51
|
El-Sabrout K, Soliman F. Association of single-nucleotide polymorphism of melanocortin gene with feed intake in rabbit (Oryctolagus cuniculus). J Anim Physiol Anim Nutr (Berl) 2017; 102:564-567. [PMID: 28990229 DOI: 10.1111/jpn.12788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/24/2017] [Indexed: 11/28/2022]
Abstract
The aim of the study was to investigate the association of two parts of melanocortin gene (MC4R-1, MC4R-2) and feed intake for V-line rabbits. V-line rabbits were grouped into high and low daily feed intake during the period from 30 to 63 days of age in order to identify MC4R SNPs useful for association study with feed intake. DNA from blood samples of each group was extracted to amplify the MC4R gene. The purified PCR products were sequenced in those had the highest and lowest feed intake. Alignment of sequence data from each group revealed that there is a variation detected in MC4R-1 at nucleotide 35 (T-G) (sense mutation) and another variation was detected in MC4R-2 gene at nucleotide 19 (T-C) (sense mutation) for high feed intake rabbits. These sense mutations lead to transform some amino acids and cause a significant change of the MC4R function. The results of average daily feed intake (ADFI) indicated that group (1) had significantly higher feed intake than group (2) of V-line rabbits. The detected mutations and the analysis of daily feed intake means revealed a significant association between MC4R polymorphism and feed intake in rabbits.
Collapse
Affiliation(s)
- K El-Sabrout
- Department of Poultry Production, Faculty of Agriculture (El-Shatby), University of Alexandria, Alexandria, Egypt
| | - F Soliman
- Department of Poultry Production, Faculty of Agriculture (El-Shatby), University of Alexandria, Alexandria, Egypt
| |
Collapse
|
52
|
Carvajal F, Lerma-Cabrera JM, Alcaraz-Iborra M, Navarro M, Thiele TE, Cubero I. Nucleus Accumbens MC4-R Stimulation Reduces Food and Ethanol Intake in Adult Rats Regardless of Binge-Like Ethanol Exposure during Adolescence. Front Behav Neurosci 2017; 11:167. [PMID: 28936166 PMCID: PMC5594710 DOI: 10.3389/fnbeh.2017.00167] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/22/2017] [Indexed: 11/13/2022] Open
Abstract
The melanocortin (MC) system regulates feeding and ethanol consumption. Recent evidence shows that melanocortin 4 receptor (MC4-R) stimulation within the nucleus accumbens (NAc) elicits anorectic responses and reduces ethanol consumption and ethanol palatability in adult rats. Ethanol exposure during adolescence causes long-lasting changes in neural pathways critically involved in neurobehavioral responses to ethanol. In this regard, binge-like ethanol exposure during adolescence reduces basal alpha-melanocyte-stimulating hormone (α-MSH) and alters the levels of agouti-related peptide (AgRP) in hypothalamic and limbic areas. Given the protective role of MC against excessive ethanol consumption, disturbances in the MC system induced by binge-like ethanol exposure during adolescence might contribute to excessive ethanol consumption during adulthood. In the present study, we evaluated whether binge-like ethanol exposure during adolescence leads to elevated ethanol intake and/or eating disturbance during adulthood. Toward that aim, Sprague-Dawley rats were treated with ethanol (3 g/kg i.p.; BEP group) or saline (SP group) for 14 days (PND 25 to PND 38). On PND73, all the groups were given access to 20% ethanol on an intermittent schedule. Our results showed that adult rats given intermittent access (IAE) to 20% ethanol achieved high spontaneous ethanol intake that was not significantly enhanced by binge-like ethanol pretreatment during adolescence. However, BEP group exhibited an increase in food intake without a parallel increase in body weight (BW) relative to SP group suggesting caloric efficiency disturbance. Additionally, we evaluated whether binge-like ethanol exposure during adolescence alters the expected reduction in feeding and ethanol consumption following NAc shell administration of a selective MC4-R agonist in adult rats showing high rates of ethanol consumption. For that, animals in each pretreatment condition (SP and BEP) were divided into three subgroups and given bilateral NAc infusions of the selective MC4-R agonist cyclo(NH-CH2-CH2-CO-His-D-Phe-Arg-Trp-Glu)-NH2 (0, 0.75 or 1.5 μg). Results revealed that MC4-R stimulation within the NAc reduced feeding and ethanol intake in high ethanol-drinking adult rats, regardless of previous binge-like ethanol exposure during adolescence, which adds new evidence regarding the dual ability of MC compounds to control excessive ethanol and food intake.
Collapse
Affiliation(s)
- Francisca Carvajal
- Institute of Biomedical Sciences, Universidad Autonoma de ChileSantiago, Chile
| | - José M Lerma-Cabrera
- Institute of Biomedical Sciences, Universidad Autonoma de ChileSantiago, Chile.,Department of Psychology, University of OviedoOviedo, Spain
| | | | - Montserrat Navarro
- Department of Psychology and Neuroscience, University of North CarolinaChapel Hill, NC, United States
| | - Todd E Thiele
- Department of Psychology and Neuroscience, University of North CarolinaChapel Hill, NC, United States
| | - Inmaculada Cubero
- Institute of Biomedical Sciences, Universidad Autonoma de ChileSantiago, Chile.,Department of Psychology, University of AlmeriaAlmeria, Spain
| |
Collapse
|
53
|
Kokare DM, Kyzar EJ, Zhang H, Sakharkar AJ, Pandey SC. Adolescent Alcohol Exposure-Induced Changes in Alpha-Melanocyte Stimulating Hormone and Neuropeptide Y Pathways via Histone Acetylation in the Brain During Adulthood. Int J Neuropsychopharmacol 2017; 20:758-768. [PMID: 28575455 PMCID: PMC5581492 DOI: 10.1093/ijnp/pyx041] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 04/15/2017] [Accepted: 05/30/2017] [Indexed: 12/18/2022] Open
Abstract
Background Adolescent intermittent ethanol exposure causes long-lasting alterations in brain epigenetic mechanisms. Melanocortin and neuropeptide Y signaling interact and are affected by ethanol exposure in the brain. Here, the persistent effects of adolescent intermittent ethanol on alpha-melanocyte stimulating hormone, melanocortin 4 receptor, and neuropeptide Y expression and their regulation by histone acetylation mechanisms were investigated in adulthood. Methods Male rats were exposed to adolescent intermittent ethanol (2 g/kg, i.p.) or volume-matched adolescent intermittent saline from postnatal days 28 to 41 and allowed to grow to postnatal day 92. Anxiety-like behaviors were measured by the elevated plus-maze test. Brain regions from adult rats were used to examine changes in alpha-melanocyte stimulating hormone, melanocortin 4 receptor, and neuropeptide Y expression and the histone acetylation status of their promoters. Results Adolescent intermittent ethanol-exposed adult rats displayed anxiety-like behaviors and showed increased pro-opiomelanocortin mRNA levels in the hypothalamus and increased melanocortin 4 receptor mRNA levels in both the amygdala and hypothalamus compared with adolescent intermittent saline-exposed adult rats. The alpha-Melanocyte stimulating hormone and melanocortin 4 receptor protein levels were increased in the central and medial nucleus of the amygdala, paraventricular nucleus, and arcuate nucleus of the hypothalamus in adolescent intermittent ethanol-exposed compared with adolescent intermittent saline-exposed adult rats. Neuropeptide Y protein levels were decreased in the central and medial nucleus of the amygdala of adolescent intermittent ethanol-exposed compared with adolescent intermittent saline-exposed adult rats. Histone H3K9/14 acetylation was decreased in the neuropeptide Y promoter in the amygdala but increased in the melanocortin 4 receptor gene promoter in the amygdala and the melanocortin 4 receptor and pro-opiomelanocortin promoters in the hypothalamus of adolescent intermittent ethanol-exposed adult rats compared with controls. Conclusions Increased melanocortin and decreased neuropeptide Y activity due to changes in histone acetylation in emotional brain circuitry may play a role in adolescent intermittent ethanol-induced anxiety phenotypes in adulthood.
Collapse
Affiliation(s)
- Dadasaheb M Kokare
- Center for Alcohol Research in Epigenetics, Department of Psychiatry (Dr Kokare, Mr Kyzar, and Drs Zhang, Sakharkar, and Pandey), and Department of Anatomy and Cell Biology (Dr Pandey), University of Illinois at Chicago, Chicago; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois (Mr Kyzar and Drs Zhang, Sakharkar, and Pandey)
| | - Evan J Kyzar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry (Dr Kokare, Mr Kyzar, and Drs Zhang, Sakharkar, and Pandey), and Department of Anatomy and Cell Biology (Dr Pandey), University of Illinois at Chicago, Chicago; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois (Mr Kyzar and Drs Zhang, Sakharkar, and Pandey)
| | - Huaibo Zhang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry (Dr Kokare, Mr Kyzar, and Drs Zhang, Sakharkar, and Pandey), and Department of Anatomy and Cell Biology (Dr Pandey), University of Illinois at Chicago, Chicago; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois (Mr Kyzar and Drs Zhang, Sakharkar, and Pandey)
| | - Amul J Sakharkar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry (Dr Kokare, Mr Kyzar, and Drs Zhang, Sakharkar, and Pandey), and Department of Anatomy and Cell Biology (Dr Pandey), University of Illinois at Chicago, Chicago; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois (Mr Kyzar and Drs Zhang, Sakharkar, and Pandey)
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry (Dr Kokare, Mr Kyzar, and Drs Zhang, Sakharkar, and Pandey), and Department of Anatomy and Cell Biology (Dr Pandey), University of Illinois at Chicago, Chicago; Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois (Mr Kyzar and Drs Zhang, Sakharkar, and Pandey)
| |
Collapse
|
54
|
Chhabra KH, Morgan DA, Tooke BP, Adams JM, Rahmouni K, Low MJ. Reduced renal sympathetic nerve activity contributes to elevated glycosuria and improved glucose tolerance in hypothalamus-specific Pomc knockout mice. Mol Metab 2017; 6:1274-1285. [PMID: 29031726 PMCID: PMC5641634 DOI: 10.1016/j.molmet.2017.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/02/2017] [Accepted: 07/10/2017] [Indexed: 11/11/2022] Open
Abstract
Objective Hypothalamic arcuate nucleus-specific pro-opiomelanocortin deficient (ArcPomc−/−) mice exhibit improved glucose tolerance despite massive obesity and insulin resistance. We demonstrated previously that their improved glucose tolerance is due to elevated glycosuria. However, the underlying mechanisms that link glucose reabsorption in the kidney with ArcPomc remain unclear. Given the function of the hypothalamic melanocortin system in controlling sympathetic outflow, we hypothesized that reduced renal sympathetic nerve activity (RSNA) in ArcPomc−/− mice could explain their elevated glycosuria and consequent enhanced glucose tolerance. Methods We measured RSNA by multifiber recording directly from the nerves innervating the kidneys in ArcPomc−/− mice. To further validate the function of RSNA in glucose reabsorption, we denervated the kidneys of WT and diabetic db/db mice before measuring their glucose tolerance and urine glucose levels. Moreover, we performed western blot and immunohistochemistry to determine kidney GLUT2 and SGLT2 levels in either ArcPomc−/− mice or the renal-denervated mice. Results Consistent with our hypothesis, we found that basal RSNA was decreased in ArcPomc−/− mice relative to their wild type (WT) littermates. Remarkably, both WT and db/db mice exhibited elevated glycosuria and improved glucose tolerance after renal denervation. The elevated glycosuria in obese ArcPomc−/−, WT and db/db mice was due to reduced renal GLUT2 levels in the proximal tubules. Overall, we show that renal-denervated WT and diabetic mice recapitulate the phenotype of improved glucose tolerance and elevated glycosuria associated with reduced renal GLUT2 levels observed in obese ArcPomc−/− mice. Conclusion Hence, we conclude that ArcPomc is essential in maintaining basal RSNA and that elevated glycosuria is a possible mechanism to explain improved glucose tolerance after renal denervation in drug resistant hypertensive patients. Hypothalamic POMC is essential in maintaining basal renal sympathetic nerve activity. Renal denervation improves glucose tolerance in wild-type and db/db mice by elevating their glycosuria. Decreased renal GLUT2 is responsible for elevated glycosuria in mice with suppressed renal sympathetic nerve activity.
