51
|
Syndecan-1 promotes Wnt/β-catenin signaling in multiple myeloma by presenting Wnts and R-spondins. Blood 2018; 131:982-994. [DOI: 10.1182/blood-2017-07-797050] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023] Open
Abstract
Key Points
HS chains decorating syndecan-1 promote autocrine and paracrine Wnt signaling in MM. Loss of HS inhibits MM cell growth by attenuating Wnt signaling.
Collapse
|
52
|
Nagarajan A, Malvi P, Wajapeyee N. Heparan Sulfate and Heparan Sulfate Proteoglycans in Cancer Initiation and Progression. Front Endocrinol (Lausanne) 2018; 9:483. [PMID: 30197623 PMCID: PMC6118229 DOI: 10.3389/fendo.2018.00483] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/03/2018] [Indexed: 12/28/2022] Open
Abstract
Heparan sulfate (HS) are complex unbranched carbohydrate chains that are heavily modified by sulfate and exist either conjugated to proteins or as free, unconjugated chains. Proteins with covalently bound Heparan sulfate chains are termed Heparan Sulfate Proteoglycans (HSPGs). Both HS and HSPGs bind to various growth factors and act as co-receptors for different cell surface receptors. They also modulate the dynamics and kinetics of various ligand-receptor interactions, which in turn can influence the duration and potency of the signaling. HS and HSPGs have also been shown to exert a structural role as a component of the extracellular matrix, thereby altering processes such as cell adhesion, immune cell infiltration and angiogenesis. Previous studies have shown that HS are deregulated in a variety of solid tumors and hematological malignancies and regulate key aspects of cancer initiation and progression. HS deregulation in cancer can occur as a result of changes in the level of HSPGs or due to changes in the levels of HS biosynthesis and remodeling enzymes. Here, we describe the major cell-autonomous (proliferation, apoptosis/senescence and differentiation) and cell-non-autonomous (angiogenesis, immune evasion, and matrix remodeling) roles of HS and HSPGs in cancer. Finally, we discuss therapeutic opportunities for targeting deregulated HS biosynthesis and HSPGs as a strategy for cancer treatment.
Collapse
Affiliation(s)
- Arvindhan Nagarajan
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Parmanand Malvi
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Narendra Wajapeyee
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, United States
- *Correspondence: Narendra Wajapeyee
| |
Collapse
|
53
|
Jenkins LM, Horst B, Lancaster CL, Mythreye K. Dually modified transmembrane proteoglycans in development and disease. Cytokine Growth Factor Rev 2017; 39:124-136. [PMID: 29291930 DOI: 10.1016/j.cytogfr.2017.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/11/2022]
Abstract
Aberrant cell signaling in response to secreted growth factors has been linked to the development of multiple diseases, including cancer. As such, understanding mechanisms that control growth factor availability and receptor-growth factor interaction is vital. Dually modified transmembrane proteoglycans (DMTPs), which are classified as cell surface macromolecules composed of a core protein decorated with covalently linked heparan sulfated (HS) and/or chondroitin sulfated (CS) glycosaminoglycan (GAG) chains, provide one type of regulatory mechanism. Specifically, DMTPs betaglycan and syndecan-1 (SDC1) play crucial roles in modulating key cell signaling pathways, such as Wnt, transforming growth factor-β and fibroblast growth factor signaling, to affect epithelial cell biology and cancer progression. This review outlines current and potential functions for betaglycan and SDC1, with an emphasis on comparing individual roles for HS and CS modified DMTPs. We highlight the mutual dependence of DMTPs' GAG chains and core proteins and provide comprehensive knowledge on how these DMTPs, through regulation of ligand availability and receptor internalization, control cell signaling pathways involved in development and disease.
Collapse
Affiliation(s)
- Laura M Jenkins
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Ben Horst
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Carly L Lancaster
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| | - Karthikeyan Mythreye
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA; Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
54
|
Theocharis AD, Karamanos NK. Proteoglycans remodeling in cancer: Underlying molecular mechanisms. Matrix Biol 2017; 75-76:220-259. [PMID: 29128506 DOI: 10.1016/j.matbio.2017.10.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 02/07/2023]
Abstract
Extracellular matrix is a highly dynamic macromolecular network. Proteoglycans are major components of extracellular matrix playing key roles in its structural organization and cell signaling contributing to the control of numerous normal and pathological processes. As multifunctional molecules, proteoglycans participate in various cell functions during morphogenesis, wound healing, inflammation and tumorigenesis. Their interactions with matrix effectors, cell surface receptors and enzymes enable them with unique properties. In malignancy, extensive remodeling of tumor stroma is associated with marked alterations in proteoglycans' expression and structural variability. Proteoglycans exert diverse functions in tumor stroma in a cell-specific and context-specific manner and they mainly contribute to the formation of a permissive provisional matrix for tumor growth affecting tissue organization, cell-cell and cell-matrix interactions and tumor cell signaling. Proteoglycans also modulate cancer cell phenotype and properties, the development of drug resistance and tumor stroma angiogenesis. This review summarizes the proteoglycans remodeling and their novel biological roles in malignancies with particular emphasis to the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiochemistry Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
55
|
Abstract
Syndecans comprise a major family of cell surface heparan sulfate proteoglycans (HSPGs). Syndecans are composed of sulfated glycosaminoglycans (GAGs), heparan sulfate (HS) or both HS and chondroitin sulfate (CS), attached covalently to core proteins. Syndecans regulate many cellular processes, such as adhesion, proliferation, and migration. Syndecans bind and regulate molecules primarily through their HS chains, but do not bind to all HS/heparin-binding molecules. Furthermore, mice ablated for the syndecan-1 or -4 gene do not show major developmental abnormalities, but they do show striking pathological phenotypes when challenged with infectious or inflammatory stimuli and conditions, suggesting that certain functions of syndecans are specific and cannot be compensated for by other syndecans or other HSPGs. These observations underscore the physiological importance of syndecans and indicate a need to study the activities of isolated native syndecans to define their molecular and cellular functions, and to establish their biological significance. Here we describe methods to isolate syndecans and several assays to analyze their functions.
Collapse
Affiliation(s)
- Pyong Woo Park
- Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
56
|
Abstract
The eye lens grows by systematic proliferation of its epithelial cells and their differentiation into fibre cells. The anterior aqueous humour regulates lens epithelial cell proliferation whereas posteriorly, the vitreous stimulates lens fibre differentiation. Vitreous-derived members of the fibroblast growth factor (FGF) family induce fibre differentiation, with added support for FGFs as putative regulators of aqueous-induced lens cell proliferation. To further characterize this, given FGFs' known affinity for proteoglycans, we compared the effect of proteoglycan sulphation in growth factor- and aqueous-induced lens cell proliferation. Disruption of proteoglycan sulphation in lens cells specifically impacted on aqueous- and FGF-induced MAPK/ERK1/2-signalling, but not on that induced by other mitogens such as PDGF; however, cell proliferation was reduced in all treatment groups, regardless of the mitogen. Overall, by disrupting proteoglycan activity, we further highlight the significant role of FGFs in aqueous-induced ERK1/2 phosphorylation leading to lens cell proliferation.
Collapse
Affiliation(s)
- Laxmi Iyengar
- a Save Sight Institute and Discipline of Anatomy and Histology, Bosch Institute, University of Sydney , Sydney , Australia
| | - Frank J Lovicu
- a Save Sight Institute and Discipline of Anatomy and Histology, Bosch Institute, University of Sydney , Sydney , Australia
| |
Collapse
|
57
|
Changyaleket B, Deliu Z, Chignalia AZ, Feinstein DL. Heparanase: Potential roles in multiple sclerosis. J Neuroimmunol 2017; 310:72-81. [PMID: 28778449 DOI: 10.1016/j.jneuroim.2017.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 06/22/2017] [Accepted: 07/01/2017] [Indexed: 12/14/2022]
Abstract
Heparanase is a heparan sulfate degrading enzyme that cleaves heparan sulfate (HS) chains present on HS proteoglycans (HSPGs), and has been well characterized for its roles in tumor metastasis and inflammation. However, heparanase is emerging as a contributing factor in the genesis and severity of a variety of neurodegenerative diseases and conditions. This is in part due to the wide variety of HSPGs on which the presence or absence of HS moieties dictates protein function. This includes growth factors, chemokines, cytokines, as well as components of the extracellular matrix (ECM) which in turn regulate leukocyte infiltration into the CNS. Roles for heparanase in stroke, Alzheimer's disease, and glioma growth have been described; roles for heparanase in other disease such as multiple sclerosis (MS) are less well established. However, given its known roles in inflammation and leukocyte infiltration, it is likely that heparanase also contributes to MS pathology. In this review, we will briefly summarize what is known about heparanase roles in the CNS, and speculate as to its potential role in regulating disease progression in MS and its animal model EAE (experimental autoimmune encephalitis), which may justify testing of heparanase inhibitors for MS treatment.
