51
|
Ho CW, Van Meervelt V, Tsai KC, De Temmerman PJ, Mast J, Maglia G. Engineering a nanopore with co-chaperonin function. SCIENCE ADVANCES 2015; 1:e1500905. [PMID: 26824063 PMCID: PMC4730846 DOI: 10.1126/sciadv.1500905] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/25/2015] [Indexed: 05/20/2023]
Abstract
The emergence of an enzymatic function can reveal functional insights and allows the engineering of biological systems with enhanced properties. We engineered an alpha hemolysin nanopore to function as GroES, a protein that, in complex with GroEL, forms a two-stroke protein-folding nanomachine. The transmembrane co-chaperonin was prepared by recombination of GroES functional elements with the nanopore, suggesting that emergent functions in molecular machines can be added bottom-up by incorporating modular elements into preexisting protein scaffolds. The binding of a single-ring version of GroEL to individual GroES nanopores prompted large changes to the unitary nanopore current, most likely reflecting the allosteric transitions of the chaperonin apical domains. One of the GroEL-induced current levels showed fast fluctuations (<1 ms), a characteristic that might be instrumental for efficient substrate encapsulation or folding. In the presence of unfolded proteins, the pattern of current transitions changed, suggesting a possible mechanism in which the free energy of adenosine triphosphate binding and hydrolysis is expended only when substrate proteins are occupied.
Collapse
Affiliation(s)
- Ching-Wen Ho
- Department of Chemistry, University of Leuven, Leuven 3001, Belgium
| | | | - Keng-Chang Tsai
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 11221, Taiwan
| | - Pieter-Jan De Temmerman
- Electron Microscopy Unit, Veterinary and Agrochemical Research Centre (CODA-CERVA), Brussels 1180, Belgium
| | - Jan Mast
- Electron Microscopy Unit, Veterinary and Agrochemical Research Centre (CODA-CERVA), Brussels 1180, Belgium
| | - Giovanni Maglia
- Groningen Biotechnology Institute, University of Groningen, Groningen 9747AG, Netherlands
- Corresponding author. E-mail:
| |
Collapse
|
52
|
Productive folding of a tethered protein in the chaperonin GroEL-GroES cage. Biochem Biophys Res Commun 2015; 466:72-5. [PMID: 26325470 DOI: 10.1016/j.bbrc.2015.08.108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 08/24/2015] [Indexed: 11/22/2022]
Abstract
Many proteins in bacterial cells fold in the chaperonin cage made of the central cavity of GroEL capped by GroES. Recent studies indicate that the polypeptide in the cage spends the most time as a state tethered dynamically to the GroEL/GroES interface region, in which folding occurs in the polypeptide segments away from the tethered site (F. Motojima & M. Yoshida, EMBO J. (2010) 29, 4008-4019). In support of this, we show here that a polypeptide in the cage tethered covalently to an appropriate site in the GroEL/GroES interface region can fold to a near-native structure.
Collapse
|
53
|
Illingworth M, Salisbury J, Li W, Lin D, Chen L. Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system. Biochem Biophys Res Commun 2015; 466:15-20. [PMID: 26271593 DOI: 10.1016/j.bbrc.2015.08.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/09/2015] [Indexed: 11/16/2022]
Abstract
Escherichia coli chaperonin GroEL and its cochaperonin GroES are essential for cell growth as they assist folding of cellular proteins. The double-ring assembly of GroEL is required for the chaperone function, and a single-ring variant GroEL(SR) is inactive with GroES. Mutations in GroEL(SR) (A92T, D115N, E191G, and A399T) have been shown to render GroEL(SR)-GroES functional, but the molecular mechanism of activation is unclear. Here we examined various biochemical properties of these functional GroEL(SR)-GroES variants, including ATP hydrolysis rate, chaperonin-cochaperonin interaction, and in vitro protein folding activity. We found that, unlike the diminished ATPase activity of the inactive GroEL(SR)-GroES, all four single-ring variants hydrolyzed ATP at a level comparable to that of the double-ring GroEL-GroES. The chaperonin-cochaperonin interaction in these single-ring systems was weaker, by at least a 50-fold reduction, than the highly stable inactive GroEL(SR)-GroES. Strikingly, only GroEL(SR)D115N-GroES and GroEL(SR)A399T-GroES assisted folding of malate dehydrogenase (MDH), a commonly used folding substrate. These in vitro results are interesting considering that all four of the single-ring systems were able to substitute GroEL-GroES to support cell growth, suggesting that the precise action of chaperonin on MDH folding may not represent that on the intrinsic cellular substrates. Our findings that both effective ATP hydrolysis rate and moderate chaperonin-cochaperonin interaction are important factors for functional single-ring GroEL(SR)-GroES are reminiscent of the naturally occurring single-ring human mitochondrial chaperonin mtHsp60-mtHsp10. Differences in biochemical properties between the single- and double-ring chaperonin systems may be exploited in designing molecules for selective targeting.
Collapse
Affiliation(s)
- Melissa Illingworth
- Department of Molecular and Cellular Biochemistry, 212 S. Hawthorne Dr., Simon Hall 305B, Indiana University, Bloomington, IN 47405, USA
| | - Jared Salisbury
- Department of Molecular and Cellular Biochemistry, 212 S. Hawthorne Dr., Simon Hall 305B, Indiana University, Bloomington, IN 47405, USA
| | - Wenqian Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China
| | - Donghai Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China
| | - Lingling Chen
- Department of Molecular and Cellular Biochemistry, 212 S. Hawthorne Dr., Simon Hall 305B, Indiana University, Bloomington, IN 47405, USA; Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
54
|
Skjærven L, Cuellar J, Martinez A, Valpuesta JM. Dynamics, flexibility, and allostery in molecular chaperonins. FEBS Lett 2015; 589:2522-32. [PMID: 26140986 DOI: 10.1016/j.febslet.2015.06.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 06/18/2015] [Accepted: 06/23/2015] [Indexed: 12/26/2022]
Abstract
The chaperonins are a family of molecular chaperones present in all three kingdoms of life. They are classified into Group I and Group II. Group I consists of the bacterial variants (GroEL) and the eukaryotic ones from mitochondria and chloroplasts (Hsp60), while Group II consists of the archaeal (thermosomes) and eukaryotic cytosolic variants (CCT or TRiC). Both groups assemble into a dual ring structure, with each ring providing a protective folding chamber for nascent and denatured proteins. Their functional cycle is powered by ATP binding and hydrolysis, which drives a series of structural rearrangements that enable encapsulation and subsequent release of the substrate protein. Chaperonins have elaborate allosteric mechanisms to regulate their functional cycle. Long-range negative cooperativity between the two rings ensures alternation of the folding chambers. Positive intra-ring cooperativity, which facilitates concerted conformational transitions within the protein subunits of one ring, has only been demonstrated for Group I chaperonins. In this review, we describe our present understanding of the underlying mechanisms and the structure-function relationships in these complex protein systems with a particular focus on the structural dynamics, allostery, and associated conformational rearrangements.
Collapse
Affiliation(s)
- Lars Skjærven
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | - Jorge Cuellar
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - José María Valpuesta
- Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
55
|
Chaperonin-Assisted Protein Folding: Relative Population of Asymmetric and Symmetric GroEL:GroES Complexes. J Mol Biol 2015; 427:2244-55. [PMID: 25912285 DOI: 10.1016/j.jmb.2015.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/15/2015] [Accepted: 04/15/2015] [Indexed: 11/21/2022]
Abstract
The chaperonin GroEL, a cylindrical complex consisting of two stacked heptameric rings, and its lid-like cofactor GroES form a nano-cage in which a single polypeptide chain is transiently enclosed and allowed to fold unimpaired by aggregation. GroEL and GroES undergo an ATP-regulated interaction cycle that serves to close and open the folding cage. Recent reports suggest that the presence of non-native substrate protein alters the GroEL/ES reaction by shifting it from asymmetric to symmetric complexes. In the asymmetric reaction mode, only one ring of GroEL is GroES bound and the two rings function sequentially, coupled by negative allostery. In the symmetric mode, both GroEL rings are GroES bound and are folding active simultaneously. Here, we find that the results of assays based on fluorescence resonance energy transfer recently used to quantify symmetric complexes depend strongly on the fluorophore pair used. We therefore developed a novel assay based on fluorescence cross-correlation spectroscopy to accurately measure GroEL:GroES stoichiometry. This assay avoids fluorophore labeling of GroEL and the use of GroEL cysteine mutants. Our results show that symmetric GroEL:GroES2 complexes are substantially populated only in the presence of non-foldable model proteins, such as α-lactalbumin and α-casein, which "over-stimulate" the GroEL ATPase and uncouple the negative GroEL inter-ring allostery. In contrast, asymmetric complexes are dominant both in the absence of substrate and in the presence of foldable substrate proteins. Moreover, uncoupling of the GroEL rings and formation of symmetric GroEL:GroES2 complexes is suppressed at physiological ATP:ADP concentration. We conclude that the asymmetric GroEL:GroES complex represents the main folding active form of the chaperonin.