Collapse
Affiliation(s)
- Kavaljit H Chhabra
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Donald A Morgan
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Benjamin P Tooke
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Case Western Reserve University, Cleveland, OH, USA
| | - Jessica M Adams
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
55
|
Tam J, Szanda G, Drori A, Liu Z, Cinar R, Kashiwaya Y, Reitman ML, Kunos G. Peripheral cannabinoid-1 receptor blockade restores hypothalamic leptin signaling. Mol Metab 2017; 6:1113-1125. [PMID: 29031713 PMCID: PMC5641628 DOI: 10.1016/j.molmet.2017.06.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 01/31/2023] Open
Abstract
Objective In visceral obesity, an overactive endocannabinoid/CB1 receptor (CB1R) system promotes increased caloric intake and decreases energy expenditure, which are mitigated by global or peripheral CB1R blockade. In mice with diet-induced obesity (DIO), inhibition of food intake by the peripherally restricted CB1R antagonist JD5037 could be attributed to endogenous leptin due to the rapid reversal of hyperleptinemia that maintains leptin resistance, but the signaling pathway engaged by leptin has remained to be determined. Methods We analyzed the hypothalamic circuitry targeted by leptin following chronic treatment of DIO mice with JD5037. Results Leptin treatment or an increase in endogenous leptin following fasting/refeeding induced STAT3 phosphorylation in neurons in the arcuate nucleus (ARC) in lean and JD5037-treated DIO mice, but not in vehicle-treated DIO animals. Co-localization of pSTAT3 in leptin-treated mice was significantly less common with NPY+ than with POMC+ ARC neurons. The hypophagic effect of JD5037 was absent in melanocortin-4 receptor (MC4R) deficient obese mice or DIO mice treated with a MC4R antagonist, but was maintained in NPY−/− mice kept on a high-fat diet. Conclusions Peripheral CB1R blockade in DIO restores sensitivity to endogenous leptin, which elicits hypophagia via the re-activation of melanocortin signaling in the ARC. High-fat diet-induced leptin resistance is reversed by peripheral CB1 blockade. Restored leptin signaling by peripheral CB1 blockade occurs via POMC/MC4R pathway. AgRP/NPY neurons are not required for peripheral CB1 blockade-induced hypophagia in mice with diet-induced obesity.
Collapse
Affiliation(s)
- Joseph Tam
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Gergő Szanda
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, USA
| | - Adi Drori
- Obesity and Metabolism Laboratory, The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Ziyi Liu
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, USA
| | - Resat Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, USA
| | - Yoshihiro Kashiwaya
- Laboratory of Metabolic Control, National Institute on Alcohol Abuse and Alcoholism, USA
| | - Marc L Reitman
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, USA.
| |
Collapse
|
56
|
Lensing CJ, Adank DN, Wilber SL, Freeman KT, Schnell SM, Speth RC, Zarth AT, Haskell-Luevano C. A Direct in Vivo Comparison of the Melanocortin Monovalent Agonist Ac-His-DPhe-Arg-Trp-NH 2 versus the Bivalent Agonist Ac-His-DPhe-Arg-Trp-PEDG20-His-DPhe-Arg-Trp-NH 2: A Bivalent Advantage. ACS Chem Neurosci 2017; 8:1262-1278. [PMID: 28128928 DOI: 10.1021/acschemneuro.6b00399] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Bivalent ligands targeting putative melanocortin receptor dimers have been developed and characterized in vitro; however, studies of their functional in vivo effects have been limited. The current report compares the effects of homobivalent ligand CJL-1-87, Ac-His-DPhe-Arg-Trp-PEDG20-His-DPhe-Arg-Trp-NH2, to monovalent ligand CJL-1-14, Ac-His-DPhe-Arg-Trp-NH2, on energy homeostasis in mice after central intracerebroventricular (ICV) administration into the lateral ventricle of the brain. Bivalent ligand CJL-1-87 had noteworthy advantages as an antiobesity probe over CJL-1-14 in a fasting-refeeding in vivo paradigm. Treatment with CJL-1-87 significantly decreased food intake compared to CJL-1-14 or saline (50% less intake 2-8 h after treatment). Furthermore, CJL-1-87 treatment decreased the respiratory exchange ratio (RER) without changing the energy expenditure indicating that fats were being burned as the primary fuel source. Additionally, CJL-1-87 treatment significantly lowered body fat mass percentage 6 h after administration (p < 0.05) without changing the lean mass percentage. The bivalent ligand significantly decreased insulin, C-peptide, leptin, GIP, and resistin plasma levels compared to levels after CJL-1-14 or saline treatments. Alternatively, ghrelin plasma levels were significantly increased. Serum stability of CJL-1-87 and CJL-1-14 (T1/2 = 6.0 and 16.8 h, respectively) was sufficient to permit physiological effects. The differences in binding affinity of CJL-1-14 compared to CJL-1-87 are speculated as a possible mechanism for the bivalent ligand's unique effects. We also provide in vitro evidence for the formation of a MC3R-MC4R heterodimer complex, for the first time to our knowledge, that may be an unexploited neuronal molecular target. Regardless of the exact mechanism, the advantageous ability of CJL-1-87 compared to CJL-1-14 to increase in vitro binding affinity, increase the duration of action in spite of decreased serum stability, decrease in vivo food intake, decrease mice's body fat percent, and differentially affect mouse hormone levels demonstrates the distinct characteristics achieved from the current melanocortin agonist bivalent design strategy.
Collapse
Affiliation(s)
- Cody J. Lensing
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Danielle N. Adank
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Stacey L. Wilber
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katie T. Freeman
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Sathya M. Schnell
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert C. Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida 33328-2018, United States
- Department of Pharmacology and Physiology, Georgetown University, Washington, D.C. 20057, United States
| | - Adam T. Zarth
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Masonic Cancer Center, University of Minnesota, 2231 6th Street SE, 2-210 CCRB, Minneapolis, Minnesota 55455, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
57
|
Melanocortin neurons: Multiple routes to regulation of metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2477-2485. [PMID: 28499988 DOI: 10.1016/j.bbadis.2017.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/31/2017] [Accepted: 05/05/2017] [Indexed: 01/07/2023]
Abstract
The burden of disability, premature death, escalating health care costs and lost economic productivity due to obesity and its associated complications including hypertension, stroke, cardiovascular disease and type 2 diabetes is staggering [1,2]. A better understanding of metabolic homeostatic pathways will provide us with insights into the biological mechanisms of obesity and how to fundamentally address this epidemic [3-6]. In mammals, energy balance is maintained via a homeostatic system involving both peripheral and central melanocortin systems; changes in body weight reflect an unbalance of the energetic state [7-9]. Although the primary cause of obesity is unknown, there is significant effort to understand the role of the central melanocortin pathway in the brain as it has been shown that deficiency of proopiomelanocortin (POMC) [10,11] and melanocortin 4 receptors (MC4R) [12-15] in both rodents and humans results in severe hyperphagia and obesity [16-23]. In this review, we will summarize how the central melanocortin pathway helps regulate body mass and adiposity within a 'healthy' range through the 'nutrient sensing' network [24-28]. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
|
58
|
Yang LK, Tao YX. Biased signaling at neural melanocortin receptors in regulation of energy homeostasis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2486-2495. [PMID: 28433713 DOI: 10.1016/j.bbadis.2017.04.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022]
Abstract
The global prevalence of obesity highlights the importance of understanding on regulation of energy homeostasis. The central melanocortin system is an important intersection connecting the neural pathways controlling satiety and energy expenditure to regulate energy homeostasis by sensing and integrating the signals of external stimuli. In this system, neural melanocortin receptors (MCRs), melanocortin-3 and -4 receptors (MC3R and MC4R), play crucial roles in the regulation of energy homeostasis. Recently, multiple intracellular signaling pathways and biased signaling at neural MCRs have been discovered, providing new insights into neural MCR signaling. This review attempts to summarize biased signaling including biased receptor mutants (both naturally occurring and lab-generated) and biased ligands at neural MCRs, and to provide a better understanding of obesity pathogenesis and new therapeutic implications for obesity treatment.
Collapse
Affiliation(s)
- Li-Kun Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
59
|
Butler AA, Girardet C, Mavrikaki M, Trevaskis JL, Macarthur H, Marks DL, Farr SA. A Life without Hunger: The Ups (and Downs) to Modulating Melanocortin-3 Receptor Signaling. Front Neurosci 2017; 11:128. [PMID: 28360832 PMCID: PMC5352694 DOI: 10.3389/fnins.2017.00128] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/01/2017] [Indexed: 11/13/2022] Open
Abstract
Melanocortin neurons conserve body mass in hyper- or hypo-caloric conditions by conveying signals from nutrient sensors into areas of the brain governing appetite and metabolism. In mice, melanocortin-3 receptor (MC3R) deletion alters nutrient partitioning independently of hyperphagia, promoting accumulation of fat over muscle mass. Enhanced rhythms in insulin and insulin-responsive metabolic genes during hypocaloric feeding suggest partial insulin resistance and enhanced lipogenesis. However, exactly where and how MC3Rs affect metabolic control to alter nutrient partitioning is not known. The behavioral phenotypes exhibited by MC3R-deficient mice suggest a contextual role in appetite control. The impact of MC3R-deficiency on feeding behavior when food is freely available is minor. However, homeostatic responses to hypocaloric conditioning involving increased expression of appetite-stimulating (orexigenic) neuropeptides, binge-feeding, food anticipatory activity (FAA), entrainment to nutrient availability and enhanced feeding-related motivational responses are compromised with MC3R-deficiency. Rescuing Mc3r transcription in hypothalamic and limbic neurons improves appetitive responses during hypocaloric conditioning while having minor effects on nutrient partitioning, suggesting orexigenic functions. Rescuing hypothalamic MC3Rs also restores responses of fasting-responsive hypothalamic orexigenic neurons in hypocaloric conditions, suggesting actions that sensitize fasting-responsive neurons to signals from nutrient sensors. MC3R signaling in ventromedial hypothalamic SF1(+ve) neurons improves metabolic control, but does not restore appetitive responses or nutrient partitioning. In summary, desensitization of fasting-responsive orexigenic neurons may underlie attenuated appetitive responses of MC3R-deficient mice in hypocaloric situations. Further studies are needed to identify the specific location(s) of MC3Rs controlling appetitive responses and partitioning of nutrients between fat and lean tissues.