Collapse
Affiliation(s)
| | - Zane Deliu
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
| | - Andreia Z Chignalia
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
| | - Douglas L Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA; Jesse Brown Veteran Affairs Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
58
|
Mansouri R, Jouan Y, Hay E, Blin-Wakkach C, Frain M, Ostertag A, Le Henaff C, Marty C, Geoffroy V, Marie PJ, Cohen-Solal M, Modrowski D. Osteoblastic heparan sulfate glycosaminoglycans control bone remodeling by regulating Wnt signaling and the crosstalk between bone surface and marrow cells. Cell Death Dis 2017; 8:e2902. [PMID: 28661485 PMCID: PMC5520938 DOI: 10.1038/cddis.2017.287] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 04/21/2017] [Accepted: 05/19/2017] [Indexed: 12/23/2022]
Abstract
Stimulating bone formation is an important challenge for bone anabolism in osteoporotic patients or to repair bone defects. The osteogenic properties of matrix glycosaminoglycans (GAGs) have been explored; however, the functions of GAGs at the surface of bone-forming cells are less documented. Syndecan-2 is a membrane heparan sulfate proteoglycan that is associated with osteoblastic differentiation. We used a transgenic mouse model with high syndecan-2 expression in osteoblasts to enrich the bone surface with cellular GAGs. Bone mass was increased in these transgenic mice. Syndecan-2 overexpression reduced the expression of receptor activator of NF-kB ligand (RANKL) in bone marrow cells and strongly inhibited bone resorption. Osteoblast activity was not modified in the transgenic mice, but bone formation was decreased in 4-month-old transgenic mice because of reduced osteoblast number. Increased proteoglycan expression at the bone surface resulted in decreased osteoblastic and osteoclastic precursors in bone marrow. Indeed, syndecan-2 overexpression increased apoptosis of mesenchymal precursors within the bone marrow. However, syndecan-2 specifically promoted the vasculature characterized by high expression of CD31 and Endomucin in 6-week-old transgenic mice, but this was reduced in 12-week-old transgenic mice. Finally, syndecan-2 functions as an inhibitor of Wnt-β-catenin–T-cell factor signaling pathway, activating glycogen synthase kinase 3 and then decreasing the Wnt-dependent production of Wnt ligands and R-spondin. In conclusion, our results show that GAG supply may improve osteogenesis, but also interfere with the crosstalk between the bone surface and marrow cells, altering the supporting function of osteoblasts.
Collapse
Affiliation(s)
- Rafik Mansouri
- Inserm UMR-1132, BIOSCAR, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Yohann Jouan
- Inserm UMR-1132, BIOSCAR, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Eric Hay
- Inserm UMR-1132, BIOSCAR, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Claudine Blin-Wakkach
- CNRS, UMR 7370, LP2M, Faculté de médecine, 28 avenue de Valombrose, Nice, France.,Université Nice Sophia Antipolis, Parc Valrose, Nice, France
| | | | - Agnès Ostertag
- Inserm UMR-1132, BIOSCAR, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Caroline Marty
- Inserm UMR-1132, BIOSCAR, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Valérie Geoffroy
- Inserm UMR-1132, BIOSCAR, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Pierre J Marie
- Inserm UMR-1132, BIOSCAR, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Martine Cohen-Solal
- Inserm UMR-1132, BIOSCAR, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Dominique Modrowski
- Inserm UMR-1132, BIOSCAR, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
59
|
Colombe S, Houllier L, Fleurot E, Levallet G, Benhaïm A, Bonnamy PJ, Levallet J. Syndecan 1 represses cell growth and FSH responsiveness in human granulosa cells. Reproduction 2017; 153:797-808. [DOI: 10.1530/rep-17-0074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 03/17/2017] [Accepted: 03/27/2017] [Indexed: 11/08/2022]
Abstract
Albeit devoid of intrinsic catalytic activity, the transmembrane heparan sulphate proteoglycan syndecan 1 plays critical roles in cellular processes such as extracellular matrix crosstalk, cytoskeletal organization, cell spreading, proliferation and differentiation. During the ovarian cycle, the expression of syndecan 1 in granulosa cells shows cyclic variation suggesting that it might fulfil specific roles in follicle development. To investigate its physiological roles on granulosa cells, syndecan 1 was overexpressed in human granulosa cell line KGN which retains features of granulosa cells from small antral follicle such as estradiol (E2) synthesis and low expression of functional FSH receptor (FSHR). We demonstrated that overexpression of syndecan 1 in immature granulosa cells (KGN-SDC1) induces a profound alteration in their intrinsic characteristics including enhanced spreading and attachment, both associated with a reduced growth rate. Flow cytometry analysis revealed that syndecan 1 overexpression increases the percentage of KGN cells in quiescent phase. This partial cell cycle exit is concordant with downregulated levels of CCND1 and CDK4 and upregulated expression of CDK inhibitor CDKN1A. In parallel both unstimulated and FSH-induced E2 synthesis are reduced in KGN-SDC1 through both repression of CYP19A1 and FSHR mRNA associated with decreased levels of potential regulators NR5A1 and ESR2. Additionally, we provide evidence that transient cAMP accumulation reduction in cells overexpressing syndecan 1 is accompanied by an increase in cAMP-hydrolysing PDE activity. Our results demonstrated that syndecan 1 might regulate differentiation of granulosa cells and follicular development by means of various mechanisms involving morphological changes, control of signalling pathways and alterations in gene expressions.
Free French abstract: A French translation of this abstract is freely available at http://www.reproduction-online.org/content/153/6/797/suppl/DC2
Collapse
|
60
|
Sharpe B, Alghezi DA, Cattermole C, Beresford M, Bowen R, Mitchard J, Chalmers AD. A subset of high Gleason grade prostate carcinomas contain a large burden of prostate cancer syndecan-1 positive stromal cells. Prostate 2017; 77:1312-1324. [PMID: 28744948 DOI: 10.1002/pros.23391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 06/26/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND There is a pressing need to identify prognostic and predictive biomarkers for prostate cancer to aid treatment decisions in both early and advanced disease settings. Syndecan-1, a heparan sulfate proteoglycan, has been previously identified as a potential prognostic biomarker by multiple studies at the tissue and serum level. However, other studies have questioned its utility. METHODS Anti-Syndecan-1 immunohistochemistry was carried out on 157 prostate tissue samples (including cancerous, adjacent normal tissue, and non-diseased prostate) from three independent cohorts of patients. A population of Syndecan-1 positive stromal cells was identified and the number and morphological parameters of these cells quantified. The identity of the Syndecan-1-positive stromal cells was assessed by multiplex immunofluorescence using a range of common cell lineage markers. Finally, the burden of Syndecan-1 positive stromal cells was tested for association with clinical parameters. RESULTS We identified a previously unreported cell type which is marked by Syndecan-1 expression and is found in the stroma of prostate tumors and adjacent normal tissue but not in non-diseased prostate. We call these cells Prostate Cancer Syndecan-1 Positive (PCSP) cells. Immunofluorescence analysis revealed that the PCSP cell population did not co-stain with markers of common prostate epithelial, stromal, or immune cell populations. However, morphological analysis revealed that PCSP cells are often elongated and displayed prominent lamellipodia, suggesting they are an unidentified migratory cell population. Analysis of clinical parameters showed that PCSP cells were found with a frequency of 20-35% of all tumors evaluated, but were not present in non-diseased normal tissue. Interestingly, a subset of primary Gleason 5 prostate tumors had a high burden of PCSP cells. CONCLUSIONS The current study identifies PCSP cells as a novel, potentially migratory cell type, which is marked by Syndecan-1 expression and is found in the stroma of prostate carcinomas, adjacent normal tissue, but not in non-diseased prostate. A subset of poor prognosis high Gleason grade 5 tumors had a particularly high PCSP cell burden, suggesting an association between this unidentified cell type and tumor aggressiveness.
Collapse
Affiliation(s)
- Benjamin Sharpe
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Dhafer A Alghezi
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Thi Qar University, Dhi Qar, Iraq
| | - Claire Cattermole
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Mark Beresford
- Department of Oncology, Royal United Hospital, Bath, United Kingdom
| | - Rebecca Bowen
- Department of Oncology, Royal United Hospital, Bath, United Kingdom
| | - John Mitchard
- Department of Cellular Pathology, Royal United Hospital, Bath, United Kingdom
| | - Andrew D Chalmers
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
61
|
Jaiswal AK, Sadasivam M, Hamad ARA. Syndecan-1-coating of interleukin-17-producing natural killer T cells provides a specific method for their visualization and analysis. World J Diabetes 2017; 8:130-134. [PMID: 28465789 PMCID: PMC5394732 DOI: 10.4239/wjd.v8.i4.130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/27/2017] [Accepted: 02/20/2017] [Indexed: 02/05/2023] Open
Abstract
Natural killer T cells (NKT cells) are innate-like T cells that acquire effector functions while developing in the thymus, polarize into three distinct functional subsets viz. NKT1, NKT2 and NKT17 cells that produce interferon (IFN)-γ, interleukin (IL)-4 and IL-17, respectively. However, there has been no unique surface markers that define each subsets, forcing investigators to use intracellular staining of transcription factors and cytokines in combination of surface markers to distinguish among these subsets. Intracellular staining, however, causes apoptosis and prevents subsequent utilization of NKT cells in functional in vitro and in vivo assays that require viable cells. This limitation has significantly impeded understanding the specific properties of each subset and their interactions with each other. Therefore, there has been fervent efforts to find a specific markers for each NKT cell subset. We have recently identified that syndecan-1 (SDC-1; CD138) as a specific surface marker of NKT17 cells. This discovery now allows visualization of NKT17 in situ and study of their peripheral tissue distribution, characteristics of their TCR and viable sorting for in vitro and in vivo analysis. In addition, it lays the ground working for investigating significance of SDC-1 expression on this particular subset in regulating their roles in host defense and glucose metabolism.
