51
|
Huang Y, Wurihan W, Lu B, Zou Y, Wang Y, Weldon K, Fondell JD, Lai Z, Wu X, Fan H. Robust Heat Shock Response in Chlamydia Lacking a Typical Heat Shock Sigma Factor. Front Microbiol 2022; 12:812448. [PMID: 35046926 PMCID: PMC8762339 DOI: 10.3389/fmicb.2021.812448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Cells reprogram their transcriptome in response to stress, such as heat shock. In free-living bacteria, the transcriptomic reprogramming is mediated by increased DNA-binding activity of heat shock sigma factors and activation of genes normally repressed by heat-induced transcription factors. In this study, we performed transcriptomic analyses to investigate heat shock response in the obligate intracellular bacterium Chlamydia trachomatis, whose genome encodes only three sigma factors and a single heat-induced transcription factor. Nearly one-third of C. trachomatis genes showed statistically significant (≥1.5-fold) expression changes 30 min after shifting from 37 to 45°C. Notably, chromosomal genes encoding chaperones, energy metabolism enzymes, type III secretion proteins, as well as most plasmid-encoded genes, were differentially upregulated. In contrast, genes with functions in protein synthesis were disproportionately downregulated. These findings suggest that facilitating protein folding, increasing energy production, manipulating host activities, upregulating plasmid-encoded gene expression, and decreasing general protein synthesis helps facilitate C. trachomatis survival under stress. In addition to relieving negative regulation by the heat-inducible transcriptional repressor HrcA, heat shock upregulated the chlamydial primary sigma factor σ66 and an alternative sigma factor σ28. Interestingly, we show for the first time that heat shock downregulates the other alternative sigma factor σ54 in a bacterium. Downregulation of σ54 was accompanied by increased expression of the σ54 RNA polymerase activator AtoC, thus suggesting a unique regulatory mechanism for reestablishing normal expression of select σ54 target genes. Taken together, our findings reveal that C. trachomatis utilizes multiple novel survival strategies to cope with environmental stress and even to replicate. Future strategies that can specifically target and disrupt Chlamydia’s heat shock response will likely be of therapeutic value.
Collapse
Affiliation(s)
- Yehong Huang
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Wurihan Wurihan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Bin Lu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Yi Zou
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Yuxuan Wang
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Korri Weldon
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Joseph D Fondell
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, United States.,Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Xiang Wu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Huizhou Fan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
52
|
Karamanos TK, Clore GM. Large Chaperone Complexes Through the Lens of Nuclear Magnetic Resonance Spectroscopy. Annu Rev Biophys 2022; 51:223-246. [PMID: 35044800 DOI: 10.1146/annurev-biophys-090921-120150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Molecular chaperones are the guardians of the proteome inside the cell. Chaperones recognize and bind unfolded or misfolded substrates, thereby preventing further aggregation; promoting correct protein folding; and, in some instances, even disaggregating already formed aggregates. Chaperones perform their function by means of an array of weak protein-protein interactions that take place over a wide range of timescales and are therefore invisible to structural techniques dependent upon the availability of highly homogeneous samples. Nuclear magnetic resonance (NMR) spectroscopy, however, is ideally suited to study dynamic, rapidly interconverting conformational states and protein-protein interactions in solution, even if these involve a high-molecular-weight component. In this review, we give a brief overview of the principles used by chaperones to bind their client proteins and describe NMR methods that have emerged as valuable tools to probe chaperone-substrate and chaperone-chaperone interactions. We then focus on a few systems for which the application of these methods has greatly increased our understanding of the mechanisms underlying chaperone functions. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds, United Kingdom;
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
53
|
Horovitz A, Reingewertz TH, Cuéllar J, Valpuesta JM. Chaperonin Mechanisms: Multiple and (Mis)Understood? Annu Rev Biophys 2022; 51:115-133. [DOI: 10.1146/annurev-biophys-082521-113418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The chaperonins are ubiquitous and essential nanomachines that assist in protein folding in an ATP-driven manner. They consist of two back-to-back stacked oligomeric rings with cavities in which protein (un)folding can take place in a shielding environment. This review focuses on GroEL from Escherichia coli and the eukaryotic chaperonin-containing t-complex polypeptide 1, which differ considerably in their reaction mechanisms despite sharing a similar overall architecture. Although chaperonins feature in many current biochemistry textbooks after being studied intensively for more than three decades, key aspects of their reaction mechanisms remain under debate and are discussed in this review. In particular, it is unclear whether a universal reaction mechanism operates for all substrates and whether it is passive, i.e., aggregation is prevented but the folding pathway is unaltered, or active. It is also unclear how chaperonin clients are distinguished from nonclients and what are the precise roles of the cofactors with which chaperonins interact. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Amnon Horovitz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel; Amnon.H
| | - Tali Haviv Reingewertz
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot, Israel; Amnon.H
| | - Jorge Cuéllar
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - José María Valpuesta
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
54
|
Yu TH, Tan SI, Yi YC, Xue C, Ting WW, Chang JJ, Ng IS. New insight into the codon usage and medium optimization toward stable and high-level 5-aminolevulinic acid production in Escherichia coli. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
55
|
Kurochkina LP, Semenyuk PI, Sokolova OS. Structural and Functional Features of Viral Chaperonins. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1-9. [PMID: 35491019 DOI: 10.1134/s0006297922010011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chaperonins provide proper folding of proteins in vivo and in vitro and, as was thought until recently, are characteristic of prokaryotes, eukaryotes, and archaea. However, it turned out that some bacteria viruses (bacteriophages) encode their own chaperonins. This review presents results of the investigations of the first representatives of this new chaperonin group: the double-ring EL chaperonin and the single-ring OBP and AR9 chaperonins. Biochemical properties and structure of the phage chaperonins were compared within the group and with other known group I and group II chaperonins.
Collapse
Affiliation(s)
- Lidia P Kurochkina
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Pavel I Semenyuk
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Olga S Sokolova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
56
|
Ye X. Purification and Handling of the Chaperonin GroEL. Methods Mol Biol 2022; 2376:89-101. [PMID: 34845604 DOI: 10.1007/978-1-0716-1716-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
GroEL is an important model molecular chaperone. Despite being extensively studied, several critical aspects of its functionality are still in dispute due partly to difficulties in obtaining protein samples of consistent purity. Here I describe an easy-to-carry-out purification protocol that can reliably produce highly purified and fully functional GroEL protein in large quantities. The method takes advantage of the remarkable stability of the GroEL tetradecamer in 45% acetone which efficiently extracts and removes tightly bound substrate proteins that cannot be separated from GroEL by the usual chromatographic methods. The efficiency of the purification method can be assessed by the amount of residual tryptophan fluorescence associated with the purified GroEL sample. The functionality of the thus obtained GroEL sample is demonstrated by measuring its ATPase turnover both in the presence and absence of the GroEL model substrate protein α-lactalbumin.
Collapse
Affiliation(s)
- Xiang Ye
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
57
|
The Functional Differences between the GroEL Chaperonin of Escherichia coli and the HtpB Chaperonin of Legionella pneumophila Can Be Mapped to Specific Amino Acid Residues. Biomolecules 2021; 12:biom12010059. [PMID: 35053207 PMCID: PMC8774168 DOI: 10.3390/biom12010059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Group I chaperonins are a highly conserved family of essential proteins that self-assemble into molecular nanoboxes that mediate the folding of cytoplasmic proteins in bacteria and organelles. GroEL, the chaperonin of Escherichia coli, is the archetype of the family. Protein folding-independent functions have been described for numerous chaperonins, including HtpB, the chaperonin of the bacterial pathogen Legionella pneumophila. Several protein folding-independent functions attributed to HtpB are not shared by GroEL, suggesting that differences in the amino acid (aa) sequence between these two proteins could correlate with functional differences. GroEL and HtpB differ in 137 scattered aa positions. Using the Evolutionary Trace (ET) bioinformatics method, site-directed mutagenesis, and a functional reporter test based upon a yeast-two-hybrid interaction with the eukaryotic protein ECM29, it was determined that out of those 137 aa, ten (M68, M212, S236, K298, N507 and the cluster AEHKD in positions 471-475) were involved in the interaction of HtpB with ECM29. GroEL was completely unable to interact with ECM29, but when GroEL was modified at those 10 aa positions, to display the HtpB aa, it acquired a weak ability to interact with ECM29. This constitutes proof of concept that the unique functional abilities of HtpB can be mapped to specific aa positions.
