51
|
Yamaki M, Umehara T, Chimura T, Horikoshi M. Cell death with predominant apoptotic features in Saccharomyces cerevisiae mediated by deletion of the histone chaperone ASF1/CIA1. Genes Cells 2001; 6:1043-54. [PMID: 11737265 DOI: 10.1046/j.1365-2443.2001.00487.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Although no potential homologues of multicellular apoptotic genes (e.g. Bax, Bak, Bcl-2, caspases and p53) have been identified in a unicellular eukaryote, previous reports contain several implications of the apoptotic behaviour of yeasts (i.e. Saccharomyces cerevisiae and Schizosaccharomyces pombe). Therefore, whether or not yeast undergoes apoptosis has been a topic of some debate. hCCG1, which is the largest subunit of TFIID and a histone acetyltransferase, appears to be involved in the regulation of apoptosis. The factor hCIA interacts with hCCG1 and functions as a histone chaperone in mammalian cells; its homologue in yeast is Asf1p/Cia1p. Therefore, we anticipated that a yeast mutant in Asf1p/Cia1p would be a valuable tool for studying apoptosis in yeast. RESULTS We established a strain of S. cerevisiae lacking the histone chaperone ASF1/CIA1. This disruptant, asf1/cia1, arrested preferentially at the G2/M-phase and died. We systematically analysed the phenotype associated with the death of this mutant yeast and identified many changes, such as fragmentation of the nuclei, condensation and fragmentation of chromatin, reduction of the mitochondrial membrane-potential, dysfunction of the mitochondrial proton pump, and a discernible release of cytochrome c to cytoplasm that resembles those in apoptotic multicellular organisms. Other changes potentially associated with the death in our mutant included a reduction in the vacuolar membrane potential, dysfunction of the vacuolar proton pump, reduction of endocytosis, and the presence of many autophagic bodies. However, these mutant yeast cells also showed cellular enlargement, which is characteristic of necrosis. CONCLUSIONS Cell death in S. cerevisiae occurs with a phenotype that largely resembles apoptosis in multicellular organisms, but that has some features of necrosis. Therefore, we indicate that yeast undergoes a 'prototypal active cell death' that retains some characteristics of passive cell death (necrosis). In addition, we think that active cell death is ubiquitously the essential attribute of life. Although such an active cell death system in yeast remains open to confirmation, we speculate that deletion of the histone chaperone Asf1p/Cia1p inhibits the normal assembly/disassembly of nucleosomes in yeast and thereby initiates the active cell death system.
Collapse
Affiliation(s)
- M Yamaki
- Horikoshi Gene Selector Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, 5-9-6 Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | | | | | | |
Collapse
|
52
|
Wang Y, Shao L, Shi S, Harris RJ, Spellman MW, Stanley P, Haltiwanger RS. Modification of epidermal growth factor-like repeats with O-fucose. Molecular cloning and expression of a novel GDP-fucose protein O-fucosyltransferase. J Biol Chem 2001; 276:40338-45. [PMID: 11524432 DOI: 10.1074/jbc.m107849200] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The O-fucose modification is found on epidermal growth factor-like repeats of a number of cell surface and secreted proteins. O-Fucose glycans play important roles in ligand-induced receptor signaling. For example, elongation of O-fucose on Notch by the beta1,3-N-acetylglucosaminyltransferase Fringe modulates the ability of Notch to respond to its ligands. The enzyme that adds O-fucose to epidermal growth factor-like repeats, GDP-fucose protein O-fucosyltransferase (O-FucT-1), was purified previously from Chinese hamster ovary (CHO) cells. Here we report the isolation of a cDNA that encodes human O-FucT-1. A probe deduced from N-terminal sequence analysis of purified CHO O-FucT-1 was used to screen a human heart cDNA library and expressed sequence tag and genomic data bases. The cDNA contains an open reading frame encoding a protein of 388 amino acids with a predicted N-terminal transmembrane sequence typical of a type II membrane orientation. Likewise, the mouse homolog obtained from an expressed sequence tag and 5'-rapid amplification of cDNA ends of a mouse liver cDNA library encodes a type II transmembrane protein of 393 amino acids with 90.4% identity to human O-FucT-1. Homologs were also found in Drosophila and Caenorhabditis elegans with 41.2 and 29.4% identity to human O-FucT-1, respectively. The human gene (POFUT1) is on chromosome 20 between PLAGL2 and KIF3B, near the centromere at 20p11. The mouse gene (Pofut1) maps near Plagl2 on a homologous region of mouse chromosome 2. POFUT1 gene transcripts were expressed in all tissues examined, consistent with the widespread localization of the modification. Expression of a soluble form of human O-FucT-1 in insect cells yielded a protein of the predicted molecular weight with O-FucT-1 kinetic and enzymatic properties similar to those of O-FucT-1 purified from CHO cells. The identification of the gene encoding protein O-fucosyltransferase I now makes possible mutational strategies to examine the functions of the unusual O-fucose post-translational modification.
Collapse
Affiliation(s)
- Y Wang
- Department of Pharmacokinetics and Metabolism, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Kim LJ, Seto AG, Nguyen TN, Goodrich JA. Human Taf(II)130 is a coactivator for NFATp. Mol Cell Biol 2001; 21:3503-13. [PMID: 11313476 PMCID: PMC100272 DOI: 10.1128/mcb.21.10.3503-3513.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2000] [Accepted: 02/20/2001] [Indexed: 11/20/2022] Open
Abstract
NFATp is one member of a family of transcriptional activators that regulate the expression of cytokine genes. To study mechanisms of NFATp transcriptional activation, we established a reconstituted transcription system consisting of human components that is responsive to activation by full-length NFATp. The TATA-associated factor (TAF(II)) subunits of the TFIID complex were required for NFATp-mediated activation in this transcription system, since TATA-binding protein (TBP) alone was insufficient in supporting activated transcription. In vitro interaction assays revealed that human TAF(II)130 (hTAF(II)130) and its Drosophila melanogaster homolog dTAF(II)110 bound specifically and reproducibly to immobilized NFATp. Sequences contained in the C-terminal domain of NFATp (amino acids 688 to 921) were necessary and sufficient for hTAF(II)130 binding. A partial TFIID complex assembled from recombinant hTBP, hTAF(II)250, and hTAF(II)130 supported NFATp-activated transcription, demonstrating the ability of hTAF(II)130 to serve as a coactivator for NFATp in vitro. Overexpression of hTAF(II)130 in Cos-1 cells inhibited NFATp activation of a luciferase reporter. These studies demonstrate that hTAF(II)130 is a coactivator for NFATp and represent the first biochemical characterization of the mechanism of transcriptional activation by the NFAT family of activators.
Collapse
Affiliation(s)
- L J Kim
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309-0215, USA
| | | | | | | |
Collapse
|
54
|
Han SY, Zhou L, Upadhyaya A, Lee SH, Parker KL, DeJong J. TFIIAalpha/beta-like factor is encoded by a germ cell-specific gene whose expression is up-regulated with other general transcription factors during spermatogenesis in the mouse. Biol Reprod 2001; 64:507-17. [PMID: 11159353 DOI: 10.1095/biolreprod64.2.507] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
TFIIAalpha/beta-like factor (ALF) is a testis-specific counterpart of the large subunit of human general transcription factor TFIIA. Northern analysis shows that ALF mRNA first appears in mouse testis at Postnatal Day 14. Similarly, expression of the general transcription factors TBP, TRF2, TFIIAalpha/beta, TFIIAgamma, and TFIIIB(90) is also increased beginning at Postnatal Day 14, suggesting that there is a coordinated induction of many general transcription factors during male germ cell differentiation. Analysis of male germ cells separated by Staput sedimentation shows that ALF is present in pachytene spermatocytes and haploid spermatids. In addition, in situ hybridization experiments with adult mouse testis shows that ALF is present in haploid spermatids. Searches of the human genome sequence database using the basic local alignment search tool reveal that the ALF and TFIIAalpha/beta(GTF2A1) genes are both composed of nine exons, whereas the TFIIAgamma (GTF2A2) gene is composed of five exons. Furthermore, nucleotide and amino acid comparisons among human and mouse ALF, TFIIAalpha/beta, and TFIIAgamma cDNA sequences show that ALF has diverged more rapidly than either TFIIAalpha/beta or TFIIAgamma. Finally, the ALF and SBLF (Stoned B-Like Factor) sequences present in the chimeric SALF cDNA are both present on human chromosome 2, and an analysis of the corresponding genes suggests a model for the formation of SALF.
Collapse
Affiliation(s)
- S Y Han
- The University of Texas at Dallas, Department of Molecular and Cell Biology, 2601 N. Floyd Road, Richardson, TX 75080, USA
| | | | | | | | | | | |
Collapse
|
55
|
Siegert JL, Rushton JJ, Sellers WR, Kaelin WG, Robbins PD. Cyclin D1 suppresses retinoblastoma protein-mediated inhibition of TAFII250 kinase activity. Oncogene 2000; 19:5703-11. [PMID: 11126356 DOI: 10.1038/sj.onc.1203966] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The retinoblastoma tumor suppressor protein has been shown to bind directly and inhibit a transcriptionally-important amino-terminal kinase domain of TATA-binding protein-associated factor TAFII250. Cyclin D1 also is able to associate with the amino terminus of TAFII250 in a region very similar to or overlapping the Rb-binding site. In this study, we have examined whether cyclin D1 affects the functional interaction between Rb and TAFII250. We observed that when cyclin D1 is coincubated with Rb and TAFII250, the ability of Rb to inhibit TAFII250 kinase activity is effectively blocked. However, cyclin D1 by itself has no apparent effect on TAFII250 kinase activity. We further found that the Rb-related protein p107 can inhibit TAFII250 kinase activity, and this inhibition is likewise alleviated by cyclin D1. Cyclin D1 prevents the kinase-inhibitory effect of an Rb mutant unable to bind to D-type cyclins, indicating that it is acting through its association with TAFII250 and not with Rb. However, we found no evidence of TAFII250-binding competition between Rb and cyclin D1 in vitro. The adenovirus E1A protein, which also binds to both Rb and TAFII250, exhibited a suppressive effect on Rb-mediated kinase inhibition similar to that seen with cyclin D1. Our results suggest a novel means by which cyclin D1 may be able to independently regulate the activity of Rb.