Collapse
|
62
|
CD138 mediates selection of mature plasma cells by regulating their survival. Blood 2017; 129:2749-2759. [PMID: 28381397 DOI: 10.1182/blood-2017-01-761643] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/29/2017] [Indexed: 12/13/2022] Open
Abstract
Antibody secreting cells (ASCs) are critical effector cells and long-lived sentinels for immune memory. ASCs are highly dependent on exogenous soluble factors such as interleukin-6 (IL-6) and APRIL, to prevent their cell death. We have found that the canonical surface marker of ASCs, CD138 (syndecan-1), which is upregulated during ASC maturation, is required in a cell-intrinsic manner to mount an effective long-term humoral immune response following immunization. Surface expression of CD138 increased heparan sulfate levels on ASCs, which are known to bind pro-survival cytokines, leading to increased survival in a cell-intrinsic manner in vivo. In IL-6 and APRIL-deficient hosts, ASCs underwent extensive apoptosis independently of CD138 expression. We propose a model in which CD138 expression on fully mature ASCs provides a selective survival advantage over less mature, newly minted ASCs, by enhancing pro-survival cytokine signaling.
Collapse
|
63
|
Binder Gallimidi A, Nussbaum G, Hermano E, Weizman B, Meirovitz A, Vlodavsky I, Götte M, Elkin M. Syndecan-1 deficiency promotes tumor growth in a murine model of colitis-induced colon carcinoma. PLoS One 2017; 12:e0174343. [PMID: 28350804 PMCID: PMC5369774 DOI: 10.1371/journal.pone.0174343] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/07/2017] [Indexed: 12/27/2022] Open
Abstract
Syndecan-1 (Sdc1) is an important member of the cell surface heparan sulfate proteoglycan family, highly expressed by epithelial cells in adult organisms. Sdc1 is involved in the regulation of cell migration, cell-cell and cell-matrix interactions, growth-factor, chemokine and integrin activity, and implicated in inflammatory responses and tumorigenesis. Gastrointestinal tract represents an important anatomic site where loss of Sdc1 expression was reported both in inflammation and malignancy. However, the biological significance of Sdc1 in chronic colitis-associated tumorigenesis has not been elucidated. To the best of our knowledge, this study is the first to test the effects of Sdc1 loss on colorectal tumor development in inflammation-driven colon tumorigenesis. Utilizing a mouse model of colitis-related colon carcinoma induced by the carcinogen azoxymethane (AOM), followed by the inflammatory agent dextran sodium sulfate (DSS), we found that Sdc1 deficiency results in increased susceptibility to colitis-associated tumorigenesis. Importantly, colitis-associated tumors developed in Sdc1-defficient mice were characterized by increased local production of IL-6, activation of STAT3, as well as induction of several STAT3 target genes that act as important effectors of colonic tumorigenesis. Altogether, our results highlight a previously unknown effect of Sdc1 loss in progression of inflammation-associated cancer and suggest that decreased levels of Sdc1 may serve as an indicator of colon carcinoma progression in the setting of chronic inflammation.
Collapse
Affiliation(s)
- Adi Binder Gallimidi
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Gabriel Nussbaum
- Institute of Dental Sciences, Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - Esther Hermano
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Barak Weizman
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Amichay Meirovitz
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Israel Vlodavsky
- Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Martin Götte
- Department of Gynecology and Obstetrics, Muenster University, Medical Center, Muenster Germany
| | - Michael Elkin
- Sharett Oncology Institute, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
64
|
Ibrahim SA, Gadalla R, El-Ghonaimy EA, Samir O, Mohamed HT, Hassan H, Greve B, El-Shinawi M, Mohamed MM, Götte M. Syndecan-1 is a novel molecular marker for triple negative inflammatory breast cancer and modulates the cancer stem cell phenotype via the IL-6/STAT3, Notch and EGFR signaling pathways. Mol Cancer 2017; 16:57. [PMID: 28270211 PMCID: PMC5341174 DOI: 10.1186/s12943-017-0621-z] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 02/22/2017] [Indexed: 12/15/2022] Open
Abstract
Background Inflammatory breast cancer (IBC), a particularly aggressive form of breast cancer, is characterized by cancer stem cell (CSC) phenotype. Due to a lack of targeted therapies, the identification of molecular markers of IBC is of major importance. The heparan sulfate proteoglycan Syndecan-1 acts as a coreceptor for growth factors and chemokines, modulating inflammation, tumor progression, and cancer stemness, thus it may emerge as a molecular marker for IBC. Methods We characterized expression of Syndecan-1 and the CSC marker CD44, Notch-1 & -3 and EGFR in carcinoma tissues of triple negative IBC (n = 13) and non-IBC (n = 17) patients using qPCR and immunohistochemistry. Impact of siRNA-mediated Syndecan-1 knockdown on the CSC phenotype of the human triple negative IBC cell line SUM-149 and HER-2-overexpressing non-IBC SKBR3 cells employing qPCR, flow cytometry, Western blotting, secretome profiling and Notch pharmacological inhibition experiments. Data were statistically analyzed using Student’s t-test/Mann-Whitney U-test or one-way ANOVA followed by Tukey’s multiple comparison tests. Results Our data indicate upregulation and a significant positive correlation of Syndecan-1 with CD44 protein, and Notch-1 & -3 and EGFR mRNA in IBC vs non-IBC. ALDH1 activity and the CD44(+)CD24(-/low) subset as readout of a CSC phenotype were reduced upon Syndecan-1 knockdown. Functionally, Syndecan-1 silencing significantly reduced 3D spheroid and colony formation. Intriguingly, qPCR results indicate downregulation of the IL-6, IL-8, CCL20, gp130 and EGFR mRNA upon Syndecan-1 suppression in both cell lines. Moreover, Syndecan-1 silencing significantly downregulated Notch-1, -3, -4 and Hey-1 in SUM-149 cells, and downregulated only Notch-3 and Gli-1 mRNA in SKBR3 cells. Secretome profiling unveiled reduced IL-6, IL-8, GRO-alpha and GRO a/b/g cytokines in conditioned media of Syndecan-1 knockdown SUM-149 cells compared to controls. The constitutively activated STAT3 and NFκB, and expression of gp130, Notch-1 & -2, and EGFR proteins were suppressed upon Syndecan-1 ablation. Mechanistically, gamma-secretase inhibition experiments suggested that Syndecan-1 may regulate the expression of IL-6, IL-8, gp130, Hey-1, EGFR and p-Akt via Notch signaling. Conclusions Syndecan-1 acts as a novel tissue biomarker and a modulator of CSC phenotype of triple negative IBC via the IL-6/STAT3, Notch and EGFR signaling pathways, thus emerging as a promising therapeutic target for IBC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0621-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Ramy Gadalla
- Department of Zoology, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Eslam A El-Ghonaimy
- Department of Zoology, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Omnia Samir
- Department of Zoology, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Hossam Taha Mohamed
- Department of Zoology, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Hebatallah Hassan
- Department of Zoology, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, University Hospital Münster, Münster, Germany
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, 11566, Cairo, Egypt
| | | | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Albert-Schweitzer-Campus 1, D11, 48149, Münster, Germany.
| |
Collapse
|
65
|
Abstract
A compelling long-term goal of cancer biology is to understand the crucial players during tumorigenesis in order to develop new interventions. Here, we review how the four non-redundant tissue inhibitors of metalloproteinases (TIMPs) regulate the pericellular proteolysis of a vast range of matrix and cell surface proteins, generating simultaneous effects on tumour architecture and cell signalling. Experimental studies demonstrate the contribution of TIMPs to the majority of cancer hallmarks, and human cancers invariably show TIMP deregulation in the tumour or stroma. Of the four TIMPs, TIMP1 overexpression or TIMP3 silencing is consistently associated with cancer progression or poor patient prognosis. Future efforts will align mouse model systems with changes in TIMPs in patients, will delineate protease-independent TIMP function, will pinpoint therapeutic targets within the TIMP-metalloproteinase-substrate network and will use TIMPs in liquid biopsy samples as biomarkers for cancer prognosis.
Collapse
Affiliation(s)
- Hartland W Jackson
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
- Bodenmiller Laboratory, University of Zürich, Institute for Molecular Life Sciences, Winterthurstrasse 190, 8057 Zürich, Switzerland
| | - Virginie Defamie
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| | - Paul Waterhouse
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| | - Rama Khokha
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, TMDT 301-13, 101 College Street, Toronto, Ontario, M5G IL7 Canada
| |
Collapse
|
66
|
Afratis NA, Nikitovic D, Multhaupt HAB, Theocharis AD, Couchman JR, Karamanos NK. Syndecans – key regulators of cell signaling and biological functions. FEBS J 2016; 284:27-41. [DOI: 10.1111/febs.13940] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Nikolaos A. Afratis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group Laboratory of Biochemistry Department of Chemistry University of Patras Greece
- Biotech Research & Innovation Center University of Copenhagen Denmark
| | - Dragana Nikitovic
- Laboratory of Anatomy‐Histology‐Embryology School of Medicine University of Crete Heraklion Greece
| | | | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group Laboratory of Biochemistry Department of Chemistry University of Patras Greece
| | - John R. Couchman
- Biotech Research & Innovation Center University of Copenhagen Denmark
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group Laboratory of Biochemistry Department of Chemistry University of Patras Greece
| |
Collapse
|
67
|
Jenkins LM, Singh P, Varadaraj A, Lee NY, Shah S, Flores HV, O'Connell K, Mythreye K. Altering the Proteoglycan State of Transforming Growth Factor β Type III Receptor (TβRIII)/Betaglycan Modulates Canonical Wnt/β-Catenin Signaling. J Biol Chem 2016; 291:25716-25728. [PMID: 27784788 DOI: 10.1074/jbc.m116.748624] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/25/2016] [Indexed: 11/06/2022] Open
Abstract
Hyperactive Wnt/β-catenin signaling is linked to cancer progression and developmental abnormalities, making identification of mechanisms controlling Wnt/β-catenin signaling vital. Transforming growth factor β type III receptor (TβRIII/betaglycan) is a transmembrane proteoglycan co-receptor that exists with or without heparan and/or chondroitin sulfate glycosaminoglycan (GAG) modifications in cells and has established roles in development and cancer. Our studies here demonstrate that TβRIII, independent of its TGFβ co-receptor function, regulates canonical Wnt3a signaling by controlling Wnt3a availability through its sulfated GAG chains. Our findings revealed, for the first time, opposing functions for the different GAG modifications on TβRIII suggesting that Wnt interactions with the TβRIII heparan sulfate chains result in inhibition of Wnt signaling, likely via Wnt sequestration, whereas the chondroitin sulfate GAG chains on TβRIII promote Wnt3a signaling. These studies identify a novel, dual role for TβRIII/betaglycan and define a key requirement for the balance between chondroitin sulfate and heparan sulfate chains in dictating ligand responses with implications for both development and cancer.