Collapse
Affiliation(s)
- Andrew A Butler
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine St. Louis, MO, USA
| | - Clemence Girardet
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine St. Louis, MO, USA
| | - Maria Mavrikaki
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine St. Louis, MO, USA
| | - James L Trevaskis
- In vivo Pharmacology, Cardiovascular and Metabolic Disease, Medimmune Gaithersburg, MD, USA
| | - Heather Macarthur
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine St. Louis, MO, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health and Science University Portland, OR, USA
| | - Susan A Farr
- Department of Internal Medicine, Division of Geriatrics, Saint Louis University School of MedicineSt. Louis, MO, USA; VA Medical CenterSt. Louis, MO, USA
| |
Collapse
|
60
|
Wang L, Sui L, Panigrahi SK, Meece K, Xin Y, Kim J, Gromada J, Doege CA, Wardlaw SL, Egli D, Leibel RL. PC1/3 Deficiency Impacts Pro-opiomelanocortin Processing in Human Embryonic Stem Cell-Derived Hypothalamic Neurons. Stem Cell Reports 2017; 8:264-277. [PMID: 28132887 PMCID: PMC5312251 DOI: 10.1016/j.stemcr.2016.12.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 12/19/2022] Open
Abstract
We recently developed a technique for generating hypothalamic neurons from human pluripotent stem cells. Here, as proof of principle, we examine the use of these cells in modeling of a monogenic form of severe obesity: PCSK1 deficiency. The cognate enzyme, PC1/3, processes many prohormones in neuroendocrine and other tissues. We generated PCSK1 (PC1/3)-deficient human embryonic stem cell (hESC) lines using both short hairpin RNA and CRISPR-Cas9, and investigated pro-opiomelanocortin (POMC) processing using hESC-differentiated hypothalamic neurons. The increased levels of unprocessed POMC and the decreased ratios (relative to POMC) of processed POMC-derived peptides in both PCSK1 knockdown and knockout hESC-derived neurons phenocopied POMC processing reported in PC1/3-null mice and PC1/3-deficient patients. PC1/3 deficiency was associated with increased expression of melanocortin receptors and PRCP (prolylcarboxypeptidase, a catabolic enzyme for α-melanocyte stimulating hormone (αMSH)), and reduced adrenocorticotropic hormone secretion. We conclude that the obesity accompanying PCSK1 deficiency may not be primarily due to αMSH deficiency. Stem cell-derived hypothalamic neurons are used to study human obesity shRNA and CRISPR-Cas9 were used to generate models of PCSK1 deficiency PC1/3 deficiency impaired POMC processing in arcuate-like neurons Adaptive changes occurred in “downstream” POMC processing enzymes
Collapse
Affiliation(s)
- Liheng Wang
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Avenue, Room 620A, New York, NY 10032, USA; Department of Medicine and Naomi Berrie Diabetes Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Lina Sui
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Avenue, Room 620A, New York, NY 10032, USA
| | - Sunil K Panigrahi
- Department of Medicine and Naomi Berrie Diabetes Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Kana Meece
- Department of Medicine and Naomi Berrie Diabetes Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Yurong Xin
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | - Jinrang Kim
- Regeneron Pharmaceuticals, Tarrytown, NY 10591, USA
| | | | - Claudia A Doege
- Department of Pathology and Cell Biology and Naomi Berrie Diabetes Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Sharon L Wardlaw
- Department of Medicine and Naomi Berrie Diabetes Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Dieter Egli
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Avenue, Room 620A, New York, NY 10032, USA; New York Stem Cell Foundation Research Institute, 3960 Broadway, New York, NY 10032, USA
| | - Rudolph L Leibel
- Division of Molecular Genetics, Department of Pediatrics and Naomi Berrie Diabetes Center, College of Physicians and Surgeons, Columbia University, 1150 St. Nicholas Avenue, Room 620A, New York, NY 10032, USA; Department of Medicine and Naomi Berrie Diabetes Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
61
|
Navarro M. The Role of the Melanocortin System in Drug and Alcohol Abuse. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:121-150. [DOI: 10.1016/bs.irn.2017.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
62
|
Ladyman SR, Augustine RA, Scherf E, Phillipps HR, Brown CH, Grattan DR. Attenuated hypothalamic responses to α-melanocyte stimulating hormone during pregnancy in the rat. J Physiol 2016; 594:1087-101. [PMID: 26613967 DOI: 10.1113/jp271605] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/23/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Increased appetite and weight gain occurs during pregnancy, associated with development of leptin resistance, and satiety responses to the anorectic peptide α-melanocyte stimulating hormone (α-MSH) are suppressed. This study investigated hypothalamic responses to α-MSH during pregnancy, using c-fos expression in specific hypothalamic nuclei as a marker of neuronal signalling, and in vivo electrophysiology in supraoptic nucleus (SON) oxytocin neurons, as a representative α-MSH-responsive neuronal population that shows a well-characterised α-MSH-induced inhibition of firing. While icv injection of α-MSH significantly increased the number of c-fos-positive cells in the paraventricular, supraoptic, arcuate and ventromedial hypothalamic nuclei in non-pregnant rats, this response was suppressed in pregnant rats. Similarly, SON oxytocin neurons in pregnant rats did not demonstrate characteristic α-MSH-induced inhibition of firing that was observed in non-pregnant animals. Given the known functions of α-MSH in the hypothalamus, the attenuated responses are likely to facilitate adaptive changes in appetite regulation and oxytocin secretion during pregnancy. ABSTRACT During pregnancy, a state of positive energy balance develops to support the growing fetus and to deposit fat in preparation for the subsequent metabolic demands of lactation. As part of this maternal adaptation, the satiety response to the anorectic peptide α-melanocyte stimulating hormone (α-MSH) is suppressed. To investigate whether pregnancy is associated with changes in the response of hypothalamic α-MSH target neurons, non-pregnant and pregnant rats were treated with α-MSH or vehicle and c-fos expression in hypothalamic nuclei was then examined. Furthermore, the firing rate of supraoptic nucleus (SON) oxytocin neurons, a known α-MSH responsive neuronal population, was examined in non-pregnant and pregnant rats following α-MSH treatment. Intracerebroventricular injection of α-MSH significantly increased the number of c-fos-positive cells in the paraventricular, arcuate and ventromedial hypothalamic nuclei in non-pregnant rats, but no significant increase was observed in any of these regions in pregnant rats. In the SON, α-MSH did induce expression of c-fos during pregnancy, but this was significantly reduced compared to that observed in the non-pregnant group. Furthermore, during pregnancy, SON oxytocin neurons did not demonstrate the characteristic α-MSH-induced inhibition of firing rate that was observed in non-pregnant animals. Melanocortin receptor mRNA levels during pregnancy were similar to non-pregnant animals, suggesting that receptor down-regulation is unlikely to be a mechanism underlying the attenuated responses to α-MSH during pregnancy. Given the known functions of α-MSH in the hypothalamus, the attenuated responses will facilitate adaptive changes in appetite regulation and oxytocin secretion during pregnancy.
Collapse
Affiliation(s)
- S R Ladyman
- Department of Anatomy and Centre for Neuroendocrinology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - R A Augustine
- Department of Physiology and Centre for Neuroendocrinology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - E Scherf
- Department of Anatomy and Centre for Neuroendocrinology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - H R Phillipps
- Department of Anatomy and Centre for Neuroendocrinology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - C H Brown
- Department of Physiology and Centre for Neuroendocrinology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | - D R Grattan
- Department of Anatomy and Centre for Neuroendocrinology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
63
|
Lensing CJ, Adank DN, Doering SR, Wilber SL, Andreasen A, Schaub JW, Xiang Z, Haskell-Luevano C. Ac-Trp-DPhe(p-I)-Arg-Trp-NH2, a 250-Fold Selective Melanocortin-4 Receptor (MC4R) Antagonist over the Melanocortin-3 Receptor (MC3R), Affects Energy Homeostasis in Male and Female Mice Differently. ACS Chem Neurosci 2016; 7:1283-91. [PMID: 27385405 PMCID: PMC5687811 DOI: 10.1021/acschemneuro.6b00156] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The melanocortin-4 receptor (MC4R) has been indicated as a therapeutic target for metabolic disorders such as anorexia, cachexia, and obesity. The current study investigates the in vivo effects on energy homeostasis of a 15 nM MC4R antagonist SKY2-23-7, Ac-Trp-DPhe(p-I)-Arg-Trp-NH2, that is a 3700 nM melanocortin-3 receptor (MC3R) antagonist with minimal MC3R and MC4R agonist activity. When monitoring both male and female mice in TSE metabolic cages, sex-specific responses were observed in food intake, respiratory exchange ratio (RER), and energy expenditure. A 7.5 nmol dose of SKY2-23-7 increased food intake, increased RER, and trended toward decreasing energy expenditure in male mice. However, this compound had minimal effect on female mice's food intake and RER at the 7.5 nmol dose. A 2.5 nmol dose of SKY2-23-7 significantly increased female food intake, RER, and energy expenditure while having a minimal effect on male mice at this dose. The observed sex differences of SKY2-23-7 administration result in the discovery of a novel chemical probe for elucidating the molecular mechanisms of the sexual dimorphism present within the melanocortin pathway. To further explore the melanocortin sexual dimorphism, hypothalamic gene expression was examined. The mRNA expression of the MC3R and proopiomelanocortin (POMC) were not significantly different between sexes. However, the expression of agouti-related peptide (AGRP) was significantly higher in female mice which may be a possible mechanism for the sex-specific effects observed with SKY2-23-7.
Collapse
MESH Headings
- Animals
- Eating/drug effects
- Energy Metabolism/drug effects
- Female
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Oligopeptides/pharmacology
- Peptide Fragments/pharmacology
- Peptide YY/pharmacology
- Perilipin-2/genetics
- Perilipin-2/metabolism
- Pro-Opiomelanocortin/genetics
- Pro-Opiomelanocortin/metabolism
- Receptor, Melanocortin, Type 3/antagonists & inhibitors
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/antagonists & inhibitors
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Sex Factors
- Structure-Activity Relationship
- Time Factors
Collapse
Affiliation(s)
- Cody J. Lensing
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Danielle N. Adank
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Skye R. Doering
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Stacey L. Wilber
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - Amy Andreasen
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Jay W. Schaub
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Zhimin Xiang
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
64
|
Leptin receptor-positive and leptin receptor-negative proopiomelanocortin neurons innervate an identical set of brain structures. Brain Res 2016; 1646:366-376. [DOI: 10.1016/j.brainres.2016.06.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/01/2016] [Accepted: 06/15/2016] [Indexed: 11/21/2022]
|
65
|
Chhabra KH, Adams JM, Jones GL, Yamashita M, Schlapschy M, Skerra A, Rubinstein M, Low MJ. Reprogramming the body weight set point by a reciprocal interaction of hypothalamic leptin sensitivity and Pomc gene expression reverts extreme obesity. Mol Metab 2016; 5:869-881. [PMID: 27689000 PMCID: PMC5034612 DOI: 10.1016/j.molmet.2016.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/29/2016] [Indexed: 12/26/2022] Open
Abstract
Objective A major challenge for obesity treatment is the maintenance of reduced body weight. Diet-induced obese mice are resistant to achieving normoweight once the obesogenic conditions are reversed, in part because lowered circulating leptin leads to a reduction in metabolic rate and a rebound of hyperphagia that defend the previously elevated body weight set point. Because hypothalamic POMC is a central leptin target, we investigated whether changes in circulating leptin modify Pomc expression to maintain normal energy balance in genetically predisposed obese mice. Methods Mice with reversible Pomc silencing in the arcuate nucleus (ArcPomc−/−) become morbidly obese eating low-fat chow. We measured body composition, food intake, plasma leptin, and leptin sensitivity in ArcPomc−/− mice weight-matched to littermate controls by calorie restriction, either from weaning or after developing obesity. Pomc was reactivated by tamoxifen-dependent Cre recombinase transgenes. Long acting PASylated leptin was administered to weight-reduced ArcPomc−/− mice to mimic the super-elevated leptin levels of obese mice. Results ArcPomc−/− mice had increased adiposity and leptin levels shortly after weaning. Despite chronic calorie restriction to achieve normoweight, ArcPomc−/− mice remained moderately hyperleptinemic and resistant to exogenous leptin's effects to reduce weight and food intake. However, subsequent Pomc reactivation in weight-matched ArcPomc−/− mice normalized plasma leptin, leptin sensitivity, adiposity, and food intake. In contrast, extreme hyperleptinemia induced by PASylated leptin blocked the full restoration of hypothalamic Pomc expression in calorie restricted ArcPomc−/− mice, which consequently regained 30% of their lost body weight and attained a metabolic steady state similar to that of tamoxifen treated obese ArcPomc−/− mice. Conclusions Pomc reactivation in previously obese, calorie-restricted ArcPomc−/− mice normalized energy homeostasis, suggesting that their body weight set point was restored to control levels. In contrast, massively obese and hyperleptinemic ArcPomc−/− mice or those weight-matched and treated with PASylated leptin to maintain extreme hyperleptinemia prior to Pomc reactivation converged to an intermediate set point relative to lean control and obese ArcPomc−/− mice. We conclude that restoration of hypothalamic leptin sensitivity and Pomc expression is necessary for obese ArcPomc−/− mice to achieve and sustain normal metabolic homeostasis; whereas deficits in either parameter set a maladaptive allostatic balance that defends increased adiposity and body weight. Hypothalamic POMC-deficiency increases adiposity and induces leptin resistance. PASylated leptin blocks the normalization of Pomc expression, weight and adiposity. Interactions of leptin sensitivity and Pomc expression dictate body weight set point.