Collapse
|
56
|
Taguchi H. Reaction Cycle of Chaperonin GroEL via Symmetric "Football" Intermediate. J Mol Biol 2015; 427:2912-8. [PMID: 25900372 DOI: 10.1016/j.jmb.2015.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/12/2015] [Accepted: 04/14/2015] [Indexed: 11/13/2022]
Abstract
Chaperonin GroEL is an essential chaperone that assists in protein folding in the cell. Since one GroEL ring binds one GroES heptamer, the GroEL double ring permits the formation of two types of GroEL:GroES complexes: asymmetric 1:1 "bullet"-shaped and symmetric 1:2 "football"-shaped GroEL:GroES2 complexes. There have been continuing debates about the mechanism and which complex is critical to the chaperonin-assisted folding. In this review, I summarize the recent progress on the football complex.
Collapse
Affiliation(s)
- Hideki Taguchi
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
57
|
Abstract
Protein folding is a biological process that is essential for the proper functioning of proteins in all living organisms. In cells, many proteins require the assistance of molecular chaperones for their folding. Chaperonins belong to a class of molecular chaperones that have been extensively studied. However, the mechanism by which a chaperonin mediates the folding of proteins is still controversial. Denatured proteins are folded in the closed chaperonin cage, leading to the assumption that denatured proteins are completely encapsulated inside the chaperonin cage. In contrast to the assumption, we recently found that denatured protein interacts with hydrophobic residues at the subunit interfaces of the chaperonin, and partially protrude out of the cage. In this review, we will explain our recent results and introduce our model for the mechanism by which chaperonins accelerate protein folding, in view of recent findings.
Collapse
Affiliation(s)
- Fumihiro Motojima
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555, Japan
| |
Collapse
|
58
|
Abstract
Co-chaperonins function together with chaperonins to mediate ATP-dependant protein folding in a variety of cellular compartments. GroEL and its co-chaperonin GroES are the only essential chaperones in Escherichia coli and are the archetypal members of this family of protein folding machines. The unique mechanism used by GroEL and GroES to drive protein folding is embedded in the complex architecture of double-ringed complexes, forming two central chambers that undergo structural rearrangements as part of the folding mechanism. GroES forms a lid over the chamber, and in doing so dislodges bound substrate into the chamber, thereby allowing non-native proteins to fold in isolation. GroES also modulates allosteric transitions of GroEL. A significant number of bacteria and eukaryotes house multiple chaperonin and co-chaperonin proteins, many of which have acquired additional intracellular and extracellular biological functions. In some instances co-chaperonins display contrasting functions to those of chaperonins. Human Hsp60 continues to play a key role in the pathogenesis of many human diseases, in particular autoimmune diseases and cancer. A greater understanding of the fascinating roles of both intracellular and extracellular Hsp10, in addition to its role as a co-chaperonin, on cellular processes will accelerate the development of techniques to treat diseases associated with the chaperonin family.
Collapse
Affiliation(s)
- Aileen Boshoff
- Biomedical Biotechnology Research Unit (BioBRU), Biotechnology Innovation Centre, Rhodes University, PO Box 94, 6140, Grahamstown, South Africa,
| |
Collapse
|
59
|
Abstract
The budding yeast Saccharomyces cerevisiae is a powerful model organism for studying fundamental aspects of eukaryotic cell biology. This Primer article presents a brief historical perspective on the emergence of this organism as a premier experimental system over the course of the past century. An overview of the central features of the S. cerevisiae genome, including the nature of its genetic elements and general organization, is also provided. Some of the most common experimental tools and resources available to yeast geneticists are presented in a way designed to engage and challenge undergraduate and graduate students eager to learn more about the experimental amenability of budding yeast. Finally, a discussion of several major discoveries derived from yeast studies highlights the far-reaching impact that the yeast system has had and will continue to have on our understanding of a variety of cellular processes relevant to all eukaryotes, including humans.
Collapse
|
60
|
Koike-Takeshita A, Mitsuoka K, Taguchi H. Asp-52 in combination with Asp-398 plays a critical role in ATP hydrolysis of chaperonin GroEL. J Biol Chem 2014; 289:30005-11. [PMID: 25202010 DOI: 10.1074/jbc.m114.593822] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Escherichia coli chaperonin GroEL is a double-ring chaperone that assists protein folding with the aid of GroES and ATP. Asp-398 in GroEL is known as one of the critical residues on ATP hydrolysis because GroEL(D398A) mutant is deficient in ATP hydrolysis (<2% of the wild type) but not in ATP binding. In the archaeal Group II chaperonin, another aspartate residue, Asp-52 in the corresponding E. coli GroEL, in addition to Asp-398 is also important for ATP hydrolysis. We investigated the role of Asp-52 in GroEL and found that ATPase activity of GroEL(D52A) and GroEL(D52A/D398A) mutants was ∼ 20% and <0.01% of wild-type GroEL, respectively, indicating that Asp-52 in E. coli GroEL is also involved in the ATP hydrolysis. GroEL(D52A/D398A) formed a symmetric football-shaped GroEL-GroES complex in the presence of ATP, again confirming the importance of the symmetric complex during the GroEL ATPase cycle. Notably, the symmetric complex of GroEL(D52A/D398A) was extremely stable, with a half-time of ∼ 150 h (∼ 6 days), providing a good model to characterize the football-shaped complex.
Collapse
Affiliation(s)
- Ayumi Koike-Takeshita
- From the Department of Applied Bioscience, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Kaoru Mitsuoka
- Technology Research Association for Next Generation Natural Products Chemistry, AIST Tokyo Waterfront, 2-3-26, Aomi, Koto-ku, Tokyo 135-0064, Japan, and
| | - Hideki Taguchi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
61
|
Koike-Takeshita A, Arakawa T, Taguchi H, Shimamura T. Crystal structure of a symmetric football-shaped GroEL:GroES2-ATP14 complex determined at 3.8Å reveals rearrangement between two GroEL rings. J Mol Biol 2014; 426:3634-41. [PMID: 25174333 DOI: 10.1016/j.jmb.2014.08.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022]
Abstract
The chaperonin GroEL is an essential chaperone that assists in protein folding with the aid of GroES and ATP. GroEL forms a double-ring structure, and both rings can bind GroES in the presence of ATP. Recent progress on the GroEL mechanism has revealed the importance of a symmetric 1:2 GroEL:GroES2 complex (the "football"-shaped complex) as a critical intermediate during the functional GroEL cycle. We determined the crystal structure of the football GroEL:GroES2-ATP14 complex from Escherichia coli at 3.8Å, using a GroEL mutant that is extremely defective in ATP hydrolysis. The overall structure of the football complex resembled the GroES-bound GroEL ring of the asymmetric 1:1 GroEL:GroES complex (the "bullet" complex). However, the two GroES-bound GroEL rings form a modified interface by an ~7° rotation about the 7-fold axis. As a result, the inter-ring contacts between the two GroEL rings in the football complex differed from those in the bullet complex. The differences provide a structural basis for the apparently impaired inter-ring negative cooperativity observed in several biochemical analyses.
Collapse
Affiliation(s)
- Ayumi Koike-Takeshita
- Department of Applied Bioscience, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi, Kanagawa 243-0292, Japan
| | - Takatoshi Arakawa
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-Ku, Kyoto 606-8501, Japan
| | - Hideki Taguchi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, B-56, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| | - Tatsuro Shimamura
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-Ku, Kyoto 606-8501, Japan; Membrane Protein Crystallography Project, Research Acceleration Program, Japan Science and Technology Agency, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
62
|
Gupta AJ, Haldar S, Miličić G, Hartl FU, Hayer-Hartl M. Active Cage Mechanism of Chaperonin-Assisted Protein Folding Demonstrated at Single-Molecule Level. J Mol Biol 2014; 426:2739-54. [DOI: 10.1016/j.jmb.2014.04.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 04/16/2014] [Accepted: 04/21/2014] [Indexed: 01/19/2023]
|
63
|
Weaver J, Rye HS. The C-terminal tails of the bacterial chaperonin GroEL stimulate protein folding by directly altering the conformation of a substrate protein. J Biol Chem 2014; 289:23219-23232. [PMID: 24970895 DOI: 10.1074/jbc.m114.577205] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many essential cellular proteins fold only with the assistance of chaperonin machines like the GroEL-GroES system of Escherichia coli. However, the mechanistic details of assisted protein folding by GroEL-GroES remain the subject of ongoing debate. We previously demonstrated that GroEL-GroES enhances the productive folding of a kinetically trapped substrate protein through unfolding, where both binding energy and the energy of ATP hydrolysis are used to disrupt the inhibitory misfolded states. Here, we show that the intrinsically disordered yet highly conserved C-terminal sequence of the GroEL subunits directly contributes to substrate protein unfolding. Interactions between the C terminus and the non-native substrate protein alter the binding position of the substrate protein on the GroEL apical surface. The C-terminal tails also impact the conformational state of the substrate protein during capture and encapsulation on the GroEL ring. Importantly, removal of the C termini results in slower overall folding, reducing the fraction of the substrate protein that commits quickly to a productive folding pathway and slowing several kinetically distinct folding transitions that occur inside the GroEL-GroES cavity. The conserved C-terminal tails of GroEL are thus important for protein folding from the beginning to the end of the chaperonin reaction cycle.