Collapse
|
58
|
Yu H, Li J, Shan C, Lu T, Jiang X, Shi J, Wojtas L, Zhang H, Wang M. Conformational Control of a Metallo-Supramolecular Cage via the Dissymmetrical Modulation of Ligands. Angew Chem Int Ed Engl 2021; 60:26523-26527. [PMID: 34779543 DOI: 10.1002/anie.202111430] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/16/2021] [Indexed: 12/15/2022]
Abstract
In nature as well as life systems, the presence of asymmetrical and dissymmetrical structures with specific functions is extremely common. However, the construction of metallo-supramolecular assemblies based on dissymmetrical ligands still remains a considerable challenge for avoiding the generation of unexpected isomers with similar thermodynamic stabilities, especially for three-dimensional supramolecular structures. In this study, a strategy for the conformational control of metallo-supramolecular cages via the enhancement of ligand dissymmetry was proposed. Four dissymmetrical ditopic ligands were designed and synthesized. By increasing the dissymmetry of length or angle, conformations of assemblies were precisely controlled to form discrete cis-Pdn L2n molecular cages.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Jiaqi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Chuan Shan
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Xin Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
59
|
Yu H, Li J, Shan C, Lu T, Jiang X, Shi J, Wojtas L, Zhang H, Wang M. Conformational Control of a Metallo‐Supramolecular Cage via the Dissymmetrical Modulation of Ligands. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 China
| | - Jiaqi Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 China
| | - Chuan Shan
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 China
| | - Xin Jiang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 China
| | - Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 China
| | - Lukasz Wojtas
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University, Changchun Jilin 130012 China
| |
Collapse
|
60
|
Structural Alternation in Heat Shock Proteins of Activated Macrophages. Cells 2021; 10:cells10123507. [PMID: 34944015 PMCID: PMC8700196 DOI: 10.3390/cells10123507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/27/2021] [Accepted: 12/08/2021] [Indexed: 01/01/2023] Open
Abstract
The inflammatory response of macrophages is an orderly and complex process under strict regulation accompanied by drastic changes in morphology and functions. It is predicted that proteins will undergo structural changes during these finely regulated processes. However, changes in structural proteome in macrophages during the inflammatory response remain poorly characterized. In the present study, we applied limited proteolysis coupled mass spectrometry (LiP-MS) to identify proteome-wide structural changes in lipopolysaccharide (LPS)-activated macrophages. We identified 386 structure-specific proteolytic fingerprints from 230 proteins. Using the Gene Ontology (GO) biological process enrichment, we discovered that proteins with altered structures were enriched into protein folding-related terms, in which HSP60 was ranked as the most changed protein. We verified the structural changes in HSP60 by using cellular thermal shift assay (CETSA) and native CETSA. Our results showed that the thermal stability of HSP60 was enhanced in activated macrophages and formed an HSP10-less complex. In conclusion, we demonstrate that in situ structural systems biology is an effective method to characterize proteomic structural changes and reveal that the structures of chaperone proteins vary significantly during macrophage activation.
Collapse
|
61
|
Troman LA, Collinson I. Pushing the Envelope: The Mysterious Journey Through the Bacterial Secretory Machinery, and Beyond. Front Microbiol 2021; 12:782900. [PMID: 34917061 PMCID: PMC8669966 DOI: 10.3389/fmicb.2021.782900] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/09/2021] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria are contained by an envelope composed of inner and outer-membranes with the peptidoglycan (PG) layer between them. Protein translocation across the inner membrane for secretion, or insertion into the inner membrane is primarily conducted using the highly conserved, hourglass-shaped channel, SecYEG: the core-complex of the Sec translocon. This transport process is facilitated by interactions with ancillary subcomplex SecDF-YajC (secretion) and YidC (insertion) forming the holo-translocon (HTL). This review recaps the transport process across the inner-membrane and then further explores how delivery and folding into the periplasm or outer-membrane is achieved. It seems very unlikely that proteins are jettisoned into the periplasm and left to their own devices. Indeed, chaperones such as SurA, Skp, DegP are known to play a part in protein folding, quality control and, if necessary degradation. YfgM and PpiD, by their association at the periplasmic surface of the Sec machinery, most probably are also involved in some way. Yet, it is not entirely clear how outer-membrane proteins are smuggled past the proteases and across the PG to the barrel-assembly machinery (BAM) and their final destination. Moreover, how can this be achieved, as is thought, without the input of energy? Recently, we proposed that the Sec and BAM translocons interact with one another, and most likely other factors, to provide a conduit to the periplasm and the outer-membrane. As it happens, numerous other specialized proteins secretion systems also form trans-envelope structures for this very purpose. The direct interaction between components across the envelope raises the prospect of energy coupling from the inner membrane for active transport to the outer-membrane. Indeed, this kind of long-range energy coupling through large inter-membrane assemblies occurs for small molecule import (e.g., nutrient import by the Ton complex) and export (e.g., drug efflux by the AcrAB-TolC complex). This review will consider this hypothetical prospect in the context of outer-membrane protein biogenesis.
Collapse
Affiliation(s)
| | - Ian Collinson
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
62
|
Arhar T, Shkedi A, Nadel CM, Gestwicki JE. The interactions of molecular chaperones with client proteins: why are they so weak? J Biol Chem 2021; 297:101282. [PMID: 34624315 PMCID: PMC8567204 DOI: 10.1016/j.jbc.2021.101282] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
The major classes of molecular chaperones have highly variable sequences, sizes, and shapes, yet they all bind to unfolded proteins, limit their aggregation, and assist in their folding. Despite the central importance of this process to protein homeostasis, it has not been clear exactly how chaperones guide this process or whether the diverse families of chaperones use similar mechanisms. For the first time, recent advances in NMR spectroscopy have enabled detailed studies of how unfolded, "client" proteins interact with both ATP-dependent and ATP-independent classes of chaperones. Here, we review examples from four distinct chaperones, Spy, Trigger Factor, DnaK, and HscA-HscB, highlighting the similarities and differences between their mechanisms. One striking similarity is that the chaperones all bind weakly to their clients, such that the chaperone-client interactions are readily outcompeted by stronger, intra- and intermolecular contacts in the folded state. Thus, the relatively weak affinity of these interactions seems to provide directionality to the folding process. However, there are also key differences, especially in the details of how the chaperones release clients and how ATP cycling impacts that process. For example, Spy releases clients in a largely folded state, while clients seem to be unfolded upon release from Trigger Factor or DnaK. Together, these studies are beginning to uncover the similarities and differences in how chaperones use weak interactions to guide protein folding.
Collapse
Affiliation(s)
- Taylor Arhar
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco California, USA
| | - Arielle Shkedi
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco California, USA
| | - Cory M Nadel
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco California, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco California, USA.
| |
Collapse
|
63
|
Novel cryo-EM structure of an ADP-bound GroEL-GroES complex. Sci Rep 2021; 11:18241. [PMID: 34521893 PMCID: PMC8440773 DOI: 10.1038/s41598-021-97657-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/23/2021] [Indexed: 11/11/2022] Open
Abstract
The GroEL–GroES chaperonin complex is a bacterial protein folding system, functioning in an ATP-dependent manner. Upon ATP binding and hydrolysis, it undergoes multiple stages linked to substrate protein binding, folding and release. Structural methods helped to reveal several conformational states and provide more information about the chaperonin functional cycle. Here, using cryo-EM we resolved two nucleotide-bound structures of the bullet-shaped GroEL–GroES1 complex at 3.4 Å resolution. The main difference between them is the relative orientation of their apical domains. Both structures contain nucleotides in cis and trans GroEL rings; in contrast to previously reported bullet-shaped complexes where nucleotides were only present in the cis ring. Our results suggest that the bound nucleotides correspond to ADP, and that such a state appears at low ATP:ADP ratios.
Collapse
|
64
|
Malik JA, Lone R. Heat shock proteins with an emphasis on HSP 60. Mol Biol Rep 2021; 48:6959-6969. [PMID: 34498161 DOI: 10.1007/s11033-021-06676-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023]
Abstract
Heat shock phenomenon is a process by which cells express a set of proteins called heat shock proteins (HSPs) against heat stress. HSPs include several families depending upon the molecular weight of the respective protein. Among the different HSPs, The HSP60 is one of the main components representing the framework of chaperone system. HSP60 plays a myriad number of roles like chaperoning, thermotolerance, apoptosis, cancer, immunology and embryonic development. In this review we discussed briefly the general knowledge and focussed on HSP60 in terms of structure, regulation and function in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Javid Ahmad Malik
- Pharmacology and Toxicology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Rafiq Lone
- Department of Botany, Central University of Kashmir, Jammu and Kashmir, India.
| |
Collapse
|
65
|
Iyer K, Chand K, Mitra A, Trivedi J, Mitra D. Diversity in heat shock protein families: functional implications in virus infection with a comprehensive insight of their role in the HIV-1 life cycle. Cell Stress Chaperones 2021; 26:743-768. [PMID: 34318439 PMCID: PMC8315497 DOI: 10.1007/s12192-021-01223-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Heat shock proteins (HSPs) are a group of cellular proteins that are induced during stress conditions such as heat stress, cold shock, UV irradiation and even pathogenic insult. They are classified into families based on molecular size like HSP27, 40, 70 and 90 etc, and many of them act as cellular chaperones that regulate protein folding and determine the fate of mis-folded or unfolded proteins. Studies have also shown multiple other functions of these proteins such as in cell signalling, transcription and immune response. Deregulation of these proteins leads to devastating consequences, such as cancer, Alzheimer's disease and other life threatening diseases suggesting their potential importance in life processes. HSPs exist in multiple isoforms, and their biochemical and functional characterization still remains a subject of active investigation. In case of viral infections, several HSP isoforms have been documented to play important roles with few showing pro-viral activity whereas others seem to have an anti-viral role. Earlier studies have demonstrated that HSP40 plays a pro-viral role whereas HSP70 inhibits HIV-1 replication; however, clear isoform-specific functional roles remain to be established. A detailed functional characterization of all the HSP isoforms will uncover their role in cellular homeostasis and also may highlight some of them as potential targets for therapeutic strategies against various viral infections. In this review, we have tried to comprehend the details about cellular HSPs and their isoforms, their role in cellular physiology and their isoform-specific functions in case of virus infection with a specific focus on HIV-1 biology.