Collapse
Affiliation(s)
- Kavaljit H Chhabra
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jessica M Adams
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Graham L Jones
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Miho Yamashita
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martin Schlapschy
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising (Weihenstephan), Germany
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Emil-Erlenmeyer-Forum 5, 85354 Freising (Weihenstephan), Germany
| | - Marcelo Rubinstein
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | - Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
66
|
Novoselova TV, Larder R, Rimmington D, Lelliott C, Wynn EH, Gorrigan RJ, Tate PH, Guasti L, O'Rahilly S, Clark AJL, Logan DW, Coll AP, Chan LF. Loss of Mrap2 is associated with Sim1 deficiency and increased circulating cholesterol. J Endocrinol 2016; 230:13-26. [PMID: 27106110 PMCID: PMC5064762 DOI: 10.1530/joe-16-0057] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 11/08/2022]
Abstract
Melanocortin receptor accessory protein 2 (MRAP2) is a transmembrane accessory protein predominantly expressed in the brain. Both global and brain-specific deletion of Mrap2 in mice results in severe obesity. Loss-of-function MRAP2 mutations have also been associated with obesity in humans. Although MRAP2 has been shown to interact with MC4R, a G protein-coupled receptor with an established role in energy homeostasis, appetite regulation and lipid metabolism, the mechanisms through which loss of MRAP2 causes obesity remains uncertain. In this study, we used two independently derived lines of Mrap2 deficient mice (Mrap2(tm1a/tm1a)) to further study the role of Mrap2 in the regulation of energy balance and peripheral lipid metabolism. Mrap2(tm1a/tm1a) mice have a significant increase in body weight, with increased fat and lean mass, but without detectable changes in food intake or energy expenditure. Transcriptomic analysis showed significantly decreased expression of Sim1, Trh, Oxt and Crh within the hypothalamic paraventricular nucleus of Mrap2(tm1a/tm1a) mice. Circulating levels of both high-density lipoprotein and low-density lipoprotein were significantly increased in Mrap2 deficient mice. Taken together, these data corroborate the role of MRAP2 in metabolic regulation and indicate that, at least in part, this may be due to defective central melanocortin signalling.
Collapse
Affiliation(s)
- T V Novoselova
- Centre for EndocrinologyQueen Mary University of London, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London, UK
| | - R Larder
- University of Cambridge Metabolic Research LaboratoriesMRC Metabolic Disease Unit, Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - D Rimmington
- University of Cambridge Metabolic Research LaboratoriesMRC Metabolic Disease Unit, Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - C Lelliott
- Wellcome Trust Sanger InstituteWellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - E H Wynn
- Wellcome Trust Sanger InstituteWellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - R J Gorrigan
- Centre for EndocrinologyQueen Mary University of London, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London, UK
| | - P H Tate
- Wellcome Trust Sanger InstituteWellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - L Guasti
- Centre for EndocrinologyQueen Mary University of London, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London, UK
| | - S O'Rahilly
- University of Cambridge Metabolic Research LaboratoriesMRC Metabolic Disease Unit, Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - A J L Clark
- Centre for EndocrinologyQueen Mary University of London, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London, UK
| | - D W Logan
- Wellcome Trust Sanger InstituteWellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - A P Coll
- University of Cambridge Metabolic Research LaboratoriesMRC Metabolic Disease Unit, Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - L F Chan
- Centre for EndocrinologyQueen Mary University of London, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London, UK
| |
Collapse
|
67
|
Melanocortin-4 receptor-regulated energy homeostasis. Nat Neurosci 2016; 19:206-19. [PMID: 26814590 DOI: 10.1038/nn.4202] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/13/2015] [Indexed: 12/11/2022]
Abstract
The melanocortin system provides a conceptual blueprint for the central control of energetic state. Defined by four principal molecular components--two antagonistically acting ligands and two cognate receptors--this phylogenetically conserved system serves as a prototype for hierarchical energy balance regulation. Over the last decade the application of conditional genetic techniques has facilitated the neuroanatomical dissection of the melanocortinergic network and identified the specific neural substrates and circuits that underscore the regulation of feeding behavior, energy expenditure, glucose homeostasis and autonomic outflow. In this regard, the melanocortin-4 receptor is a critical coordinator of mammalian energy homeostasis and body weight. Drawing on recent advances in neuroscience and genetic technologies, we consider the structure and function of the melanocortin-4 receptor circuitry and its role in energy homeostasis.
Collapse
|
68
|
Mavrikaki M, Girardet C, Kern A, Faruzzi Brantley A, Miller CA, Macarthur H, Marks DL, Butler AA. Melanocortin-3 receptors in the limbic system mediate feeding-related motivational responses during weight loss. Mol Metab 2016; 5:566-579. [PMID: 27408780 PMCID: PMC4921936 DOI: 10.1016/j.molmet.2016.05.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 04/28/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022] Open
Abstract
Objective Appetitive responses to weight loss are mediated by a nutrient-sensing neural network comprised of melanocortin neurons. The role of neural melanocortin-3 receptors (MC3R) in mediating these responses is enigmatic. Mc3r knockout mice exhibit a paradoxical phenotype of obesity and reduced feeding-related behaviors in situations of nutrient scarcity. Here we examined whether MC3Rs expressed in mesolimbic neurons regulate feeding-related motivational responses. Methods Interactions between Mc3r genotype, cognitive function and energy balance on food self-administration were assessed using operant conditioning with fixed- and progressive ratio (FR1/PR1) settings. Inhibition of Mc3r transcription by a loxP-flanked transcriptional blocker (TB) in C57BL/6JN mice (Mc3rTB/TB) was reversed in mesolimbic neurons using DAT-Cre (DAT-MC3R). Results Caloric restriction (CR) caused 10–15% weight loss and increased motivation to acquire food rewards during training sessions. c-Fos-expression in the nucleus accumbens was increased 1 h following food presentation. While exhibiting weight loss, total food self-administration, enhanced motivation to self-administer food rewards in training sessions held during CR and c-Fos-activation in the nucleus accumbens following re-feeding were all markedly attenuated in Mc3rTB/TB mice. In contrast, cognitive abilities were normal in Mc3rTB/TB mice. Total food self-administration during FR1 sessions was not rescued in DAT-MC3R mice, however enhanced motivational responses to self-administer food rewards in PR1 conditions were restored. The nutrient-partitioning phenotype observed with Mc3r-deficiency was not rescued in DAT-MC3R mice. Conclusions Mesolimbic MC3Rs mediate enhanced motivational responses during CR. However, they are insufficient to restore normal caloric loading when food is presented during CR and do not affect metabolic conditions altering nutrient partitioning. Food-related motivational responses in mice increase with caloric restriction (CR). Melanocortin-3 receptors (MC3R) are required for food-related motivational responses. MC3Rs role in food-related motivational responses depends on metabolic condition. Mesolimbic MC3Rs increase food-related motivational responses during CR.
Collapse
Affiliation(s)
- Maria Mavrikaki
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Clemence Girardet
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Andras Kern
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Alicia Faruzzi Brantley
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA; Behavioral Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Courtney A Miller
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Heather Macarthur
- Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrew A Butler
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA; Department of Pharmacology & Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
69
|
Djogo T, Robins SC, Schneider S, Kryzskaya D, Liu X, Mingay A, Gillon CJ, Kim JH, Storch KF, Boehm U, Bourque CW, Stroh T, Dimou L, Kokoeva MV. Adult NG2-Glia Are Required for Median Eminence-Mediated Leptin Sensing and Body Weight Control. Cell Metab 2016; 23:797-810. [PMID: 27166944 DOI: 10.1016/j.cmet.2016.04.013] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/12/2016] [Accepted: 04/13/2016] [Indexed: 12/31/2022]
Abstract
While leptin is a well-known regulator of body fat mass, it remains unclear how circulating leptin is sensed centrally to maintain energy homeostasis. Here we show that genetic and pharmacological ablation of adult NG2-glia (also known as oligodendrocyte precursors), but not microglia, leads to primary leptin resistance and obesity in mice. We reveal that NG2-glia contact the dendritic processes of arcuate nucleus leptin receptor (LepR) neurons in the median eminence (ME) and that these processes degenerate upon NG2-glia elimination, which explains the consequential attenuation of these neurons' molecular and electrical responses to leptin. Our data therefore indicate that LepR dendrites in the ME represent the principal conduits of leptin's anorexigenic action and that NG2-glia are essential for their maintenance. Given that ME-directed X-irradiation confirmed the pharmacological and genetically mediated ablation effects on body weight, our findings provide a rationale for the known obesity risk associated with cranial radiation therapy.
Collapse
Affiliation(s)
- Tina Djogo
- Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal, QC H4A 3J1, Canada
| | - Sarah C Robins
- Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal, QC H4A 3J1, Canada
| | - Sarah Schneider
- Physiological Genomics, Institute of Physiology, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Darya Kryzskaya
- Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal, QC H4A 3J1, Canada
| | - Xiaohong Liu
- Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal, QC H4A 3J1, Canada
| | - Andrew Mingay
- Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal, QC H4A 3J1, Canada
| | - Colleen J Gillon
- Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal, QC H4A 3J1, Canada
| | - Joo Hyun Kim
- Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal, QC H4A 3J1, Canada
| | - Kai-Florian Storch
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, University of Saarland School of Medicine, 66421 Homburg, Germany
| | - Charles W Bourque
- Centre for Research in Neuroscience, Montreal General Hospital, McGill University, Montreal, QC H3G 1A4, Canada
| | - Thomas Stroh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Leda Dimou
- Physiological Genomics, Institute of Physiology, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Maia V Kokoeva
- Department of Medicine, McGill University Health Center Research Institute, McGill University, Montreal, QC H4A 3J1, Canada.
| |
Collapse
|
70
|
Cerritelli S, Hirschberg S, Hill R, Balthasar N, Pickering AE. Activation of Brainstem Pro-opiomelanocortin Neurons Produces Opioidergic Analgesia, Bradycardia and Bradypnoea. PLoS One 2016; 11:e0153187. [PMID: 27077912 PMCID: PMC4831707 DOI: 10.1371/journal.pone.0153187] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/14/2016] [Indexed: 11/19/2022] Open
Abstract
Opioids are widely used medicinally as analgesics and abused for hedonic effects, actions that are each complicated by substantial risks such as cardiorespiratory depression. These drugs mimic peptides such as β-endorphin, which has a key role in endogenous analgesia. The β-endorphin in the central nervous system originates from pro-opiomelanocortin (POMC) neurons in the arcuate nucleus and nucleus of the solitary tract (NTS). Relatively little is known about the NTSPOMC neurons but their position within the sensory nucleus of the vagus led us to test the hypothesis that they play a role in modulation of cardiorespiratory and nociceptive control. The NTSPOMC neurons were targeted using viral vectors in a POMC-Cre mouse line to express either opto-genetic (channelrhodopsin-2) or chemo-genetic (Pharmacologically Selective Actuator Modules). Opto-genetic activation of the NTSPOMC neurons in the working heart brainstem preparation (n = 21) evoked a reliable, titratable and time-locked respiratory inhibition (120% increase in inter-breath interval) with a bradycardia (125±26 beats per minute) and augmented respiratory sinus arrhythmia (58% increase). Chemo-genetic activation of NTSPOMC neurons in vivo was anti-nociceptive in the tail flick assay (latency increased by 126±65%, p<0.001; n = 8). All effects of NTSPOMC activation were blocked by systemic naloxone (opioid antagonist) but not by SHU9119 (melanocortin receptor antagonist). The NTSPOMC neurons were found to project to key brainstem structures involved in cardiorespiratory control (nucleus ambiguus and ventral respiratory group) and endogenous analgesia (periaqueductal gray and midline raphe). Thus the NTSPOMC neurons may be capable of tuning behaviour by an opioidergic modulation of nociceptive, respiratory and cardiac control.