Collapse
Affiliation(s)
- Laura M Jenkins
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Priyanka Singh
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Archana Varadaraj
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Nam Y Lee
- the Division of Pharmacology, College of Pharmacy, Ohio State University, Columbus, Ohio 43210
| | - Shreya Shah
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Haley V Flores
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Kathleen O'Connell
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208
| | - Karthikeyan Mythreye
- From the Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, .,the Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, and
| |
Collapse
|
68
|
Abstract
SIGNIFICANCE Forces are important in the cardiovascular system, acting as regulators of vascular physiology and pathology. Residing at the blood vessel interface, cells (endothelial cell, EC) are constantly exposed to vascular forces, including shear stress. Shear stress is the frictional force exerted by blood flow, and its patterns differ based on vessel geometry and type. These patterns range from uniform laminar flow to nonuniform disturbed flow. Although ECs sense and differentially respond to flow patterns unique to their microenvironment, the mechanisms underlying endothelial mechanosensing remain incompletely understood. RECENT ADVANCES A large body of work suggests that ECs possess many mechanosensors that decorate their apical, junctional, and basal surfaces. These potential mechanosensors sense blood flow, translating physical force into biochemical signaling events. CRITICAL ISSUES Understanding the mechanisms by which proposed mechanosensors sense and respond to shear stress requires an integrative approach. It is also critical to understand the role of these mechanosensors not only during embryonic development but also in the different vascular beds in the adult. Possible cross talk and integration of mechanosensing via the various mechanosensors remain a challenge. FUTURE DIRECTIONS Determination of the hierarchy of endothelial mechanosensors is critical for future work, as is determination of the extent to which mechanosensors work together to achieve force-dependent signaling. The role and primary sensors of shear stress during development also remain an open question. Finally, integrative approaches must be used to determine absolute mechanosensory function of potential mechanosensors. Antioxid. Redox Signal. 25, 373-388.
Collapse
Affiliation(s)
- Chris Givens
- 1 Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina
| | - Ellie Tzima
- 1 Department of Cell Biology and Physiology, University of North Carolina-Chapel Hill , Chapel Hill, North Carolina.,2 Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics , Oxford, United Kingdom
| |
Collapse
|
69
|
Brauer R, Ge L, Schlesinger SY, Birkland TP, Huang Y, Parimon T, Lee V, McKinney BL, McGuire JK, Parks WC, Chen P. Syndecan-1 Attenuates Lung Injury during Influenza Infection by Potentiating c-Met Signaling to Suppress Epithelial Apoptosis. Am J Respir Crit Care Med 2016; 194:333-44. [PMID: 26959387 PMCID: PMC4970595 DOI: 10.1164/rccm.201509-1878oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/09/2016] [Indexed: 12/16/2022] Open
Abstract
RATIONALE Syndecan-1 is a cell surface heparan sulfate proteoglycan primarily expressed in the lung epithelium. Because the influenza virus is tropic to the airway epithelium, we investigated the role of syndecan-1 in influenza infection. OBJECTIVES To determine the mechanism by which syndecan-1 regulates the lung mucosal response to influenza infection. METHODS Wild-type (WT) and Sdc1(-/-) mice were infected with a H1N1 virus (PR8) as an experimental model of influenza infection. Human and murine airway epithelial cell cultures were also infected with PR8 to study the mechanism by which syndecan-1 regulates the inflammatory response. MEASUREMENT AND MAIN RESULTS We found worsened outcomes and lung injury in Sdc1(-/-) mice compared with WT mice after influenza infection. Our data demonstrated that syndecan-1 suppresses bronchial epithelial apoptosis during influenza infection to limit widespread lung inflammation. Furthermore, we determined that syndecan-1 attenuated apoptosis by crosstalking with c-Met to potentiate its cytoprotective signals in airway epithelial cells during influenza infection. CONCLUSIONS Our work shows that cell-associated syndecan-1 has an important role in regulating lung injury. Our findings demonstrate a novel mechanism in which cell membrane-associated syndecan-1 regulates the innate immune response to influenza infection by facilitating cytoprotective signals through c-Met signaling to limit bronchial epithelial apoptosis, thereby attenuating lung injury and inflammation.
Collapse
Affiliation(s)
- Rena Brauer
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center; Los Angeles, California; and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Lingyin Ge
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center; Los Angeles, California; and
| | | | - Timothy P. Birkland
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center; Los Angeles, California; and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Ying Huang
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center; Los Angeles, California; and
| | - Tanyalak Parimon
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center; Los Angeles, California; and
| | - Vivian Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | | | - John K. McGuire
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - William C. Parks
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center; Los Angeles, California; and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| | - Peter Chen
- Women’s Guild Lung Institute, Cedars-Sinai Medical Center; Los Angeles, California; and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine
| |
Collapse
|
70
|
Zimmermann N, Saiga H, Houthuys E, Moura-Alves P, Koehler A, Bandermann S, Dorhoi A, Kaufmann SHE. Syndecans promote mycobacterial internalization by lung epithelial cells. Cell Microbiol 2016; 18:1846-1856. [PMID: 27279134 DOI: 10.1111/cmi.12627] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 05/11/2016] [Accepted: 06/05/2016] [Indexed: 01/16/2023]
Abstract
Pulmonary tuberculosis (TB) is an airborne disease caused by the intracellular bacterial pathogen Mycobacterium tuberculosis (Mtb). Alveolar epithelial cells and macrophages are the first point of contact for Mtb in the respiratory tract. However, the mechanisms of mycobacterial attachment to, and internalization by, nonprofessional phagocytes, such as epithelial cells, remain incompletely understood. We identified syndecan 4 (Sdc4) as mycobacterial attachment receptor on alveolar epithelial cells. Sdc4 mRNA expression was increased in human and mouse alveolar epithelial cells after mycobacterial infection. Sdc4 knockdown in alveolar epithelial cells or blocking with anti-Sdc4 antibody reduced mycobacterial attachment and internalization. At the molecular level, interactions between epithelial cells and mycobacteria involved host Sdc and the mycobacterial heparin-binding hemagglutinin adhesin. In vivo, Sdc1/Sdc4 double-knockout mice were more resistant to Mtb colonization of the lung. Our work reveals a role for distinct Sdcs in promoting mycobacterial entry into alveolar epithelial cells with impact on outcome of TB disease.
Collapse
Affiliation(s)
- Natalie Zimmermann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany.,Research Group of Molecular Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hiroyuki Saiga
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Erica Houthuys
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Pedro Moura-Alves
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Anne Koehler
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Silke Bandermann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
71
|
Extracellular matrix component signaling in cancer. Adv Drug Deliv Rev 2016; 97:28-40. [PMID: 26519775 DOI: 10.1016/j.addr.2015.10.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 10/19/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022]
Abstract
Cell responses to the extracellular matrix depend on specific signaling events. These are important from early development, through differentiation and tissue homeostasis, immune surveillance, and disease pathogenesis. Signaling not only regulates cell adhesion cytoskeletal organization and motility but also provides survival and proliferation cues. The major classes of cell surface receptors for matrix macromolecules are the integrins, discoidin domain receptors, and transmembrane proteoglycans such as syndecans and CD44. Cells respond not only to specific ligands, such as collagen, fibronectin, or basement membrane glycoproteins, but also in terms of matrix rigidity. This can regulate the release and subsequent biological activity of matrix-bound growth factors, for example, transforming growth factor-β. In the environment of tumors, there may be changes in cell populations and their receptor profiles as well as matrix constitution and protein cross-linking. Here we summarize roles of the three major matrix receptor types, with emphasis on how they function in tumor progression.
Collapse
|
72
|
|
73
|
Gopal S, Søgaard P, Multhaupt HAB, Pataki C, Okina E, Xian X, Pedersen ME, Stevens T, Griesbeck O, Park PW, Pocock R, Couchman JR. Transmembrane proteoglycans control stretch-activated channels to set cytosolic calcium levels. J Cell Biol 2015; 210:1199-211. [PMID: 26391658 PMCID: PMC4586746 DOI: 10.1083/jcb.201501060] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 08/25/2015] [Indexed: 02/07/2023] Open
Abstract
Syndecans regulate members of the transient receptor potential family to control cytosolic calcium levels with impact on cell adhesion, junction formation, and neuronal guidance. Transmembrane heparan sulfate proteoglycans regulate multiple aspects of cell behavior, but the molecular basis of their signaling is unresolved. The major family of transmembrane proteoglycans is the syndecans, present in virtually all nucleated cells, but with mostly unknown functions. Here, we show that syndecans regulate transient receptor potential canonical (TRPCs) channels to control cytosolic calcium equilibria and consequent cell behavior. In fibroblasts, ligand interactions with heparan sulfate of syndecan-4 recruit cytoplasmic protein kinase C to target serine714 of TRPC7 with subsequent control of the cytoskeleton and the myofibroblast phenotype. In epidermal keratinocytes a syndecan–TRPC4 complex controls adhesion, adherens junction composition, and early differentiation in vivo and in vitro. In Caenorhabditis elegans, the TRPC orthologues TRP-1 and -2 genetically complement the loss of syndecan by suppressing neuronal guidance and locomotory defects related to increases in neuronal calcium levels. The widespread and conserved syndecan–TRPC axis therefore fine tunes cytoskeletal organization and cell behavior.