Collapse
Affiliation(s)
- Jeremy Weaver
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843
| | - Hays S Rye
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843.
| |
Collapse
|
64
|
Franck JM, Sokolovski M, Kessler N, Matalon E, Gordon-Grossman M, Han SI, Goldfarb D, Horovitz A. Probing water density and dynamics in the chaperonin GroEL cavity. J Am Chem Soc 2014; 136:9396-403. [PMID: 24888581 PMCID: PMC4091268 DOI: 10.1021/ja503501x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
ATP-dependent binding of the chaperonin
GroEL to its cofactor GroES
forms a cavity in which encapsulated substrate proteins can fold in
isolation from bulk solution. It has been suggested that folding in
the cavity may differ from that in bulk solution owing to steric confinement,
interactions with the cavity walls, and differences between the properties
of cavity-confined and bulk water. However, experimental data regarding
the cavity-confined water are lacking. Here, we report measurements
of water density and diffusion dynamics in the vicinity of a spin
label attached to a cysteine in the Tyr71 → Cys GroES mutant
obtained using two magnetic resonance techniques: electron-spin echo
envelope modulation and Overhauser dynamic nuclear polarization. Residue
71 in GroES is fully exposed to bulk water in free GroES and to confined
water within the cavity of the GroEL–GroES complex. Our data
show that water density and translational dynamics in the vicinity
of the label do not change upon complex formation, thus indicating
that bulk water-exposed and cavity-confined GroES surface water share
similar properties. Interestingly, the diffusion dynamics of water
near the GroES surface are found to be unusually fast relative to
other protein surfaces studied. The implications of these findings
for chaperonin-assisted folding mechanisms are discussed.
Collapse
Affiliation(s)
- John M Franck
- Department of Chemistry and Biochemistry, University of California Santa Barbara, California 93106, United States
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Yamamoto YY, Abe Y, Moriya K, Arita M, Noguchi K, Ishii N, Sekiguchi H, Sasaki YC, Yohda M. Inter-ring communication is dispensable in the reaction cycle of group II chaperonins. J Mol Biol 2014; 426:2667-78. [PMID: 24859336 DOI: 10.1016/j.jmb.2014.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/09/2014] [Accepted: 05/15/2014] [Indexed: 10/25/2022]
Abstract
Chaperonins are ubiquitous molecular chaperones with the subunit molecular mass of 60kDa. They exist as double-ring oligomers with central cavities. An ATP-dependent conformational change of the cavity induces the folding of an unfolded protein that is captured in the cavity. In the group I chaperonins, which are present in eubacteria and eukaryotic organelles, inter-ring communication takes important role for the reaction cycle. However, there has been limited study on the inter-ring communication in the group II chaperonins that exist in archaea and the eukaryotic cytosol. In this study, we have constructed the asymmetric ring complex of a group II chaperonin using circular permutated covalent mutants. Although one ring of the asymmetric ring complex lacks ATPase or ATP binding activity, the other wild-type ring undergoes an ATP-dependent conformational change and maintains protein-folding activity. The results clearly demonstrate that inter-ring communication is dispensable in the reaction cycle of group II chaperonins.
Collapse
Affiliation(s)
- Yohei Y Yamamoto
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka, Koganei, Tokyo 184-8588, Japan
| | - Yuki Abe
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka, Koganei, Tokyo 184-8588, Japan
| | - Kazuki Moriya
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka, Koganei, Tokyo 184-8588, Japan
| | - Mayuno Arita
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka, Koganei, Tokyo 184-8588, Japan
| | - Keiichi Noguchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka, Koganei, Tokyo 184-8588, Japan
| | - Noriyuki Ishii
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan
| | - Hiroshi Sekiguchi
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo 679-5198, Japan; CREST Sasaki Team, Japan Science and Technology Agency, Tokyo 102-0076, Japan
| | - Yuji C Sasaki
- CREST Sasaki Team, Japan Science and Technology Agency, Tokyo 102-0076, Japan; Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Naka, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
66
|
Ishino S, Kawata Y, Ikegami T, Matsuzaki K, Hoshino M. Evaluation of the stability of an SR398/GroES chaperonin complex. J Biochem 2014; 155:295-300. [PMID: 24563543 DOI: 10.1093/jb/mvu009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The stability of an SR398/GroES chaperonin complex was examined. As was expected, based on the finding of previous studies, the SR398/GroES complex was extremely stable in the presence of an excess amount of free adenosine 5'-[γ-thio]triphosphate (ATPγS) or adenosine 5'-(β,γ-imido)triphosphate (AMPPNP). However, the complex was not stable in the absence of nucleotides. These results indicate that ATPγS and AMPPNP repeatedly associated to and dissociated from the complex in a non-cooperative manner. This nucleotide exchange did not induce the dissociation of GroES and substrate from SR398, suggesting the importance of the cooperative dissociation of nucleotides from the cis-ring to release GroES and substrate proteins in the GroEL/GroES reaction cycle.
Collapse
Affiliation(s)
- So Ishino
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi, Sakyo-ku, Kyoto 606-8501; Department of Biotechnology, Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori 680-8552; and Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | | | | | | | | |
Collapse
|
67
|
Dahiya V, Chaudhuri TK. Chaperones GroEL/GroES accelerate the refolding of a multidomain protein through modulating on-pathway intermediates. J Biol Chem 2013; 289:286-98. [PMID: 24247249 DOI: 10.1074/jbc.m113.518373] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite a vast amount information on the interplay of GroEL, GroES, and ATP in chaperone-assisted folding, the molecular details on the conformational dynamics of folding polypeptide during its GroEL/GroES-assisted folding cycle is quite limited. Practically no such studies have been reported to date on large proteins, which often have difficulty folding in vitro. The effect of the GroEL/GroES chaperonin system on the folding pathway of an 82-kDa slow folding protein, malate synthase G (MSG), was investigated. GroEL bound to the burst phase intermediate of MSG and accelerated the slowest kinetic phase associated with the formation of native topology in the spontaneous folding pathway. GroEL slowly induced conformational changes on the bound burst phase intermediate, which was then transformed into a more folding-compatible form. Subsequent addition of ATP or GroES/ATP to the GroEL-MSG complex led to the formation of the native state via a compact intermediate with the rate several times faster than that of spontaneous refolding. The presence of GroES doubled the ATP-dependent reactivation rate of bound MSG by preventing multiple cycles of its GroEL binding and release. Because GroES bound to the trans side of GroEL-MSG complex, it may be anticipated that confinement of the substrate underneath the co-chaperone is not required for accelerating the rate in the assisted folding pathway. The potential role of GroEL/GroES in assisted folding is most likely to modulate the conformation of MSG intermediates that can fold faster and thereby eliminate the possibility of partial aggregation caused by the slow folding intermediates during its spontaneous refolding pathway.
Collapse
Affiliation(s)
- Vinay Dahiya
- From the Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | | |
Collapse
|
68
|
Mizuta T, Ando K, Uemura T, Kawata Y, Mizobata T. Probing the dynamic process of encapsulation in Escherichia coli GroEL. PLoS One 2013; 8:e78135. [PMID: 24205127 PMCID: PMC3813556 DOI: 10.1371/journal.pone.0078135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/16/2013] [Indexed: 11/24/2022] Open
Abstract
Kinetic analyses of GroE-assisted folding provide a dynamic sequence of molecular events that underlie chaperonin function. We used stopped-flow analysis of various fluorescent GroEL mutants to obtain details regarding the sequence of events that transpire immediately after ATP binding to GroEL and GroEL with prebound unfolded proteins. Characterization of GroEL CP86, a circularly permuted GroEL with the polypeptide ends relocated to the vicinity of the ATP binding site, showed that GroES binding and protection of unfolded protein from solution is achieved surprisingly early in the functional cycle, and in spite of greatly reduced apical domain movement. Analysis of fluorescent GroEL SR-1 and GroEL D398A variants suggested that among other factors, the presence of two GroEL rings and a specific conformational rearrangement of Helix M in GroEL contribute significantly to the rapid release of unfolded protein from the GroEL apical domain.