Collapse
Affiliation(s)
- J L Siegert
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
56
|
Lu W, Peterson R, Dasgupta A, Scovell WM. Influence of HMG-1 and adenovirus oncoprotein E1A on early stages of transcriptional preinitiation complex assembly. J Biol Chem 2000; 275:35006-12. [PMID: 10882737 DOI: 10.1074/jbc.m004735200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The TATA-binding protein (TBP) in the TFIID complex binds specifically to the TATA-box to initiate the stepwise assembly of the preinitiation complex (PIC) for RNA polymerase II transcription. Transcriptional activators and repressors compete with general transcription factors at each step to influence the course of the assembly. To investigate this process, the TBP.TATA complex was titrated with HMG-1 and the interaction monitored by electrophoretic mobility shift assays. The titration produced a ternary HMG-1.TBP. TATA complex, which exhibits increased mobility relative to the TBP. TATA complex. The addition of increasing levels of TFIIB to this complex results in the formation of the TFIIB.TBP.TATA complex. However, in the reverse titration, with very high mole ratios of HMG-1 present, TFIIB is not dissociated off and a complex is formed that contains all factors. The simultaneous addition of E1A to a mixture of TBP and TATA; or HMG-1, TBP, and TATA; or TFIIB, TBP, and TATA inhibits complex formation. On the other hand, E1A added to the pre-established complexes shows a significantly reduced capability to disrupt the complex. In add-back experiments with all complexes, increased levels of TBP re-established the complexes, indicating that the primary target for E1A in all complexes is TBP.
Collapse
Affiliation(s)
- W Lu
- Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, USA
| | | | | | | |
Collapse
|
57
|
Furukawa T, Tanese N. Assembly of partial TFIID complexes in mammalian cells reveals distinct activities associated with individual TATA box-binding protein-associated factors. J Biol Chem 2000; 275:29847-56. [PMID: 10896937 DOI: 10.1074/jbc.m002989200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TATA box-binding protein (TBP) and TBP-associated factors (TAF(II)s) compose the general transcription factor TFIID. The TAF(II) subunits mediate activated transcription by RNA polymerase II by interacting directly with site-specific transcriptional regulators. TAF(II)s also participate in promoter recognition by contacting core promoter elements in the context of TFIID. To further dissect the contribution of individual TAF(II) subunits to mammalian TFIID function, we employed a vaccinia virus-based protein expression system to study protein-protein interactions and complex assembly. We identified the domains of human (h) TAF(II)130 required for TAF(II)-TAF(II) interactions and formation of a complex with hTBP, hTAF(II)100, and hTAF(II)250. Functional analysis of partial TFIID complexes formed in vivo indicated that hTAF(II)130 was required for transcriptional activation by Sp1 in vitro. DNase I footprinting experiments demonstrated that purified hTBP/hTAF(II)250 complex reconstituted with or without additional TAF(II)s was significantly reduced for TATA box binding (as much as 9-fold) compared with free hTBP. By contrast, hTAF(II)130 stabilized binding of hTBP to the TATA box, whereas hTAF(II)100 had little effect. Thus, our biochemical analysis supports the notion that TAF(II)s possess distinct functions to regulate the activity of TFIID.
Collapse
Affiliation(s)
- T Furukawa
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | | |
Collapse
|
58
|
Abstract
The assembly of transcription complexes at eukaryotic promoters involves a number of distinct steps including chromatin remodeling, and recruitment of a TATA-binding protein (TBP)-containing complexes, the RNA polymerase II holoenzyme. Each of these stages is controlled by both positive and negative factors. In this review, mechanisms that regulate the interactions of TBP with promoter DNA are described. The first is autorepression, where TBP sequesters its DNA-binding surface through dimerization. Once TBP is bound to DNA, factors such as TAF(II)250 and Mot1 induce TBP to dissociate, while other factors such as NC2 and the NOT complex convert the TBP/DNA complex into an inactive state. TFIIA antagonizes these TBP repressors but may be effective only in conjunction with the recruitment of the RNA polymerase II holoenzyme by promoter-bound activators. Taken together, the ability to induce a gene may depend minimally upon the ability to remodel chromatin as well as alleviate direct repression of TBP and other components of the general transcription machinery. The magnitude by which an activated gene is expressed, and thus repeatedly transcribed, might depend in part on competition between TBP inhibitors and the holoenzyme for access to the TBP/TATA complex.
Collapse
Affiliation(s)
- B F Pugh
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 6802, University Park, PA, USA.
| |
Collapse
|
59
|
Kaltenbach L, Horner MA, Rothman JH, Mango SE. The TBP-like factor CeTLF is required to activate RNA polymerase II transcription during C. elegans embryogenesis. Mol Cell 2000; 6:705-13. [PMID: 11030349 DOI: 10.1016/s1097-2765(00)00068-x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Metazoans possess two TATA-binding protein homologs, the general transcription factor TBP and a related factor called TLF. Four models have been proposed for the role of TLF in RNA polymerase II (Pol II) transcription: (1) TLF and TBP function redundantly, (2) TLF antagonizes TBP, (3) TLF is a tissue-specific TBP, or (4) TLF and TBP have distinct activities. Here we report that CeTLF is required to express a subset of Pol II genes and associates with at least one of these genes in vivo. CeTLF is also necessary to establish bulk transcription during early embryogenesis. Since CeTLF and CeTBP are expressed at comparable levels in the same cells, these findings suggest CeTLF performs a unique function in activating Pol II transcription distinct from that of CeTBP.
Collapse
Affiliation(s)
- L Kaltenbach
- Huntsman Cancer Institute Center for Children and Department of Oncological Sciences, University of Utah, Salt Lake City 84112, USA
| | | | | | | |
Collapse
|
60
|
Lin R, Génin P, Mamane Y, Hiscott J. Selective DNA binding and association with the CREB binding protein coactivator contribute to differential activation of alpha/beta interferon genes by interferon regulatory factors 3 and 7. Mol Cell Biol 2000; 20:6342-53. [PMID: 10938111 PMCID: PMC86109 DOI: 10.1128/mcb.20.17.6342-6353.2000] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies implicate the interferon (IFN) regulatory factors (IRF) IRF-3 and IRF-7 as key activators of the alpha/beta IFN (IFN-alpha/beta) genes as well as the RANTES chemokine gene. Using coexpression analysis, the human IFNB, IFNA1, and RANTES promoters were stimulated by IRF-3 coexpression, whereas the IFNA4, IFNA7, and IFNA14 promoters were preferentially induced by IRF-7 only. Chimeric proteins containing combinations of different IRF-7 and IRF-3 domains were also tested, and the results provided evidence of distinct DNA binding properties of IRF-3 and IRF-7, as well as a preferential association of IRF-3 with the CREB binding protein (CBP) coactivator. Interestingly, some of these fusion proteins led to supraphysiological levels of IFN promoter activation. DNA binding site selection studies demonstrated that IRF-3 and IRF-7 bound to the 5'-GAAANNGAAANN-3' consensus motif found in many virus-inducible genes; however, a single nucleotide substitution in either of the GAAA half-site motifs eliminated IRF-3 binding and transactivation activity but did not affect IRF-7 interaction or transactivation activity. These studies demonstrate that IRF-3 possesses a restricted DNA binding site specificity and interacts with CBP, whereas IRF-7 has a broader DNA binding specificity that contributes to its capacity to stimulate delayed-type IFN gene expression. These results provide an explanation for the differential regulation of IFN-alpha/beta gene expression by IRF-3 and IRF-7 and suggest that these factors have complementary rather than redundant roles in the activation of the IFN-alpha/beta genes.
Collapse
Affiliation(s)
- R Lin
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, McGill University, Montreal, Quebec, Canada H3T 1E2.
| | | | | | | |
Collapse
|
61
|
Dhar S, Weir JP. Herpes simplex virus 1 late gene expression is preferentially inhibited during infection of the TAF250 mutant ts13 cell line. Virology 2000; 270:190-200. [PMID: 10772991 DOI: 10.1006/viro.2000.0259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A key component of the polymerase II transcription machinery is the transcription factor TFIID, a complex that contains the TATA-box binding protein and several (10-12) associated factors designated as TAFs (TBP-associated factors). ts13 cells, which contain a temperature-sensitive mutant in TAF250, the largest subunit of TFIID, exhibit promoter-specific defects in gene expression at the nonpermissive temperature, suggesting that individual TAFs are required for transcription of specific subsets of eukaryotic genes. Herpes simplex virus 1 (HSV-1) does not replicate in ts13 cells at the nonpermissive temperature, but the point at which the replicative process is blocked is not known. We used the TAF250 defect in ts13 cells to investigate the role of TAF250 in the expression of HSV-1 genes of each temporal class. At a low m.o.i., expression of most immediate-early mRNAs is reduced at the nonpermissive temperature, and consequently, there is little expression of early genes and no viral DNA replication. In contrast, at high m.o.i., expression of immediate-early genes is unaffected by the TAF250 defect and is not dependent on de novo viral protein synthesis. Early genes and early proteins are produced under these conditions, and viral DNA replication ensues, albeit at somewhat reduced levels. In contrast, late gene expression and late protein synthesis are severely restricted, even in the presence of appreciable viral DNA replication. Thus the lack of late protein synthesis is responsible for the inability of HSV-1 to replicate in ts13 cells at the nonpermissive temperature. Further, it appears that late viral gene expression may be preferentially inhibited by the TAF250 mutation in ts13 cells.
Collapse
MESH Headings
- Animals
- Capsid/genetics
- Capsid Proteins
- Cell Line
- Cricetinae
- DNA, Viral/biosynthesis
- DNA, Viral/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Gene Expression Regulation, Viral
- Genes, Immediate-Early/genetics
- Genes, Reporter/genetics
- Herpesvirus 1, Human/enzymology
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/physiology
- Histone Acetyltransferases
- Humans
- Immediate-Early Proteins/genetics
- Mutation/genetics
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Promoter Regions, Genetic/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- TATA-Binding Protein Associated Factors
- Temperature
- Thymidine Kinase/genetics
- Time Factors
- Transcription Factor TFIID
- Transcription, Genetic/genetics
- Ubiquitin-Protein Ligases
- Viral Envelope Proteins/genetics
- Viral Proteins/biosynthesis
- Virus Replication
Collapse
Affiliation(s)
- S Dhar
- Division of Viral Products, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
62
|
Macpherson N, Measday V, Moore L, Andrews B. A yeast taf17 mutant requires the Swi6 transcriptional activator for viability and shows defects in cell cycle-regulated transcription. Genetics 2000; 154:1561-76. [PMID: 10747053 PMCID: PMC1461044 DOI: 10.1093/genetics/154.4.1561] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In Saccharomyces cerevisiae, the Swi6 protein is a component of two transcription factors, SBF and MBF, that promote expression of a large group of genes in the late G1 phase of the cell cycle. Although SBF is required for cell viability, SWI6 is not an essential gene. We performed a synthetic lethal screen to identify genes required for viability in the absence of SWI6 and identified 10 complementation groups of swi6-dependent lethal mutants, designated SLM1 through SLM10. We were most interested in mutants showing a cell cycle arrest phenotype; both slm7-1 swi6Delta and slm8-1 swi6Delta double mutants accumulated as large, unbudded cells with increased 1N DNA content and showed a temperature-sensitive growth arrest in the presence of Swi6. Analysis of the transcript levels of cell cycle-regulated genes in slm7-1 SWI6 mutant strains at the permissive temperature revealed defects in regulation of a subset of cyclin-encoding genes. Complementation and allelism tests showed that SLM7 is allelic with the TAF17 gene, which encodes a histone-like component of the general transcription factor TFIID and the SAGA histone acetyltransferase complex. Sequencing showed that the slm7-1 allele of TAF17 is predicted to encode a version of Taf17 that is truncated within a highly conserved region. The cell cycle and transcriptional defects caused by taf17(slm7-1) are consistent with the role of TAF(II)s as modulators of transcriptional activation and may reflect a role for TAF17 in regulating activation by SBF and MBF.