Collapse
Affiliation(s)
- Kruthika Iyer
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Kailash Chand
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Alapani Mitra
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Jay Trivedi
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India
| | - Debashis Mitra
- Laboratory for HIV Research, National Centre for Cell Science, SP Pune University, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
66
|
Structural Water Stabilizes Protein Motifs in Liquid Protein Phase: The Folding Mechanism of Short β-Sheets Coupled to Phase Transition. Int J Mol Sci 2021; 22:ijms22168595. [PMID: 34445303 PMCID: PMC8395295 DOI: 10.3390/ijms22168595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Macromolecular associates, such as membraneless organelles or lipid-protein assemblies, provide a hydrophobic environment, i.e., a liquid protein phase (LP), where folding preferences can be drastically altered. LP as well as the associated phase change from water (W) is an intriguing phenomenon related to numerous biological processes and also possesses potential in nanotechnological applications. However, the energetic effects of a hydrophobic yet water-containing environment on protein folding are poorly understood. Here, we focus on small β-sheets, the key motifs of proteins, undergoing structural changes in liquid–liquid phase separation (LLPS) and also model the mechanism of energy-coupled unfolding, e.g., in proteases, during W → LP transition. Due to the importance of the accurate description for hydrogen bonding patterns, the employed models were studied by using quantum mechanical calculations. The results demonstrate that unfolding is energetically less favored in LP by ~0.3–0.5 kcal·mol−1 per residue in which the difference further increased by the presence of explicit structural water molecules, where the folded state was preferred by ~1.2–2.3 kcal·mol−1 per residue relative to that in W. Energetics at the LP/W interfaces was also addressed by theoretical isodesmic reactions. While the models predict folded state preference in LP, the unfolding from LP to W renders the process highly favorable since the unfolded end state has >1 kcal·mol−1 per residue excess stabilization.
Collapse
|
67
|
Structural basis for the structural dynamics of human mitochondrial chaperonin mHsp60. Sci Rep 2021; 11:14809. [PMID: 34285302 PMCID: PMC8292379 DOI: 10.1038/s41598-021-94236-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/05/2021] [Indexed: 12/26/2022] Open
Abstract
Human mitochondrial chaperonin mHsp60 is essential for mitochondrial function by assisting folding of mitochondrial proteins. Unlike the double-ring bacterial GroEL, mHsp60 exists as a heptameric ring that is unstable and dissociates to subunits. The structural dynamics has been implicated for a unique mechanism of mHsp60. We purified active heptameric mHsp60, and determined a cryo-EM structure of mHsp60 heptamer at 3.4 Å. Of the three domains, the equatorial domains contribute most to the inter-subunit interactions, which include a four-stranded β sheet. Our structural comparison with GroEL shows that mHsp60 contains several unique sequences that directly decrease the sidechain interactions around the β sheet and indirectly shorten β strands by disengaging the backbones of the flanking residues from hydrogen bonding in the β strand conformation. The decreased inter-subunit interactions result in a small inter-subunit interface in mHsp60 compared to GroEL, providing a structural basis for the dynamics of mHsp60 subunit association. Importantly, the unique sequences are conserved among higher eukaryotic mitochondrial chaperonins, suggesting the importance of structural dynamics for eukaryotic chaperonins. Our structural comparison with the single-ring mHsp60-mHsp10 shows that upon mHsp10 binding the shortened inter-subunit β sheet is restored and the overall inter-subunit interface of mHsp60 increases drastically. Our structural basis for the mHsp10 induced stabilization of mHsp60 subunit interaction is consistent with the literature that mHsp10 stabilizes mHsp60 quaternary structure. Together, our studies provide structural bases for structural dynamics of the mHsp60 heptamer and for the stabilizing effect of mHsp10 on mHsp60 subunit association.
Collapse
|
68
|
Akter T, Nakamoto H. pH-mediated control of anti-aggregation activities of cyanobacterial and E. coli chaperonin GroELs. J Biochem 2021; 169:351-361. [PMID: 32997746 DOI: 10.1093/jb/mvaa108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/10/2020] [Indexed: 11/12/2022] Open
Abstract
In contrast to Escherichia coli, cyanobacteria have multiple GroELs, the bacterial homologues of chaperonin/Hsp60. We have shown that cyanobacterial GroELs are mutually distinct and different from E. coli GroEL with which the paradigm for chaperonin structure/function has been established. However, little is known about regulation of cyanobacterial GroELs. This study investigated effect of pH (varied from 7.0 to 8.5) on chaperone activity of GroEL1 and GroEL2 from the cyanobacterium Synechococcus elongatus PCC7942 and E. coli GroEL. GroEL1 and GroEL2 showed pH dependency in suppression of aggregation of heat-denatured malate dehydrogenase, lactate dehydrogenase and citrate synthase. They exhibited higher anti-aggregation activity at more alkaline pHs. Escherichia coli GroEL showed a similar pH-dependence in suppressing aggregation of heat-denatured lactate dehydrogenase. No pH dependence was observed in all the GroELs when urea-denatured lactate dehydrogenase was used for anti-aggregation assay, suggesting that the pH-dependence is related to some denatured structures. There was no significant influence of pH on the chaperone activity of all the GroELs to promote refolding of heat-denatured malate dehydrogenase. It is known that pH in cyanobacterial cytoplasm increases by one pH unit following a shift from darkness to light, suggesting that the pH-change modulates chaperone activity of cyanobacterial GroEL1 and GroEL2.
Collapse
Affiliation(s)
| | - Hitoshi Nakamoto
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
69
|
Alagbe BD, Gibb BC, Ashbaugh HS. Evolution of the Free Energy Landscapes of n-Alkane Guests Bound within Supramolecular Complexes. J Phys Chem B 2021; 125:7299-7310. [PMID: 34170690 PMCID: PMC8279555 DOI: 10.1021/acs.jpcb.1c03640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Confinement within nanoscale spaces can dramatically alter the ensemble of conformations flexible species explore. For example, chaperone complexes take advantage of confinement to fold misfolded proteins, while viral capsids transport genomic materials in tight packings. Here we examine the free energy landscapes of n-alkanes confined within supramolecular dimeric complexes of deep-cavity cavitand octa-acid, which have been experimentally demonstrated to force these chains with increasing length to adopt extended, helical, hairpin, and spinning top conformational motifs, using molecular simulations. Alkanes up to n-docosane in both vacuum and water predominantly exhibit a free energy minimum for elongated conformations with a majority of trans dihedrals. Within harmonically sealed cavitand dimers, however, the free energy landscapes as a function of the end-to-end distance between their terminal methyl units exhibit minima that evolve with the length of the alkane. Distinct free energy basins are observed between the helical and hairpin motifs and between the hairpin and chicane motifs whose relative stability changes with the number of carbons in the bound guest. These changes are reminiscent of two state-like protein folding, although the observed alkane conformations confined are more insensitive to temperature perturbation than proteins are. While the chicane motif within the harmonically sealed dimers has not been observed experimentally, this conformation relaxes to the observed spinning top motif once the harmonic restraints are released for the complexes in aqueous solution, indicating that these motifs are related to one another. We do not observe distinct minima between the confined extended and helical motifs, suggesting these conformers are part of a larger linear motif family whose population of gauche dihedral angles grows in proportion to the number of carbons in the chain to ultimately form a helix that fits the alkane within the complex.
Collapse
Affiliation(s)
- Busayo D Alagbe
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Bruce C Gibb
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Henry S Ashbaugh
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| |
Collapse
|
70
|
Yoda H, Koike-Takeshita A. TEM and STEM-EDS evaluation of metal nanoparticle encapsulation in GroEL/GroES complexes according to the reaction mechanism of chaperonin. Microscopy (Oxf) 2021; 70:289-296. [PMID: 33173948 DOI: 10.1093/jmicro/dfaa064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 11/12/2022] Open
Abstract
Escherichia coli chaperonin GroEL, which is a large cylindrical protein complex comprising two heptameric rings with cavities of 4.5 nm each in the center, assists in intracellular protein folding with the aid of GroES and adenosine triphosphate (ATP). Here, we investigated the possibility that GroEL can also encapsulate metal nanoparticles (NPs) up to ∼5 nm in diameter into the cavities with the aid of GroES and ATP. The slow ATP-hydrolyzing GroELD52A/D398A mutant, which forms extremely stable complexes with GroES (half-time of ∼6 days), made it possible to analyze GroEL/GroES complexes containing metal NPs. Scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy analysis proved distinctly that FePt NPs and Au NPs were encapsulated in the GroEL/GroES complexes. Dynamic light scattering measurements showed that the NPs in the GroEL/GroES complex were able to maintain their dispersibility in solution. We previously described that the incubation of GroEL and GroES in the presence of ATP·BeFx and adenosine diphosphate·BeFx resulted in the formation of symmetric football-shaped and asymmetric bullet-shaped complexes, respectively. Based on this knowledge, we successfully constructed the football-shaped complex in which two compartments were occupied by Pt or Au NPs (first compartment) and FePt NPs (second compartment). This study showed that metal NPs were sequentially encapsulated according to the GroEL reaction in a step-by-step manner. In light of these results, chaperonin can be used as a tool for handling nanomaterials.