Collapse
Affiliation(s)
- Serena Cerritelli
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Stefan Hirschberg
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Rob Hill
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Nina Balthasar
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Anthony E. Pickering
- School of Physiology, Pharmacology & Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, United Kingdom
- Department of Anaesthesia, University Hospitals Bristol, Bristol, BS2 8HW, United Kingdom
| |
Collapse
|
71
|
Webber ES, Bonci A, Krashes MJ. The elegance of energy balance: Insight from circuit-level manipulations. Synapse 2016; 69:461-74. [PMID: 26126768 DOI: 10.1002/syn.21837] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/08/2015] [Accepted: 06/16/2015] [Indexed: 01/24/2023]
Abstract
Mechanisms of energy balance were first examined using very powerful neuroscience techniques such as lesions and electrical stimulation. This early work identified the hypothalamus as a key structure involved in hunger and feeding; however, neural resolution of cell-defined populations contributing to appetite regulation remained elusive. Recent innovations in neuroscience have produced constructs that allow for a high degree of specificity in loss- and gain-of-function manipulations in molecularly circumscribed neural subsets as well as monosynaptic circuit mapping and in vivo neurophysiology. These complimentary techniques have provided researchers an unprecedented amount of empirical agility. As a result, cell populations in two subregions of the hypothalamus have emerged as key players in the physiological control of feeding behavior. The arcuate nucleus of the hypothalamus and the paraventricular nucleus of the hypothalamus contain neural populations that have a direct role in the promotion of hunger and satiety. These include neurons that express agouti-related peptide, pro-opiomelanocortin, single-minded homolog 1 protein, and the melanocortin-4 receptor. This review focuses on how these neural subsets communicate with one another, link up to build elaborate networks, and ultimately contribute to alterations in food intake. The continuing advancement of neuroscience tools, as well as a multimodal integration of findings, will be critical in illuminating an exhaustive and clinically relevant hunger circuit.
Collapse
Affiliation(s)
- Emily S Webber
- Digestive and Kidney Diseases, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes, National Institutes of Health, Bethesda, Maryland
| | - Antonello Bonci
- National Institute of Drug Abuse, National Institutes of Health, Baltimore, Maryland
| | - Michael J Krashes
- Digestive and Kidney Diseases, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes, National Institutes of Health, Bethesda, Maryland.,National Institute of Drug Abuse, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
72
|
Abstract
Energy balance--that is, the relationship between energy intake and energy expenditure--is regulated by a complex interplay of hormones, brain circuits and peripheral tissues. Leptin is an adipocyte-derived cytokine that suppresses appetite and increases energy expenditure. Ironically, obese individuals have high levels of plasma leptin and are resistant to leptin treatment. Neurotrophic factors, particularly ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF), are also important for the control of body weight. CNTF can overcome leptin resistance in order to reduce body weight, although CNTF and leptin activate similar signalling cascades. Mutations in the gene encoding BDNF lead to insatiable appetite and severe obesity.
Collapse
Affiliation(s)
- Baoji Xu
- Department of Neuroscience, The Scripps Research Institute Florida, 130 Scripps Way, Jupiter, Florida 33458, USA
| | - Xiangyang Xie
- Department of Neuroscience, The Scripps Research Institute Florida, 130 Scripps Way, Jupiter, Florida 33458, USA
| |
Collapse
|
73
|
Lensing CJ, Freeman KT, Schnell SM, Adank DN, Speth RC, Haskell-Luevano C. An in Vitro and in Vivo Investigation of Bivalent Ligands That Display Preferential Binding and Functional Activity for Different Melanocortin Receptor Homodimers. J Med Chem 2016; 59:3112-28. [PMID: 26959173 DOI: 10.1021/acs.jmedchem.5b01894] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pharmacological probes for the melanocortin receptors have been utilized for studying various disease states including cancer, sexual function disorders, Alzheimer's disease, social disorders, cachexia, and obesity. This study focused on the design and synthesis of bivalent ligands to target melanocortin receptor homodimers. Lead ligands increased binding affinity by 14- to 25-fold and increased cAMP signaling potency by 3- to 5-fold compared to their monovalent counterparts. Unexpectedly, different bivalent ligands showed preferences for particular melanocortin receptor subtypes depending on the linker that connected the binding scaffolds, suggesting structural differences between the various dimer subtypes. Homobivalent compound 12 possessed a functional profile that was unique from its monovalent counterpart providing evidence of the discrete effects of bivalent ligands. Lead compound 7 significantly decreased feeding in mice after intracerebroventricular administration. To the best of our knowledge, this is the first report of a melanocortin bivalent ligand's in vivo physiological effects.
Collapse
Affiliation(s)
- Cody J Lensing
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Katie T Freeman
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Sathya M Schnell
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Danielle N Adank
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Robert C Speth
- College of Pharmacy, Nova Southeastern University , Fort Lauderdale, Florida 33328-2018, United States.,Department of Pharmacology and Physiology, Georgetown University , Washington, D.C. 20057, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry, University of Minnesota , Minneapolis, Minnesota 55455, United States
| |
Collapse
|
74
|
Abstract
Although it has been known for more than a century that the brain controls overall energy balance and adiposity by regulating feeding behavior and energy expenditure, the roles for individual brain regions and neuronal subtypes were not fully understood until recently. This area of research is active, and as such our understanding of the central regulation of energy balance is continually being refined as new details emerge. Much of what we now know stems from the discoveries of leptin and the hypothalamic melanocortin system. Hypothalamic circuits play a crucial role in the control of feeding and energy expenditure, and within the hypothalamus, the arcuate nucleus (ARC) functions as a gateway for hormonal signals of energy balance, such as leptin. It is also well established that the ARC is a primary residence for hypothalamic melanocortinergic neurons. The paraventricular hypothalamic nucleus (PVH) receives direct melanocortin input, along with other integrated signals that affect energy balance, and mediates the majority of hypothalamic output to control both feeding and energy expenditure. Herein, we review in detail the structure and function of the ARC-PVH circuit in mediating leptin signaling and in regulating energy balance.
Collapse
Affiliation(s)
- Amy K Sutton
- Departments of Internal Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48105;
- Division of Endocrinology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48105;
| | - Martin G Myers
- Departments of Internal Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48105;
| | - David P Olson
- Division of Endocrinology, Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48105;
| |
Collapse
|
75
|
Abstract
Leptin is an adipocytokine that circulates in proportion to body fat to signal the repletion of long-term energy stores. Leptin acts via its receptor, LepRb, on specialized neuronal populations in the brain (mainly in the hypothalamus and brainstem) to alter motivation and satiety, as well as to permit energy expenditure and appropriate glucose homeostasis. Decreased leptin, as with prolonged caloric restriction, promotes a powerful orexigenic signal, decreases energy use via a number of neuroendocrine and autonomic axes, and disrupts glucose homeostasis. Here, we review what is known about cellular leptin action and focus on the roles for specific populations of LepRb-expressing neurons for leptin action.
Collapse
Affiliation(s)
- Jonathan N Flak
- Division of Metabolism, Endocrinology and Diabetes (J.N.F., M.G.M.), Department of Internal Medicine, and Department of Molecular and Integrative Physiology (M.G.M.), University of Michigan, Ann Arbor, Michigan 48109
| | - Martin G Myers
- Division of Metabolism, Endocrinology and Diabetes (J.N.F., M.G.M.), Department of Internal Medicine, and Department of Molecular and Integrative Physiology (M.G.M.), University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
76
|
Luo J, Lei H, Shen L, Yang R, Pu Q, Zhu K, Li M, Tang G, Li X, Zhang S, Zhu L. Estimation of Growth Curves and Suitable Slaughter Weight of the Liangshan Pig. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:1252-8. [PMID: 26194218 PMCID: PMC4554864 DOI: 10.5713/ajas.15.0010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/17/2015] [Accepted: 04/08/2015] [Indexed: 11/27/2022]
Abstract
The Liangshan pig is a traditional Chinese small-sized breed; it has a relatively long feeding period and low meat production ability but superior meat quality. This study utilized three non-linear growth models (Von Bertalanffy, Gompertz, and logistic) to fit the growth curve of Liangshan pigs from an unselected, random-bred pig population and estimate the pigs most suitable slaughter weight. The growth development data at 20 time points of 275 Liangshan pigs (from birth to 250 d) were collected. To analyze the relative gene expression related to development, seven slaughter weight phases (50, 58, 66, 74, 82, 90, and 98 kg) (20 pigs per phase) were examined. We found that the Liangshan pig growth curve fit the typical S-curve well and that their growth turning point was 193.4 days at a weight of 62.5 kg, according to the best fit Von Bertalanffy model based on the goodness of fit criteria. Furthermore, we estimated that the most suitable slaughter weight was 62.5 to 74.9 kg based on the growth curve and the relative expression levels of growth-related genes.
Collapse
Affiliation(s)
- Jia Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an 625014, China
| | - Huaigang Lei
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an 625014, China ; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Linyuan Shen
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an 625014, China
| | - Runlin Yang
- Mabian Gold LiangShan Agricultural Development Co., LTD, Mabian, Sichuan 614600, China
| | - Qiang Pu
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an 625014, China
| | - Kangping Zhu
- Sichuan Tequ Investment Group Ltd Co., Chengdou 610200, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an 625014, China
| | - Guoqing Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an 625014, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an 625014, China
| | - Shunhua Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an 625014, China
| | - Li Zhu
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
77
|
Ramírez D, Saba J, Carniglia L, Durand D, Lasaga M, Caruso C. Melanocortin 4 receptor activates ERK-cFos pathway to increase brain-derived neurotrophic factor expression in rat astrocytes and hypothalamus. Mol Cell Endocrinol 2015; 411:28-37. [PMID: 25892444 DOI: 10.1016/j.mce.2015.04.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/09/2015] [Accepted: 04/09/2015] [Indexed: 01/08/2023]
Abstract
Melanocortins are neuropeptides with well recognized anti-inflammatory and anti-apoptotic effects in the brain. Of the five melanocortin receptors (MCR), MC4R is abundantly expressed in the brain and is the only MCR present in astrocytes. We have previously shown that MC4R activation by the α-melanocyte stimulating hormone (α-MSH) analog, NDP-MSH, increased brain-derived neurotrophic factor (BDNF) expression through the classic cAMP-Protein kinase A-cAMP responsive element binding protein pathway in rat astrocytes. Now, we examined the participation of the mitogen activated protein kinases pathway in MC4R signaling. Rat cultured astrocytes treated with NDP-MSH 1 µM for 1 h showed increased BDNF expression. Inhibition of extracellular signal-regulated kinase (ERK) and ribosomal p90 S6 kinase (RSK), an ERK substrate, but not of p38 or JNK, prevented the increase in BDNF expression induced by NDP-MSH. Activation of MC4R increased cFos expression, a target of both ERK and RSK. ERK activation by MC4R involves cAMP, phosphoinositide-3 kinase (PI3K) and the non receptor tyrosine kinase, Src. Both PI3K and Src inhibition abolished NDP-MSH-induced BDNF expression. Moreover, we found that intraperitoneal injection of α-MSH induces BDNF and MC4R expression and activates ERK and cFos in male rat hypothalamus. Our results show for the first time that MC4R-induced BDNF expression in astrocytes involves ERK-RSK-cFos pathway which is dependent on PI3K and Src, and that melanocortins induce BDNF expression and ERK-cFos activation in rat hypothalamus.