Collapse
Affiliation(s)
- Sandeep Gopal
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Pernille Søgaard
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Hinke A B Multhaupt
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Csilla Pataki
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Elena Okina
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Xiaojie Xian
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Mikael E Pedersen
- Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Troy Stevens
- Department of Pharmacology, Center for Lung Biology, University of South Alabama, Mobile, AL 36688 Department of Medicine, Center for Lung Biology, University of South Alabama, Mobile, AL 36688
| | - Oliver Griesbeck
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Pyong Woo Park
- Division of Newborn Medicine, Children's Hospital, Harvard Medical School, Boston, MA 02115 Division of Respiratory Diseases, Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Roger Pocock
- Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - John R Couchman
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
74
|
Syndecan-1 in Cancer: Implications for Cell Signaling, Differentiation, and Prognostication. DISEASE MARKERS 2015; 2015:796052. [PMID: 26420915 PMCID: PMC4569789 DOI: 10.1155/2015/796052] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/16/2015] [Indexed: 11/17/2022]
Abstract
Syndecan-1, a cell surface heparan sulfate proteoglycan, is critically involved in the differentiation and prognosis of various tumors. In this review, we highlight the synthesis, cellular interactions, and the signalling pathways regulated by syndecan-1. The basal syndecan-1 level is also crucial for understanding the sequential changes involving malignant transformation, tumor progression, and advanced or disseminated cancer stages. Moreover, we focus on the cellular localization of this proteoglycan as cell membrane anchored and/or shed, soluble syndecan-1 with stromal or nuclear accumulation and how this may carry different, highly tissue specific prognostic information for individual tumor types.
Collapse
|
75
|
Becker BF, Jacob M, Leipert S, Salmon AHJ, Chappell D. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol 2015; 80:389-402. [PMID: 25778676 DOI: 10.1111/bcp.12629] [Citation(s) in RCA: 286] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/10/2015] [Accepted: 03/11/2015] [Indexed: 12/11/2022] Open
Abstract
The endothelial glycocalyx has a profound influence at the vascular wall on the transmission of shear stress, on the maintenance of a selective permeability barrier and a low hydraulic conductivity, and on attenuating firm adhesion of blood leukocytes and platelets. Major constituents of the glycocalyx, including syndecans, heparan sulphates and hyaluronan, are shed from the endothelial surface under various acute and chronic clinical conditions, the best characterized being ischaemia and hypoxia, sepsis and inflammation, atherosclerosis, diabetes, renal disease and haemorrhagic viral infections. Damage has also been detected by in vivo microscopic techniques. Matrix metalloproteases may shed syndecans and heparanase, released from activated mast cells, cleaves heparan sulphates from core proteins. According to new data, not only hyaluronidase but also the serine proteases thrombin, elastase, proteinase 3 and plasminogen, as well as cathepsin B lead to loss of hyaluronan from the endothelial surface layer, suggesting a wide array of potentially destructive conditions. Appropriately, pharmacological agents such as inhibitors of inflammation, antithrombin and inhibitors of metalloproteases display potential to attenuate shedding of the glycocalyx in various experimental models. Also, plasma components, especially albumin, stabilize the glycocalyx and contribute to the endothelial surface layer. Though symptoms of the above listed diseases and conditions correlate with sequelae expected from disturbance of the endothelial glycocalyx (oedema, inflammation, leukocyte and platelet adhesion, low reflow), therapeutic studies to prove a causal connection have yet to be designed. With respect to studies on humans, some clinical evidence exists for benefits from application of sulodexide, a preparation delivering precursors of the glycocalyx constituent heparan sulphate. At present, the simplest option for protecting the glycocalyx seems to be to ensure an adequate level of albumin. However, also in this case, definite proof of causality needs to be delivered.
Collapse
Affiliation(s)
- Bernhard F Becker
- Walter-Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Matthias Jacob
- Department of Anaesthesiology, Hospital St Elisabeth, Straubing, Germany
| | - Stephanie Leipert
- Walter-Brendel Centre of Experimental Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Andrew H J Salmon
- Bristol Renal, School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - Daniel Chappell
- Department of Anaesthesiology, University Hospital Munich, Munich, Germany
| |
Collapse
|
76
|
Hartin SN, Hudson ML, Yingling C, Ackley BD. A Synthetic Lethal Screen Identifies a Role for Lin-44/Wnt in C. elegans Embryogenesis. PLoS One 2015; 10:e0121397. [PMID: 25938228 PMCID: PMC4418752 DOI: 10.1371/journal.pone.0121397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/31/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The C. elegans proteins PTP-3/LAR-RPTP and SDN-1/Syndecan are conserved cell adhesion molecules. Loss-of-function (LOF) mutations in either ptp-3 or sdn-1 result in low penetrance embryonic developmental defects. Work from other systems has shown that syndecans can function as ligands for LAR receptors in vivo. We used double mutant analysis to test whether ptp-3 and sdn-1 function in a linear genetic pathway during C. elegans embryogenesis. RESULTS We found animals with LOF in both sdn-1 and ptp-3 exhibited a highly penetrant synthetic lethality (SynLet), with only a small percentage of animals surviving to adulthood. Analysis of the survivors demonstrated that these animals had a synergistic increase in the penetrance of embryonic developmental defects. Together, these data strongly suggested PTP-3 and SDN-1 function in parallel during embryogenesis. We subsequently used RNAi to knockdown ~3,600 genes predicted to encode secreted and/or transmembrane molecules to identify genes that interacted with ptp-3 or sdn-1. We found that the Wnt ligand, lin-44, was SynLet with sdn-1, but not ptp-3. We used 4-dimensional time-lapse analysis to characterize the interaction between lin-44 and sdn-1. We found evidence that loss of lin-44 caused defects in the polarization and migration of endodermal precursors during gastrulation, a previously undescribed role for lin-44 that is strongly enhanced by the loss of sdn-1. CONCLUSIONS PTP-3 and SDN-1 function in compensatory pathways during C. elegans embryonic and larval development, as simultaneous loss of both genes has dire consequences for organismal survival. The Wnt ligand lin-44 contributes to the early stages of gastrulation in parallel to sdn-1, but in a genetic pathway with ptp-3. Overall, the SynLet phenotype provides a robust platform to identify ptp-3 and sdn-1 interacting genes, as well as other genes that function in development, yet might be missed in traditional forward genetic screens.
Collapse
Affiliation(s)
- Samantha N. Hartin
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States of America
| | - Martin L. Hudson
- Department of Biology and Physics, Kennesaw State University, Kennesaw, GA, United States of America
| | - Curtis Yingling
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States of America
| | - Brian D. Ackley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, United States of America
- * E-mail:
| |
Collapse
|
77
|
Theocharis AD, Skandalis SS, Neill T, Multhaupt HAB, Hubo M, Frey H, Gopal S, Gomes A, Afratis N, Lim HC, Couchman JR, Filmus J, Sanderson RD, Schaefer L, Iozzo RV, Karamanos NK. Insights into the key roles of proteoglycans in breast cancer biology and translational medicine. Biochim Biophys Acta Rev Cancer 2015; 1855:276-300. [PMID: 25829250 DOI: 10.1016/j.bbcan.2015.03.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/27/2015] [Accepted: 03/24/2015] [Indexed: 12/18/2022]
Abstract
Proteoglycans control numerous normal and pathological processes, among which are morphogenesis, tissue repair, inflammation, vascularization and cancer metastasis. During tumor development and growth, proteoglycan expression is markedly modified in the tumor microenvironment. Altered expression of proteoglycans on tumor and stromal cell membranes affects cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis. Despite the high complexity and heterogeneity of breast cancer, the rapid evolution in our knowledge that proteoglycans are among the key players in the breast tumor microenvironment suggests their potential as pharmacological targets in this type of cancer. It has been recently suggested that pharmacological treatment may target proteoglycan metabolism, their utilization as targets for immunotherapy or their direct use as therapeutic agents. The diversity inherent in the proteoglycans that will be presented herein provides the potential for multiple layers of regulation of breast tumor behavior. This review summarizes recent developments concerning the biology of selected proteoglycans in breast cancer, and presents potential targeted therapeutic approaches based on their novel key roles in breast cancer.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Hinke A B Multhaupt
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Mario Hubo
- University of Frankfurt, Institute of Pharmacology and Toxicology, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Helena Frey
- University of Frankfurt, Institute of Pharmacology and Toxicology, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Sandeep Gopal
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Angélica Gomes
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Nikos Afratis
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Hooi Ching Lim
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - John R Couchman
- Department of Biomedical Sciences and Biotech Research & Innovation Center, University of Copenhagen, Denmark
| | - Jorge Filmus
- Department of Biological Sciences, Sunnybrook Research Institute and Department of Medical Biophysics, University of Toronto, Canada
| | - Ralph D Sanderson
- University of Alabama at Birmingham, Department of Pathology, UAB Comprehensive Cancer Center, 1720 2nd Ave. S, WTI 602B, Birmingham, AL 35294, USA
| | - Liliana Schaefer
- University of Frankfurt, Institute of Pharmacology and Toxicology, Theodor-Stern Kai 7, Frankfurt 60590, Germany
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
78
|
Lemjabbar-Alaoui H, McKinney A, Yang YW, Tran VM, Phillips JJ. Glycosylation alterations in lung and brain cancer. Adv Cancer Res 2015; 126:305-44. [PMID: 25727152 DOI: 10.1016/bs.acr.2014.11.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alterations in glycosylation are common in cancer and are thought to contribute to disease. Lung cancer and primary malignant brain cancer, most commonly glioblastoma, are genetically heterogeneous diseases with extremely poor prognoses. In this review, we summarize the data demonstrating that glycosylation is altered in lung and brain cancer. We then use specific examples to highlight the diverse roles of glycosylation in these two deadly diseases and illustrate shared mechanisms of oncogenesis. In addition to alterations in glycoconjugate biosynthesis, we also discuss mechanisms of postsynthetic glycan modification in cancer. We suggest that alterations in glycosylation in lung and brain cancer provide novel tumor biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Hassan Lemjabbar-Alaoui
- Department of Surgery, Thoracic Oncology Program, University of California, San Francisco, California, USA
| | - Andrew McKinney
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, California, USA
| | - Yi-Wei Yang
- Department of Surgery, Thoracic Oncology Program, University of California, San Francisco, California, USA
| | - Vy M Tran
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, California, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, Brain Tumor Research Center, University of California, San Francisco, California, USA; Department of Pathology, University of California, San Francisco, California, USA.