Collapse
Affiliation(s)
- Hiromi Yoda
- Department of Applied Chemistry and Bioscience, Graduate School of Engineering, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Ayumi Koike-Takeshita
- Department of Applied Chemistry and Bioscience, Graduate School of Engineering, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| |
Collapse
|
71
|
Fatima K, Naqvi F, Younas H. A Review: Molecular Chaperone-mediated Folding, Unfolding and Disaggregation of Expressed Recombinant Proteins. Cell Biochem Biophys 2021; 79:153-174. [PMID: 33634426 DOI: 10.1007/s12013-021-00970-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022]
Abstract
The advancements in biotechnology over time have led to an increase in the demand of pure, soluble and functionally active proteins. Recombinant protein production has thus been employed to obtain high expression of purified proteins in bulk. E. coli is considered as the most desirable host for recombinant protein production due to its inexpensive and fast cultivation, simple nutritional requirements and known genetics. Despite all these benefits, recombinant protein production often comes with drawbacks, such as, the most common being the formation of inclusion bodies due to improper protein folding. Consequently, this can lead to the loss of the structure-function relationship of a protein. Apart from various strategies, one major strategy to resolve this issue is the use of molecular chaperones that act as folding modulators for proteins. Molecular chaperones assist newly synthesized, aggregated or misfolded proteins to fold into their native conformations. Chaperones have been widely used to improve the expression of various proteins which are otherwise difficult to produce in E. coli. Here, we discuss the structure, function, and role of major E. coli molecular chaperones in recombinant technology such as trigger factor, GroEL, DnaK and ClpB.
Collapse
Affiliation(s)
- Komal Fatima
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Fatima Naqvi
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Hooria Younas
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan.
| |
Collapse
|
72
|
Shan Q, Ma F, Wei J, Li H, Ma H, Sun P. Physiological Functions of Heat Shock Proteins. Curr Protein Pept Sci 2021; 21:751-760. [PMID: 31713482 DOI: 10.2174/1389203720666191111113726] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/24/2019] [Accepted: 09/21/2019] [Indexed: 01/03/2023]
Abstract
Heat shock proteins (HSPs) are molecular chaperones involved in a variety of life activities. HSPs function in the refolding of misfolded proteins, thereby contributing to the maintenance of cellular homeostasis. Heat shock factor (HSF) is activated in response to environmental stresses and binds to heat shock elements (HSEs), promoting HSP translation and thus the production of high levels of HSPs to prevent damage to the organism. Here, we summarize the role of molecular chaperones as anti-heat stress molecules and their involvement in immune responses and the modulation of apoptosis. In addition, we review the potential application of HSPs to cancer therapy, general medicine, and the treatment of heart disease.
Collapse
Affiliation(s)
- Qiang Shan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences,
Beijing, 100193, China
| | - Fengtao Ma
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences,
Beijing, 100193, China
| | - Jingya Wei
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences,
Beijing, 100193, China
| | - Hongyang Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences,
Beijing, 100193, China
| | - Hui Ma
- Beijing Sunlon Livestock Development Co., Ltd, Beijing, China
| | - Peng Sun
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences,
Beijing, 100193, China
| |
Collapse
|
73
|
Saibil HR. The PDB and protein homeostasis: From chaperones to degradation and disaggregase machines. J Biol Chem 2021; 296:100744. [PMID: 33957121 PMCID: PMC8164034 DOI: 10.1016/j.jbc.2021.100744] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
This review contains a personal account of the role played by the PDB in the development of the field of molecular chaperones and protein homeostasis, from the viewpoint of someone who experienced the concurrent advances in the structural biology, electron microscopy, and chaperone fields. The emphasis is on some key structures, including those of Hsp70, GroEL, Hsp90, and small heat shock proteins, that were determined as the molecular chaperone concept and systems for protein quality control were emerging. These structures were pivotal in demonstrating how seemingly nonspecific chaperones could assist the specific folding pathways of a variety of substrates. Moreover, they have provided mechanistic insights into the ATPase machinery of complexes such as GroEL/GroES that promote unfolding and folding and the disaggregases that extract polypeptides from large aggregates and disassemble amyloid fibers. The PDB has provided a framework for the current success in curating, evaluating, and distributing structural biology data, through both the PDB and the EMDB.
Collapse
Affiliation(s)
- Helen R Saibil
- Institute of Structural and Molecular Biology, Birkbeck, University of London, London, UK.
| |
Collapse
|
74
|
Nguyen B, Ma R, Tang WK, Shi D, Tolia NH. Crystal structure of P. falciparum Cpn60 bound to ATP reveals an open dynamic conformation before substrate binding. Sci Rep 2021; 11:5930. [PMID: 33723304 PMCID: PMC7960994 DOI: 10.1038/s41598-021-85197-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022] Open
Abstract
Plasmodium falciparum harbors group 1 and group 2 chaperonin systems to mediate the folding of cellular proteins in different cellular locations. Two distinct group 1 chaperonins operate in the organelles of mitochondria and apicoplasts, while group 2 chaperonins function in the cytosol. No structural information has been reported for any chaperonin from plasmodium. In this study, we describe the crystal structure of a double heptameric ring Plasmodium falciparum mitochondrial chaperonin 60 (Cpn60) bound with ATP, which differs significantly from any known crystal structure of chaperonin 60. The structure likely represents a unique intermediate state during conformational conversion from the closed state to the opened state. Three of the seven apical domains are highly dynamic while the equatorial domains form a stable ring. The structure implies large movements of the apical domain in the solution play a role in nucleotide-dependent regulation of substrate binding and folding. A unique 26–27 residue insertion in the equatorial domain of Plasmodium falciparum mitochondrial chaperonin greatly increases both inter-ring and intra-ring subunit–subunit interactions. The present structure provides new insights into the mechanism of Cpn60 in chaperonin assembly and function.
Collapse
Affiliation(s)
- Brian Nguyen
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rm 4NN08, Building 29B, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Rui Ma
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rm 4NN08, Building 29B, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Wai Kwan Tang
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rm 4NN08, Building 29B, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Dashuang Shi
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rm 4NN08, Building 29B, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Niraj H Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rm 4NN08, Building 29B, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
75
|
Chaperonins: Nanocarriers with Biotechnological Applications. NANOMATERIALS 2021; 11:nano11020503. [PMID: 33671209 PMCID: PMC7922521 DOI: 10.3390/nano11020503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/05/2021] [Accepted: 02/13/2021] [Indexed: 12/18/2022]
Abstract
Chaperonins are molecular chaperones found in all kingdoms of life, and as such they assist in the folding of other proteins. Structurally, chaperonins are cylinders composed of two back-to-back rings, each of which is an oligomer of ~60-kDa proteins. Chaperonins are found in two main conformations, one in which the cavity is open and ready to recognise and trap unfolded client proteins, and a "closed" form in which folding takes place. The conspicuous properties of this structure (a cylinder containing a cavity that allows confinement) and the potential to control its closure and aperture have inspired a number of nanotechnological applications that will be described in this review.
Collapse
|
76
|
Kameta N, Ding W. Stacking of nanorings to generate nanotubes for acceleration of protein refolding. NANOSCALE 2021; 13:1629-1638. [PMID: 33331384 DOI: 10.1039/d0nr07660k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembly and photoisomerization of azobenzene-based amphiphilic molecules produced nanorings with an inner diameter of 25 nm and lengths of <40 nm. The nanorings, which consisted of a single bilayer membrane of the amphiphiles, retained their morphology in the presence of a stacking inhibitor; whereas in the absence of the inhibitor, the nanorings stacked into short nanotubes (<500 nm). When subjected to mild heat treatment, these nanotubes joined end-to-end to form nanotubes with lengths of several tens of micrometers. The nanorings and the short and long nanotubes were able to encapsulate proteins and thereby suppress aggregation induced by thermal denaturation. In addition, the nanotubes accelerated refolding of denatured proteins by encapsulating them and then releasing them into the bulk solution; refolding occurred simultaneously with release. In contrast, the nanorings did not accelerate protein refolding. Refolding efficiency increased with increasing nanotube length, indicating that the re-aggregation of the proteins was strictly inhibited by lowering the concentration of the proteins in the bulk solution as the result of the slow release from the longer nanotubes. The migration of the proteins through the long, narrow nanochannels during the release process will also contribute to refolding.
Collapse
Affiliation(s)
- N Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | | |
Collapse
|
77
|
Koculi E, Thirumalai D. Retardation of Folding Rates of Substrate Proteins in the Nanocage of GroEL. Biochemistry 2021; 60:460-464. [PMID: 33464880 DOI: 10.1021/acs.biochem.0c00903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Escherichia coli ATP-consuming chaperonin machinery, a complex between GroEL and GroES, has evolved to facilitate folding of substrate proteins (SPs) that cannot do so spontaneously. A series of kinetic experiments show that the SPs are encapsulated in the GroEL/ES nanocage for a short duration. If confinement of the SPs is the mechanism by which GroEL/ES facilitates folding, it follows that the assisted folding rate, relative to the bulk value, should always be enhanced. Here, we show that this is not the case for the folding of rhodanese in the presence of the full machinery of GroEL/ES and ATP. The assisted folding rate of rhodanese decreases. On the basis of our finding and those reported in other studies, we suggest that the ATP-consuming chaperonin machinery has evolved to optimize the product of the folding rate and the yield of the folded SPs on the biological time scale. Neither the rate nor the yield is separately maximized.