Collapse
Affiliation(s)
- D Ramírez
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - J Saba
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - L Carniglia
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - D Durand
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - M Lasaga
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - C Caruso
- INBIOMED UBA-CONICET, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
78
|
Hadri Z, Chaumontet C, Fromentin G, Even PC, Darcel N, Bouras AD, Tomé D, Rasoamanana R. Long term ingestion of a preload containing fructo-oligosaccharide or guar gum decreases fat mass but not food intake in mice. Physiol Behav 2015; 147:198-204. [DOI: 10.1016/j.physbeh.2015.04.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/21/2015] [Accepted: 04/22/2015] [Indexed: 01/03/2023]
|
79
|
Obici S, Magrisso IJ, Ghazarian AS, Shirazian A, Miller JR, Loyd CM, Begg DP, Krawczewski Carhuatanta KA, Haas MK, Davis JF, Woods SC, Sandoval DA, Seeley RJ, Goodyear LJ, Pothos EN, Mul JD. Moderate voluntary exercise attenuates the metabolic syndrome in melanocortin-4 receptor-deficient rats showing central dopaminergic dysregulation. Mol Metab 2015; 4:692-705. [PMID: 26500841 PMCID: PMC4588435 DOI: 10.1016/j.molmet.2015.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/12/2023] Open
Abstract
Objective Melanocortin-4 receptors (MC4Rs) are highly expressed by dopamine-secreting neurons of the mesolimbic tract, but their functional role has not been fully resolved. Voluntary wheel running (VWR) induces adaptations in the mesolimbic dopamine system and has a myriad of long-term beneficial effects on health. In the present experiments we asked whether MC4R function regulates the effects of VWR, and whether VWR ameliorates MC4R-associated symptoms of the metabolic syndrome. Methods Electrically evoked dopamine release was measured in slice preparations from sedentary wild-type and MC4R-deficient Mc4rK314X (HOM) rats. VWR was assessed in wild-type and HOM rats, and in MC4R-deficient loxTBMc4r mice, wild-type mice body weight-matched to loxTBMc4r mice, and wild-type mice with intracerebroventricular administration of the MC4R antagonist SHU9119. Mesolimbic dopamine system function (gene/protein expression) and metabolic parameters were examined in wheel-running and sedentary wild-type and HOM rats. Results Sedentary obese HOM rats had increased electrically evoked dopamine release in several ventral tegmental area (VTA) projection sites compared to wild-type controls. MC4R loss-of-function decreased VWR, and this was partially independent of body weight. HOM wheel-runners had attenuated markers of intracellular D1-type dopamine receptor signaling despite increased dopamine flux in the VTA. VWR increased and decreased ΔFosB levels in the nucleus accumbens (NAc) of wild-type and HOM runners, respectively. VWR improved metabolic parameters in wild-type wheel-runners. Finally, moderate voluntary exercise corrected many aspects of the metabolic syndrome in HOM runners. Conclusions Central dopamine dysregulation during VWR reinforces the link between MC4R function and molecular and behavioral responding to rewards. The data also suggest that exercise can be a successful lifestyle intervention in MC4R-haploinsufficient individuals despite reduced positive reinforcement during exercise training. MC4R-deficiency causes metabolic syndrome. Loss of MC4R signaling decreases voluntary wheel running (VWR). Despite moderate amounts of VWR, MC4R-associated metabolic syndrome is severely attenuated. MC4R-deficiency is associated with mesolimbic dopamine dysregulation during VWR.
Collapse
Affiliation(s)
- Silvana Obici
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - I Jack Magrisso
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Armen S Ghazarian
- Programs in Pharmacology and Experimental Therapeutics and Neuroscience, Sackler School of Graduate Biomedical Sciences and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Alireza Shirazian
- Programs in Pharmacology and Experimental Therapeutics and Neuroscience, Sackler School of Graduate Biomedical Sciences and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Jonas R Miller
- Programs in Pharmacology and Experimental Therapeutics and Neuroscience, Sackler School of Graduate Biomedical Sciences and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Christine M Loyd
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Denovan P Begg
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA ; School of Psychology, UNSW Australia, Sydney, NSW, Australia
| | | | - Michael K Haas
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Jon F Davis
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Stephen C Woods
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA
| | - Darleen A Sandoval
- North Campus Research Complex, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Randy J Seeley
- North Campus Research Complex, Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | | | - Emmanuel N Pothos
- Programs in Pharmacology and Experimental Therapeutics and Neuroscience, Sackler School of Graduate Biomedical Sciences and Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA, USA
| | - Joram D Mul
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH, USA ; Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
80
|
Hong J, Kim D, Cho K, Sa S, Choi S, Kim Y, Park J, Schmidt GS, Davis ME, Chung H. Effects of genetic variants for the swine FABP3, HMGA1, MC4R, IGF2, and FABP4 genes on fatty acid composition. Meat Sci 2015; 110:46-51. [PMID: 26172243 DOI: 10.1016/j.meatsci.2015.06.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 04/28/2015] [Accepted: 06/24/2015] [Indexed: 12/13/2022]
Abstract
This study aimed to verify genetic relationships between fatty acid composition (FAC) and genotypes of several genes (FABP3, HMGA1, MC4R, IGF2, and FABP4) using pig breeds. The effects of genetic variations on FAC of the longissimus muscle were statistically significant with additive and dominance effects. The polymorphisms of FABP3 and IGF2 had the largest effects on stearic (C18:0, P=0.009) and γ-linoleic (C18:3n6, P=0.039) acids, respectively, whereas HMGA1 and FABP4 did not show significances. The analysis revealed that MC4R was significantly associated with palmitoleic acid (C16:ln7) and MUFA. Allele frequencies of the genes examined in this analysis were significantly skewed or fixed in the Korean native pig (KNP), whereas the allele frequencies of the crossbreds tended to fall between those of the purebreds except that HMGA1 and FABP4 had approximately the same allele frequencies with Duroc and KNP, respectively. The polymorphisms found in this study could be used as genetic markers in breeding programs to simultaneously change proportions of fatty acids in muscle tissues.
Collapse
Affiliation(s)
- Joonki Hong
- Swine Science Division, National Institute of Animal Science, Cheonan 330-801, Republic of Korea
| | - Duwan Kim
- Swine Science Division, National Institute of Animal Science, Cheonan 330-801, Republic of Korea
| | - Kyuho Cho
- Swine Science Division, National Institute of Animal Science, Cheonan 330-801, Republic of Korea
| | - Soojin Sa
- Swine Science Division, National Institute of Animal Science, Cheonan 330-801, Republic of Korea
| | - Sunho Choi
- Swine Science Division, National Institute of Animal Science, Cheonan 330-801, Republic of Korea
| | - Younghwa Kim
- Swine Science Division, National Institute of Animal Science, Cheonan 330-801, Republic of Korea
| | - Juncheol Park
- Swine Science Division, National Institute of Animal Science, Cheonan 330-801, Republic of Korea
| | - Gilberto Silber Schmidt
- International Technical Cooperation Center, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Michael E Davis
- The Ohio State University, Department of Animal Sciences, Columbus, OH 43210, USA
| | - Hoyoung Chung
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Suwon 441-701, Republic of Korea.
| |
Collapse
|
81
|
Ottaway N, Mahbod P, Rivero B, Norman LA, Gertler A, D'Alessio DA, Perez-Tilve D. Diet-induced obese mice retain endogenous leptin action. Cell Metab 2015; 21:877-82. [PMID: 25980347 PMCID: PMC4456263 DOI: 10.1016/j.cmet.2015.04.015] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/31/2014] [Accepted: 04/08/2015] [Indexed: 12/28/2022]
Abstract
Obesity is characterized by hyperleptinemia and decreased response to exogenous leptin. This has been widely attributed to the development of leptin resistance, a state of impaired leptin signaling proposed to contribute to the development and persistence of obesity. To directly determine endogenous leptin activity in obesity, we treated lean and obese mice with a leptin receptor antagonist. The antagonist increased feeding and body weight (BW) in lean mice, but not in obese models of leptin, leptin receptor, or melanocortin-4 receptor deficiency. In contrast, the antagonist increased feeding and BW comparably in lean and diet-induced obese (DIO) mice, an increase associated with decreased hypothalamic expression of Socs3, a primary target of leptin. These findings demonstrate that hyperleptinemic DIO mice retain leptin suppression of feeding comparable to lean mice and counter the view that resistance to endogenous leptin contributes to the persistence of DIO in mice.
Collapse
Affiliation(s)
- Nickki Ottaway
- Department of Internal Medicine, Metabolic Diseases Institute, University of Cincinnati, OH 45237, USA
| | - Parinaz Mahbod
- Department of Internal Medicine, Metabolic Diseases Institute, University of Cincinnati, OH 45237, USA
| | - Belen Rivero
- Department of Internal Medicine, Metabolic Diseases Institute, University of Cincinnati, OH 45237, USA; Department of Pharmacology, University of Granada, Granada 18071, Spain
| | - Lee Ann Norman
- Department of Internal Medicine, Metabolic Diseases Institute, University of Cincinnati, OH 45237, USA
| | - Arieh Gertler
- Institute of Biochemistry, Food Science, and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - David A D'Alessio
- Department of Internal Medicine, Metabolic Diseases Institute, University of Cincinnati, OH 45237, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| | - Diego Perez-Tilve
- Department of Internal Medicine, Metabolic Diseases Institute, University of Cincinnati, OH 45237, USA.
| |
Collapse
|
82
|
Thompson MD, Hendy GN, Percy ME, Bichet DG, Cole DEC. G protein-coupled receptor mutations and human genetic disease. Methods Mol Biol 2015; 1175:153-87. [PMID: 25150870 DOI: 10.1007/978-1-4939-0956-8_8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Genetic variations in G protein-coupled receptor genes (GPCRs) disrupt GPCR function in a wide variety of human genetic diseases. In vitro strategies and animal models have been used to identify the molecular pathologies underlying naturally occurring GPCR mutations. Inactive, overactive, or constitutively active receptors have been identified that result in pathology. These receptor variants may alter ligand binding, G protein coupling, receptor desensitization and receptor recycling. Receptor systems discussed include rhodopsin, thyrotropin, parathyroid hormone, melanocortin, follicle-stimulating hormone (FSH), luteinizing hormone, gonadotropin-releasing hormone (GNRHR), adrenocorticotropic hormone, vasopressin, endothelin-β, purinergic, and the G protein associated with asthma (GPRA or neuropeptide S receptor 1 (NPSR1)). The role of activating and inactivating calcium-sensing receptor (CaSR) mutations is discussed in detail with respect to familial hypocalciuric hypercalcemia (FHH) and autosomal dominant hypocalemia (ADH). The CASR mutations have been associated with epilepsy. Diseases caused by the genetic disruption of GPCR functions are discussed in the context of their potential to be selectively targeted by drugs that rescue altered receptors. Examples of drugs developed as a result of targeting GPCRs mutated in disease include: calcimimetics and calcilytics, therapeutics targeting melanocortin receptors in obesity, interventions that alter GNRHR loss from the cell surface in idiopathic hypogonadotropic hypogonadism and novel drugs that might rescue the P2RY12 receptor congenital bleeding phenotype. De-orphanization projects have identified novel disease-associated receptors, such as NPSR1 and GPR35. The identification of variants in these receptors provides genetic reagents useful in drug screens. Discussion of the variety of GPCRs that are disrupted in monogenic Mendelian disorders provides the basis for examining the significance of common pharmacogenetic variants.
Collapse
Affiliation(s)
- Miles D Thompson
- Department of Pharmacology, University of Toronto, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8,
| | | | | | | | | |
Collapse
|
83
|
Kim JD, Leyva S, Diano S. Hormonal regulation of the hypothalamic melanocortin system. Front Physiol 2014; 5:480. [PMID: 25538630 PMCID: PMC4260486 DOI: 10.3389/fphys.2014.00480] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/24/2014] [Indexed: 01/07/2023] Open
Abstract
Regulation of energy homeostasis is fundamental for life. In animal species and humans, the Central Nervous System (CNS) plays a critical role in such regulation by integrating peripheral signals and modulating behavior and the activity of peripheral organs. A precise interplay between CNS and peripheral signals is necessary for the regulation of food intake and energy expenditure in the maintenance of energy balance. Within the CNS, the hypothalamus is a critical center for monitoring, processing and responding to peripheral signals, including hormones such as ghrelin, leptin, and insulin. Once in the brain, peripheral signals regulate neuronal systems involved in the modulation of energy homeostasis. The main hypothalamic neuronal circuit in the regulation of energy metabolism is the melanocortin system. This review will give a summary of the most recent discoveries on the hormonal regulation of the hypothalamic melanocortin system in the control of energy homeostasis.