Collapse
Affiliation(s)
- N Macpherson
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M55 1A8, Canada
| | | | | | | |
Collapse
|
63
|
Tsukihashi Y, Miyake T, Kawaichi M, Kokubo T. Impaired core promoter recognition caused by novel yeast TAF145 mutations can be restored by creating a canonical TATA element within the promoter region of the TUB2 gene. Mol Cell Biol 2000; 20:2385-99. [PMID: 10713163 PMCID: PMC85416 DOI: 10.1128/mcb.20.7.2385-2399.2000] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/1999] [Accepted: 01/10/2000] [Indexed: 11/20/2022] Open
Abstract
The general transcription factor TFIID, which is composed of TATA-binding protein (TBP) and an array of TBP-associated factors (TAFs), has been shown to play a crucial role in recognition of the core promoters of eukaryotic genes. We isolated Saccharomyces cerevisiae yeast TAF145 (yTAF145) temperature-sensitive mutants in which transcription of a specific subset of genes was impaired at restrictive temperatures. The set of genes affected in these mutants overlapped with but was not identical to the set of genes affected by a previously reported yTAF145 mutant (W.-C. Shen and M. R. Green, Cell 90:615-624, 1997). To identify sequences which rendered transcription yTAF145 dependent, we conducted deletion analysis of the TUB2 promoter using a novel mini-CLN2 hybrid gene reporter system. The results showed that the yTAF145 mutations we isolated impaired core promoter recognition but did not affect activation by any of the transcriptional activators we tested. These observations are consistent with the reported yTAF145 dependence of the CLN2 core promoter in the mutant isolated by Shen and Green, although the CLN2 core promoter functioned normally in the mutants we report here. These results suggest that different promoters require different yTAF145 functions for efficient transcription. Interestingly, insertion of a canonical TATA element into the TATA-less TUB2 promoter rescued impaired transcription in the yTAF145 mutants we studied. It therefore appears that strong binding of TBP to the core promoter can alleviate the requirement for at least one yTAF145 function.
Collapse
Affiliation(s)
- Y Tsukihashi
- Division of Gene Function in Animals, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan
| | | | | | | |
Collapse
|
64
|
Zhou M, Kashanchi F, Jiang H, Ge H, Brady JN. Phosphorylation of the RAP74 subunit of TFIIF correlates with Tat-activated transcription of the HIV-1 long terminal repeat. Virology 2000; 268:452-60. [PMID: 10704353 DOI: 10.1006/viro.1999.0177] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transcription from the HIV-1 long terminal repeat (LTR) is regulated by the viral transactivator Tat, which increases RNA polymerase II (RNAP II) processivity. Previous reports have demonstrated that phosphorylation of the RNAP II carboxy-terminal domain by TFIIH and P-TEFb is important for Tat transactivation. Our present results demonstrate that phosphorylation of the RAP74 subunit of TFIIF is also an important step in Tat transactivation. Interestingly, while the general transcription factor TFIIF is required for both basal and Tat-activated transcription, phosphorylation of the RAP74 subunit occurs in the presence of Tat and correlates with a high level of transcription activity. Using a biotinylated DNA template transcription assay, we provide evidence that RAP74 is phosphorylated by TAF(II)250 during Tat-activated transcription. Depletion of RAP74 from the HeLa nuclear extract inhibited HIV-1 LTR-driven basal transcription and Tat transactivation. The addition of TFIIF, reconstituted from recombinant RAP30 and RAP74, to the depleted HeLa nuclear extract resulted in restoration of Tat transactivation. Of importance, the exogenous RAP74 was rapidly phosphorylated in the presence of Tat. These results suggest that RAP74 phosphorylation is one important step, of several, in the Tat transactivation cascade.
Collapse
Affiliation(s)
- M Zhou
- Virus Tumor Biology Section, National Cancer Institute, Bethesda, Maryland, 20892, USA
| | | | | | | | | |
Collapse
|
65
|
Dunphy EL, Johnson T, Auerbach SS, Wang EH. Requirement for TAF(II)250 acetyltransferase activity in cell cycle progression. Mol Cell Biol 2000; 20:1134-9. [PMID: 10648598 PMCID: PMC85231 DOI: 10.1128/mcb.20.4.1134-1139.2000] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The TATA-binding protein (TBP)-associated factor TAF(II)250 is the largest component of the basal transcription factor IID (TFIID). A missense mutation that maps to the acetyltransferase domain of TAF(II)250 induces the temperature-sensitive (ts) mutant hamster cell lines ts13 and tsBN462 to arrest in late G(1). At the nonpermissive temperature (39.5 degrees C), transcription from only a subset of protein encoding genes, including the G(1) cyclins, is dramatically reduced in the mutant cells. Here we demonstrate that the ability of the ts13 allele of TAF(II)250 to acetylate histones in vitro is temperature sensitive suggesting that this enzymatic activity is compromised at 39.5 degrees C in the mutant cells. Mutagenesis of a putative acetyl coenzyme A binding site produced a TAF(II)250 protein that displayed significantly reduced histone acetyltransferase activity but retained TBP and TAF(II)150 binding. Expression of this mutant in ts13 cells was unable to complement the cell cycle arrest or transcriptional defect observed at 39.5 degrees C. These data suggest that TAF(II)250 acetyltransferase activity is required for cell cycle progression and regulates the expression of essential proliferative control genes.
Collapse
Affiliation(s)
- E L Dunphy
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington 98195-7280, USA
| | | | | | | |
Collapse
|
66
|
Van Der Knaap JA, Van Den Boom V, Kuipers J, Van Eijk MJ, Van Der Vliet PC, Timmers HT. The gene for human TATA-binding-protein-associated factor (TAFII) 170: structure, promoter and chromosomal localization. Biochem J 2000; 345 Pt 3:521-7. [PMID: 10642510 PMCID: PMC1220786 DOI: 10.1042/0264-6021:3450521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The TATA-binding protein (TBP) plays a central role in eukaryotic transcription and forms protein complexes with TBP-associated factors (TAFs). The genes encoding TAF(II) proteins frequently map to chromosomal regions altered in human neoplasias. TAF(II)170 of B-TFIID is a member of the SF2 superfamily of putative helicases. Members of this superfamily have also been implicated in several human genetic disorders. In this study we have isolated human genomic clones encoding TAF(II)170 and we show that the gene contains 37 introns. Ribonuclease-protection experiments revealed that TAF(II)170 has multiple transcription start sites, consistent with the observation that the promoter lacks a canonical TATA box and initiator element. Deletion analysis of the promoter region showed that a fragment of 264 bp is sufficient to direct transcription. In addition, we determined the chromosomal localization by two independent methods which mapped the gene to human chromosome 10q22-q23 between the markers D10S185 and WI-1183. The region surrounding these markers has been implicated in several human disorders.
Collapse
Affiliation(s)
- J A Van Der Knaap
- Laboratory for Physiological Chemistry and Center for Biomedical Genetics, Utrecht University, P.O. Box 80042, 3508 TA Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
67
|
Abstract
Synthesis of messenger RNA by RNA polymerase II requires the combined activities of more than 70 polypeptides. Coordinating the interaction of these proteins is the basal transcription factor TFIID, which recognizes the core promoter and supplies a scaffolding upon which the rest of the transcriptional machinery can assemble. A multisubunit complex, TFIID consists of the TATA-binding protein (TBP) and several TBP-associated factors (TAFs), whose primary sequences are well-conserved from yeast to humans. Data from reconstituted cell-free transcription systems and binary interaction assays suggest that the TAF subunits can function as promoter-recognition factors, as coactivators capable of transducing signals from enhancer-bound activators to the basal machinery, and even as enzymatic modifiers of other proteins. Whether TAFs function similarly in vivo, however, has been an open question. Initial characterization of yeast bearing mutations in particular TAFs seemingly indicated that, unlike the situation in vitro, TAFs played only a minor role in transcriptional regulation in vivo. However, reconsideration of this data in light of more recent results from yeast and other organisms reveals considerable convergence between the models derived from in vitro experiments and those derived from in vivo studies. In particular, there is an emerging consensus that TAFs represent one of several classes of coactivators that participate in transcriptional activation in vivo.
Collapse
Affiliation(s)
- S R Albright
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California, Berkeley 94720-3204, USA
| | | |
Collapse
|
68
|
McCullagh P, Chaplin T, Meerabux J, Grenzelias D, Lillington D, Poulsom R, Gregorini A, Saha V, Young BD. The cloning, mapping and expression of a novel gene, BRL, related to the AF10 leukaemia gene. Oncogene 1999; 18:7442-52. [PMID: 10602503 DOI: 10.1038/sj.onc.1203117] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The MLL gene is reciprocally translocated with one of a number of different partner genes in a proportion of human acute leukaemias. The precise mechanism of oncogenic transformation is unclear since most of the partner genes encode unrelated proteins. However, two partner genes, AF10 and AF17 are related through the presence of a cysteine rich region and a leucine zipper. The identification of other proteins with these structures will aid our understanding of their role in normal and leukaemic cells. We report the cloning of a novel human gene (BRL) which encodes a protein containing a cysteine rich region related to that of AF10 and AF17 and is overall most closely related to the previously known protein BR140. BRL maps to chromosome 22q13 and shows high levels of expression in testis and several cell lines. The deduced protein sequence also contains a bromodomain, four potential LXXLL motifs and four predicted nuclear localization signals. A monoclonal antibody raised to a BRL peptide sequence confirmed its widespread expression as a 120 Kd protein and demonstrated localization to the nucleus within spermatocytes.