| |
Collapse
|
79
|
Abstract
Glycosaminoglycans (GAGs) have been shown to bind to a wide variety of microbial pathogens, including viruses, bacteria, parasites, and fungi in vitro. GAGs are thought to promote pathogenesis by facilitating pathogen attachment, invasion, or evasion of host defense mechanisms. However, the role of GAGs in infectious disease has not been extensively studied in vivo and therefore their pathophysiological significance and functions are largely unknown. Here we describe methods to directly investigate the role of GAGs in infections in vivo using mouse models of bacterial lung and corneal infection. The overall experimental strategy is to establish the importance and specificity of GAGs, define the essential structural features of GAGs, and identify a biological activity of GAGs that promotes pathogenesis.
Collapse
Affiliation(s)
- Akiko Jinno
- Division of Respiratory Diseases, Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Enders-461, Boston, MA, 02115, USA,
| | | |
Collapse
|
80
|
Advances in the molecular functions of syndecan-1 (SDC1/CD138) in the pathogenesis of malignancies. Crit Rev Oncol Hematol 2014; 94:1-17. [PMID: 25563413 DOI: 10.1016/j.critrevonc.2014.12.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/28/2014] [Accepted: 12/10/2014] [Indexed: 01/08/2023] Open
Abstract
Syndecan-1 (SDC1, synd, CD138) is the most widely studied member of four structurally related cell surface heparan sulfate proteoglycans (HSPG). Although SDC1 has been implicated in a wide range of biological functions, its altered expression often produces malignant phenotypes, which arise from increased cell proliferation and cell growth, cell survival, cell invasion and metastasis, and angiogenesis. Recent studies revealed much about the underlying molecular roles of SDC1 in these processes. The changes in SDC1 expression also have a direct impact on the clinical course of cancers, as evident by its prognostic significance. Accumulating evidence suggest that SDC1 is involved in stimulation of cancer stem cells (CSC) or tumor initiating cells (TIC) and this may affect disease relapse, and resistance to therapy. This review discusses the progress on the pro-tumorigenic role(s) of SDC1 and how these roles may impact the clinical aspect of the disease. Also discussed, are the current strategies for targeting SDC1 or its related signaling.
Collapse
|
81
|
Okolicsanyi RK, Buffiere A, Jacinto JME, Chacon-Cortes D, Chambers SK, Youl PH, Haupt LM, Griffiths LR. Association of heparan sulfate proteoglycans SDC1 and SDC4 polymorphisms with breast cancer in an Australian Caucasian population. Tumour Biol 2014; 36:1731-8. [PMID: 25361632 DOI: 10.1007/s13277-014-2774-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 10/23/2014] [Indexed: 10/24/2022] Open
Abstract
Breast cancer is a common disease in both developing and developed countries with early identification and treatment improving prognosis and survival. Heparan sulfate proteoglycans (HSPGs) are key components of the extracellular matrix (ECM) that mediate cell adhesion, motility, proliferation, invasion and cell signalling. Members of the syndecan family of HSPGs have been identified to be involved in breast cancer progression through their varied interactions with a number of growth factors, ligands and receptors. Specifically, high expression levels of syndecan-1 (SDC1) have been demonstrated in more invasive breast tumours while elevated syndecan-4 (SDC4) levels have been identified to correspond with improved prognosis. With genetic changes in the syndecans and their association with breast cancers plausible, we examined two single nucleotide polymorphisms in SDC1 (rs1131351) and SDC4 (rs67068737) within an Australian Caucasian breast cancer case/control population. No association was found with SDC4 and breast cancer in our population. However, a significant association between SDC1 and breast cancer was identified in both our case/control population and in a replication cohort. When both populations were combined for analysis, this association became more significant (genotype, p = 0.0003; allele, p = 0.0001). This data suggests an increased risk of developing breast cancer associated with the presence of the C allele of the SDC1 rs1131351 single nucleotide polymorphism (SNP) and may provide a marker toward early breast cancer detection.
Collapse
Affiliation(s)
- Rachel K Okolicsanyi
- Genomics Research Centre, Institute for Health and Biomedical Innovation, Queensland University of Technology, Musk Avenue, Kelvin Grove, Brisbane, QLD, 4059, Australia
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Dejima K, Kang S, Mitani S, Cosman PC, Chisholm AD. Syndecan defines precise spindle orientation by modulating Wnt signaling in C. elegans. Development 2014; 141:4354-65. [PMID: 25344071 DOI: 10.1242/dev.113266] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wnt signals orient mitotic spindles in development, but it remains unclear how Wnt signaling is spatially controlled to achieve precise spindle orientation. Here, we show that C. elegans syndecan (SDN-1) is required for precise orientation of a mitotic spindle in response to a Wnt cue. We find that SDN-1 is the predominant heparan sulfate (HS) proteoglycan in the early C. elegans embryo, and that loss of HS biosynthesis or of the SDN-1 core protein results in misorientation of the spindle of the ABar blastomere. The ABar and EMS spindles both reorient in response to Wnt signals, but only ABar spindle reorientation is dependent on a new cell contact and on HS and SDN-1. SDN-1 transiently accumulates on the ABar surface as it contacts C, and is required for local concentration of Dishevelled (MIG-5) in the ABar cortex adjacent to C. These findings establish a new role for syndecan in Wnt-dependent spindle orientation.
Collapse
Affiliation(s)
- Katsufumi Dejima
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA Department of Physiology, Tokyo Women's Medical University, School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Sukryool Kang
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92037-0407, USA
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University, School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Pamela C Cosman
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92037-0407, USA
| | - Andrew D Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
83
|
Zaragosi LE, Dadone B, Michiels JF, Marty M, Pedeutour F, Dani C, Bianchini L. Syndecan-1 regulates adipogenesis: new insights in dedifferentiated liposarcoma tumorigenesis. Carcinogenesis 2014; 36:32-40. [PMID: 25344834 DOI: 10.1093/carcin/bgu222] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Syndecan-1 (SDC1/CD138) is one of the main cell surface proteoglycans and is involved in crucial biological processes. Only a few studies have analyzed the role of SDC1 in mesenchymal tumor pathogenesis. In particular, its involvement in adipose tissue tumors has never been investigated. Dedifferentiated liposarcoma, one of the most frequent types of malignant adipose tumors, has a high potential of recurrence and metastastic evolution. Classical chemotherapy is inefficient in metastatic dedifferentiated liposarcoma and novel biological markers are needed for improving its treatment. In this study, we have analyzed the expression of SDC1 in well-differentiated/dedifferentiated liposarcomas and showed that SDC1 is highly overexpressed in dedifferentiated liposarcoma compared with normal adipose tissue and lipomas. Silencing of SDC1 in liposarcoma cells impaired cell viability and proliferation. Using the human multipotent adipose-derived stem cell model of human adipogenesis, we showed that SDC1 promotes proliferation of undifferentiated adipocyte progenitors and inhibits their adipogenic differentiation. Altogether, our results support the hypothesis that SDC1 might be involved in liposarcomagenesis. It might play a prominent role in the dedifferentiation process occurring when well-differentiated liposarcoma progress to dedifferentiated liposarcoma. Targeting SDC1 in these tumors might provide a novel therapeutic strategy.
