endophilin-A BAR domain in Drosophila in vivo. Methodology/Principal Findings The study is based on genetic rescue of endophilin-A (endoA) null mutants with wild type or mutated endoA transgenes. We evaluated the viability of the rescuants, the locomotor behavior in adult flies and the neurotransmission at the larval neuromuscular junction. Whereas mutating the endophilin BAR domain clearly affected adult flies, larval endophilin function was surprisingly resistant to mutagenesis. Previous reports have stressed the importance of a central appendage on the convex BAR surface, which forms a hydrophobic ridge able to directly insert into the lipid bilayer. We found that the charge-negative substitution A66D, which targets the hydrophobic ridge and was reported to completely disrupt the ability of endophilin-BAR to tubulate liposomes in vitro, rescued viability and neurotransmission with the same efficiency as wild type endoA transgenes, even in adults. A similar discrepancy was found for the hydrophilic substitutions A63S/A66S and A63S/A66S/M70Q. The A66W mutation, which introduces a bulky hydrophobic side chain and induces massive vesiculation of liposomes in vitro, strongly impeded eye development, even in presence of the endogenous endoA gene. Substantial residual function was observed in larvae rescued with the EndoA(Arf) transgene, which encodes a form of endophilin-A that completely lacks the central appendage. Whereas a mutation (D151P) designed to increase the BAR curvature was functional, another mutation (P143A, ΔLEN) designed to decrease the curvature was not. Conclusions/Significance Our results provide novel insight into the structure/function relationship of the endophilin-A BAR domain in vivo, especially with relation to synaptic function.
Collapse
|
97
|
Saarikangas J, Zhao H, Lappalainen P. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol Rev 2010; 90:259-89. [PMID: 20086078 DOI: 10.1152/physrev.00036.2009] [Citation(s) in RCA: 365] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The plasma membrane and the underlying cortical actin cytoskeleton undergo continuous dynamic interplay that is responsible for many essential aspects of cell physiology. Polymerization of actin filaments against cellular membranes provides the force for a number of cellular processes such as migration, morphogenesis, and endocytosis. Plasma membrane phosphoinositides (especially phosphatidylinositol bis- and trisphosphates) play a central role in regulating the organization and dynamics of the actin cytoskeleton by acting as platforms for protein recruitment, by triggering signaling cascades, and by directly regulating the activities of actin-binding proteins. Furthermore, a number of actin-associated proteins, such as BAR domain proteins, are capable of directly deforming phosphoinositide-rich membranes to induce plasma membrane protrusions or invaginations. Recent studies have also provided evidence that the actin cytoskeleton-plasma membrane interactions are misregulated in a number of pathological conditions such as cancer and during pathogen invasion. Here, we summarize the wealth of knowledge on how the cortical actin cytoskeleton is regulated by phosphoinositides during various cell biological processes. We also discuss the mechanisms by which interplay between actin dynamics and certain membrane deforming proteins regulate the morphology of the plasma membrane.
Collapse
Affiliation(s)
- Juha Saarikangas
- Program in Cell and Molecular Biology, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
98
|
Frasa MAM, Maximiano FC, Smolarczyk K, Francis RE, Betson ME, Lozano E, Goldenring J, Seabra MC, Rak A, Ahmadian MR, Braga VMM. Armus is a Rac1 effector that inactivates Rab7 and regulates E-cadherin degradation. Curr Biol 2010; 20:198-208. [PMID: 20116244 DOI: 10.1016/j.cub.2009.12.053] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 12/08/2009] [Accepted: 12/09/2009] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cell-cell adhesion and intracellular trafficking are regulated by signaling pathways from small GTPases of the Rho, Arf, and Rab subfamilies. How signaling from distinct small GTPases are integrated in a given process is poorly understood. RESULTS We find that a TBC/RabGAP protein, Armus, integrates signaling between Arf6, Rac1, and Rab7 during junction disassembly. Armus binds specifically to activated Rac1 and its C-terminal TBC/RabGAP domain inactivates Rab7. Thus, Armus is a novel Rac1 effector and a bona fide GAP for Rab7 in vitro and in vivo, a unique and previously unreported combination. Arf6 activation efficiently disrupts cell-cell contacts and is known to activate Rac1 and Rab7. Arf6-induced E-cadherin degradation is efficiently blocked by expression of Armus C-terminal domain or after Armus RNAi. Coexpression of Arf6 with dominant-negative Rab7 or Rac1 also inhibits junction disassembly. Importantly, Armus RabGAP expression also prevents EGF-induced scattering in keratinocytes, a process shown here to require Arf6, Rac1, and Rab7 function. To our knowledge, this is the first report to demonstrate a molecular and functional link between Rac1 and Rab7. CONCLUSIONS Our data indicate that active Rac1 recruits Armus to locally inactivate Rab7 and facilitate E-cadherin degradation in lysosomes. Thus, the integration of Rac1 and Rab7 activities by Armus provides an important regulatory node for E-cadherin turnover and stability of cell-cell contacts.
Collapse
Affiliation(s)
- Marieke A M Frasa
- Molecular Medicine, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, SW7 2AZ, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
Cellular membranes can assume a number of highly dynamic shapes. Many cellular processes also require transient membrane deformations. Membrane shape is determined by the complex interactions of proteins and lipids. A number of families of proteins that directly bend membranes have been identified. Most associate transiently with membranes and deform them. These proteins work by one or more of three types of mechanisms. First, some bend membranes by inserting amphipathic domains into one of the leaflets of the bilayer; increasing the area of only one leaflet causes the membrane to bend. Second, some proteins form a rigid scaffold that deforms the underlying membrane or stabilizes an already bent membrane. Third, some proteins may deform membranes by clustering lipids or by affecting lipid ordering in membranes. Still other proteins may use novel but poorly understood mechanisms. In this review, we summarize what is known about how different families of proteins bend membranes.
Collapse
Affiliation(s)
- William A Prinz
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
100
|
G protein-coupled receptors stimulation and the control of cell migration. Cell Signal 2009; 21:1045-53. [DOI: 10.1016/j.cellsig.2009.02.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 02/03/2009] [Accepted: 02/17/2009] [Indexed: 01/14/2023]
|