Collapse
Affiliation(s)
- Eda Koculi
- Department of Biology, Johns Hopkins University, 144 Mudd Hall, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
78
|
Shi J, Li Y, Jiang X, Yu H, Li J, Zhang H, Trainer DJ, Hla SW, Wang H, Wang M, Li X. Self-Assembly of Metallo-Supramolecules with Dissymmetrical Ligands and Characterization by Scanning Tunneling Microscopy. J Am Chem Soc 2021; 143:1224-1234. [PMID: 33395279 DOI: 10.1021/jacs.0c12508] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asymmetrical and dissymmetrical structures are widespread and play a critical role in nature and life systems. In the field of metallo-supramolecular assemblies, it is still in its infancy for constructing artificial architectures using dissymmetrical building blocks. Herein, we report the self-assembly of supramolecular systems based on two dissymmetrical double-layered ligands. With the aid of ultra-high-vacuum, low-temperature scanning tunneling microscopy (UHV-LT-STM), we were able to investigate four isomeric structures corresponding to four types of binding modes of ligand LA with two major conformations complexes A. The distribution of isomers measured by STM and total binding energy of each isomer obtained by density functional theory (DFT) calculations suggested that the most abundant isomer could be the most stable one with highest total binding energy. Finally, through shortening the linker between inner and outer layers and the length of arms, the arrangement of dissymmetrical ligand LB could be controlled within one binding mode corresponding to the single conformation for complexes B.
Collapse
Affiliation(s)
- Junjuan Shi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China.,College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Yiming Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China.,Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xin Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Hao Yu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Jiaqi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Daniel J Trainer
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Saw Wai Hla
- Nanoscience and Technology Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518055, China.,Shenzhen University General Hospital, Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong 518055, China
| |
Collapse
|
79
|
Edkins AL, Boshoff A. General Structural and Functional Features of Molecular Chaperones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1340:11-73. [PMID: 34569020 DOI: 10.1007/978-3-030-78397-6_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Molecular chaperones are a group of structurally diverse and highly conserved ubiquitous proteins. They play crucial roles in facilitating the correct folding of proteins in vivo by preventing protein aggregation or facilitating the appropriate folding and assembly of proteins. Heat shock proteins form the major class of molecular chaperones that are responsible for protein folding events in the cell. This is achieved by ATP-dependent (folding machines) or ATP-independent mechanisms (holders). Heat shock proteins are induced by a variety of stresses, besides heat shock. The large and varied heat shock protein class is categorised into several subfamilies based on their sizes in kDa namely, small Hsps (HSPB), J domain proteins (Hsp40/DNAJ), Hsp60 (HSPD/E; Chaperonins), Hsp70 (HSPA), Hsp90 (HSPC), and Hsp100. Heat shock proteins are localised to different compartments in the cell to carry out tasks specific to their environment. Most heat shock proteins form large oligomeric structures, and their functions are usually regulated by a variety of cochaperones and cofactors. Heat shock proteins do not function in isolation but are rather part of the chaperone network in the cell. The general structural and functional features of the major heat shock protein families are discussed, including their roles in human disease. Their function is particularly important in disease due to increased stress in the cell. Vector-borne parasites affecting human health encounter stress during transmission between invertebrate vectors and mammalian hosts. Members of the main classes of heat shock proteins are all represented in Plasmodium falciparum, the causative agent of cerebral malaria, and they play specific functions in differentiation, cytoprotection, signal transduction, and virulence.
Collapse
Affiliation(s)
- Adrienne Lesley Edkins
- Biomedical Biotechnology Research Unit (BioBRU), Department of Biochemistry and Microbiology, Rhodes University, Makhanda/Grahamstown, South Africa.
- Rhodes University, Makhanda/Grahamstown, South Africa.
| | - Aileen Boshoff
- Rhodes University, Makhanda/Grahamstown, South Africa.
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
80
|
Stevens M, Howe C, Ray AM, Washburn A, Chitre S, Sivinski J, Park Y, Hoang QQ, Chapman E, Johnson SM. Analogs of nitrofuran antibiotics are potent GroEL/ES inhibitor pro-drugs. Bioorg Med Chem 2020; 28:115710. [PMID: 33007545 PMCID: PMC7914298 DOI: 10.1016/j.bmc.2020.115710] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 01/14/2023]
Abstract
In two previous studies, we identified compound 1 as a moderate GroEL/ES inhibitor with weak to moderate antibacterial activity against Gram-positive and Gram-negative bacteria including Bacillus subtilis, methicillin-resistant Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, and SM101 Escherichia coli (which has a compromised lipopolysaccharide biosynthetic pathway making bacteria more permeable to drugs). Extending from those studies, we developed two series of analogs with key substructures resembling those of known antibacterials, nitroxoline (hydroxyquinoline moiety) and nifuroxazide/nitrofurantoin (bis-cyclic-N-acylhydrazone scaffolds). Through biochemical and cell-based assays, we identified potent GroEL/ES inhibitors that selectively blocked E. faecium, S. aureus, and E. coli proliferation with low cytotoxicity to human colon and intestine cells in vitro. Initially, only the hydroxyquinoline-bearing analogs were found to be potent inhibitors in our GroEL/ES-mediated substrate refolding assays; however, subsequent testing in the presence of an E. coli nitroreductase (NfsB) in situ indicated that metabolites of the nitrofuran-bearing analogs were potent GroEL/ES inhibitor pro-drugs. Consequently, this study has identified a new target of nitrofuran-containing drugs, and is the first reported instance of such a unique class of GroEL/ES chaperonin inhibitors. The intriguing results presented herein provide impetus for expanded studies to validate inhibitor mechanisms and optimize this antibacterial class using the respective GroEL/ES chaperonin systems and nitroreductases from E. coli and the ESKAPE bacteria.
Collapse
Affiliation(s)
- Mckayla Stevens
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Chris Howe
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Anne-Marie Ray
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Alex Washburn
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Siddhi Chitre
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States
| | - Jared Sivinski
- The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ 85721, United States
| | - Yangshin Park
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States; Stark Neurosciences Research Institute, Indiana University School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202, United States; Department of Neurology, Indiana University School of Medicine. 635 Barnhill Drive, Indianapolis, IN 46202, United States
| | - Quyen Q Hoang
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States; Stark Neurosciences Research Institute, Indiana University School of Medicine. 320 W. 15th Street, Suite 414, Indianapolis, IN 46202, United States; Department of Neurology, Indiana University School of Medicine. 635 Barnhill Drive, Indianapolis, IN 46202, United States
| | - Eli Chapman
- The University of Arizona, College of Pharmacy, Department of Pharmacology and Toxicology, 1703 E. Mabel St., PO Box 210207, Tucson, AZ 85721, United States
| | - Steven M Johnson
- Indiana University School of Medicine, Department of Biochemistry and Molecular Biology, 635 Barnhill Dr., Indianapolis, IN 46202, United States.
| |
Collapse
|
81
|
Sadat A, Tiwari S, Verma K, Ray A, Ali M, Upadhyay V, Singh A, Chaphalkar A, Ghosh A, Chakraborty R, Chakraborty K, Mapa K. GROEL/ES Buffers Entropic Traps in Folding Pathway during Evolution of a Model Substrate. J Mol Biol 2020; 432:5649-5664. [PMID: 32835659 DOI: 10.1016/j.jmb.2020.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
The folding landscape of proteins can change during evolution with the accumulation of mutations that may introduce entropic or enthalpic barriers in the protein folding pathway, making it a possible substrate of molecular chaperones in vivo. Can the nature of such physical barriers of folding dictate the feasibility of chaperone-assistance? To address this, we have simulated the evolutionary step to chaperone-dependence keeping GroEL/ES as the target chaperone and GFP as a model protein in an unbiased screen. We find that the mutation conferring GroEL/ES dependence in vivo and in vitro encode an entropic trap in the folding pathway rescued by the chaperonin. Additionally, GroEL/ES can edit the formation of non-native contacts similar to DnaK/J/E machinery. However, this capability is not utilized by the substrates in vivo. As a consequence, GroEL/ES caters to buffer mutations that predominantly cause entropic traps, despite possessing the capacity to edit both enthalpic and entropic traps in the folding pathway of the substrate protein.
Collapse
Affiliation(s)
- Anwar Sadat
- Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India; CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Satyam Tiwari
- Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India; CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Kanika Verma
- Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India; CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Arjun Ray
- Indraprastha Institute of Information Technology-Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India
| | - Mudassar Ali
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NH91, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Vaibhav Upadhyay
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Anupam Singh
- CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Aseem Chaphalkar
- Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India; CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Asmita Ghosh
- Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India; CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Rahul Chakraborty
- Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India; CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Kausik Chakraborty
- Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India; CSIR-Institute of Genomics and Integrative Biology, Mathura Road, New Delhi 110025, India
| | - Koyeli Mapa
- Academy of Scientific and Innovative Research, CSIR-HRDG, Ghaziabad, Uttar Pradesh 201002, India; Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, NH91, Greater Noida, Gautam Buddha Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
82
|
Vitale AM, Conway de Macario E, Alessandro R, Cappello F, Macario AJL, Marino Gammazza A. Missense Mutations of Human Hsp60: A Computational Analysis to Unveil Their Pathological Significance. Front Genet 2020; 11:969. [PMID: 33014020 PMCID: PMC7461820 DOI: 10.3389/fgene.2020.00969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/31/2020] [Indexed: 11/30/2022] Open
Abstract
Two chaperonopathies have been linked to mutations in the human hsp60 (hHsp60; HSPD1) gene, but other existing variants might cause diseases, even if there is no comprehensive information about this possibility. To fill this vacuum, which might be at the basis of misdiagnoses or simply ignorance of chaperonopathies in patients who would benefit by proper identification of their ailments, we searched the sequenced human genomes available in public databases to determine the range of missense mutations in the single hsp60 gene. A total of 224 missense mutations were identified, including those already characterized. Detailed examination of these mutations was carried out to assess their possible impact on protein structure-function, considering: (a) the properties of individual amino acids; (b) the known functions of the amino acids in the human Hsp60 and/or in the highly similar bacterial ortholog GroEL; (c) the location of the mutant amino acids in the monomers and oligomers; and (d) structure-function relationships inferred from crystal structures. And we also applied a bioinformatics tool for predicting the impact of mutations on proteins. A portion of these genetic variants could have a deleterious impact on protein structure-function, but have not yet been associated with any pathology. Are these variants causing disease with mild clinical manifestations and are, therefore, being overlooked? Or are they causing overt disease, which is misdiagnosed? Our data indicate that more chaperonopathies might occur than is currently acknowledged and that awareness of chaperonopathies among medical personnel will increase their detection and improve patient management.