Collapse
Affiliation(s)
- Laure-Emmanuelle Zaragosi
- Institute of Biology Valrose, UMR7277 CNRS/UMR1091 INSERM/University of Nice-Sophia Antipolis, 06108 Nice, France, Present address: CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, University of Nice- Sophia Antipolis, 06560 Sophia Antipolis, France
| | - Bérengère Dadone
- Department of Pathology, Nice University Hospital, 06202 Nice, France, Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284/INSERM U1081, University of Nice-Sophia Antipolis, 06107 Nice, France, Laboratory of Solid Tumor Genetics, Nice University Hospital, 06107 Nice, France and
| | - Jean-François Michiels
- Department of Pathology, Nice University Hospital, 06202 Nice, France, Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284/INSERM U1081, University of Nice-Sophia Antipolis, 06107 Nice, France
| | - Marion Marty
- Department of Pathology, Bordeaux University Hospital, 33076 Bordeaux, France
| | - Florence Pedeutour
- Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284/INSERM U1081, University of Nice-Sophia Antipolis, 06107 Nice, France, Laboratory of Solid Tumor Genetics, Nice University Hospital, 06107 Nice, France and
| | - Christian Dani
- Institute of Biology Valrose, UMR7277 CNRS/UMR1091 INSERM/University of Nice-Sophia Antipolis, 06108 Nice, France
| | - Laurence Bianchini
- Institute for Research on Cancer and Aging of Nice, CNRS UMR 7284/INSERM U1081, University of Nice-Sophia Antipolis, 06107 Nice, France,
| |
Collapse
|
84
|
Kowalewska PM, Patrick AL, Fox-Robichaud AE. Syndecan-1 in the mouse parietal peritoneum microcirculation in inflammation. PLoS One 2014; 9:e104537. [PMID: 25184228 PMCID: PMC4153572 DOI: 10.1371/journal.pone.0104537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/22/2014] [Indexed: 12/31/2022] Open
Abstract
Background The heparan sulfate proteoglycan syndecan-1 (CD138) was shown to regulate inflammatory responses by binding chemokines and cytokines and interacting with adhesion molecules, thereby modulating leukocyte trafficking to tissues. The objectives of this study were to examine the expression of syndecan-1 and its role in leukocyte recruitment and chemokine presentation in the microcirculation underlying the parietal peritoneum. Methods Wild-type BALB/c and syndecan-1 null mice were stimulated with an intraperitoneal injection of Staphylococcus aureus LTA, Escherichia coli LPS or TNFα and the microcirculation of the parietal peritoneum was examined by intravital microscopy after 4 hours. Fluorescence confocal microscopy was used to examine syndecan-1 expression in the peritoneal microcirculation using fluorescent antibodies. Blocking antibodies to adhesion molecules were used to examine the role of these molecules in leukocyte-endothelial cell interactions in response to LTA. To determine whether syndecan-1 co-localizes with chemokines in vivo, fluorescent antibodies to syndecan-1 were co-injected intravenously with anti-MIP-2 (CXCL2), anti-KC (CXCL1) or anti-MCP-1 (CCL2). Results and Conclusion Syndecan-1 was localized to the subendothelial region of peritoneal venules and the mesothelial layer. Leukocyte rolling was significantly decreased with LPS treatment while LTA and TNFα significantly increased leukocyte adhesion compared with saline control. Leukocyte-endothelial cell interactions were not different in syndecan-1 null mice. Antibody blockade of β2 integrin (CD18), ICAM-1 (CD54) and VCAM-1 (CD106) did not decrease leukocyte adhesion in response to LTA challenge while blockade of P-selectin (CD62P) abrogated leukocyte rolling. Lastly, MIP-2 expression in the peritoneal venules was not dependent on syndecan-1 in vivo. Our data suggest that syndecan-1 is expressed in the parietal peritoneum microvasculature but does not regulate leukocyte recruitment and is not necessary for the presentation of the chemokine MIP-2 in this tissue.
Collapse
Affiliation(s)
| | - Amanda L Patrick
- Thrombosis and Atherosclerosis Research Institute and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Alison E Fox-Robichaud
- Thrombosis and Atherosclerosis Research Institute and the Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
85
|
Kasza I, Suh Y, Wollny D, Clark RJ, Roopra A, Colman RJ, MacDougald OA, Shedd TA, Nelson DW, Yen MI, Yen CLE, Alexander CM. Syndecan-1 is required to maintain intradermal fat and prevent cold stress. PLoS Genet 2014; 10:e1004514. [PMID: 25101993 PMCID: PMC4125098 DOI: 10.1371/journal.pgen.1004514] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 06/05/2014] [Indexed: 02/07/2023] Open
Abstract
Homeostatic temperature regulation is fundamental to mammalian physiology and is controlled by acute and chronic responses of local, endocrine and nervous regulators. Here, we report that loss of the heparan sulfate proteoglycan, syndecan-1, causes a profoundly depleted intradermal fat layer, which provides crucial thermogenic insulation for mammals. Mice without syndecan-1 enter torpor upon fasting and show multiple indicators of cold stress, including activation of the stress checkpoint p38α in brown adipose tissue, liver and lung. The metabolic phenotype in mutant mice, including reduced liver glycogen, is rescued by housing at thermoneutrality, suggesting that reduced insulation in cool temperatures underlies the observed phenotypes. We find that syndecan-1, which functions as a facultative lipoprotein uptake receptor, is required for adipocyte differentiation in vitro. Intradermal fat shows highly dynamic differentiation, continuously expanding and involuting in response to hair cycle and ambient temperature. This physiology probably confers a unique role for Sdc1 in this adipocyte sub-type. The PPARγ agonist rosiglitazone rescues Sdc1−/− intradermal adipose tissue, placing PPARγ downstream of Sdc1 in triggering adipocyte differentiation. Our study indicates that disruption of intradermal adipose tissue development results in cold stress and complex metabolic pathology. All mammals strive to maintain a fixed body temperature, and do so using a remarkable array of different strategies, which vary depending upon the degree of cold challenge. Physiologists many decades ago observed that a fat layer right underneath the epidermis (and above the dermal muscle layer) thickens in response to colder ambient temperatures. This “intradermal fat” provided insulation within days of climate changes. We have found that syndecan-1, which functions as a facultative lipoprotein uptake receptor, is required for intradermal fat expansion in response to cold exposure. This is a highly specific phenotype not shared by other adipocytes. When intradermal fat is absent, mice do not adapt normally to cold stress, and show altered systemic physiologies, including increased brown adipose tissue thermogenesis and hyper-activation of a stress checkpoint (p38α), designed to protect the body against mutagenic and oxidative stressors. The phenotypes associated with loss of Sdc1 function are reversed when mice are housed in warm temperatures, where defense of body temperature is not required. This study is the first to show that intradermal fat can be genetically regulated, with systemic effects on physiology.
Collapse
Affiliation(s)
- Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Yewseok Suh
- Department of Dermatology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Damian Wollny
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rod J. Clark
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Avtar Roopra
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ricki J. Colman
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Ormond A. MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Timothy A. Shedd
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - David W. Nelson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mei-I Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chi-Liang Eric Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Caroline M. Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
86
|
Hammond E, Khurana A, Shridhar V, Dredge K. The Role of Heparanase and Sulfatases in the Modification of Heparan Sulfate Proteoglycans within the Tumor Microenvironment and Opportunities for Novel Cancer Therapeutics. Front Oncol 2014; 4:195. [PMID: 25105093 PMCID: PMC4109498 DOI: 10.3389/fonc.2014.00195] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/10/2014] [Indexed: 01/18/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are an integral and dynamic part of normal tissue architecture at the cell surface and within the extracellular matrix. The modification of HSPGs in the tumor microenvironment is known to result not just in structural but also functional consequences, which significantly impact cancer progression. As substrates for the key enzymes sulfatases and heparanase, the modification of HSPGs is typically characterized by the degradation of heparan sulfate (HS) chains/sulfation patterns via the endo-6-O-sulfatases (Sulf1 and Sulf2) or by heparanase, an endo-glycosidase that cleaves the HS polymers releasing smaller fragments from HSPG complexes. Numerous studies have demonstrated how these enzymes actively influence cancer cell proliferation, signaling, invasion, and metastasis. The activity or expression of these enzymes has been reported to be modified in a variety of cancers. Such observations are consistent with the degradation of normal architecture and basement membranes, which are typically compromised in metastatic disease. Moreover, recent studies elucidating the requirements for these proteins in tumor initiation and progression exemplify their importance in the development and progression of cancer. Thus, as the influence of the tumor microenvironment in cancer progression becomes more apparent, the focus on targeting enzymes that degrade HSPGs highlights one approach to maintain normal tissue architecture, inhibit tumor progression, and block metastasis. This review discusses the role of these enzymes in the context of the tumor microenvironment and their promise as therapeutic targets for the treatment of cancer.