Collapse
Affiliation(s)
- P McCullagh
- Imperial Cancer Research Fund, Department of Medical Oncology, St Bartholomew's and the Royal London School of Medicine and Dentistry, Charterhouse Square, London ECIM 6BQ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Makino Y, Yoshida T, Yogosawa S, Tanaka K, Muramatsu M, Tamura TA. Multiple mammalian proteasomal ATPases, but not proteasome itself, are associated with TATA-binding protein and a novel transcriptional activator, TIP120. Genes Cells 1999; 4:529-39. [PMID: 10526239 DOI: 10.1046/j.1365-2443.1999.00277.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND SUG1 belongs to proteasomal ATPase. Previous studies have demonstrated that SUG1 is associated with TBP. It is assumed to be involved in transcriptional regulation in addition to proteolysis. In this study, we investigated the association of mammalian SUG1 with TBP in more detail. RESULTS Pull-down experiments with TBP revealed multiple TBP-interacting proteins (TIPs) that were recovered dependent upon the presence of C-terminal conserved domain of TBP. By 2-D electrophoresis, we identified SUG1 in TIPs. By using far-Western analysis, we identified two proteins that could directly bind to TBP: SUG1 and another proteasomal ATPase (S4). Protein microsequencing and Western blotting identified all the remaining proteasomal ATPases (MSS1, TBP1, TBP7, and SUG2) in the TIP preparations. We present evidence that TBP and at least SUG1, MSS1, and S4 form a complex in the cell. However, no evidence of association of TBP with the 26S proteasome or its 19S regulatory unit was obtained. The molecular mass of the TBP/ATPases-complex, which also included a novel transcription regulatory factor, TIP120, was estimated to be approximately 800 kDa. CONCLUSION These results suggest that there is a novel multisubunit complex containing TBP and proteasomal ATPases. Based on our findings, we hypothesize that proteasomal ATPases are involved in transcriptional regulation in addition to proteolysis.
Collapse
Affiliation(s)
- Y Makino
- Department of Biology, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | | | | | | | | | | |
Collapse
|
70
|
Martin J, Halenbeck R, Kaufmann J. Human transcription factor hTAF(II)150 (CIF150) is involved in transcriptional regulation of cell cycle progression. Mol Cell Biol 1999; 19:5548-56. [PMID: 10409744 PMCID: PMC84407 DOI: 10.1128/mcb.19.8.5548] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here we present evidence that CIF150 (hTAF(II)150), the human homolog of Drosophila TAF(II)150, plays an important and selective role in establishing gene expression patterns necessary for progression through the cell cycle. Gel filtration experiments demonstrate that CIF150 (hTAF(II)150) seems to be less tightly associated with human transcription factor IID than hTAF(II)130 is associated with hTAF(II)250. The transient functional knockout of CIF150 (hTAF(II)150) protein led to cell cycle arrest at the G(2)/M transition in mammalian cell lines. PCR display analysis with the RNA derived from CIF150-depleted cells indicated that CIF150 (hTAF(II)150) is required for the transcription of only a subset of RNA polymerase II genes. CIF150 (hTAF(II)150) directly stimulated cyclin B1 and cyclin A transcription in cotransfection assays and in vitro assays, suggesting that the expression of these genes is dependent on CIF150 (hTAF(II)150) function. We defined a CIF150 (hTAF(II)150) consensus binding site and demonstrated that a CIF150-responsive cis element is present in the cyclin B1 core promoter. These results suggest that one function of CIF150 (hTAF(II)150) is to select specific RNA polymerase II core promoter elements involved in cell cycle progression.
Collapse
Affiliation(s)
- J Martin
- Chiron Corporation, Chiron Technologies, Emeryville, California 94608, USA
| | | | | |
Collapse
|
71
|
Shibuya T, Tsuneyoshi S, Azad AK, Urushiyama S, Ohshima Y, Tani T. Characterization of the ptr6(+) gene in fission yeast: a possible involvement of a transcriptional coactivator TAF in nucleocytoplasmic transport of mRNA. Genetics 1999; 152:869-80. [PMID: 10388808 PMCID: PMC1460658 DOI: 10.1093/genetics/152.3.869] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transport of mRNA from the nucleus to the cytoplasm is one of the important steps in gene expression in eukaryotic cells. To elucidate a mechanism of mRNA export, we identified a novel ptr [poly(A)+ RNA transport] mutation, ptr6, which causes accumulation of mRNA in the nucleus and inhibition of growth at the nonpermissive temperature. The ptr6(+) gene was found to encode an essential protein of 393 amino acids, which shares significant homology in amino acid sequence with yTAFII67 of budding yeast Saccharomyces cerevisiae and human hTAFII55, a subunit of the general transcription factor complex TFIID. A Ptr6p-GFP fusion protein is localized in the nucleus, suggesting that Ptr6p functions there. Northern blot analysis using probes for 10 distinct mRNAs showed that the amount of tbp+ mRNA encoding the TATA-binding protein is increased five- to sixfold, whereas amounts of others are rapidly decreased at the nonpermissive temperature in ptr6-1. ptr6 has no defects in nuclear import of an NLS-GFP fusion protein. These results suggest that Ptr6p required for mRNA transport is a Schizosaccharomyces pombe homologue of yTAFII67 and hTAFII55. This is the first report suggesting that a TAF is involved in the nucleocytoplasmic transport of mRNA in addition to the transcription of the protein-coding genes.
Collapse
Affiliation(s)
- T Shibuya
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
72
|
Lukac DM, Alwine JC. Effects of human cytomegalovirus major immediate-early proteins in controlling the cell cycle and inhibiting apoptosis: studies with ts13 cells. J Virol 1999; 73:2825-31. [PMID: 10074130 PMCID: PMC104040 DOI: 10.1128/jvi.73.4.2825-2831.1999] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The major immediate-early (MIE) gene of human cytomegalovirus (HCMV) encodes several MIE proteins (MIEPs) produced as a result of alternative splicing and polyadenylation of the primary transcript. Previously we demonstrated that the HCMV MIEPs expressed from the entire MIE gene could rescue the temperature-sensitive (ts) transcriptional defect in the ts13 cell line. This defect is caused by a ts mutation in TAFII250, the 250-kDa TATA binding protein-associated factor (TAF). These and other data suggested that the MIEPs perform a TAF-like function in complex with the basal transcription factor TFIID. In addition to the transcriptional defect, the ts mutation in ts13 cells results in a defect in cell cycle progression which ultimately leads to apoptosis. Since all of these defects can be rescued by wild-type TAFII250, we asked whether the MIEPs could rescue the cell cycle defect and/or affect the progression to apoptosis. We have found that the MIEPs, expressed from the entire MIE gene, do not rescue the cell cycle block in ts13 cells grown at the nonpermissive temperature. However, despite the maintenance of the cell cycle block, the ts13 cells which express the MIEPs are resistant to apoptosis. MIEP mutants, which have previously been shown to be defective in rescuing the ts transcriptional defect, maintained the ability to inhibit apoptosis. Hence, the MIEP functions which affect transcription appear to be separable from the functions which inhibit apoptosis. We discuss these data in the light of the HCMV life cycle and the possibility that the MIEPs promote cellular transformation by a "hit-and-run" mechanism.
Collapse
Affiliation(s)
- D M Lukac
- Department of Microbiology, Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6142, USA
| | | |
Collapse
|
73
|
Abstract
The retinoblastoma (RB) protein exerts its tumour-suppressor function by repressing the transcription of cellular genes required for DNA replication and cell division. Recent investigations into the mechanism of RB repression have revealed that RB can regulate transcription by effecting changes in chromatin structure. These findings point towards a link between chromatin regulation and cancer.
Collapse
Affiliation(s)
- A Brehm
- Wellcome/CRC Institute, Dept of Pathology, Cambridge University, Tennis Court Rd, Cambridge, UK CB2 1QR
| | | |
Collapse
|
74
|
Sekiguchi T, Nishimoto T, Hunter T. Overexpression of D-type cyclins, E2F-1, SV40 large T antigen and HPV16 E7 rescue cell cycle arrest of tsBN462 cells caused by the CCG1/TAF(II)250 mutation. Oncogene 1999; 18:1797-806. [PMID: 10086334 DOI: 10.1038/sj.onc.1202508] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
tsBN462 cells, which have a point mutation in CCG1/TAF(II)250, a component of TFIID complex, arrest in G1 at the nonpermissive temperature of 39.5 degrees C. Overexpression of D-type cyclins rescued the cell cycle arrest of tsBN462 cells, suggesting that the cell cycle arrest was through Rb. Consistent with this, overexpression of E2F-1, whose function is repressed by the hypophosphorylated form of Rb, also rescued the cell cycle arrest. Moreover, expression of the viral oncoproteins SV40 large T antigen and HPV16 E7, which both bind Rb and inactivate its function, rescued the cell cycle arrest, whereas HPV16 E6 did not. Mutation of the Rb-binding motif in E7 abrogated its ability to rescue the cell cycle arrest. Expression of exogenous cyclin D1, SV40 large T antigen or CCG1/TAF(II)250 increased cyclin A expression at 39.5 degrees C. Coexpression of HPV16 E7 and adenovirus E1b19K, which blocks apoptosis, rescued the proliferation of tsBN462 cells at 38.5 degrees C. To investigate the mechanism underlying the lack of cyclin D1 expression, deletion analysis of cyclin D1 promoter was performed. The 0.15 kbp cyclin D1 core promoter region, which lacks any transcription factor binding motifs, still exhibited a temperature-sensitive phenotype in tsBN462 cells suggesting that CCG1/TAF(II)250 is critical for the function of the cyclin D1 core promoter.
Collapse
Affiliation(s)
- T Sekiguchi
- Molecular Biology and Virology Laboratory, The Salk Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
75
|
Kuhlman TC, Cho H, Reinberg D, Hernandez N. The general transcription factors IIA, IIB, IIF, and IIE are required for RNA polymerase II transcription from the human U1 small nuclear RNA promoter. Mol Cell Biol 1999; 19:2130-41. [PMID: 10022900 PMCID: PMC84006 DOI: 10.1128/mcb.19.3.2130] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase II transcribes the mRNA-encoding genes and the majority of the small nuclear RNA (snRNA) genes. The formation of a minimal functional transcription initiation complex on a TATA-box-containing mRNA promoter has been well characterized and involves the ordered assembly of a number of general transcription factors (GTFs), all of which have been either cloned or purified to near homogeneity. In the human RNA polymerase II snRNA promoters, a single element, the proximal sequence element (PSE), is sufficient to direct basal levels of transcription in vitro. The PSE is recognized by the basal transcription complex SNAPc. SNAPc, which is not required for transcription from mRNA-type RNA polymerase II promoters such as the adenovirus type 2 major late (Ad2ML) promoter, is thought to recruit TATA binding protein (TBP) and nucleate the assembly of the snRNA transcription initiation complex, but little is known about which GTFs other than TBP are required. Here we show that the GTFs IIA, IIB, IIF, and IIE are required for efficient RNA polymerase II transcription from snRNA promoters. Thus, although the factors that recognize the core elements of RNA polymerase II mRNA and snRNA-type promoters differ, they mediate the recruitment of many common GTFs.