Collapse
Affiliation(s)
- Toshifumi Mizuta
- Department of Biotechnology, Graduate School of Engineering, Tottori, Japan
| | - Kasumi Ando
- Department of Biotechnology, Graduate School of Engineering, Tottori, Japan
| | - Tatsuya Uemura
- Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, Tottori, Japan
| | - Yasushi Kawata
- Department of Biotechnology, Graduate School of Engineering, Tottori, Japan
- Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, Tottori, Japan
| | - Tomohiro Mizobata
- Department of Biotechnology, Graduate School of Engineering, Tottori, Japan
- Department of Biomedical Science, Graduate School of Medical Sciences, Tottori University, Tottori, Japan
- * E-mail:
| |
Collapse
|
69
|
Lin Z, Puchalla J, Shoup D, Rye HS. Repetitive protein unfolding by the trans ring of the GroEL-GroES chaperonin complex stimulates folding. J Biol Chem 2013; 288:30944-55. [PMID: 24022487 DOI: 10.1074/jbc.m113.480178] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A key constraint on the growth of most organisms is the slow and inefficient folding of many essential proteins. To deal with this problem, several diverse families of protein folding machines, known collectively as molecular chaperones, developed early in evolutionary history. The functional role and operational steps of these remarkably complex nanomachines remain subjects of active debate. Here we present evidence that, for the GroEL-GroES chaperonin system, the non-native substrate protein enters the folding cycle on the trans ring of the double-ring GroEL-ATP-GroES complex rather than the ADP-bound complex. The properties of this ATP complex are designed to ensure that non-native substrate protein binds first, followed by ATP and finally GroES. This binding order ensures efficient occupancy of the open GroEL ring and allows for disruption of misfolded structures through two phases of multiaxis unfolding. In this model, repeated cycles of partial unfolding, followed by confinement within the GroEL-GroES chamber, provide the most effective overall mechanism for facilitating the folding of the most stringently dependent GroEL substrate proteins.
Collapse
Affiliation(s)
- Zong Lin
- From the Department of Biotechnology and Biomedicine, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang 314006, China
| | | | | | | |
Collapse
|
70
|
Chen DH, Madan D, Weaver J, Lin Z, Schröder GF, Chiu W, Rye HS. Visualizing GroEL/ES in the act of encapsulating a folding protein. Cell 2013; 153:1354-65. [PMID: 23746846 DOI: 10.1016/j.cell.2013.04.052] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 01/06/2013] [Accepted: 04/19/2013] [Indexed: 11/16/2022]
Abstract
The GroEL/ES chaperonin system is required for the assisted folding of many proteins. How these substrate proteins are encapsulated within the GroEL-GroES cavity is poorly understood. Using symmetry-free, single-particle cryo-electron microscopy, we have characterized a chemically modified mutant of GroEL (EL43Py) that is trapped at a normally transient stage of substrate protein encapsulation. We show that the symmetric pattern of the GroEL subunits is broken as the GroEL cis-ring apical domains reorient to accommodate the simultaneous binding of GroES and an incompletely folded substrate protein (RuBisCO). The collapsed RuBisCO folding intermediate binds to the lower segment of two apical domains, as well as to the normally unstructured GroEL C-terminal tails. A comparative structural analysis suggests that the allosteric transitions leading to substrate protein release and folding involve concerted shifts of GroES and the GroEL apical domains and C-terminal tails.
Collapse
Affiliation(s)
- Dong-Hua Chen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Saier MH. Microcompartments and protein machines in prokaryotes. J Mol Microbiol Biotechnol 2013; 23:243-69. [PMID: 23920489 DOI: 10.1159/000351625] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The prokaryotic cell was once thought of as a 'bag of enzymes' with little or no intracellular compartmentalization. In this view, most reactions essential for life occurred as a consequence of random molecular collisions involving substrates, cofactors and cytoplasmic enzymes. Our current conception of a prokaryote is far from this view. We now consider a bacterium or an archaeon as a highly structured, nonrandom collection of functional membrane-embedded and proteinaceous molecular machines, each of which serves a specialized function. In this article we shall present an overview of such microcompartments including (1) the bacterial cytoskeleton and the apparati allowing DNA segregation during cell division; (2) energy transduction apparati involving light-driven proton pumping and ion gradient-driven ATP synthesis; (3) prokaryotic motility and taxis machines that mediate cell movements in response to gradients of chemicals and physical forces; (4) machines of protein folding, secretion and degradation; (5) metabolosomes carrying out specific chemical reactions; (6) 24-hour clocks allowing bacteria to coordinate their metabolic activities with the daily solar cycle, and (7) proteinaceous membrane compartmentalized structures such as sulfur granules and gas vacuoles. Membrane-bound prokaryotic organelles were considered in a recent Journal of Molecular Microbiology and Biotechnology written symposium concerned with membranous compartmentalization in bacteria [J Mol Microbiol Biotechnol 2013;23:1-192]. By contrast, in this symposium, we focus on proteinaceous microcompartments. These two symposia, taken together, provide the interested reader with an objective view of the remarkable complexity of what was once thought of as a simple noncompartmentalized cell.
Collapse
Affiliation(s)
- Milton H Saier
- Division of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, Calif. 92093-0116, USA.
| |
Collapse
|
72
|
Krantz KC, Puchalla J, Thapa R, Kobayashi C, Bisher M, Viehweg J, Carr CM, Rye HS. Clathrin coat disassembly by the yeast Hsc70/Ssa1p and auxilin/Swa2p proteins observed by single-particle burst analysis spectroscopy. J Biol Chem 2013; 288:26721-30. [PMID: 23913685 DOI: 10.1074/jbc.m113.491753] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of clathrin-coated vesicles in receptor-mediated endocytosis is conserved among eukaryotes, and many of the proteins required for clathrin coat assembly and disassembly have orthologs in yeast and mammals. In yeast, dozens of proteins have been identified as regulators of the multistep reaction required for endocytosis, including those that regulate disassembly of the clathrin coat. In mammalian systems, clathrin coat disassembly has been reconstituted using neuronal clathrin baskets mixed with the purified chaperone ATPase 70-kDa heat shock cognate (Hsc70), plus a clathrin-specific co-chaperone, such as the synaptic protein auxilin. Yet, despite previous characterization of the yeast Hsc70 ortholog, Ssa1p, and the auxilin-like ortholog, Swa2p, testing mechanistic models for disassembly of nonneuronal clathrin coats has been limited by the absence of a functional reconstitution assay. Here we use single-particle burst analysis spectroscopy, in combination with fluorescence correlation spectroscopy, to follow the population dynamics of fluorescently tagged yeast clathrin baskets in the presence of purified Ssa1p and Swa2p. An advantage of this combined approach for mechanistic studies is the ability to measure, as a function of time, changes in the number and size of objects from a starting population to the reaction products. Our results indicate that Ssa1p and Swa2p cooperatively disassemble yeast clathrin baskets into fragments larger than the individual triskelia, suggesting that disassembly of clathrin-coated vesicles may proceed through a partially uncoated intermediate.
Collapse
Affiliation(s)
- Kelly C Krantz
- From the Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Abstract
We have been studying chaperonins these past twenty years through an initial discovery of an action in protein folding, analysis of structure, and elucidation of mechanism. Some of the highlights of these studies were presented recently upon sharing the honor of the 2013 Herbert Tabor Award with my early collaborator, Ulrich Hartl, at the annual meeting of the American Society for Biochemistry and Molecular Biology in Boston. Here, some of the major findings are recounted, particularly recognizing my collaborators, describing how I met them and how our great times together propelled our thinking and experiments.
Collapse
Affiliation(s)
- Arthur L Horwich
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, Connecticut 06510, USA.
| |
Collapse
|
74
|
Quinlan RA, Ellis RJ. Chaperones: needed for both the good times and the bad times. Philos Trans R Soc Lond B Biol Sci 2013; 368:20130091. [PMID: 23530265 DOI: 10.1098/rstb.2013.0091] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this issue, we explore the assembly roles of protein chaperones, mainly through the portal of their associated human diseases (e.g. cardiomyopathy, cataract, neurodegeneration, cancer and neuropathy). There is a diversity to chaperone function that goes beyond the current emphasis in the scientific literature on their undoubted roles in protein folding and refolding. The focus on chaperone-mediated protein folding needs to be broadened by the original Laskey discovery that a chaperone assists the assembly of an oligomeric structure, the nucleosome, and the subsequent suggestion by Ellis that other chaperones may function in assembly processes, as well as in folding. There have been a number of recent discoveries that extend this relatively neglected aspect of chaperone biology to include proteostasis, maintenance of the cellular redox potential, genome stability, transcriptional regulation and cytoskeletal dynamics. So central are these processes that we propose that chaperones stand at the crossroads of life and death because they mediate essential functions, not only during the bad times, but also in the good times. We suggest that chaperones facilitate the success of a species, and hence the evolution of individuals within populations, because of their contributions to so many key cellular processes, of which protein folding is only one.