Collapse
Affiliation(s)
- Alessandra Maria Vitale
- Department of Biomedicine, Neuroscience and Advanced Diagnosis, Section of Human Anatomy, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Everly Conway de Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.,Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD, United States
| | - Riccardo Alessandro
- Department of Biomedicine, Neuroscience and Advanced Diagnosis, Section of Human Anatomy, University of Palermo, Palermo, Italy
| | - Francesco Cappello
- Department of Biomedicine, Neuroscience and Advanced Diagnosis, Section of Human Anatomy, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| | - Alberto J L Macario
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy.,Department of Microbiology and Immunology, School of Medicine, University of Maryland at Baltimore-Institute of Marine and Environmental Technology (IMET), Baltimore, MD, United States
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neuroscience and Advanced Diagnosis, Section of Human Anatomy, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
| |
Collapse
|
83
|
Kashiwagi D, Shen HK, Sim S, Sano K, Ishida Y, Kimura A, Niwa T, Taguchi H, Aida T. Molecularly Engineered "Janus GroEL": Application to Supramolecular Copolymerization with a Higher Level of Sequence Control. J Am Chem Soc 2020; 142:13310-13315. [PMID: 32691585 DOI: 10.1021/jacs.0c05937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein we report the synthesis and isolation of a shape-persistent Janus protein nanoparticle derived from the biomolecular machine chaperonin GroEL (AGroELB) and its application to DNA-mediated ternary supramolecular copolymerization. To synthesize AGroELB with two different DNA strands A and B at its opposite apical domains, we utilized the unique biological property of GroEL, i.e., Mg2+/ATP-mediated ring exchange between AGroELA and BGroELB with their hollow cylindrical double-decker architectures. This exchange event was reported more than 24 years ago but has never been utilized for molecular engineering of GroEL. We leveraged DNA nanotechnology to purely isolate Janus AGroELB and succeeded in its precision ternary supramolecular copolymerization with two DNA comonomers, A** and B*, that are partially complementary to A and B in AGroELB, respectively, and programmed to self-dimerize on the other side. Transmission electron microscopy allowed us to confirm the formation of the expected dual-periodic copolymer sequence -(B*/BGroELA/A**/A**/AGroELB/B*)- in the form of a laterally connected lamellar assembly rather than a single-chain copolymer.
Collapse
Affiliation(s)
- Daiki Kashiwagi
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hao K Shen
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Seunghyun Sim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Koki Sano
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ayumi Kimura
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
84
|
Linke H, Höcker B, Furuta K, Forde NR, Curmi PMG. Synthetic biology approaches to dissecting linear motor protein function: towards the design and synthesis of artificial autonomous protein walkers. Biophys Rev 2020; 12:1041-1054. [PMID: 32651904 PMCID: PMC7429643 DOI: 10.1007/s12551-020-00717-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
Molecular motors and machines are essential for all cellular processes that together enable life. Built from proteins with a wide range of properties, functionalities and performance characteristics, biological motors perform complex tasks and can transduce chemical energy into mechanical work more efficiently than human-made combustion engines. Sophisticated studies of biological protein motors have provided many structural and biophysical insights and enabled the development of models for motor function. However, from the study of highly evolved, biological motors, it remains difficult to discern detailed mechanisms, for example, about the relative role of different force generation mechanisms, or how information is communicated across a protein to achieve the necessary coordination. A promising, complementary approach to answering these questions is to build synthetic protein motors from the bottom up. Indeed, much effort has been invested in functional protein design, but so far, the "holy grail" of designing and building a functional synthetic protein motor has not been realized. Here, we review the progress made to date, and we put forward a roadmap for achieving the aim of constructing the first artificial, autonomously running protein motor. Specifically, we propose to break down the task into (i) enzymatic control of track binding, (ii) the engineering of asymmetry and (iii) the engineering of allosteric control for internal communication. We also propose specific approaches for solving each of these challenges.
Collapse
Affiliation(s)
- Heiner Linke
- NanoLund and Solid State Physics, Lund University, Box 118, SE 22100, Lund, Sweden
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, 95447, Bayreuth, Germany
| | - Ken'ya Furuta
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo, 651-2492, Japan
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Paul M G Curmi
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
85
|
Balchin D, Hayer-Hartl M, Hartl FU. Recent advances in understanding catalysis of protein folding by molecular chaperones. FEBS Lett 2020; 594:2770-2781. [PMID: 32446288 DOI: 10.1002/1873-3468.13844] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 12/27/2022]
Abstract
Molecular chaperones are highly conserved proteins that promote proper folding of other proteins in vivo. Diverse chaperone systems assist de novo protein folding and trafficking, the assembly of oligomeric complexes, and recovery from stress-induced unfolding. A fundamental function of molecular chaperones is to inhibit unproductive protein interactions by recognizing and protecting hydrophobic surfaces that are exposed during folding or following proteotoxic stress. Beyond this basic principle, it is now clear that chaperones can also actively and specifically accelerate folding reactions in an ATP-dependent manner. We focus on the bacterial Hsp70 and chaperonin systems as paradigms, and review recent work that has advanced our understanding of how these chaperones act as catalysts of protein folding.
Collapse
Affiliation(s)
- David Balchin
- Protein Biogenesis Laboratory, The Francis Crick Institute, London, UK
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
86
|
OsCpn60β1 is Essential for Chloroplast Development in Rice ( Oryza sativa L.). Int J Mol Sci 2020; 21:ijms21114023. [PMID: 32512821 PMCID: PMC7313468 DOI: 10.3390/ijms21114023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/03/2023] Open
Abstract
The chaperonin 60 (Cpn60) protein is of great importance to plants due to its involvement in modulating the folding of numerous chloroplast protein polypeptides. In chloroplasts, Cpn60 is differentiated into two subunit types—Cpn60α and Cpn60β and the rice genome encodes three α and three β plastid chaperonin subunits. However, the functions of Cpn60 family members in rice were poorly understood. In order to investigate the molecular mechanism of OsCpn60β1, we attempted to disrupt the OsCpn60β1 gene by CRISPR/Cas9-mediated targeted mutagenesis in this study. We succeeded in the production of homozygous OsCpn60β1 knockout rice plants. The OsCpn60β1 mutant displayed a striking albino leaf phenotype and was seedling lethal. Electron microscopy observation demonstrated that chloroplasts were severely disrupted in the OsCpn60β1 mutant. In addition, OsCpn60β1 was located in the chloroplast and OsCpn60β1 is constitutively expressed in various tissues particularly in the green tissues. The label-free qualitative proteomics showed that photosynthesis-related pathways and ribosomal pathways were significantly inhibited in OsCpn60β1 mutants. These results indicate that OsCpn60β1 is essential for chloroplast development in rice.
Collapse
|
87
|
Seclì L, Sorge M, Morotti A, Brancaccio M. Blocking Extracellular Chaperones to Improve Cardiac Regeneration. Front Bioeng Biotechnol 2020; 8:411. [PMID: 32528937 PMCID: PMC7264090 DOI: 10.3389/fbioe.2020.00411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/14/2020] [Indexed: 12/24/2022] Open
Abstract
Chronic or acute insults to the myocardium are responsible for the onset of cardiomyopathy and heart failure. Due to the poor regenerative ability of the human adult heart, the survival of cardiomyocytes is a prerequisite to support heart function. Chaperone proteins, by regulating sarcomeric protein folding, function, and turnover in the challenging environment of the beating heart, play a fundamental role in myocardial physiology. Nevertheless, a number of evidences indicate that, under stress conditions or during cell damage, myocardial cells release chaperone proteins that, from the extracellular milieu, play a detrimental function, by perpetuating inflammation and inducing cardiomyocyte apoptosis. Blocking the activity of extracellular chaperones has been proven to have beneficial effects on heart function in preclinical models of myocardial infarction and cardiomyopathy. The application of this approach in combination with tissue engineering strategies may represent a future innovation in cardiac regenerative medicine.