Collapse
Affiliation(s)
- T C Kuhlman
- Graduate Program in Molecular and Cellular Pharmacology, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | |
Collapse
|
76
|
Saadane N, Alpert L, Chalifour LE. TAFII250, Egr-1, and D-type cyclin expression in mice and neonatal rat cardiomyocytes treated with doxorubicin. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:H803-14. [PMID: 10070062 DOI: 10.1152/ajpheart.1999.276.3.h803] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Differential display identified that gene fragment HA220 homologous to the transcriptional activator factor II 250 (TAFII250) gene, or CCG1, was increased in hypertrophied rodent heart. To determine whether TAFII250 gene expression is modified after cardiac damage, we measured TAFII250 expression in vivo in mouse hearts after injection of the cardiotoxic agent doxorubicin (DXR) and in vitro in DXR-treated isolated rat neonatal cardiomyocytes. In vivo atrial natriuretic factor (ANF), beta-myosin heavy chain (beta-MHC), Egr-1, and TAFII250 expression increased with dose and time after a single DXR injection, but only ANF and beta-MHC expression were increased after multiple injections. After DXR treatment of neonatal cardiomyocytes we found decreased ANF, alpha-MHC, Egr-1, and TAFII250 expression. Expression of the TAFII250-regulated genes, the D-type cyclins, was increased after a single injection in adult mice and was decreased in DXR-treated cardiomyocytes. Thus expression of Erg-1, TAFII250, and the D-type cyclins is modulated after cardiotoxic damage in adult and neonatal heart.
Collapse
Affiliation(s)
- N Saadane
- Lady Davis Institute for Medical Research, Montreal H3T 1E2, Montreal, Quebec, Canada H3A 1A3
| | | | | |
Collapse
|
77
|
Siegert JL, Robbins PD. Rb inhibits the intrinsic kinase activity of TATA-binding protein-associated factor TAFII250. Mol Cell Biol 1999; 19:846-54. [PMID: 9858607 PMCID: PMC83941 DOI: 10.1128/mcb.19.1.846] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The retinoblastoma tumor suppressor protein, Rb, interacts directly with the largest TATA-binding protein-associated factor, TAFII250, through multiple regions in each protein. To define the potential role(s) of this interaction, we examined whether Rb could regulate the intrinsic, bipartite kinase activity of TAFII250. Here, we report that Rb is able to inhibit the kinase activity of immunopurified and gel-purified recombinant TAFII250. Rb inhibits the autophosphorylation of TAFII250 as well as its phosphorylation of the RAP74 subunit of TFIIF in a dose-responsive manner. Inhibition of TAFII250 kinase activity involves the Rb pocket (amino acids 379 to 928) but not its amino terminus. In addition, Rb appears to specifically inhibit the amino-terminal kinase domain of TAFII250 through a direct protein-protein interaction. We further demonstrate that two different tumor-derived Rb pocket mutants, C706F and Deltaex22, are functionally defective for kinase inhibition, even though they are able to bind the amino terminus of TAFII250. Our results suggest a novel mechanism of transcriptional regulation by Rb, involving direct interaction with TAFII250 and inhibition of its ability to phosphorylate itself, RAP74, and possibly other targets.
Collapse
Affiliation(s)
- J L Siegert
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
78
|
Heix J, Vente A, Voit R, Budde A, Michaelidis TM, Grummt I. Mitotic silencing of human rRNA synthesis: inactivation of the promoter selectivity factor SL1 by cdc2/cyclin B-mediated phosphorylation. EMBO J 1998; 17:7373-81. [PMID: 9857193 PMCID: PMC1171082 DOI: 10.1093/emboj/17.24.7373] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have used a reconstituted cell-free transcription system to investigate the molecular basis of mitotic repression of RNA polymerase I (pol I) transcription. We demonstrate that SL1, the TBP-containing promoter-binding factor, is inactivated by cdc2/cyclin B-directed phosphorylation, and reactivated by dephosphorylation. Transcriptional inactivation in vitro is accompanied by phosphorylation of two subunits, e.g. TBP and hTAFI110. To distinguish whether transcriptional repression is due to phosphorylation of TBP, hTAFI110 or both, SL1 was purified from two HeLa cell lines that express either full-length or the core domain of TBP only. Both TBP-TAFI complexes exhibit similar activity and both are repressed at mitosis, indicating that the variable N-terminal domain which contains multiple target sites for cdc2/cyclin B phosphorylation is dispensable for mitotic repression. Protein-protein interaction studies reveal that mitotic phosphorylation impairs the interaction of SL1 with UBF. The results suggest that phosphorylation of SL1 is used as a molecular switch to prevent pre-initiation complex formation and to shut down rDNA transcription at mitosis.
Collapse
Affiliation(s)
- J Heix
- Division of Molecular Biology of the Cell II, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
79
|
Zhou J, Zwicker J, Szymanski P, Levine M, Tjian R. TAFII mutations disrupt Dorsal activation in the Drosophila embryo. Proc Natl Acad Sci U S A 1998; 95:13483-8. [PMID: 9811826 PMCID: PMC24845 DOI: 10.1073/pnas.95.23.13483] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/1998] [Indexed: 11/18/2022] Open
Abstract
In this study, we present evidence that the Dorsal activator interacts with limiting amounts of the TFIID complex in the Drosophila embryo. In vitro transcription reactions and protein binding assays implicate the TAFII110 and TAFII60 subunits of the TFIID complex in contributing to Dorsal-mediated activation. Mutations in TAFII110 and TAFII60 result in altered patterns of snail and twist transcription in embryos derived from dl/+ females. These results suggest that TAFIIs contribute to the activation of transcription in vivo and support the hypothesis that subunits of TFIID may serve as targets of enhancer binding proteins.
Collapse
Affiliation(s)
- J Zhou
- Molecular and Cell Biology Department, Molecular and Cell Biology Department, University of California, Berkeley, 401 Barker Hall, Berkeley, CA 94720-3204, USA
| | | | | | | | | |
Collapse
|
80
|
Hendzel MJ, Kruhlak MJ, Bazett-Jones DP. Organization of highly acetylated chromatin around sites of heterogeneous nuclear RNA accumulation. Mol Biol Cell 1998; 9:2491-507. [PMID: 9725908 PMCID: PMC25517 DOI: 10.1091/mbc.9.9.2491] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Histones found within transcriptionally competent and active regions of the genome are highly acetylated. Moreover, these highly acetylated histones have very short half-lives. Thus, both histone acetyltransferases and histone deacetylases must enrich within or near these euchromatic regions of the interphase chromatids. Using an antibody specific for highly acetylated histone H3, we have investigated the organization of transcriptionally active and competent chromatin as well as nuclear histone acetyltransferase and deacetylase activities. We observe an exclusion of highly acetylated chromatin around the periphery of the nucleus and an enrichment near interchromatin granule clusters (IGCs). The highly acetylated chromatin is found in foci that may reflect the organization of highly acetylated chromatin into "chromonema" fibers. Transmission electron microscopy of Indian muntjac fibroblast cell nuclei indicates that the chromatin associated with the periphery of IGCs remains relatively condensed, most commonly found in domains containing chromatin folded beyond 30 nm. Using electron spectroscopic imaging, we demonstrate that IGCs are clusters of ribonucleoprotein particles. The individual granules comprise RNA-rich fibrils or globular regions that fold into individual granules. Quantitative analysis of individual granules indicates that they contain variable amounts of RNA estimated between 1.5 and >10 kb. We propose that interchromatin granules are heterogeneous nuclear RNA-containing particles, some of which may be pre-mRNA generated by nearby transcribed chromatin. An intermediary zone between the IGC and surrounding chromatin is described that contains factors with the potential to provide specificity to the localization of sequences near IGCs.
Collapse
Affiliation(s)
- M J Hendzel
- Departments of Anatomy and Medical Biochemistry, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | | | | |
Collapse
|
81
|
Vargas GA, Isas JM, Fantino E, Gargus JJ, Haigler HT. CCG1/TAF(II)250 regulates epidermal growth factor receptor gene transcription in cell cycle mutant ts13. J Cell Physiol 1998; 176:642-7. [PMID: 9699517 DOI: 10.1002/(sici)1097-4652(199809)176:3<642::aid-jcp21>3.0.co;2-#] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The epidermal growth factor receptor (EGFR) plays a critical role in normal growth and its overexpression is associated with several types of cancer. To learn more about regulation of the expression of this important receptor, we investigated the role of the TAF(II)250 subunit of transcription factor IID in the transcription of the EGFR gene. The EGFR gene has a TATA-less promoter and TAF(II)250 has previously been shown to have an important regulatory role in such promoters. The study was performed in the ts13 hamster cell line which has a temperature-sensitive mutation in the CCG1 gene that encodes TAF(II)250. At the nonpermissive temperature, the transcription of a few cell cycle-dependent genes is depressed in ts13 cells while global RNA synthesis is unaffected. Using this model system, we found that EGFR promoter-driven luciferase expression in transiently transfected ts13 cells decreased 8, 25, and 50-fold after 12, 24, and 48 hours, respectively, at the nonpermissive temperature. The decrease was partially rescued by cotransfection with the wild-type CCG1 gene. The expression of endogenous EGFR also appeared to be regulated by TAF(II)250--the maximum binding capacity of ts13 cells for 125I-labeled EGF decreased approximately twofold when incubated for 2 days at the nonpermissive temperature. Placing these studies in the context of the current understanding of the TFIID transcription complex, we speculate that selective stimulation of EGFR gene transcription may be mediated by TAF(II)250 interaction with enhancer-bound activators and the basal transcription machinery.