Collapse
Affiliation(s)
- Roy A Quinlan
- School of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK.
| | | |
Collapse
|
75
|
Kim DM, Zheng H, Huang YJ, Montelione GT, Hunt JF. ATPase active-site electrostatic interactions control the global conformation of the 100 kDa SecA translocase. J Am Chem Soc 2013; 135:2999-3010. [PMID: 23167435 PMCID: PMC4134686 DOI: 10.1021/ja306361q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
SecA is an intensively studied mechanoenzyme that uses ATP hydrolysis to drive processive extrusion of secreted proteins through a protein-conducting channel in the cytoplasmic membrane of eubacteria. The ATPase motor of SecA is strongly homologous to that in DEAD-box RNA helicases. It remains unclear how local chemical events in its ATPase active site control the overall conformation of an ~100 kDa multidomain enzyme and drive protein transport. In this paper, we use biophysical methods to establish that a single electrostatic charge in the ATPase active site controls the global conformation of SecA. The enzyme undergoes an ATP-modulated endothermic conformational transition (ECT) believed to involve similar structural mechanics to the protein transport reaction. We have characterized the effects of an isosteric glutamate-to-glutamine mutation in the catalytic base, a mutation which mimics the immediate electrostatic consequences of ATP hydrolysis in the active site. Calorimetric studies demonstrate that this mutation facilitates the ECT in Escherichia coli SecA and triggers it completely in Bacillus subtilis SecA. Consistent with the substantial increase in entropy observed in the course of the ECT, hydrogen-deuterium exchange mass spectrometry demonstrates that it increases protein backbone dynamics in domain-domain interfaces at remote locations from the ATPase active site. The catalytic glutamate is one of ~250 charged amino acids in SecA, and yet neutralization of its side chain charge is sufficient to trigger a global order-disorder transition in this 100 kDa enzyme. The intricate network of structural interactions mediating this effect couples local electrostatic changes during ATP hydrolysis to global conformational and dynamic changes in SecA. This network forms the foundation of the allosteric mechanochemistry that efficiently harnesses the chemical energy stored in ATP to drive complex mechanical processes.
Collapse
Affiliation(s)
- Dorothy M. Kim
- Department of Biological Sciences and Northeast Structural Genomics Consortium, 702A Fairchild Center, MC2434, Columbia University, New York, NY 10027, USA
- Departments of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY 10032, USA
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey. Piscataway, New Jersey 08854
| | - Yuanpeng J. Huang
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
| | - Gaetano T. Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, and Northeast Structural Genomics Consortium, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey. Piscataway, New Jersey 08854
| | - John F. Hunt
- Department of Biological Sciences and Northeast Structural Genomics Consortium, 702A Fairchild Center, MC2434, Columbia University, New York, NY 10027, USA
| |
Collapse
|
76
|
Jayasinghe M, Shrestha P, Wu X, Tehver R, Stan G. Weak intra-ring allosteric communications of the archaeal chaperonin thermosome revealed by normal mode analysis. Biophys J 2013; 103:1285-95. [PMID: 22995501 DOI: 10.1016/j.bpj.2012.07.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 07/09/2012] [Accepted: 07/13/2012] [Indexed: 12/21/2022] Open
Abstract
Chaperonins are molecular machines that use ATP-driven cycles to assist misfolded substrate proteins to reach the native state. During the functional cycle, these machines adopt distinct nucleotide-dependent conformational states, which reflect large-scale allosteric changes in individual subunits. Distinct allosteric kinetics has been described for the two chaperonin classes. Bacterial (group I) chaperonins, such as GroEL, undergo concerted subunit motions within each ring, whereas archaeal and eukaryotic chaperonins (group II) undergo sequential subunit motions. We study these distinct mechanisms through a comparative normal mode analysis of monomer and double-ring structures of the archaeal chaperonin thermosome and GroEL. We find that thermosome monomers of each type exhibit common low-frequency behavior of normal modes. The observed distinct higher-frequency modes are attributed to functional specialization of these subunit types. The thermosome double-ring structure has larger contribution from higher-frequency modes, as it is found in the GroEL case. We find that long-range intersubunit correlation of amino-acid pairs is weaker in the thermosome ring than in GroEL. Overall, our results indicate that distinct allosteric behavior of the two chaperonin classes originates from different wiring of individual subunits as well as of the intersubunit communications.
Collapse
Affiliation(s)
- Manori Jayasinghe
- Department of Chemistry, Northern Kentucky University, Highland Heights, Kentucky, USA
| | | | | | | | | |
Collapse
|
77
|
Parnas A, Nisemblat S, Weiss C, Levy-Rimler G, Pri-Or A, Zor T, Lund PA, Bross P, Azem A. Identification of elements that dictate the specificity of mitochondrial Hsp60 for its co-chaperonin. PLoS One 2012; 7:e50318. [PMID: 23226518 PMCID: PMC3514286 DOI: 10.1371/journal.pone.0050318] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/18/2012] [Indexed: 01/28/2023] Open
Abstract
Type I chaperonins (cpn60/Hsp60) are essential proteins that mediate the folding of proteins in bacteria, chloroplast and mitochondria. Despite the high sequence homology among chaperonins, the mitochondrial chaperonin system has developed unique properties that distinguish it from the widely-studied bacterial system (GroEL and GroES). The most relevant difference to this study is that mitochondrial chaperonins are able to refold denatured proteins only with the assistance of the mitochondrial co-chaperonin. This is in contrast to the bacterial chaperonin, which is able to function with the help of co-chaperonin from any source. The goal of our work was to determine structural elements that govern the specificity between chaperonin and co-chaperonin pairs using mitochondrial Hsp60 as model system. We used a mutagenesis approach to obtain human mitochondrial Hsp60 mutants that are able to function with the bacterial co-chaperonin, GroES. We isolated two mutants, a single mutant (E321K) and a double mutant (R264K/E358K) that, together with GroES, were able to rescue an E. coli strain, in which the endogenous chaperonin system was silenced. Although the mutations are located in the apical domain of the chaperonin, where the interaction with co-chaperonin takes place, none of the residues are located in positions that are directly responsible for co-chaperonin binding. Moreover, while both mutants were able to function with GroES, they showed distinct functional and structural properties. Our results indicate that the phenotype of the E321K mutant is caused mainly by a profound increase in the binding affinity to all co-chaperonins, while the phenotype of R264K/E358K is caused by a slight increase in affinity toward co-chaperonins that is accompanied by an alteration in the allosteric signal transmitted upon nucleotide binding. The latter changes lead to a great increase in affinity for GroES, with only a minor increase in affinity toward the mammalian mitochondrial co-chaperonin.
Collapse
Affiliation(s)
- Avital Parnas
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Shahar Nisemblat
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Celeste Weiss
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Galit Levy-Rimler
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Amir Pri-Or
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Tsaffrir Zor
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Peter A. Lund
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter Bross
- Research Unit for Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Abdussalam Azem
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
78
|
Abstract
Chaperonins are intricate allosteric machines formed of two back-to-back, stacked rings of subunits presenting end cavities lined with hydrophobic binding sites for nonnative polypeptides. Once bound, substrates are subjected to forceful, concerted movements that result in their ejection from the binding surface and simultaneous encapsulation inside a hydrophilic chamber that favors their folding. Here, we review the allosteric machine movements that are choreographed by ATP binding, which triggers concerted tilting and twisting of subunit domains. These movements distort the ring of hydrophobic binding sites and split it apart, potentially unfolding the multiply bound substrate. Then, GroES binding is accompanied by a 100° twist of the binding domains that removes the hydrophobic sites from the cavity lining and forms the folding chamber. ATP hydrolysis is not needed for a single round of binding and encapsulation but is necessary to allow the next round of ATP binding in the opposite ring. It is this remote ATP binding that triggers dismantling of the folding chamber and release of the encapsulated substrate, whether folded or not. The basis for these ordered actions is an elegant system of nested cooperativity of the ATPase machinery. ATP binds to a ring with positive cooperativity, and movements of the interlinked subunit domains are concerted. In contrast, there is negative cooperativity between the rings, so that they act in alternation. It is remarkable that a process as specific as protein folding can be guided by the chaperonin machine in a way largely independent of substrate protein structure or sequence.
Collapse
Affiliation(s)
- Helen R Saibil
- Crystallography and Institute of Structural and Molecular Biology, Birkbeck College London, Malet Street, London WC1E 7HX, UK
| | | | | | | |
Collapse
|
79
|
Takei Y, Iizuka R, Ueno T, Funatsu T. Single-molecule observation of protein folding in symmetric GroEL-(GroES)2 complexes. J Biol Chem 2012; 287:41118-25. [PMID: 23048033 DOI: 10.1074/jbc.m112.398628] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chaperonin, GroEL, is an essential molecular chaperone that mediates protein folding together with its cofactor, GroES, in Escherichia coli. It is widely believed that the two rings of GroEL alternate between the folding active state coupled to GroES binding during the reaction cycle. In other words, an asymmetric GroEL-GroES complex (the bullet-shaped complex) is formed throughout the cycle, whereas a symmetric GroEL-(GroES)(2) complex (the football-shaped complex) is not formed. We have recently shown that the football-shaped complex coexists with the bullet-shaped complex during the reaction cycle. However, how protein folding proceeds in the football-shaped complex remains poorly understood. Here, we used GFP as a substrate to visualize protein folding in the football-shaped complex by single-molecule fluorescence techniques. We directly showed that GFP folding occurs in both rings of the football-shaped complex. Remarkably, the folding was a sequential two-step reaction, and the kinetics were in excellent agreement with those in the bullet-shaped complex. These results demonstrate that the same reactions take place independently in both rings of the football-shaped complex to facilitate protein folding.