Collapse
Affiliation(s)
- Laura Seclì
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Matteo Sorge
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
88
|
Bie AS, Cömert C, Körner R, Corydon TJ, Palmfeldt J, Hipp MS, Hartl FU, Bross P. An inventory of interactors of the human HSP60/HSP10 chaperonin in the mitochondrial matrix space. Cell Stress Chaperones 2020; 25:407-416. [PMID: 32060690 PMCID: PMC7192978 DOI: 10.1007/s12192-020-01080-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/14/2020] [Accepted: 02/10/2020] [Indexed: 10/25/2022] Open
Abstract
The HSP60/HSP10 chaperonin assists folding of proteins in the mitochondrial matrix space by enclosing them in its central cavity. The chaperonin forms part of the mitochondrial protein quality control system. It is essential for cellular survival and mutations in its subunits are associated with rare neurological disorders. Here we present the first survey of interactors of the human mitochondrial HSP60/HSP10 chaperonin. Using a protocol involving metabolic labeling of HEK293 cells, cross-linking, and immunoprecipitation of HSP60, we identified 323 interacting proteins. As expected, the vast majority of these proteins are localized to the mitochondrial matrix space. We find that approximately half of the proteins annotated as mitochondrial matrix proteins interact with the HSP60/HSP10 chaperonin. They cover a broad spectrum of functions and metabolic pathways including the mitochondrial protein synthesis apparatus, the respiratory chain, and mitochondrial protein quality control. Many of the genes encoding HSP60 interactors are annotated as disease genes. There is a correlation between relative cellular abundance and relative abundance in the HSP60 immunoprecipitates. Nineteen abundant matrix proteins occupy more than 60% of the HSP60/HSP10 chaperonin capacity. The reported inventory of interactors can form the basis for interrogating which proteins are especially dependent on the chaperonin.
Collapse
Affiliation(s)
- Anne Sigaard Bie
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Cagla Cömert
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Roman Körner
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergsgade 10, 8000, Aarhus C, Denmark
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark
| | - Mark S Hipp
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111, Oldenburg, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany
| | - Peter Bross
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200, Aarhus N, Denmark.
| |
Collapse
|
89
|
Nishimura T, Akiyoshi K. Artificial Molecular Chaperone Systems for Proteins, Nucleic Acids, and Synthetic Molecules. Bioconjug Chem 2020; 31:1259-1267. [DOI: 10.1021/acs.bioconjchem.0c00133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tomoki Nishimura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
90
|
Structural basis for active single and double ring complexes in human mitochondrial Hsp60-Hsp10 chaperonin. Nat Commun 2020; 11:1916. [PMID: 32317635 PMCID: PMC7174398 DOI: 10.1038/s41467-020-15698-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/17/2020] [Indexed: 01/21/2023] Open
Abstract
mHsp60-mHsp10 assists the folding of mitochondrial matrix proteins without the negative ATP binding inter-ring cooperativity of GroEL-GroES. Here we report the crystal structure of an ATP (ADP:BeF3-bound) ground-state mimic double-ring mHsp6014-(mHsp107)2 football complex, and the cryo-EM structures of the ADP-bound successor mHsp6014-(mHsp107)2 complex, and a single-ring mHsp607-mHsp107 half-football. The structures explain the nucleotide dependence of mHsp60 ring formation, and reveal an inter-ring nucleotide symmetry consistent with the absence of negative cooperativity. In the ground-state a two-fold symmetric H-bond and a salt bridge stitch the double-rings together, whereas only the H-bond remains as the equatorial gap increases in an ADP football poised to split into half-footballs. Refolding assays demonstrate obligate single- and double-ring mHsp60 variants are active, and complementation analysis in bacteria shows the single-ring variant is as efficient as wild-type mHsp60. Our work provides a structural basis for active single- and double-ring complexes coexisting in the mHsp60-mHsp10 chaperonin reaction cycle.
Collapse
|
91
|
Bayfield OW, Steven AC, Antson AA. Cryo-EM structure in situ reveals a molecular switch that safeguards virus against genome loss. eLife 2020; 9:e55517. [PMID: 32286226 PMCID: PMC7234808 DOI: 10.7554/elife.55517] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/13/2020] [Indexed: 01/01/2023] Open
Abstract
The portal protein is a key component of many double-stranded DNA viruses, governing capsid assembly and genome packaging. Twelve subunits of the portal protein define a tunnel, through which DNA is translocated into the capsid. It is unknown how the portal protein functions as a gatekeeper, preventing DNA slippage, whilst allowing its passage into the capsid, and how these processes are controlled. A cryo-EM structure of the portal protein of thermostable virus P23-45, determined in situ in its procapsid-bound state, indicates a mechanism that naturally safeguards the virus against genome loss. This occurs via an inversion of the conformation of the loops that define the constriction in the central tunnel, accompanied by a hydrophilic-hydrophobic switch. The structure also shows how translocation of DNA into the capsid could be modulated by a changing mode of protein-protein interactions between portal and capsid, across a symmetry-mismatched interface.
Collapse
Affiliation(s)
- Oliver W Bayfield
- York Structural Biology Laboratory, Department of Chemistry, University of YorkYorkUnited Kingdom
- Laboratory of Structural Biology Research, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of HealthBethesdaUnited States
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, National Institute of Arthritis Musculoskeletal and Skin Diseases, National Institutes of HealthBethesdaUnited States
| | - Alfred A Antson
- York Structural Biology Laboratory, Department of Chemistry, University of YorkYorkUnited Kingdom
| |
Collapse
|
92
|
Zheng J, Mao Y, Su Y, Wang J. Cross talk between heat shock protein 10 and a heat shock factor identified from Marsupenaeus japonicus. Int J Biol Macromol 2020; 147:1041-1052. [PMID: 31743718 DOI: 10.1016/j.ijbiomac.2019.10.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/31/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022]
Abstract
Heat shock factors (HSFs) and heat shock proteins (HSPs) are crucial regulators and effectors of the heat shock response (HSR). In this study, the full-length cDNA sequences of MjHSP10 and MjHSF1 were cloned by rapid amplification of cDNA ends (RACE). The deduced MjHSP10 and MjHSF1 amino acid (aa) sequences exhibited conserved structures and the functional features of HSP10 and HSF1, respectively. The tissue distributions and mRNA expression profiles of the two genes in response to heat stress were analyzed by quantitative real-time PCR (qRT-PCR). MjHSP10 and MjHSF1 were ubiquitously expressed in various tissues. Heat stress induced a significant increase in MjHSP10 expression that tend to positively correlate with temperature. Additionally, MjHSF1 transcription was up-regulated less than MjHSP10 transcription under heat stress. MjHSF1 expression in the hepatopancreas was up-regulated under only long-term (48 h) heat stress, and MjHSF1 transcription in the gill increased under only acute (34 °C) heat stress. MjHSF1 knockdown by RNA interference (RNAi) down-regulated MjHSP10 expression. Glutathione-S-transferase (GST) pull-down assays showed an interaction between MjHSP10 and the DNA-binding domain (DBD) of MjHSF1. This study provided new insights into cross talk between HSP10 and HSF1 in Marsupenaeus japonicus.
Collapse
Affiliation(s)
- Jinbin Zheng
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| | - Yongquan Su
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jun Wang
- College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
93
|
Singh AK, Balchin D, Imamoglu R, Hayer-Hartl M, Hartl FU. Efficient Catalysis of Protein Folding by GroEL/ES of the Obligate Chaperonin Substrate MetF. J Mol Biol 2020; 432:2304-2318. [PMID: 32135190 DOI: 10.1016/j.jmb.2020.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 11/16/2022]
Abstract
The cylindrical chaperonin GroEL and its cofactor GroES mediate ATP-dependent protein folding in Escherichia coli by transiently encapsulating non-native substrate in a nano-cage formed by the GroEL ring cavity and the lid-shaped GroES. Mechanistic studies of GroEL/ES with heterologous protein substrates suggested that the chaperonin is inefficient, typically requiring multiple ATP-dependent encapsulation cycles with only a few percent of protein folded per cycle. Here we analyzed the spontaneous and chaperonin-assisted folding of the essential enzyme 5,10-methylenetetrahydrofolate reductase (MetF) of E. coli, an obligate GroEL/ES substrate. We found that MetF, a homotetramer of 33-kDa subunits with (β/α)8 TIM-barrel fold, populates a kinetically trapped folding intermediate(s) (MetF-I) upon dilution from denaturant that fails to convert to the native state, even in the absence of aggregation. GroEL/ES recognizes MetF-I and catalyzes rapid folding, with ~50% of protein folded in a single round of encapsulation. Analysis by hydrogen/deuterium exchange at peptide resolution showed that the MetF subunit folds to completion in the GroEL/ES nano-cage and binds its cofactor flavin adenine dinucleotide. Rapid folding required the net negative charge character of the wall of the chaperonin cavity. These findings reveal a remarkable capacity of GroEL/ES to catalyze folding of an endogenous substrate protein that would have coevolved with the chaperonin system.
Collapse
Affiliation(s)
- Amit K Singh
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany
| | - David Balchin
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany
| | - Rahmi Imamoglu
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany
| | - Manajit Hayer-Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82159 Martinsried, Germany.
| |
Collapse
|
94
|
Abstract
This chronologue seeks to document the discovery and development of an understanding of oligomeric ring protein assemblies known as chaperonins that assist protein folding in the cell. It provides detail regarding genetic, physiologic, biochemical, and biophysical studies of these ATP-utilizing machines from both in vivo and in vitro observations. The chronologue is organized into various topics of physiology and mechanism, for each of which a chronologic order is generally followed. The text is liberally illustrated to provide firsthand inspection of the key pieces of experimental data that propelled this field. Because of the length and depth of this piece, the use of the outline as a guide for selected reading is encouraged, but it should also be of help in pursuing the text in direct order.