Collapse
Affiliation(s)
- G A Vargas
- Department of Biological Chemistry, University of California Medical School, Irvine, USA
| | | | | | | | | |
Collapse
|
82
|
Carrozza MJ, DeLuca N. The high mobility group protein 1 is a coactivator of herpes simplex virus ICP4 in vitro. J Virol 1998; 72:6752-7. [PMID: 9658123 PMCID: PMC109883 DOI: 10.1128/jvi.72.8.6752-6757.1998] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ICP4 is an activator of herpes simplex virus early and late gene transcription during infection and in vitro can efficiently activate the transcription of a core promoter template containing only a TATA box and an initiator element. In this study, we noted that the extent of activation by ICP4 in vitro was highly dependent on the purity of TFIID when recombinant TFIIB, TFIIE, and TFIIF were used as sources of these factors. ICP4 efficiently activated transcription with a crude TFIID fraction. However, when immunoaffinity-purified TFIID was used in place of the less pure TFIID, ICP4 activated transcription to a significantly lesser extent. This finding indicated that the crude TFIID fraction may contain additional factors that serve as coactivators of ICP4. To test this hypothesis, the crude TFIID preparation was further fractionated by gel filtration chromatography. The TFIID that eluted from the column lacked the hypothesized coactivator activity. A fraction well separated from TFIID contained an activity that when added with the TFIID fraction resulted in higher levels of transcription in the presence ICP4. Further purification of the coactivator-containing fraction resulted in the isolation of a single 30-kDa polypeptide (p30). p30 was also shown to serve as a coactivator of ICP4 with immunoaffinity-purified TFIID; however, p30 had no effect on basal transcription. Amino acid sequence analysis revealed that p30 was the high mobility group protein 1, which has been shown to facilitate the formation of higher-order DNA-protein complexes.
Collapse
Affiliation(s)
- M J Carrozza
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
83
|
Ozer J, Mitsouras K, Zerby D, Carey M, Lieberman PM. Transcription factor IIA derepresses TATA-binding protein (TBP)-associated factor inhibition of TBP-DNA binding. J Biol Chem 1998; 273:14293-300. [PMID: 9603936 DOI: 10.1074/jbc.273.23.14293] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The interaction of the general transcription factor (TF) IIA with TFIID is required for transcription activation in vitro. TFIID consists of the TATA-binding protein (TBP) and TBP associated factors (TAFIIs). TFIIA binds directly to TBP and stabilizes its interaction with TATA-containing DNA. In this work, we present evidence that TAFIIs inhibit TBP-DNA and TBP-TFIIA binding, and that TFIIA stimulates transcription, in part, by overcoming this TAFII-mediated inhibition of TBP-DNA binding. TFIIA mutants modestly compromised for interaction with TBP were found to be significantly more defective in forming complexes with TFIID. Subtle changes in the stability or conformation of the TFIIA-TBP complex resulted in a failure of TFIIA to overcome TAFII-mediated inhibition of TBP-DNA binding and transcription function. Inhibition of TBP-DNA binding by TAFIIs could be partially relieved by limited proteolysis of TFIID. Proteolysis significantly stimulated TFIIA-TFIID-TATA binding in both electrophoresis mobility shift assay and DNase I footprinting but had little effect on complexes formed with TBP. Recombinant TAFII250 inhibits TBP-DNA binding, whereas preincubation of TFIIA with TBP prevents this inhibition. Thus, TFIIA competes with TAFII250 for access to TBP and alters the TATA binding properties of the resulting complex. Transcriptional activation by Zta was enhanced by temperature shift inactivation of TAFII250 in the ts13 cell line, suggesting that TAFII250 has transcriptional inhibitory activity in vivo. Together, these results suggest that TAFIIs may regulate transcription initiation by inhibiting TBP-TFIIA and TBP-DNA complex formation.
Collapse
Affiliation(s)
- J Ozer
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|
84
|
Abstract
Transcription initiation by RNA polymerase II (RNA pol II) requires interaction between cis-acting promoter elements and trans-acting factors. The eukaryotic promoter consists of core elements, which include the TATA box and other DNA sequences that define transcription start sites, and regulatory elements, which either enhance or repress transcription in a gene-specific manner. The core promoter is the site for assembly of the transcription preinitiation complex, which includes RNA pol II and the general transcription fctors TBP, TFIIB, TFIIE, TFIIF, and TFIIH. Regulatory elements bind gene-specific factors, which affect the rate of transcription by interacting, either directly or indirectly, with components of the general transcriptional machinery. A third class of transcription factors, termed coactivators, is not required for basal transcription in vitro but often mediates activation by a broad spectrum of activators. Accordingly, coactivators are neither gene-specific nor general transcription factors, although gene-specific coactivators have been described in metazoan systems. Transcriptional repressors include both gene-specific and general factors. Similar to coactivators, general transcriptional repressors affect the expression of a broad spectrum of genes yet do not repress all genes. General repressors either act through the core transcriptional machinery or are histone related and presumably affect chromatin function. This review focuses on the global effectors of RNA polymerase II transcription in yeast, including the general transcription factors, the coactivators, and the general repressors. Emphasis is placed on the role that yeast genetics has played in identifying these factors and their associated functions.
Collapse
Affiliation(s)
- M Hampsey
- Department of Biochemistry, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, New Jersey 08854-5635, USA.
| |
Collapse
|
85
|
Abstract
The largest subunit of the human transcription factor TFIID, TAFII250, was previously reported to contain serine/threonine kinase domains that can autophosphorylate and transphosphorylate the large subunit of the basal factor TFIIF. Here, we identify the regions of the N-terminal kinase domain (amino acids 1-414) necessary for kinase activity and examine its function in vivo. Point mutations within two patches of amino acids in the kinase domain decrease both autophosphorylation and transphosphorylation activities. Importantly, we find that TAFII250-bearing mutations within the N-terminal kinase domain exhibit a significantly reduced ability to rescue ts13 cells that express a temperature-sensitive TAFII250. Moreover, transcription from the cyclin A and cdc2 promoters becomes impaired when cotransfected with hTAFII250 containing inactive forms of the N-terminal kinase domain. Our results suggest that the TAFII250 kinase activity is required to direct transcription of at least some genes in vivo.
Collapse
Affiliation(s)
- T O'Brien
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley 94720, USA
| | | |
Collapse
|
86
|
Zwicker J, Müller R. Cell cycle-regulated transcription in mammalian cells. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:91-9. [PMID: 9552355 DOI: 10.1007/978-1-4615-1809-9_7] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The periodic, phase-specific transcription of defined sets of genes is a hallmark of cell cycle progression in all organisms (1-3). In this article, we will summarise our current knowledge and views of the mechanisms governing the cross-coupling of cell cycle control and transcriptional regulation in mammalian cells, with particular emphasis on the transcription factor E2F and the retinoblastoma protein pRb (1-3). Excluded from this review will be the genomic response to mitogenic stimulation, which is part of the mitogen-triggered signal transduction cascades rather than a reflection of cell cycle regulation (4).
Collapse
Affiliation(s)
- J Zwicker
- Institut für Molekular-biologie und Tumorforschung (IMT), Philipps-Universität Marburg, Germany
| | | |
Collapse
|
87
|
Barlev NA, Poltoratsky V, Owen-Hughes T, Ying C, Liu L, Workman JL, Berger SL. Repression of GCN5 histone acetyltransferase activity via bromodomain-mediated binding and phosphorylation by the Ku-DNA-dependent protein kinase complex. Mol Cell Biol 1998; 18:1349-58. [PMID: 9488450 PMCID: PMC108848 DOI: 10.1128/mcb.18.3.1349] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/1997] [Accepted: 12/15/1997] [Indexed: 02/06/2023] Open
Abstract
GCN5, a putative transcriptional adapter in humans and yeast, possesses histone acetyltransferase (HAT) activity which has been linked to GCN5's role in transcriptional activation in yeast. In this report, we demonstrate a functional interaction between human GCN5 (hGCN5) and the DNA-dependent protein kinase (DNA-PK) holoenzyme. Yeast two-hybrid screening detected an interaction between the bromodomain of hGCN5 and the p70 subunit of the human Ku heterodimer (p70-p80), which is the DNA-binding component of DNA-PK. Interaction between intact hGCN5 and Ku70 was shown biochemically using recombinant proteins and by coimmunoprecipitation of endogenous proteins following chromatography of HeLa nuclear extracts. We demonstrate that the catalytic subunit of DNA-PK phosphorylates hGCN5 both in vivo and in vitro and, moreover, that the phosphorylation inhibits the HAT activity of hGCN5. These findings suggest a possible regulatory mechanism of HAT activity.
Collapse
Affiliation(s)
- N A Barlev
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
88
|
Elfring LK, Daniel C, Papoulas O, Deuring R, Sarte M, Moseley S, Beek SJ, Waldrip WR, Daubresse G, DePace A, Kennison JA, Tamkun JW. Genetic analysis of brahma: the Drosophila homolog of the yeast chromatin remodeling factor SWI2/SNF2. Genetics 1998; 148:251-65. [PMID: 9475737 PMCID: PMC1459776 DOI: 10.1093/genetics/148.1.251] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Drosophila brahma (brm) gene encodes an activator of homeotic genes related to the yeast chromatin remodeling factor SWI2/SNF2. Here, we report the phenotype of null and dominant-negative brm mutations. Using mosaic analysis, we found that the complete loss of brm function decreases cell viability and causes defects in the peripheral nervous system of the adult. A dominant-negative brm mutation was generated by replacing a conserved lysine in the ATP-binding site of the BRM protein with an arginine. This mutation eliminates brm function in vivo but does not affect assembly of the 2-MD BRM complex. Expression of the dominant-negative BRM protein caused peripheral nervous system defects, homeotic transformations, and decreased viability. Consistent with these findings, the BRM protein is expressed at relatively high levels in nuclei throughout the developing organism. Site-directed mutagenesis was used to investigate the functions of conserved regions of the BRM protein. Domain II is essential for brm function and is required for the assembly or stability of the BRM complex. In spite of its conservation in numerous eukaryotic regulatory proteins, the deletion of the bromodomain of the BRM protein has no discernible phenotype.