Collapse
Affiliation(s)
- Yodai Takei
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
80
|
Abstract
The alpha-beta tubulin heterodimer is the subunit from which microtubules are assembled. The pathway leading to correctly folded alpha- and beta-tubulins is unusually complex: it involves cycles of ATP-dependent interaction of newly synthesized tubulin subunits with cytosolic chaperonin, resulting in the production of quasi-native folding intermediates, which must then be acted upon by additional protein cofactors. These cofactors form a supercomplex containing both alpha- and beta-tubulin polypeptides, from which native heterodimer is released in a GTP-dependent reaction. Here, we discuss the current state of our understanding of the function of cytosolic chaperonin and cofactors in tubulin folding.
Collapse
|
81
|
Revisiting the contribution of negative charges on the chaperonin cage wall to the acceleration of protein folding. Proc Natl Acad Sci U S A 2012; 109:15740-5. [PMID: 22961256 DOI: 10.1073/pnas.1204547109] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chaperonin GroEL mediates the folding of protein encapsulated in a GroES-sealed cavity (cage). Recently, a critical role of negative charge clusters on the cage wall in folding acceleration was proposed based on experiments using GroEL single-ring (SR) mutants SR1 and SRKKK2 [Tang YC, et al. (2006) Cell 125:903-914; Chakraborty K, et al. (2010) Cell 142:112-122]. Here, we revisited these experiments and discovered several inconsistencies. (i) SR1 was assumed to bind to GroES stably and to mediate single-round folding in the cage. However, we show that SR1 repeats multiple turnovers of GroES release/binding coupled with ATP hydrolysis. (ii) Although the slow folding observed for a double-mutant of maltose binding protein (DMMBP) by SRKKK2 was attributed to mutations that neutralize negative charges on the cage wall, we found that the majority of DMMBP escape from SRKKK2 and undergo spontaneous folding in the bulk medium. (iii) An osmolyte, trimethylamine N-oxide, was reported to accelerate SRKKK2-mediated folding of DMMBP by mimicking the effect of cage-wall negative charges of WT GroEL and ordering the water structure to promote protein compaction. However, we demonstrate that in-cage folding by SRKKK2 is unaffected by trimethylamine N-oxide. (iv) Although it was reported that SRKKK2 lost the ability to assist the folding of ribulose-1,5-bisphosphate carboxylase/oxygenase, we found that SRKKK2 retains this ability. Our results argue against the role of the negative charges on the cage wall of GroEL in protein folding. Thus, in chaperonin studies, folding kinetics need to be determined from the fraction of the real in-cage folding.
Collapse
|
82
|
Skjaerven L, Muga A, Reuter N, Martinez A. A dynamic model of long-range conformational adaptations triggered by nucleotide binding in GroEL-GroES. Proteins 2012; 80:2333-46. [PMID: 22576372 DOI: 10.1002/prot.24113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/26/2012] [Accepted: 05/04/2012] [Indexed: 11/09/2022]
Abstract
The molecular chaperone, GroEL, essential for correct protein folding in E. coli, is composed of 14 identical subunits organized in two interacting rings, each providing a folding chamber for non-native substrate proteins. The oligomeric assembly shows positive cooperativity within each ring and negative cooperativity between the rings. Although it is well known that ATP and long-range allosteric interactions drive the functional cycle of GroEL, an atomic resolution view of how ligand binding modulates conformational adaptations over long distances remains a major challenge. Moreover, little is known on the relation between equilibrium dynamics at physiological temperatures and the allosteric transitions in GroEL. Here we present multiple all-atom molecular dynamics simulations of the GroEL-GroES assemblies at different stages of the functional cycle. Combined with an extensive analysis of the complete set of experimentally available structures, principal component analysis and conformer plots, we provide an explicit evaluation of the accessible conformational space of unliganded GroEL. Our results suggest the presence of pre-existing conformers at the equatorial domain level, and a shift of the conformational ensemble upon ATP-binding. At the inter-ring interface the simulations capture a remarkable offset motion of helix D triggered by ATP-binding to the folding active ring. The reorientation of helix D, previously only observed upon GroES association, correlates with a change of the internal dynamics in the opposite ring. This work contributes to the understanding of the molecular mechanisms in GroEL and highlights the ability of all-atom MD simulations to model long-range structural changes and allosteric events in large systems.
Collapse
Affiliation(s)
- Lars Skjaerven
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| | | | | | | |
Collapse
|
83
|
Nojima T, Ikegami T, Taguchi H, Yoshida M. Flexibility of GroES mobile loop is required for efficient chaperonin function. J Mol Biol 2012; 422:291-9. [PMID: 22634549 DOI: 10.1016/j.jmb.2012.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 05/15/2012] [Indexed: 11/30/2022]
Abstract
Chaperonin GroEL and its partner GroES assist the folding of nascent and stress-damaged proteins in an ATP-dependent manner. Free GroES has a flexible "mobile loop" and binds to GroEL through the residues at the tip of the loop, capping the central cavity of GroEL to provide the substrate polypeptide a cage for secure in-cage folding. Here, we show that restriction of the flexibility of the loop by a disulfide cross-linking between cysteines within the loop results in the inefficient formation of a stable GroEL-polypeptide-GroES ternary complex and inefficient folding. Then, we generated substrate proteins with enhanced binding affinity to GroEL by fusion of one or two SBP (strongly binding peptide for GroEL) sequences and examined the effect of disulfide cross-linking on the assisted folding. The results indicate that the higher the binding affinity of the substrate polypeptide to GroEL, the greater the contribution of the mobile loop flexibility to efficient in-cage folding. It is likely that the flexibility helps GroES capture GroEL's binding sites that are already occupied by the substrate polypeptide with various binding modes.
Collapse
Affiliation(s)
- Tatsuya Nojima
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan
| | | | | | | |
Collapse
|
84
|
Clare DK, Vasishtan D, Stagg S, Quispe J, Farr GW, Topf M, Horwich AL, Saibil HR. ATP-triggered conformational changes delineate substrate-binding and -folding mechanics of the GroEL chaperonin. Cell 2012; 149:113-23. [PMID: 22445172 PMCID: PMC3326522 DOI: 10.1016/j.cell.2012.02.047] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/24/2011] [Accepted: 02/06/2012] [Indexed: 11/24/2022]
Abstract
The chaperonin GroEL assists the folding of nascent or stress-denatured polypeptides by actions of binding and encapsulation. ATP binding initiates a series of conformational changes triggering the association of the cochaperonin GroES, followed by further large movements that eject the substrate polypeptide from hydrophobic binding sites into a GroES-capped, hydrophilic folding chamber. We used cryo-electron microscopy, statistical analysis, and flexible fitting to resolve a set of distinct GroEL-ATP conformations that can be ordered into a trajectory of domain rotation and elevation. The initial conformations are likely to be the ones that capture polypeptide substrate. Then the binding domains extend radially to separate from each other but maintain their binding surfaces facing the cavity, potentially exerting mechanical force upon kinetically trapped, misfolded substrates. The extended conformation also provides a potential docking site for GroES, to trigger the final, 100° domain rotation constituting the “power stroke” that ejects substrate into the folding chamber.
Collapse
Affiliation(s)
- Daniel K Clare
- Crystallography and Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Dynamics, flexibility and ligand-induced conformational changes in biological macromolecules: a computational approach. Future Med Chem 2012; 3:2079-100. [PMID: 22098354 DOI: 10.4155/fmc.11.159] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biomolecules possess important dynamical properties that enable them to adapt and alternate their conformation as a response to environmental stimuli. Recent advancements in computational resources and methodology allow a higher capability to mimic in vitro conditions and open up the possibility of studying large systems over longer timescales. Here, we describe commonly used computational approaches for studying the dynamic properties of proteins. We review a selected set of simulation studies on ligand-induced changes in the chaperonin GroEL-GroES, a molecular folding machine, maltose-binding protein, a prototypical member of the periplasmic binding proteins, and the bacterial ribosomal A-site, focusing on aminoglycoside antibiotic recognition. We also discuss a recent quantitative reconstruction of the binding process of benzamidine and trypsin. These studies contribute to the understanding and further development of the medicinal regulation of large biomolecular systems.
Collapse
|
86
|
Interaction of oxidized chaperonin GroEL with an unfolded protein at low temperatures. Biosci Rep 2012; 32:299-303. [DOI: 10.1042/bsr20110104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The chaperonin GroEL binds to non-native substrate proteins via hydrophobic interactions, preventing their aggregation, which is minimized at low temperatures. In the present study, we investigated the refolding of urea-denatured rhodanese at low temperatures, in the presence of ox-GroEL (oxidized GroEL), which contains increased exposed hydrophobic surfaces and retains its ability to hydrolyse ATP. We found that ox-GroEL could efficiently bind the urea-unfolded rhodanese at 4°C, without requiring excess amount of chaperonin relative to normal GroEL (i.e. non-oxidized). The release/reactivation of rhodanese from GroEL was minimal at 4°C, but was found to be optimal between 22 and 37°C. It was found that the loss of the ATPase activity of ox-GroEL at 4°C prevented the release of rhodanese from the GroEL–rhodanese complex. Thus ox-GroEL has the potential to efficiently trap recombinant or non-native proteins at 4°C and release them at higher temperatures under appropriate conditions.