Collapse
|
95
|
Back to GroEL-Assisted Protein Folding: GroES Binding-Induced Displacement of Denatured Proteins from GroEL to Bulk Solution. Biomolecules 2020; 10:biom10010162. [PMID: 31968530 PMCID: PMC7022901 DOI: 10.3390/biom10010162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 11/29/2022] Open
Abstract
The main events in chaperone-assisted protein folding are the binding and ligand-induced release of substrate proteins. Here, we studied the location of denatured proteins previously bound to the GroEL chaperonin resulting from the action of the GroES co-chaperonin in the presence of Mg-ATP. Fluorescein-labeled denatured proteins (α-lactalbumin, lysozyme, serum albumin, and pepsin in the presence of thiol reagents at neutral pH, as well as an early refolding intermediate of malate dehydrogenase) were used to reveal the effect of GroES on their interaction with GroEL. Native electrophoresis has demonstrated that these proteins tend to be released from the GroEL-GroES complex. With the use of biotin- and fluorescein-labeled denatured proteins and streptavidin fused with luciferase aequorin (the so-called streptavidin trap), the presence of denatured proteins in bulk solution after GroES and Mg-ATP addition has been confirmed. The time of GroES-induced dissociation of a denatured protein from the GroEL surface was estimated using the stopped-flow technique and found to be much shorter than the proposed time of the GroEL ATPase cycle.
Collapse
|
96
|
Ma FH, Li C, Liu Y, Shi L. Mimicking Molecular Chaperones to Regulate Protein Folding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1805945. [PMID: 31045287 DOI: 10.1002/adma.201805945] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/28/2019] [Indexed: 06/09/2023]
Abstract
Folding and unfolding are essential ways for a protein to regulate its biological activity. The misfolding of proteins usually reduces or completely compromises their biological functions, which eventually causes a wide range of diseases including neurodegeneration diseases, type II diabetes, and cancers. Therefore, materials that can regulate protein folding and maintain proteostasis are of significant biological and medical importance. In living organisms, molecular chaperones are a family of proteins that maintain proteostasis by interacting with, stabilizing, and repairing various non-native proteins. In the past few decades, efforts have been made to create artificial systems to mimic the structure and biological functions of nature chaperonins. Herein, recent progress in the design and construction of materials that mimic different kinds of natural molecular chaperones is summarized. The fabrication methods, construction rules, and working mechanisms of these artificial chaperone systems are described. The application of these materials in enhancing the thermal stability of proteins, assisting de novo folding of proteins, and preventing formation of toxic protein aggregates is also highlighted and explored. Finally, the challenges and potential in the field of chaperone-mimetic materials are discussed.
Collapse
Affiliation(s)
- Fei-He Ma
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chang Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
97
|
Thirumalai D, Lorimer GH, Hyeon C. Iterative annealing mechanism explains the functions of the GroEL and RNA chaperones. Protein Sci 2019; 29:360-377. [PMID: 31800116 DOI: 10.1002/pro.3795] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022]
Abstract
Molecular chaperones are ATP-consuming machines, which facilitate the folding of proteins and RNA molecules that are kinetically trapped in misfolded states. Unassisted folding occurs by the kinetic partitioning mechanism according to which folding to the native state, with low probability as well as misfolding to one of the many metastable states, with high probability, occur rapidly. GroEL is an all-purpose stochastic machine that assists misfolded substrate proteins to fold. The RNA chaperones such as CYT-19, which are ATP-consuming enzymes, help the folding of ribozymes that get trapped in metastable states for long times. GroEL does not interact with the folded proteins but CYT-19 disrupts both the folded and misfolded ribozymes. The structures of GroEL and RNA chaperones are strikingly different. Despite these differences, the iterative annealing mechanism (IAM) quantitatively explains all the available experimental data for assisted folding of proteins and ribozymes. Driven by ATP binding and hydrolysis and GroES binding, GroEL undergoes a catalytic cycle during which it samples three allosteric states, T (apo), R (ATP bound), and R″ (ADP bound). Analyses of the experimental data show that the efficiency of the GroEL-GroES machinery and mutants is determined by the resetting rate k R ″ → T , which is largest for the wild-type (WT) GroEL. Generalized IAM accurately predicts the folding kinetics of Tetrahymena ribozyme and its variants. Chaperones maximize the product of the folding rate and the steady-state native state fold by driving the substrates out of equilibrium. Neither the absolute yield nor the folding rate is optimized.
Collapse
Affiliation(s)
- D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - George H Lorimer
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland
| | | |
Collapse
|
98
|
Stanishneva-Konovalova TB, Semenyuk PI, Kurochkina LP, Pichkur EB, Vasilyev AL, Kovalchuk MV, Kirpichnikov MP, Sokolova OS. Cryo-EM reveals an asymmetry in a novel single-ring viral chaperonin. J Struct Biol 2019; 209:107439. [PMID: 31870903 DOI: 10.1016/j.jsb.2019.107439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/15/2019] [Accepted: 12/19/2019] [Indexed: 10/25/2022]
Abstract
Chaperonins are ubiquitously present protein complexes, which assist the proper folding of newly synthesized proteins and prevent aggregation of denatured proteins in an ATP-dependent manner. They are classified into group I (bacterial, mitochondrial, chloroplast chaperonins) and group II (archaeal and eukaryotic cytosolic variants). However, both of these groups do not include recently discovered viral chaperonins. Here, we solved the symmetry-free cryo-EM structures of a single-ring chaperonin encoded by the gene 246 of bacteriophage OBP Pseudomonas fluorescens, in the nucleotide-free, ATPγS-, and ADP-bound states, with resolutions of 4.3 Å, 5.0 Å, and 6 Å, respectively. The structure of OBP chaperonin reveals a unique subunit arrangement, with three pairs of subunits and one unpaired subunit. Each pair combines subunits in two possible conformations, differing in nucleotide-binding affinity. The binding of nucleotides results in the increase of subunits' conformational variability. Due to its unique structural and functional features, OBP chaperonin can represent a new group.
Collapse
Affiliation(s)
- Tatiana B Stanishneva-Konovalova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 12, Moscow 119991, Russia
| | - Pavel I Semenyuk
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Lidia P Kurochkina
- Belozersky Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.
| | - Evgeny B Pichkur
- National Research Center "Kurchatov Institute", Moscow 123098, Russia
| | | | | | - Mikhail P Kirpichnikov
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 12, Moscow 119991, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Olga S Sokolova
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 12, Moscow 119991, Russia.
| |
Collapse
|
99
|
Enhanced 5-Aminolevulinic Acid Production by Co-expression of Codon-Optimized hemA Gene with Chaperone in Genetic Engineered Escherichia coli. Appl Biochem Biotechnol 2019; 191:299-312. [PMID: 31845195 DOI: 10.1007/s12010-019-03178-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/11/2019] [Indexed: 01/18/2023]
Abstract
5-Aminolevulinic acid (ALA) is an important metabolic intermediate compound with high value and has recently been used in agriculture and medicine. In this study, we have constructed six recombinant Escherichia coli (E. coli) strains that are involved in pET system under the regulation of the T7 promoter and LacI to express codon-optimized hemA gene from Rhodobacter capsulatus (RchemA) for ALA production via the C4 pathway. Due to codon optimization, hemA has a high transcriptional level; however, most RcHemA proteins were formed as inclusion body. To improve expression in soluble form, the vector with TrxA fusion tag was successfully used and co-expressed with partner GroELS as chaperone in another vector. As a result, ALA production increased significantly from 1.21 to 3.67 g/L. In addition, optimal ALA production was developed through adjustment of induction time and isopropyl β-D-1-thiogalactopyranoside (IPTG) concentration, as well as substrate addition conditions. By adopting a two-stage induction strategy, the highest ALA reached 5.66 g/L when 0.1 mM of IPTG was added at early exponential phase (i.e., OD600 was equal to 0.7 to 0.8), while 6 g/L of glycine, 2 g/L of succinate, and 0.03 mM of pyridoxal 5'-phosphate (PLP) were provided in the mid-exponential phase in fermentation.
Collapse
|
100
|
A History of Molecular Chaperone Structures in the Protein Data Bank. Int J Mol Sci 2019; 20:ijms20246195. [PMID: 31817979 PMCID: PMC6940948 DOI: 10.3390/ijms20246195] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
Thirty years ago a class of proteins was found to prevent the aggregation of Rubisco. These proteins’ ability to prevent unwanted associations led to their being called chaperones. These chaperone proteins also increased in expression as a response to heat shock, hence their label as heat shock proteins (Hsps). However, neither label encompasses the breadth of these proteins’ functional capabilities. The term “unfoldases” has been proposed, as this basic function is shared by most members of this protein family. Onto this is added specializations that allow the different family members to perform various cellular functions. This current article focuses on the resolved structural bases for these functions. It reviews the currently available molecular structures in the Protein Data Bank for several classes of Hsps (Hsp60, Hsp70, Hsp90, and Hsp104). When possible, it discusses the complete structures for these proteins, and the types of molecular machines to which they have been assigned. The structures of domains and the associated functions are discussed in order to illustrate the rationale for the proposed unfoldase function.
Collapse
|