Collapse
Affiliation(s)
- L K Elfring
- Department of Biology, University of California, Santa Cruz 95064, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Léveillard T, Wasylyk B. The MDM2 C-terminal region binds to TAFII250 and is required for MDM2 regulation of the cyclin A promoter. J Biol Chem 1997; 272:30651-61. [PMID: 9388200 DOI: 10.1074/jbc.272.49.30651] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
MDM2 proto-oncogene expression is aberrant in many human tumors. Its normal role is to modulate the functions of p53. The N terminus of MDM2 interacts with p53, whereas the properties of the rest of the molecule are poorly understood. We show that MDM2 binds to the general transcription factor TFIID in vivo. The C-terminal Ring finger interacts with TAFII250/CCG1, and the central acidic domain interacts with TBP. Expression of MDM2 activates the cyclin A gene promoter but not c-fos, showing that the effects of MDM2 are specific. Deletion of the C-terminal region of MDM2 abolishes activation, showing that the C-terminal domain of MDM2 is functionally important. We found that increasing MDM2 expression to higher levels inhibits the cyclin A promoter. Inhibition appears to result from titration of general transcription factors because MDM2 overexpression inhibits c-fos as well as other promoters in vivo and basal transcription in vitro. The mechanisms of repression of the cyclin A and fos promoters appear to be different. Cyclin A repression is lost by deleting the C terminus, whereas that of c-fos is lost by removal of the acidic domain. These results reinforce the conclusion that the C terminus of MDM2 mediates effects on the cyclin A promoter. MDM2 transformed cells contain elevated levels of cyclin A mRNA, showing that activation occurs under physiological conditions. There is a positive correlation between MDM2 binding to TAFII250 and MDM2 activation of the cyclin A promoter. The C-terminal region of MDM2, which contains the Ring finger, interacts with TAFII250 and is required for regulation of the cyclin A promoter by MDM2. Our results link the activity of MDM2, a transforming protein implicated in many human tumors, with cyclin A, a regulator of the cell cycle.
Collapse
Affiliation(s)
- T Léveillard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS, INSERM, ULP, 1 Rue Laurent Fries, BP 163, 67404 Illkirch cedex, France
| | | |
Collapse
|
90
|
Wang EH, Zou S, Tjian R. TAFII250-dependent transcription of cyclin A is directed by ATF activator proteins. Genes Dev 1997; 11:2658-69. [PMID: 9334328 PMCID: PMC316605 DOI: 10.1101/gad.11.20.2658] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A specific mutation in TAFII250, the largest subunit of the transcription factor TFIID, disrupts cell growth control in the temperature-sensitive mutant hamster cell line ts13. Transcription from the cyclin A and D1 but not the c-fos and myc promoters is also dramatically reduced in ts13 cells at the nonpermissive temperature. These findings provide an intriguing link between TAF-mediated transcriptional regulation and cell cycle progression. Here we report the mapping of an enhancer element in the cyclin A promoter (TSRE) that responds to mutations in TAFII250. An analysis of chimeric promoter constructs reveals that the cyclin A TSRE can confer TAFII250 dependence to the core promoter of c-fos. In addition, reciprocal hybrid promoter constructs suggest that TAFII250 also contributes to the transcriptional properties of the cyclin A core promoter. We have purified and identified cellular activators that specifically bind to the TSRE and mediate transcription in a TAFII250-dependent manner. By micropeptide sequencing, we determined that TSRE-binding proteins include members of the activating transcription factor (ATF) family. These results suggest that the ts13 mutation of TAFII250 has compromised the ability of TFIID to mediate activation of transcription by specific enhancer factors such as ATF, as well as to perform certain core promoter functions. These defects in TAFII250 apparently result in the down-regulation of key molecules, such as cyclin A, which may be responsible for the ts13 cell cycle arrest phenotype.
Collapse
Affiliation(s)
- E H Wang
- Department of Pharmacology, School of Medicine, University of Washington, Seattle, Washington 98195-7280 USA.
| | | | | |
Collapse
|
91
|
Lukac DM, Harel NY, Tanese N, Alwine JC. TAF-like functions of human cytomegalovirus immediate-early proteins. J Virol 1997; 71:7227-39. [PMID: 9311796 PMCID: PMC192063 DOI: 10.1128/jvi.71.10.7227-7239.1997] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The human cytomegalovirus (HCMV) major immediate-early (IE) proteins IEP86 (IE2(579aa)) and IEP72 (IE1(491aa)) can transcriptionally activate a variety of simple promoters containing a TATA element and one upstream transcription factor binding site. In our previous studies, transcriptional activation was shown to correlate with IEP86 binding to both the TATA-box binding protein (TBP) and the transcription factor bound upstream. IEP72 often synergistically affects the activation by IEP86, although it has not previously been shown to directly interact in vitro with IEP86, TBP, or transcription factors (e.g., Sp1 and Tef-1) bound by IEP86. We report biochemical and genetic evidence suggesting that the major IE proteins may perform a function similar to that of the TBP-associated factors (TAFs) which make up TFIID. Consistent with this model, we found that the major IE proteins interact with a number of TAFs. In vitro, IEP86 bound with drosophila TAF(II)110 (dTAF(II)110) and human TAF(II)130 (hTAF(II)130), while IEP72 bound dTAF(II)40, dTAF(II)110, and hTAF(II)130. Regions on major IE proteins which mediate binding have been defined. In addition, our data indicate that both IEP72 and IEP86 can bind simultaneously to hTAF(II)130, suggesting that this TAF may provide bridging interactions between the two proteins for transcriptional activation and synergy. In agreement, a transcriptional activation mutant of IEP72 is unable to participate in bridging. Confirmation that these in vitro interactions were relevant was provided by data showing that both IEP72 and IEP86 copurify with TFIID and coimmunoprecipitate with purified TFIID derived from infected cell nuclei. To further support a TAF-like function of the IE proteins, we have found that the IE proteins expressed from the intact major IE gene, and to a lesser extent IEP86 alone, can rescue the temperature-sensitive (ts) transcriptional defect in TAF(II)250 in the BHK-21 cell line ts13. Analyses of mutations in the major IE region show that IEP86 is essential for rescue and that IEP72 augments its effect, and that mutations which affect TAF interactions are debilitated in rescue. Our data, showing that the IE proteins can bind with TFIID and rescue a ts transcriptional defect in TAF(II)250, support the model that the IE proteins perform a TAF-like function as components of TFIID.
Collapse
Affiliation(s)
- D M Lukac
- Department of Microbiology and Graduate Group of Molecular Biology, School of Medicine, University of Pennsylvania, Philadelphia 19104-6142, USA
| | | | | | | |
Collapse
|
92
|
Rothofsky ML, Lin SL. CROC-1 encodes a protein which mediates transcriptional activation of the human FOS promoter. Gene 1997; 195:141-9. [PMID: 9305758 DOI: 10.1016/s0378-1119(97)00097-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cloning of signal transducing molecules capable of activating the human FOS proto-oncogene promoter was achieved by co-transfecting a modified human FOS promoter-driven polyomavirus large T antigen gene (P(f)LAG-8) with a human brain cDNA library, incorporated into a replication-competent mammalian retroviral expression vector whose replication occurs in the presence of T antigen. In murine cells, transcriptional activation of the P(f)LAG-8 promoter by a biologically active, cDNA-encoded signalling molecule resulted in plasmid replication. Replicated plasmids, following selective cleavage of unreplicated plasmids by Dpn1, were recovered by transformation into competent bacteria. Successive P(f)LAG-8/cDNA library co-transfections, using library plasmids resulting from prior transfections, ultimately resulted in the identification of individual plasmids capable of transcriptionally activating the FOS promoter. DNA sequencing revealed the first plasmid, denoted CROC-1, to contain a 1.8-kb cDNA encoding a 16.5-kDa nuclear protein possessing a bipartite structure comprised an amino-terminal acidic domain and a carboxy-terminal basic domain, and displaying partial homology to the HMG domain of the TAF(II)250 transcription cofactor. Co-transfection of CROC-1 with various FOS/CAT reporter genes revealed that the human FOS promoter region spanning -56 to - 105, encompassing two identical 8-bp DR enhancer sequences, was necessary for CROC-1-mediated transcriptional activation. Results suggest that CROC-1 participates in intracellular signalling pathways involved in induction of the human FOS promoter.
Collapse
Affiliation(s)
- M L Rothofsky
- Department of Tumor Biology, The Schering-Plough Research Institute, Kenilworth, NJ 07033, USA
| | | |
Collapse
|
93
|
Wang S, Dibenedetto AJ, Pittman RN. Genes induced in programmed cell death of neuronal PC12 cells and developing sympathetic neurons in vivo. Dev Biol 1997; 188:322-36. [PMID: 9268578 DOI: 10.1006/dbio.1997.8655] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To identify primary response genes induced during early stages of neuronal programmed cell death (PCD), we screened by differential hybridization a subtracted cDNA library prepared from neuronal PC12 cells deprived of NGF for 6 hr in the presence of cycloheximide. Eight induced cDNA sequences were identified and designated message up-regulated during death (mud)-1-8. To determine which cloned sequences might be involved in neuronal PCD in vivo, expression of mud genes was analyzed in developing rat superior cervical ganglia (SCG) undergoing programmed cell death, using a combination of reverse Southern, reverse transcription polymerase chain reaction (RT-PCR), and in situ hybridization. Five sequences (mud-1, -3, -5/8, -6, and -7) are induced in SCG undergoing cell death in vivo, and induction of at least three of these (mud-3, -6, and -7) occurs in neurons. Partial sequence analysis reveals that mud-1 corresponds to annexin VI; mud-3 corresponds to rat PC3, mouse TIS21; mud-4 appears to be the rat homolog of human TAFII70; mud-5 and -8 are >85% identical members of the rodent gene family of B2-transcribed repeats; and mud-6 appears to be the rat homolog of human Ring 3 and Drosophila female sterile homeotic (fsh). Mud-2 and mud-7 encode novel sequences. These new candidate genes provide markers for early stages of neuronal PCD, are potentially involved in the cell death process, and serve to expand our view of cell death control in the developing nervous system.
Collapse
Affiliation(s)
- S Wang
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, 19104, USA
| | | | | |
Collapse
|
94
|
Yonaha M, Tsuchiya T, Yasukochi Y. Cell-cycle-dependent phosphorylation of the basal transcription factor RAP74. FEBS Lett 1997; 410:477-80. [PMID: 9237686 DOI: 10.1016/s0014-5793(97)00642-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this report, cell-cycle-dependent effects of TFIID on other basal transcription factors were investigated. We purified TFIID fractions from HeLa cells synchronized in the S/G2 phases and in early G1 phase, and show that RAP74 is phosphorylated more highly by the S/G2 phase TFIID fraction than by the early G1 phase TFIID fraction. Further analyses using deletion mutants of RAP74 revealed that amino acid residues 206-256 are phosphorylated by the TFIID fraction. Reconstitution of in vitro transcription activity indicates that the cell-cycle-dependent phosphorylation of RAP74 increases TFIIF transcription activity.