Collapse
|
87
|
Piggot TJ, Sessions RB, Burston SG. Toward a detailed description of the pathways of allosteric communication in the GroEL chaperonin through atomistic simulation. Biochemistry 2012; 51:1707-18. [PMID: 22289022 DOI: 10.1021/bi201237a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
GroEL, along with its coprotein GroES, is essential for ensuring the correct folding of unfolded or newly synthesized proteins in bacteria. GroEL is a complex, allosteric molecule, composed of two heptameric rings stacked back to back, that undergoes large structural changes during its reaction cycle. These structural changes are driven by the cooperative binding and subsequent hydrolysis of ATP, by GroEL. Despite numerous previous studies, the precise mechanisms of allosteric communication and the associated structural changes remain elusive. In this paper, we describe a series of all-atom, unbiased, molecular dynamics simulations over relatively long (50-100 ns) time scales of a single, isolated GroEL subunit and also a heptameric GroEL ring, in the presence and absence of ATP. Combined with results from a distance restraint-biased simulation of the single ring, the atomistic details of the earliest stages of ATP-driven structural changes within this complex molecule are illuminated. Our results are in broad agreement with previous modeling studies of isolated subunits and with a coarse-grained, forcing simulation of the single ring. These are the first reported all-atom simulations of the GroEL single-ring complex and provide a unique insight into the role of charged residues K80, K277, R284, R285, and E388 at the subunit interface in transmission of the allosteric signal. These simulations also demonstrate the feasibility of performing all-atom simulations of very large systems on sufficiently long time scales on typical high performance computing facilities to show the origins of the earliest events in biologically relevant processes.
Collapse
Affiliation(s)
- Thomas J Piggot
- School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
88
|
Hildenbrand ZL, Bernal RA. Chaperonin-Mediated Folding of Viral Proteins. VIRAL MOLECULAR MACHINES 2012; 726:307-24. [DOI: 10.1007/978-1-4614-0980-9_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
89
|
Mitternacht S, Berezovsky IN. Coherent conformational degrees of freedom as a structural basis for allosteric communication. PLoS Comput Biol 2011; 7:e1002301. [PMID: 22174669 PMCID: PMC3234217 DOI: 10.1371/journal.pcbi.1002301] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/29/2011] [Indexed: 01/10/2023] Open
Abstract
Conformational changes in allosteric regulation can to a large extent be described as motion along one or a few coherent degrees of freedom. The states involved are inherent to the protein, in the sense that they are visited by the protein also in the absence of effector ligands. Previously, we developed the measure binding leverage to find sites where ligand binding can shift the conformational equilibrium of a protein. Binding leverage is calculated for a set of motion vectors representing independent conformational degrees of freedom. In this paper, to analyze allosteric communication between binding sites, we introduce the concept of leverage coupling, based on the assumption that only pairs of sites that couple to the same conformational degrees of freedom can be allosterically connected. We demonstrate how leverage coupling can be used to analyze allosteric communication in a range of enzymes (regulated by both ligand binding and post-translational modifications) and huge molecular machines such as chaperones. Leverage coupling can be calculated for any protein structure to analyze both biological and latent catalytic and regulatory sites. What are the molecular mechanisms of allosteric communication in proteins? We base our analysis on the hypothesis that a folded protein has a number of conformational degrees of freedom, which describe fluctuations around the native conformation and switching from/to functional states. Transitions between the protein states involved in function and its regulation are based on coherent conformational degrees of freedom. Motion of one part of a protein along such a degree of freedom, implies a correlated motion in other parts of the protein. By determining which binding sites are simultaneously affected by the same motion we find sites that are allosterically coupled, i.e. where binding at one site can cause a change in ligand-affinity at another. Leverage coupling, the quantity introduced to measure this type of connection, reflects allosteric communication between different binding sites. We show how it can be used to understand allostery in enzymes of different sizes as well as in large protein complexes such as chaperones. Analysis of leverage coupling provides guidance in targeting native and latent regulatory sites.
Collapse
Affiliation(s)
- Simon Mitternacht
- Computational Biology Unit/Uni Research, University of Bergen, Bergen, Norway
- Department of Informatics, University of Bergen, Bergen, Norway
| | - Igor N. Berezovsky
- Computational Biology Unit/Uni Research, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
90
|
Bie AS, Palmfeldt J, Hansen J, Christensen R, Gregersen N, Corydon TJ, Bross P. A cell model to study different degrees of Hsp60 deficiency in HEK293 cells. Cell Stress Chaperones 2011; 16:633-40. [PMID: 21717087 PMCID: PMC3220388 DOI: 10.1007/s12192-011-0275-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/10/2011] [Accepted: 06/10/2011] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial dysfunction is associated with neurodegenerative diseases and mutations in the HSPD1 gene, encoding the mitochondrial Hsp60 chaperone, are the causative factors of two neurodegenerative diseases, hereditary spastic paraplegia and MitChap60 disease. In cooperation with Hsp10, Hsp60 forms a barrel-shaped complex, which encloses unfolded polypeptides and provides an environment facilitating folding. We have generated an Hsp60 variant with a mutation (Asp423Ala) in the ATPase domain and established a stable human embryonic kidney (HEK293) cell line allowing tetracycline-controlled expression of this mutant variant. We monitored expression of the Hsp60-Asp423Ala variant protein following induction and examined its effects on cellular properties. We showed that the folding of mitochondrial-targeted green fluorescent protein, a well-known substrate protein of Hsp60, was consistently impaired in cells expressing Hsp60-Asp423Ala. The level of the Hsp60-Asp423Ala variant protein increased over time upon induction, cell proliferation stopped after 48-h induction and mitochondrial membrane potential decreased in a time-dependent manner. In summary, we have established a stable cell line with controllable expression of an Hsp60 variant, which allows detailed studies of different degrees of Hsp60 deficiency.
Collapse
Affiliation(s)
- Anne Sigaard Bie
- Research Unit for Molecular Medicine (MMF), Aarhus University Hospital, Skejby, Aarhus N, Denmark.
| | | | | | | | | | | | | |
Collapse
|
91
|
Mizobata T, Uemura T, Isaji K, Hirayama T, Hongo K, Kawata Y. Probing the functional mechanism of Escherichia coli GroEL using circular permutation. PLoS One 2011; 6:e26462. [PMID: 22028884 PMCID: PMC3196576 DOI: 10.1371/journal.pone.0026462] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/27/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The Escherichia coli chaperonin GroEL subunit consists of three domains linked via two hinge regions, and each domain is responsible for a specific role in the functional mechanism. Here, we have used circular permutation to study the structural and functional characteristics of the GroEL subunit. METHODOLOGY/PRINCIPAL FINDINGS Three soluble, partially active mutants with polypeptide ends relocated into various positions of the apical domain of GroEL were isolated and studied. The basic functional hallmarks of GroEL (ATPase and chaperoning activities) were retained in all three mutants. Certain functional characteristics, such as basal ATPase activity and ATPase inhibition by the cochaperonin GroES, differed in the mutants while at the same time, the ability to facilitate the refolding of rhodanese was roughly equal. Stopped-flow fluorescence experiments using a fluorescent variant of the circularly permuted GroEL CP376 revealed that a specific kinetic transition that reflects movements of the apical domain was missing in this mutant. This mutant also displayed several characteristics that suggested that the apical domains were behaving in an uncoordinated fashion. CONCLUSIONS/SIGNIFICANCE The loss of apical domain coordination and a concomitant decrease in functional ability highlights the importance of certain conformational signals that are relayed through domain interlinks in GroEL. We propose that circular permutation is a very versatile tool to probe chaperonin structure and function.
Collapse
Affiliation(s)
- Tomohiro Mizobata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori, Japan.
| | | | | | | | | | | |
Collapse
|
92
|
Chaperone-assisted protein folding: the path to discovery from a personal perspective. Nat Med 2011; 17:1206-10. [PMID: 21989011 DOI: 10.1038/nm.2467] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
93
|
|
94
|
Abstract
F.-Ulrich Hartl and Arthur Horwich will share this year's Lasker Basic Medical Science Award for the discovery of the cell's protein-folding machinery, exemplified by cage-like structures that convert newly synthesized proteins into their biologically active forms. Their fundamental findings reveal mechanisms that operate in normal physiologic processes and help to explain the problems that arise in diseases of protein folding.
Collapse
Affiliation(s)
- James E Rothman
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520-8002, USA.
| | | |
Collapse
|
95
|
Charbon G, Wang J, Brustad E, Schultz PG, Horwich AL, Jacobs-Wagner C, Chapman E. Localization of GroEL determined by in vivo incorporation of a fluorescent amino acid. Bioorg Med Chem Lett 2011; 21:6067-70. [PMID: 21890355 DOI: 10.1016/j.bmcl.2011.08.057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
The molecular chaperone GroEL is required for bacterial growth under all conditions, mediating folding assistance, via its central cavity, to a diverse set of cytosolic proteins; yet the subcellular localization of GroEL remains unresolved. An earlier study, using antibody probing of fixed Escherichia coli cells, indicated colocalization with the cell division protein FtsZ at the cleavage furrow, while a second E. coli study of fixed cells indicated more even distribution throughout the cytoplasm. Here, for the first time, we have examined the spatial distribution of GroEL in living cells using incorporation of a fluorescent unnatural amino acid into the chaperone. Fluorescence microscopy indicated that GroEL is diffusely distributed, both under normal and stress conditions. Importantly, the present procedure uses a small, fluorescent unnatural amino acid to visualize GroEL in vivo, avoiding the steric demands of a fluorescent protein fusion, which compromises proper GroEL assembly. Further, this unnatural amino acid incorporation avoids artifacts that can occur with fixation and antibody staining.