Collapse
Affiliation(s)
- Jung D Kim
- Departments of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine New Haven, CT, USA ; Program in Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine New Haven, CT, USA
| | - Stephanie Leyva
- Departments of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine New Haven, CT, USA ; Program in Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine New Haven, CT, USA
| | - Sabrina Diano
- Departments of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine New Haven, CT, USA ; Program in Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine New Haven, CT, USA ; Department of Neurobiology, Yale University School of Medicine New Haven, CT, USA ; Section of Comparative Medicine, Yale University School of Medicine New Haven, CT, USA
| |
Collapse
|
84
|
Meek TH, Matsen ME, Damian V, Cubelo A, Chua SC, Morton GJ. Role of melanocortin signaling in neuroendocrine and metabolic actions of leptin in male rats with uncontrolled diabetes. Endocrinology 2014; 155:4157-67. [PMID: 25137027 PMCID: PMC4197991 DOI: 10.1210/en.2014-1169] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the antidiabetic effects of leptin require intact neuronal melanocortin signaling in rodents with uncontrolled diabetes (uDM), increased melanocortin signaling is not sufficient to mimic leptin's glucose-lowering effects. The current studies were undertaken to clarify the role of melanocortin signaling in leptin's ability to correct metabolic and neuroendocrine disturbances associated with uDM. To accomplish this, bilateral cannulae were implanted in the lateral ventricle of rats with streptozotocin-induced diabetes, and leptin was coinfused with varying doses of the melanocortin 3/4 receptor (MC3/4R) antagonist, SHU9119. An additional cohort of streptozotocin-induced diabetes rats received intracerebroventricular administration of either the MC3/4R agonist, melanotan-II, or its vehicle. Consistent with previous findings, leptin's glucose-lowering effects were blocked by intracerebroventricular SHU9119. In contrast, leptin-mediated suppression of hyperglucagonemia involves both melanocortin dependent and independent mechanisms, and the degree of glucagon inhibition was associated with reduced plasma ketone body levels. Increased central nervous system melanocortin signaling alone fails to mimic leptin's ability to correct any of the metabolic or neuroendocrine disturbances associated with uDM. Moreover, the inability of increased melanocortin signaling to lower diabetic hyperglycemia does not appear to be secondary to release of the endogenous MC3/4R inverse agonist, Agouti-related peptide (AgRP), because AgRP knockout mice did not show increased susceptibility to the antidiabetic effects of increased MC3/4R signaling. Overall, these data suggest that 1) AgRP is not a major driver of diabetic hyperglycemia, 2) mechanisms independent of melanocortin signaling contribute to leptin's antidiabetic effects, and 3) melanocortin receptor blockade dissociates leptin's glucose-lowering effect from its action on other features of uDM, including reversal of hyperglucagonemia and ketosis, suggesting that brain control of ketosis, but not blood glucose levels, is glucagon dependent.
Collapse
Affiliation(s)
- Thomas H Meek
- Diabetes and Obesity Center of Excellence (T.H.M., M.E.M.,. V.D., A.C., G.J.M.), Department of Medicine, University of Washington, Seattle, Washington 98109; and Division of Endocrinology (S.C.C.), Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | | | | | | | |
Collapse
|
85
|
Duan Y, Zhang R, Zhang M, Sun L, Dong S, Wang G, Zhang J, Zhao Z. Metformin inhibits food intake and neuropeptide Y gene expression in the hypothalamus. Neural Regen Res 2014; 8:2379-88. [PMID: 25206548 PMCID: PMC4146045 DOI: 10.3969/j.issn.1673-5374.2013.25.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/06/2013] [Indexed: 12/25/2022] Open
Abstract
Metformin may reduce food intake and body weight, but the anorexigenic effects of metformin are still poorly understood. In this study, Sprague-Dawley rats were administered a single intracere-broventricular dose of metformin and compound C, in a broader attempt to investigate the regula-tory effects of metformin on food intake and to explore the possible mechanism. Results showed that central administration of metformin significantly reduced food intake and body weight gain, par-ticularly after 4 hours. A reduction of neuropeptide Y expression and induction of AMP-activated protein kinase phosphorylation in the hypothalamus were also observed 4 hours after metformin administration, which could be reversed by compound C, a commonly-used antagonist of AMP-activated protein kinase. Furthermore, metformin also improved lipid metabolism by reducing plasma low-density lipoprotein. Our findings suggest that under normal physiological conditions, central regulation of appetite by metformin is related to a decrease in neuropeptide Y gene expres-sion, and that the activation of AMP-activated protein kinase may simply be a response to the anorexigenic effect of metformin.
Collapse
Affiliation(s)
- Yale Duan
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - Rui Zhang
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - Min Zhang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai 201508, China
| | - Lijuan Sun
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - Suzhen Dong
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| | - Gang Wang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai 201508, China
| | - Jun Zhang
- Department of Clinical Laboratory, Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai 201508, China
| | - Zheng Zhao
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, East China Normal University, Shanghai 200062, China
| |
Collapse
|
86
|
The neuroanatomical function of leptin in the hypothalamus. J Chem Neuroanat 2014; 61-62:207-20. [PMID: 25007719 DOI: 10.1016/j.jchemneu.2014.05.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 05/09/2014] [Accepted: 05/28/2014] [Indexed: 02/07/2023]
Abstract
The anorexigenic hormone leptin plays an important role in the control of food intake and feeding-related behavior, for an important part through its action in the hypothalamus. The adipose-derived hormone modulates a complex network of several intercommunicating orexigenic and anorexigenic neuropeptides in the hypothalamus to reduce food intake and increase energy expenditure. In this review we present an updated overview of the functional role of leptin in respect to feeding and feeding-related behavior per distinct hypothalamic nuclei. In addition to the arcuate nucleus, which is a major leptin sensitive hub, leptin-responsive neurons in other hypothalamic nuclei, including the, dorsomedial-, ventromedial- and paraventricular nucleus and the lateral hypothalamic area, are direct targets of leptin. However, leptin also modulates hypothalamic neurons in an indirect manner, such as via the melanocortin system. The dissection of the complexity of leptin's action on the networks involved in energy balance is subject of recent and future studies. A full understanding of the role of hypothalamic leptin in the regulation of energy balance requires cell-specific manipulation using of conditional deletion and expression of leptin receptors. In addition, optogenetic and pharmacogenetic tools in combination with other pharmacological (such as the recent discovery of a leptin receptor antagonist) and neuronal tracing techniques to map the circuit, will be helpful to understand the role of leptin receptor expressing neurons. Better understanding of these circuits and the involvement of leptin could provide potential sites for therapeutic interventions in obesity and metabolic diseases characterized by dysregulation of energy balance.
Collapse
|
87
|
Ladyman SR, Grattan DR. JAK-STAT and feeding. JAKSTAT 2014; 2:e23675. [PMID: 24058809 PMCID: PMC3710322 DOI: 10.4161/jkst.23675] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 12/26/2022] Open
Abstract
The regulation of energy balance requires a complex system to homeostatically maintain the adult body at a precise set point. The central nervous system, particularly the hypothalamus, plays a key role in integrating a variety of signals that can relay information about the body's energy stores. As part of this system, numerous cytokines and hormones contribute to the regulation of food intake and energy homeostasis. Cytokines, and some hormones, are known to act through JAK-STAT intracellular signaling pathways. The hormone leptin, which plays a vital role in appetite regulation, signals through the JAK-STAT pathway, and it is through this involvement that the JAK-STAT pathway has become an established component in the mechanisms regulating food intake within the body. Emerging research, however, is now showing that this involvement of JAK-STAT is not limited to its activation by leptin. Furthermore, while the JAK-STAT pathway may simply act to transmit the anorectic signal of circulating factors, this intracellular signaling pathway may also become impaired when normal regulation of energy balance is disrupted. Thus, altered JAK-STAT signaling may contribute to the breakdown of the normal homeostatic mechanisms maintaining body weight in obesity.
Collapse
Affiliation(s)
- Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy; School of Medical Sciences; University of Otago; Dunedin, New Zealand
| | | |
Collapse
|
88
|
Polymorphisms in twelve candidate genes are associated with growth, muscle lipid profile and meat quality traits in eleven European cattle breeds. Mol Biol Rep 2014; 41:4721-31. [DOI: 10.1007/s11033-014-3343-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 03/21/2014] [Indexed: 10/25/2022]
|
89
|
Ooka T, Hironaka S, Mukai Y. A primary study on feeding behaviors of autism model rat pups in the weaning period. PEDIATRIC DENTAL JOURNAL 2014. [DOI: 10.1016/j.pdj.2013.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
90
|
Nestor CC, Kelly MJ, Rønnekleiv OK. Cross-talk between reproduction and energy homeostasis: central impact of estrogens, leptin and kisspeptin signaling. Horm Mol Biol Clin Investig 2014; 17:109-28. [PMID: 25372735 PMCID: PMC4959432 DOI: 10.1515/hmbci-2013-0050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/07/2013] [Indexed: 02/06/2023]
Abstract
The central nervous system receives hormonal cues (e.g., estrogens and leptin, among others) that influence reproduction and energy homeostasis. 17β-estradiol (E2) is known to regulate gonadotropin-releasing hormone (GnRH) secretion via classical steroid signaling and rapid non-classical membrane-initiated signaling. Because GnRH neurons are void of leptin receptors, the actions of leptin on these neurons must be indirect. Although it is clear that the arcuate nucleus of the hypothalamus is the primary site of overlap between these two systems, it is still unclear which neural network(s) participate in the cross-talk of E2 and leptin, two hormones essential for reproductive function and metabolism. Herein we review the progress made in understanding the interactions between reproduction and energy homeostasis by focusing on the advances made to understand the cellular signaling of E2 and leptin on three neural networks: kisspeptin, pro-opiomelanocortin (POMC) and neuropeptide Y (NPY). Although critical in mediating the actions of E2 and leptin, considerable work still remains to uncover how these neural networks interact in vivo.
Collapse
Affiliation(s)
- Casey C Nestor
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
| | - Martin J. Kelly
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA; and Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Oline K. Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA; and Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| |
Collapse
|
91
|
Qu H, Li J, Chen W, Li Y, Jiang Q, Jiang H, Huo J, Zhao Z, Liu B, Zhang Q. Differential expression of the melanocortin-4 receptor in male and female C57BL/6J mice. Mol Biol Rep 2014; 41:3245-56. [DOI: 10.1007/s11033-014-3187-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 01/20/2014] [Indexed: 01/09/2023]
|
92
|
Fosgerau K, Raun K, Nilsson C, Dahl K, Wulff BS. Novel α-MSH analog causes weight loss in obese rats and minipigs and improves insulin sensitivity. J Endocrinol 2014; 220:97-107. [PMID: 24204009 PMCID: PMC3888513 DOI: 10.1530/joe-13-0284] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Obesity is a major burden to people and to health care systems around the world. The aim of the study was to characterize the effect of a novel selective α-MSH analog on obesity and insulin sensitivity. The subchronic effects of the selective MC4-R peptide agonist MC4-NN1-0182 were investigated in diet-induced obese (DIO) rats and DIO minipigs by assessing the effects on food intake, energy consumption, and body weight. The acute effect of MC4-NN1-0182 on insulin sensitivity was assessed by a euglycemic-hyperinsulinemic clamp study in normal rats. Three weeks of treatment of DIO rats with MC4-NN1-0182 caused a decrease in food intake and a significant decrease in body weight 7±1%, P<0.05 compared with 3±1% increase with the vehicle control. In DIO minipigs, 8 weeks of treatment with MC4-NN1-0182 resulted in a body weight loss of 13.3±2.5 kg (13±3%), whereas the vehicle control group had gained 3.7±1.4 kg (4±1%). Finally, clamp studies in normal rats showed that acute treatment with MC4-NN1-0182 caused a significant increase in glucose disposal (Rd) compared with vehicle control (Rd, mg/kg per min, 17.0±0.7 vs 13.9±0.6, P<0.01). We demonstrate that treatment of DIO rats or minipigs with a selective MC4-R peptide agonist causes weight loss. Moreover, we have demonstrated weight-independent effects on insulin sensitivity. Our observations identify MC4 agonism as a viable target for the treatment of obesity and insulin resistance.
Collapse
Affiliation(s)
- Keld Fosgerau
- Novo Nordisk Diabetes Research Unit, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | | | | | | | | |
Collapse
|
93
|
Abstract
Over the past 30 years, it has been established that hormones produced by the gut, pancreas, and adipose tissue are key players in the control of body weight. These hormones act through a complex neuroendocrine system, including the hypothalamus, to regulate metabolism and energy homeostasis. In obesity, this homeostatic balance is disrupted, either through alterations in the levels of these hormones or through resistance to their actions. Alterations in gut hormone secretion following gastric bypass surgery are likely to underlie the dramatic and persistent loss of weight following this procedure, as well as the observed amelioration in type 2 diabetes mellitus. Medications based on the gut hormone GLP-1 are currently in clinical use to treat type 2 diabetes mellitus and have been shown to produce weight loss. Further therapies for obesity based on other gut hormones are currently in development.