Collapse
Affiliation(s)
- M Yonaha
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Japan.
| | | | | |
Collapse
|
95
|
Kanemaki M, Makino Y, Yoshida T, Kishimoto T, Koga A, Yamamoto K, Yamamoto M, Moncollin V, Egly JM, Muramatsu M, Tamura T. Molecular cloning of a rat 49-kDa TBP-interacting protein (TIP49) that is highly homologous to the bacterial RuvB. Biochem Biophys Res Commun 1997; 235:64-8. [PMID: 9196036 DOI: 10.1006/bbrc.1997.6729] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
TBP as a central component in transcriptional regulation can form complexes with various regulatory factors. Using histidine-tagged TBP for affinity-purification of TBP-bound proteins, we isolated a 49-kD protein termed TBP-interacting protein 49 (TIP49) from rat liver nuclear extracts. We cloned the entire cDNA of TIP49 encoding a novel polypeptide of 456 amino acids, and thereafter established an FM3A cell line that constitutively expressed an epitope-tagged TBP. Immunoprecipitation analysis of the cell extracts indicated that TIP49 and TBP were present in an identical complex. Interestingly, the amino acid sequence of TIP49 exhibited high similarity to those sequences of the RuvB bacterial recombination factors which direct branch migration of the Holliday junction and contain the Walker A and B motifs responsible for ATP binding and ATP hydrolysis. These findings suggest that TIP49 is a putative ATP-dependent DNA helicase.
Collapse
Affiliation(s)
- M Kanemaki
- Department of Biology, Faculty of Science, Chiba University, Inage-ku, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Bai Y, Perez GM, Beechem JM, Weil PA. Structure-function analysis of TAF130: identification and characterization of a high-affinity TATA-binding protein interaction domain in the N terminus of yeast TAF(II)130. Mol Cell Biol 1997; 17:3081-93. [PMID: 9154807 PMCID: PMC232161 DOI: 10.1128/mcb.17.6.3081] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We report structure-function analyses of TAF130, the single-copy essential yeast gene encoding the 130,000-Mr yeast TATA-binding protein (TBP)-associated factor TAF(II)130 (yTAF(II)130). A systematic family of TAF130 mutants was generated, and these mutant TAF130 alleles were introduced into yeast in both single and multiple copies to test for their ability to complement a taf130delta null allele and support cell growth. All mutant proteins were stably expressed in vivo. The complementation tests indicated that a large portion (amino acids 208 to 303 as well as amino acids 367 to 1037) of yTAF(II)130 is required to support cell growth. Direct protein blotting and coimmunoprecipitation analyses showed that two N-terminal deletions which remove portions of yTAF(II)130 amino acids 2 to 115 dramatically decrease the ability of these mutant yTAF(II)130 proteins to bind TBP. Cells bearing either of these two TAF130 mutant alleles also exhibit a slow-growth phenotype. Consistent with these observations, overexpression of TBP can correct this growth deficiency as well as increase the amount of TBP interacting with yTAF(II)130 in vivo. Our results provide the first combined genetic and biochemical evidence that yTAF(II)130 binds to yeast TBP in vivo through yTAF(II)130 N-terminal sequences and that this binding is physiologically significant. By using fluorescence anisotropy spectroscopic binding measurements, the affinity of the interaction of TBP for the N-terminal TBP-binding domain of yTAF(II)130 was measured, and the Kd was found to be about 1 nM. Moreover, we found that the N-terminal domain of yTAF(II)130 actively dissociated TBP from TATA box-containing DNA.
Collapse
Affiliation(s)
- Y Bai
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | |
Collapse
|
97
|
Suzuki-Yagawa Y, Guermah M, Roeder RG. The ts13 mutation in the TAF(II)250 subunit (CCG1) of TFIID directly affects transcription of D-type cyclin genes in cells arrested in G1 at the nonpermissive temperature. Mol Cell Biol 1997; 17:3284-94. [PMID: 9154827 PMCID: PMC232181 DOI: 10.1128/mcb.17.6.3284] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The general transcription initiation factor TFIID contains the TATA-binding protein (TBP) and TBP-associated factors (TAFs) implicated in the function of gene-specific activators. Previous studies have indicated that a hamster cell line (ts13) with a point mutation in the TAF(II)250/CCG1 (TAF(II)250) gene shows temperature-sensitive expression of a subset of genes and arrests in late G1 at 39.5 degrees C. Here, we report the identification of cell cycle-specific (G1-specific) genes that appear to be regulated directly through TAF(II)250 both in vivo and in vitro. Transcription rates of several cell cycle-regulatory genes were determined by run-on assays in nuclei from ts13 cells grown at permissive (33 degrees C) and nonpermissive (39.5 degrees C) temperatures. Temperature-dependent differences in transcription rates were observed for cyclin A, D1, and D3 genes. In transient-transfection assays, the human cyclin D1 promoter fused to a luciferase reporter showed a temperature-dependent reduction in activity in ts13 cells but not in parental BHK cells. In in vitro assays, upstream sequence-dependent transcription from the human cyclin D1 promoter was significantly reduced in ts13 nuclear extracts preincubated at 30 degrees C but not in similarly treated BHK nuclear extracts, and transcription in the ts13 extract was restored by addition of an affinity-purified human TFIID. Preincubation of the ts13 nuclear extracts did not affect the function of several GAL4-activation domain fusion proteins (GAL4-VP16, GAL4-p65, and GAL4-p53) on either the adenovirus major late or cyclin D1 core promoter bearing GAL4 sites, further indicating that the effect of the TAF(II)250 mutation is both core promoter and activator specific.
Collapse
Affiliation(s)
- Y Suzuki-Yagawa
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
98
|
Spengler D, Villalba M, Hoffmann A, Pantaloni C, Houssami S, Bockaert J, Journot L. Regulation of apoptosis and cell cycle arrest by Zac1, a novel zinc finger protein expressed in the pituitary gland and the brain. EMBO J 1997; 16:2814-25. [PMID: 9184226 PMCID: PMC1169890 DOI: 10.1093/emboj/16.10.2814] [Citation(s) in RCA: 182] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The proliferation rate of a cell population reflects a balance between cell division, cell cycle arrest, differentiation and apoptosis. The regulation of these processes is central to development and tissue homeostasis, whereas dysregulation may lead to overt pathological outcomes, notably cancer and neurodegenerative disorders. We report here the cloning of a novel zinc finger protein which regulates apoptosis and cell cycle arrest and was accordingly named Zac1. In vitro Zac1 inhibited proliferation of tumor cells, as evidenced by measuring colony formation, growth rate and cloning in soft agar. In vivo Zac1 abrogated tumor formation in nude mice. The antiproliferative activity of Zac1 was due to induction of extensive apoptosis and of G1 arrest, which proceeded independently of retinoblastoma protein and of regulation of p21(WAF1/Cip1), p27Kip1, p57Kip2 and p16INK4a expression. Zac1-mediated apoptosis was unrelated to cell cycle phase and G1 arrest was independent of apoptosis, indicating separate control of apoptosis and cell cycle arrest. Zac1 is thus the first gene besides p53 which concurrently induces apoptosis and cell cycle arrest.
Collapse
Affiliation(s)
- D Spengler
- Max-Planck Institute of Psychiatry, Molecular Neurobiology, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
99
|
Larminie CG, Cairns CA, Mital R, Martin K, Kouzarides T, Jackson SP, White RJ. Mechanistic analysis of RNA polymerase III regulation by the retinoblastoma protein. EMBO J 1997; 16:2061-71. [PMID: 9155032 PMCID: PMC1169809 DOI: 10.1093/emboj/16.8.2061] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The tumour suppressor protein RB restricts cellular growth. This may involve inhibiting the synthesis of tRNA and 5S rRNA by RNA polymerase (pol) III. We have shown previously that RB can repress pol III transcription when overexpressed either in vitro or in vivo. We also demonstrated that pol III activity is elevated substantially in primary fibroblasts from RB-deficient mice. Here we address the molecular mechanism of this regulation. RB is shown to repress all types of pol III promoter. It can do this even if added after transcription complex assembly. Functional assays demonstrate that RB targets specifically the general pol III factor TFIIIB. A physical interaction between TFIIIB and RB is indicated by fractionation, pull-down and immunoprecipitation data. We show that TFIIIB activity is elevated in primary fibroblasts from RB-deficient mice. TFIIIB is a multisubunit complex that includes the TATA-binding protein (TBP) and a TFIIB-related factor called BRF. We show that RB itself contains regions of homology to both TBP and BRF and propose a model in which RB disrupts TFIIIB by mimicking these two components.
Collapse
Affiliation(s)
- C G Larminie
- Institute of Biomedical and Life Sciences, Division of Biochemistry and Molecular Biology, University of Glasgow, UK
| | | | | | | | | | | | | |
Collapse
|
100
|
Chen L, Guo A, Pape L. An immunoaffinity purified Schizosaccharomyces pombe TBP-containing complex directs correct initiation of the S.pombe rRNA gene promoter. Nucleic Acids Res 1997; 25:1633-40. [PMID: 9092673 PMCID: PMC146630 DOI: 10.1093/nar/25.8.1633] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The multi-protein complex SL1, containing TBP, which is essential for RNA polymerase I catalyzed transcription, has been analyzed in fission yeast. It was immunopurified based on association of component subunits with epitope-tagged TBP. To enable this analysis, a strain of Schizosaccharomyces pombe was created where the only functional TBP coding sequences were those of FLAG-TBP. RNA polymerase I transcription components were fractionated from this strain and the TBP-associated polypeptides were subsequently immunopurified together with the epitope- tagged TBP. An assessment of the activity of this candidate SL1 complex was undertaken cross-species. This fission yeast TBP-containing complex displays two activities in redirecting transcriptional initiation of an S. pombe rDNA gene promoter cross-species in Saccharomyces cerevisiae transcription reactions: it both blocks an incorrect transcriptional start site at +7 and directs initiation at the correct site for S. pombe rRNA synthesis. This complex is essential for accurate initiation of the S.pombe rRNA gene: rRNA synthesis is reconstituted when this S.pombe TBP-containing complex is combined with a S.pombe fraction immunodepleted of TBP.
Collapse
MESH Headings
- Base Sequence
- Chromatography, Affinity
- Chromosomes, Fungal
- Cloning, Molecular
- DNA, Ribosomal/metabolism
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/metabolism
- Escherichia coli
- Molecular Sequence Data
- Oligopeptides
- Peptides
- Pol1 Transcription Initiation Complex Proteins
- Promoter Regions, Genetic
- RNA Polymerase I/metabolism
- RNA, Fungal/biosynthesis
- RNA, Fungal/genetics
- RNA, Ribosomal/biosynthesis
- RNA, Ribosomal/genetics
- Schizosaccharomyces/genetics
- Schizosaccharomyces/metabolism
- TATA-Box Binding Protein
- Transcription Factor TFIID
- Transcription Factors/isolation & purification
- Transcription Factors/metabolism
- Transcription Factors, TFII/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- L Chen
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | |
Collapse
|