Collapse
Affiliation(s)
- Godefroid Charbon
- Department of Molecular, Cellular, and Developmental Biology, KBT 1032, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | | | |
Collapse
|
96
|
Illingworth M, Ramsey A, Zheng Z, Chen L. Stimulating the substrate folding activity of a single ring GroEL variant by modulating the cochaperonin GroES. J Biol Chem 2011; 286:30401-30408. [PMID: 21757689 DOI: 10.1074/jbc.m111.255935] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In mediating protein folding, chaperonin GroEL and cochaperonin GroES form an enclosed chamber for substrate proteins in an ATP-dependent manner. The essential role of the double ring assembly of GroEL is demonstrated by the functional deficiency of the single ring GroEL(SR). The GroEL(SR)-GroES is highly stable with minimal ATPase activity. To restore the ATP cycle and the turnover of the folding chamber, we sought to weaken the GroEL(SR)-GroES interaction systematically by concatenating seven copies of groES to generate groES(7). GroES Ile-25, Val-26, and Leu-27, residues on the GroEL-GroES interface, were substituted with Asp on different groES modules of groES(7). GroES(7) variants activate ATP activity of GroEL(SR), but only some restore the substrate folding function of GroEL(SR), indicating a direct role of GroES in facilitating substrate folding through its dynamics with GroEL. Active GroEL(SR)-GroES(7) systems may resemble mammalian mitochondrial chaperonin systems.
Collapse
Affiliation(s)
- Melissa Illingworth
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Andrew Ramsey
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Zhida Zheng
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Lingling Chen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405.
| |
Collapse
|
97
|
Koculi E, Horst R, Horwich AL, Wüthrich K. Nuclear magnetic resonance spectroscopy with the stringent substrate rhodanese bound to the single-ring variant SR1 of the E. coli chaperonin GroEL. Protein Sci 2011; 20:1380-6. [PMID: 21633984 DOI: 10.1002/pro.665] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 05/12/2011] [Indexed: 11/09/2022]
Abstract
Nuclear magnetic resonance (NMR) observation of the uniformly (2) H,(15) N-labeled stringent 33-kDa substrate protein rhodanese in a productive complex with the uniformly (14) N-labeled 400 kDa single-ring version of the E. coli chaperonin GroEL, SR1, was achieved with the use of transverse relaxation-optimized spectroscopy, cross-correlated relaxation-induced polarization transfer, and cross-correlated relaxation-enhanced polarization transfer. To characterize the NMR-observable parts of the bound rhodanese, coherence buildup rates by different magnetization transfer mechanisms were measured, and effects of covalent crosslinking of the rhodanese to the apical binding surface of SR1 were investigated. The results indicate that the NMR-observable parts of the SR1-bound rhodanese are involved in intracomplex rate processes, which are not related to binding and release of the substrate protein from the SR1 binding surface. Rather, they correspond to mobility of the stably bound substrate, which thus appears to include flexibly disordered polypeptide segments devoid of long-lived secondary structures or tertiary folds, as was previously observed also with the smaller substrate human dihydrofolate reductase.
Collapse
Affiliation(s)
- Eda Koculi
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
98
|
Kabir MA, Uddin W, Narayanan A, Reddy PK, Jairajpuri MA, Sherman F, Ahmad Z. Functional Subunits of Eukaryotic Chaperonin CCT/TRiC in Protein Folding. JOURNAL OF AMINO ACIDS 2011; 2011:843206. [PMID: 22312474 PMCID: PMC3268035 DOI: 10.4061/2011/843206] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 04/05/2011] [Indexed: 12/22/2022]
Abstract
Molecular chaperones are a class of proteins responsible for proper folding of a large number of polypeptides in both prokaryotic and eukaryotic cells. Newly synthesized polypeptides are prone to nonspecific interactions, and many of them make toxic aggregates in absence of chaperones. The eukaryotic chaperonin CCT is a large, multisubunit, cylindrical structure having two identical rings stacked back to back. Each ring is composed of eight different but similar subunits and each subunit has three distinct domains. CCT assists folding of actin, tubulin, and numerous other cellular proteins in an ATP-dependent manner. The catalytic cooperativity of ATP binding/hydrolysis in CCT occurs in a sequential manner different from concerted cooperativity as shown for GroEL. Unlike GroEL, CCT does not have GroES-like cofactor, rather it has a built-in lid structure responsible for closing the central cavity. The CCT complex recognizes its substrates through diverse mechanisms involving hydrophobic or electrostatic interactions. Upstream factors like Hsp70 and Hsp90 also work in a concerted manner to transfer the substrate to CCT. Moreover, prefoldin, phosducin-like proteins, and Bag3 protein interact with CCT and modulate its function for the fine-tuning of protein folding process. Any misregulation of protein folding process leads to the formation of misfolded proteins or toxic aggregates which are linked to multiple pathological disorders.
Collapse
Affiliation(s)
- M Anaul Kabir
- Molecular Genetics Laboratory, School of Biotechnology, National Institute of Technology Calicut, Kerala 673601, India
| | | | | | | | | | | | | |
Collapse
|
99
|
Chen J, Makabe K, Nakamura T, Inobe T, Kuwajima K. Dissecting a bimolecular process of MgATP²- binding to the chaperonin GroEL. J Mol Biol 2011; 410:343-56. [PMID: 21620859 DOI: 10.1016/j.jmb.2011.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 04/17/2011] [Accepted: 05/11/2011] [Indexed: 11/29/2022]
Abstract
Although allosteric transitions of GroEL by MgATP(2)(-) have been widely studied, the initial bimolecular step of MgATP(2-) binding to GroEL remains unclear. Here, we studied the equilibrium and kinetics of MgATP(2)(-) binding to a variant of GroEL, in which Tyr485 was replaced by tryptophan, via isothermal titration calorimetry (ITC) and stopped-flow fluorescence spectroscopy. In the absence of K(+) at 4-5 °C, the allosteric transitions and the subsequent ATP hydrolysis by GroEL are halted, and hence, the stopped-flow fluorescence kinetics induced by rapid mixing of MgATP(2)(-) and the GroEL variant solely reflected MgATP(2)(-) binding, which was well represented by bimolecular noncooperative binding with a binding rate constant, k(on), of 9.14×10(4) M(-1) s(-1) and a dissociation rate constant, k(off), of 14.2 s(-1), yielding a binding constant, K(b) (=k(on)/k(off)), of 6.4×10(3) M(-1). We also successfully performed ITC to measure binding isotherms of MgATP(2)(-) to GroEL and obtained a K(b) of 9.5×10(3) M(-1) and a binding stoichiometric number of 6.6. K(b) was thus in good agreement with that obtained by stopped-flow fluorescence. In the presence of 10-50 mM KCl, the fluorescence kinetics consisted of three to four phases (the first fluorescence-increasing phase, followed by one or two exponential fluorescence-decreasing phases, and the final slow fluorescence-increasing phase), and comparison of the kinetics in the absence and presence of K(+) clearly demonstrated that the first fluorescence-increasing phase corresponds to bimolecular MgATP(2)(-) binding to GroEL. The temperature dependence of the kinetics indicated that MgATP(2)(-) binding to GroEL was activation-controlled with an activation enthalpy as large as 14-16 kcal mol(-1).
Collapse
Affiliation(s)
- Jin Chen
- Okazaki Institute for Integrative Bioscience and Institute for Molecular Science, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | | | | | | | | |
Collapse
|
100
|
Peng S, Tasara T, Hummerjohann J, Stephan R. An overview of molecular stress response mechanisms in Escherichia coli contributing to survival of Shiga toxin-producing Escherichia coli during raw milk cheese production. J Food Prot 2011; 74:849-64. [PMID: 21549061 DOI: 10.4315/0362-028x.jfp-10-469] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ability of foodborne pathogens to survive in certain foods mainly depends on stress response mechanisms. Insight into molecular properties enabling pathogenic bacteria to survive in food is valuable for improvement of the control of pathogens during food processing. Raw milk cheeses are a potential source for human infections with Shiga toxin-producing Escherichia coli (STEC). In this review, we focused on the stress response mechanisms important for allowing STEC to survive raw milk cheese production processes. The major components and regulation pathways for general, acid, osmotic, and heat shock stress responses in E. coli and the implications of these responses for the survival of STEC in raw milk cheeses are discussed.
Collapse
Affiliation(s)
- Silvio Peng
- Institute for Food Safety and Hygiene, University of Zurich, Winterthurerstrasse 272, 8057 Zürich, Switzerland
| | | | | | | |
Collapse
|