Collapse
Affiliation(s)
- Rebecca Scott
- Division of Diabetes, Endocrinology, Metabolism, Hammersmith Hospital, Imperial College London, London, United Kingdom.
| | | | | |
Collapse
|
94
|
Xu Y, Wu Z, Sun H, Zhu Y, Kim ER, Lowell BB, Arenkiel BR, Xu Y, Tong Q. Glutamate mediates the function of melanocortin receptor 4 on Sim1 neurons in body weight regulation. Cell Metab 2013; 18:860-70. [PMID: 24315371 PMCID: PMC3880549 DOI: 10.1016/j.cmet.2013.11.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/26/2013] [Accepted: 10/25/2013] [Indexed: 11/16/2022]
Abstract
The melanocortin receptor 4 (MC4R) is a well-established mediator of body weight homeostasis. However, the neurotransmitter(s) that mediate MC4R function remain largely unknown; as a result, little is known about the second-order neurons of the MC4R neural pathway. Single-minded 1 (Sim1)-expressing brain regions, which include the paraventricular nucleus of hypothalamus (PVH), represent key brain sites that mediate melanocortin action. We conditionally restored MC4R expression in Sim1 neurons in the background of Mc4r-null mice. The restoration dramatically reduced obesity in Mc4r-null mice. The anti-obesity effect was completely reversed by selective disruption of glutamate release from those same Sim1 neurons. The reversal was caused by lower energy expenditure and hyperphagia. Corroboratively, selective disruption of glutamate release from adult PVH neurons led to rapid obesity development via reduced energy expenditure and hyperphagia. Thus, this study establishes glutamate as the primary neurotransmitter that mediates MC4Rs on Sim1 neurons in body weight regulation.
Collapse
Affiliation(s)
- Yuanzhong Xu
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Age-specific locomotor response to nicotine in yellow and mottled yellow A(vy)/a mice. BMC Res Notes 2013; 6:497. [PMID: 24289264 PMCID: PMC4222098 DOI: 10.1186/1756-0500-6-497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/23/2013] [Indexed: 11/25/2022] Open
Abstract
Background Most Agouti viable yellow (Avy) mice display constitutive expression of agouti protein, which acts as an inverse agonist at the melanocortin receptor 4 (Mc4r), resulting in adult-onset obesity as well as an altered sensitivity to some drugs of abuse. We investigated the influence of excessive agouti expression on open-field locomotor response to daily 0.5 mg/kg (-)-freebase nicotine injections in 27 early adolescent and 27 young adult male Avy/a and a/a mice, and assessed the effects of nicotine administration (0.5 mg/kg) followed by open-field testing on serum corticosterone levels in a separate group of 25 young adult male Avy/a and a/a mice. Findings Young adult Avy/a mice displayed pronounced nicotine-induced hypolocomotion (a 24% reduction in distance traveled) compared to their a/a littermates. Early adolescent Avy/a mice did not differ from their a/a littermates or saline-matched controls in locomotion following nicotine administration. Young adult Avy/a mice also displayed increased thigmotaxis (a 5% increase in time spent outside the center of the apparatus) on the first day of nicotine administration as compared to saline-matched controls, while a/a mice did not. An increase in serum corticosterone levels 20 minutes after nicotine injection in a separate group of young adult male mice (n = 25) was proportionally similar between Avy/a and a/a mice. Conclusions Overall, the results suggest an age- and epigenotype- or genotype-specific response to nicotine administration in young adult male Avy/a mice. It appears the Avy/a locomotor and thigmotaxic responses to acute nicotine administration are not mediated solely by hypothalamic-pituitary-adrenal (HPA) axis stimulation.
Collapse
|
96
|
Krashes MJ, Shah BP, Koda S, Lowell BB. Rapid versus delayed stimulation of feeding by the endogenously released AgRP neuron mediators GABA, NPY, and AgRP. Cell Metab 2013; 18:588-95. [PMID: 24093681 PMCID: PMC3822903 DOI: 10.1016/j.cmet.2013.09.009] [Citation(s) in RCA: 283] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/30/2013] [Accepted: 09/06/2013] [Indexed: 01/12/2023]
Abstract
Agouti-related peptide (AgRP) neurons of the hypothalamus release a fast transmitter (GABA) in addition to neuropeptides (neuropeptide Y [NPY] and Agouti-related peptide [AgRP]). This raises questions as to their respective functions. The acute activation of AgRP neurons robustly promotes food intake, while central injections of AgRP, NPY, or GABA agonist results in the marked escalation of food consumption with temporal variance. Given the orexigenic capability of all three of these neuroactive substances in conjunction with their coexpression in AgRP neurons, we looked to unravel their relative temporal role in driving food intake. After the acute stimulation of AgRP neurons with DREADD technology, we found that either GABA or NPY is required for the rapid stimulation of feeding, and the neuropeptide AgRP, through action on MC4 receptors, is sufficient to induce feeding over a delayed yet prolonged period. These studies help to elucidate the neurochemical mechanisms of AgRP neurons in controlling temporally distinct phases of eating.
Collapse
Affiliation(s)
- Michael J. Krashes
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Bhavik P. Shah
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Shuichi Koda
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Asubio Pharma Co., Ltd., Kobe 650-0047, Japan
| | - Bradford B. Lowell
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Correspondence: (B.B.L)
| |
Collapse
|
97
|
Josep Agulleiro M, Cortés R, Fernández-Durán B, Navarro S, Guillot R, Meimaridou E, Clark AJL, Cerdá-Reverter JM. Melanocortin 4 receptor becomes an ACTH receptor by coexpression of melanocortin receptor accessory protein 2. Mol Endocrinol 2013; 27:1934-45. [PMID: 24085819 DOI: 10.1210/me.2013-1099] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Melanocortin 2 receptor (MC2R) is the only canonical ACTH receptor. Its functional expression requires the presence of an accessory protein, known as melanocortin receptor 2 accessory protein 1 (MRAP1). The vertebrate genome exhibits a paralogue gene called MRAP2, which is duplicated in zebrafish (MRAP2a and MRAP2b), although its function remains unknown. In this paper, we demonstrate that MRAP2a enables MC4R, a canonical MSH receptor, to be activated by ACTH with a similar sensitivity to that exhibited by MC2R. Both proteins physically interact and are coexpressed in the neurons of the preoptic area, a key region in the control of the energy balance and hypophyseal secretion in fish. ACTH injections inhibit food intake in wild-type zebrafish but not in fish lacking functional MC4R. Both MRAP1 and MRAP2a are hormonally regulated, suggesting that these proteins are substrates for feed-back regulatory pathways of melanocortin signaling. Fasting has no effect on the central expression of MRAP2a but stimulates MRAP2b expression. This protein interacts and is colocalized with MC4R in the tuberal hypothalamic neurons but has no effect on the pharmacologic profile of MC4R. However, MRPA2b is able to decrease basal reporter activity in cell lines expressing MC4R. It is plausible that MRAP2b decreases the constitutive activity of the MC4R during fasting periods, driving the animal toward a positive energy balance. Our data indicate that MRAP2s control the activity of MC4R, opening up new pathways for the regulation of melanocortin signaling and, by extension, for the regulation of the energy balance and obesity.
Collapse
Affiliation(s)
- Maria Josep Agulleiro
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, 12595 Torre de la Sal, Ribera de Cabanes, Castellón, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
98
|
Caruso C, Carniglia L, Durand D, Scimonelli TN, Lasaga M. Astrocytes: new targets of melanocortin 4 receptor actions. J Mol Endocrinol 2013; 51:R33-50. [PMID: 23881919 DOI: 10.1530/jme-13-0064] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Astrocytes exert a wide variety of functions with paramount importance in brain physiology. After injury or infection, astrocytes become reactive and they respond by producing a variety of inflammatory mediators that help maintain brain homeostasis. Loss of astrocyte functions as well as their excessive activation can contribute to disease processes; thus, it is important to modulate reactive astrocyte response. Melanocortins are peptides with well-recognized anti-inflammatory and neuroprotective activity. Although melanocortin efficacy was shown in systemic models of inflammatory disease, mechanisms involved in their effects have not yet been fully elucidated. Central anti-inflammatory effects of melanocortins and their mechanisms are even less well known, and, in particular, the effects of melanocortins in glial cells are poorly understood. Of the five known melanocortin receptors (MCRs), only subtype 4 is present in astrocytes. MC4R has been shown to mediate melanocortin effects on energy homeostasis, reproduction, inflammation, and neuroprotection and, recently, to modulate astrocyte functions. In this review, we will describe MC4R involvement in anti-inflammatory, anorexigenic, and anti-apoptotic effects of melanocortins in the brain. We will highlight MC4R action in astrocytes and discuss their possible mechanisms of action. Melanocortin effects on astrocytes provide a new means of treating inflammation, obesity, and neurodegeneration, making them attractive targets for therapeutic interventions in the CNS.
Collapse
Affiliation(s)
- Carla Caruso
- School of Medicine, Biomedical Research Institute (UBA-CONICET), University of Buenos Aires, Paraguay 2155 piso 10, 1121ABG Buenos Aires, Argentina IFEC (CONICET) Department of Pharmacology, School of Chemistry, National University of Córdoba, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
99
|
Pan Q, Delahanty LM, Jablonski KA, Knowler WC, Kahn SE, Florez JC, Franks PW. Variation at the melanocortin 4 receptor gene and response to weight-loss interventions in the diabetes prevention program. Obesity (Silver Spring) 2013; 21:E520-6. [PMID: 23512951 PMCID: PMC4023472 DOI: 10.1002/oby.20459] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/05/2013] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To assess associations and genotype × treatment interactions for melanocortin 4 receptor (MC4R) locus variants and obesity-related traits. DESIGN AND METHODS Diabetes prevention program (DPP) participants (N = 3,819, of whom 3,356 were genotyped for baseline and 3,234 for longitudinal analyses) were randomized into intensive lifestyle modification (diet, exercise, weight loss), metformin or placebo control. Adiposity was assessed in a subgroup (n = 909) using computed tomography. All analyses were adjusted for age, sex, ethnicity and treatment. RESULTS The rs1943218 minor allele was nominally associated with short-term (6 month; P = 0.032) and long-term (2 year; P = 0.038) weight change. Eight SNPs modified response to treatment on short-term (rs17066856, rs9966412, rs17066859, rs8091237, rs17066866, rs7240064) or long-term (rs12970134, rs17066866) reduction in body weight, or diabetes incidence (rs17066829) (all Pinteraction < 0.05). CONCLUSION This is the first study to comprehensively assess the role of MC4R variants and weight regulation in a weight loss intervention trial. One MC4R variant was directly associated with obesity-related traits or diabetes; numerous other variants appear to influence body weight and diabetes risk by modifying the protective effects of the DPP interventions.
Collapse
Affiliation(s)
- Qing Pan
- The Biostatistics Center, George Washington University, Rockville, Maryland
| | - Linda M. Delahanty
- Diabetes Research Center, Massachusetts General Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - William C. Knowler
- National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
| | - Steven E. Kahn
- VA Puget Sound Health Care System and University of Washington, Seattle, WA
| | - Jose C. Florez
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Center for Human Genetic Research and Diabetes Research Center (Diabetes Unit), Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
- Program in Medical and Population Genetics, Broad Institute, Cambridge, Massachusetts
| | - Paul W. Franks
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts
- Department of Public Health & Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
100
|
Bazhan N, Yakovleva T, Kazantseva A, Makarova E. Exaggerated anorexigenic response to restraint stress in Ay mice is associated with elevated CRFR2 mRNA expression in the hypothalamus. Physiol Behav 2013; 120:19-25. [DOI: 10.1016/j.physbeh.2013.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 03/29/2013] [Accepted: 06/27/2013] [Indexed: 11/26/2022]
|