Collapse
Affiliation(s)
| | - Ashwani Khurana
- Department of Experimental Pathology, Mayo Clinic College of Medicine , Rochester, MN , USA
| | - Viji Shridhar
- Department of Experimental Pathology, Mayo Clinic College of Medicine , Rochester, MN , USA
| | - Keith Dredge
- Progen Pharmaceuticals Ltd. , Brisbane, QLD , Australia
| |
Collapse
|
87
|
Linnemannstöns K, Ripp C, Honemann-Capito M, Brechtel-Curth K, Hedderich M, Wodarz A. The PTK7-related transmembrane proteins off-track and off-track 2 are co-receptors for Drosophila Wnt2 required for male fertility. PLoS Genet 2014; 10:e1004443. [PMID: 25010066 PMCID: PMC4091708 DOI: 10.1371/journal.pgen.1004443] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 05/02/2014] [Indexed: 02/03/2023] Open
Abstract
Wnt proteins regulate many developmental processes and are required for tissue homeostasis in adult animals. The cellular responses to Wnts are manifold and are determined by the respective Wnt ligand and its specific receptor complex in the plasma membrane. Wnt receptor complexes contain a member of the Frizzled family of serpentine receptors and a co-receptor, which commonly is a single-pass transmembrane protein. Vertebrate protein tyrosine kinase 7 (PTK7) was identified as a Wnt co-receptor required for control of planar cell polarity (PCP) in frogs and mice. We found that flies homozygous for a complete knock-out of the Drosophila PTK7 homolog off track (otk) are viable and fertile and do not show PCP phenotypes. We discovered an otk paralog (otk2, CG8964), which is co-expressed with otk throughout embryonic and larval development. Otk and Otk2 bind to each other and form complexes with Frizzled, Frizzled2 and Wnt2, pointing to a function as Wnt co-receptors. Flies lacking both otk and otk2 are viable but male sterile due to defective morphogenesis of the ejaculatory duct. Overexpression of Otk causes female sterility due to malformation of the oviduct, indicating that Otk and Otk2 are specifically involved in the sexually dimorphic development of the genital tract. Wnts are secreted, growth factor-like proteins that are important for the development of many tissues and organs in animals. They are also required in adult animals and humans for controlling the balance between growth and differentiation. Wnts are bound at the cell surface by Wnt receptors, which are dimers composed of a Frizzled protein and a co-receptor. Here we have analyzed the Drosophila Wnt co-receptors Off-track (Otk) and Off-track 2 (Otk2), which are closely related to vertebrate Protein tyrosine kinase 7 (PTK7). We found that in contrast to PTK7 in mice and frogs, which controls planar cell polarity (PCP), Otk and Otk2 together are needed in males for development of the ejaculatory duct, a tube-like organ that transports the mature sperm. Our data furthermore indicate that Otk and Otk2 are co-receptors for Wnt2. The sterile phenotype of Wnt2 mutant males is not identical to that of otk, otk2 double mutants, so additional Wnts may be involved in this process. Interestingly, the function of Wnt2 in male fertility appears to be evolutionarily conserved, because male mice mutant for Wnt7A, the vertebrate homolog of Drosophila Wnt2, are sterile due to abnormal development of the vas deferens, which corresponds to the fly ejaculatory duct.
Collapse
Affiliation(s)
- Karen Linnemannstöns
- Stem Cell Biology, Institute for Anatomy and Cell Biology, University of Goettingen, Goettingen, Germany
| | - Caroline Ripp
- Stem Cell Biology, Institute for Anatomy and Cell Biology, University of Goettingen, Goettingen, Germany
| | - Mona Honemann-Capito
- Stem Cell Biology, Institute for Anatomy and Cell Biology, University of Goettingen, Goettingen, Germany
| | - Katja Brechtel-Curth
- Stem Cell Biology, Institute for Anatomy and Cell Biology, University of Goettingen, Goettingen, Germany
| | - Marie Hedderich
- Institute for Developmental Biochemistry, University of Goettingen, Goettingen, Germany
| | - Andreas Wodarz
- Stem Cell Biology, Institute for Anatomy and Cell Biology, University of Goettingen, Goettingen, Germany
| |
Collapse
|
88
|
Marastoni S, Andreuzzi E, Paulitti A, Colladel R, Pellicani R, Todaro F, Schiavinato A, Bonaldo P, Colombatti A, Mongiat M. EMILIN2 down-modulates the Wnt signalling pathway and suppresses breast cancer cell growth and migration. J Pathol 2014; 232:391-404. [PMID: 24374807 DOI: 10.1002/path.4316] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/09/2013] [Accepted: 12/17/2013] [Indexed: 11/09/2022]
Abstract
EMILIN2 is an extracellular matrix (ECM) protein that exerts contradictory effects within the tumour microenvironment: it induces apoptosis in a number of tumour cells, but it also enhances tumour neo-angiogenesis. In this study, we describe a new mechanism by which EMILIN2 attenuates tumour cell viability. Based on sequence homology with the cysteine-rich domain (CRD) of the Frizzled receptors, we hypothesized that EMILIN2 could affect Wnt signalling activation and demonstrate direct interaction with the Wnt1 ligand. This physical binding leads to decreased LRP6 phosphorylation and to the down-modulation of β-catenin, TAZ and their target genes. As a consequence, EMILIN2 negatively affects the viability, migration and tumourigenic potential of MDA-MB-231 breast cancer cells in a number of two- and three-dimensional in vitro assays. EMILIN2 does not modulate Wnt signalling downstream of the Wnt-Frizzled interaction, since it does not affect the activation of the pathway following treatment with the GSK3 inhibitors LiCl and CHIR99021. The interaction with Wnt1 and the subsequent biological effects require the presence of the EMI domain, as there is no effect with a deletion mutant lacking this domain. Moreover, in vivo experiments show that the ectopic expression of EMILIN2, as well as treatment with the recombinant protein, significantly reduce tumour growth and dissemination of cancer cells in nude mice. Accordingly, the tumour samples are characterized by a significant down-regulation of the Wnt signalling pathway. Altogether, these findings provide further evidence of the complex regulations governed by EMILIN2 in the tumour microenvironment, and they identify a key extracellular regulator of the Wnt signalling pathway.
Collapse
Affiliation(s)
- Stefano Marastoni
- Department of Translational Research, Experimental Oncology Division 2, CRO, Aviano, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Chaterji S, Lam CH, Ho DS, Proske DC, Baker AB. Syndecan-1 regulates vascular smooth muscle cell phenotype. PLoS One 2014; 9:e89824. [PMID: 24587062 PMCID: PMC3934950 DOI: 10.1371/journal.pone.0089824] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 01/24/2014] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE We examined the role of syndecan-1 in modulating the phenotype of vascular smooth muscle cells in the context of endogenous inflammatory factors and altered microenvironments that occur in disease or injury-induced vascular remodeling. METHODS AND RESULTS Vascular smooth muscle cells (vSMCs) display a continuum of phenotypes that can be altered during vascular remodeling. While the syndecans have emerged as powerful and complex regulators of cell function, their role in controlling vSMC phenotype is unknown. Here, we isolated vSMCs from wild type (WT) and syndecan-1 knockout (S1KO) mice. Gene expression and western blotting studies indicated decreased levels of α-smooth muscle actin (α-SMA), calponin, and other vSMC-specific differentiation markers in S1KO relative to WT cells. The spread area of the S1KO cells was found to be greater than WT cells, with a corresponding increase in focal adhesion formation, Src phosphorylation, and alterations in actin cytoskeletal arrangement. In addition, S1KO led to increased S6RP phosphorylation and decreased AKT and PKC-α phosphorylation. To examine whether these changes were present in vivo, isolated aortae from aged WT and S1KO mice were stained for calponin. Consistent with our in-vitro findings, the WT mice aortae stained higher for calponin relative to S1KO. When exposed to the inflammatory cytokine TNF-α, WT vSMCs had an 80% reduction in syndecan-1 expression. Further, with TNF-α, S1KO vSMCs produced increased pro-inflammatory cytokines relative to WT. Finally, inhibition of interactions between syndecan-1 and integrins αvβ3 and αvβ5 using the inhibitory peptide synstatin appeared to have similar effects on vSMCs as knocking out syndecan-1, with decreased expression of vSMC differentiation markers and increased expression of inflammatory cytokines, receptors, and osteopontin. CONCLUSIONS Taken together, our results support that syndecan-1 promotes vSMC differentiation and quiescence. Thus, the presence of syndecan-1 would have a protective effect against vSMC dedifferentiation and this activity is linked to interactions with integrins αvβ3 and αvβ5.
Collapse
Affiliation(s)
- Somali Chaterji
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Christoffer H. Lam
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Derek S. Ho
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Daniel C. Proske
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Aaron B. Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
90
|
Voyvodic PL, Min D, Liu R, Williams E, Chitalia V, Dunn AK, Baker AB. Loss of syndecan-1 induces a pro-inflammatory phenotype in endothelial cells with a dysregulated response to atheroprotective flow. J Biol Chem 2014; 289:9547-59. [PMID: 24554698 DOI: 10.1074/jbc.m113.541573] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fluid shear stresses are potent regulators of vascular homeostasis and powerful determinants of vascular disease progression. The glycocalyx is a layer of glycoaminoglycans, proteoglycans, and glycoproteins that lines the luminal surface of arteries. The glycocalyx interacts directly with hemodynamic forces from blood flow and, consequently, is a prime candidate for the mechanosensing of fluidic shear stresses. Here, we investigated the role of the glycocalyx component syndecan-1 (sdc-1) in controlling the shear stress-induced signaling and flow-mediated phenotypic modulation in endothelial cells. We found that knock-out of sdc-1 abolished several key early signaling events of endothelial cells in response to shear stress including the phosphorylation of Akt, the formation of a spatial gradient in paxillin phosphorylation, and the activation of RhoA. After exposure to atheroprotective flow, we found that sdc-1 knock-out endothelial cells had a phenotypic shift to an inflammatory/pro-atherosclerotic phenotype in contrast to the atheroprotective phenotype of wild type cells. Consistent with these findings, we found increased leukocyte adhesion to sdc-1 knock-out endothelial cells in vitro that was reduced by re-expression of sdc-1. In vivo, we found increased leukocyte recruitment and vascular permeability/inflammation in sdc-1 knock-out mice. Taken together, our studies support a key role for sdc-1 in endothelial mechanosensing and regulation of endothelial phenotype.
Collapse
Affiliation(s)
- Peter L Voyvodic
- From the Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712 and
| | | | | | | | | | | | | |
Collapse
|
91
|
Szatmári T, Dobra K. The role of syndecan-1 in cellular signaling and its effects on heparan sulfate biosynthesis in mesenchymal tumors. Front Oncol 2013; 3:310. [PMID: 24392351 PMCID: PMC3867677 DOI: 10.3389/fonc.2013.00310] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/04/2013] [Indexed: 12/23/2022] Open
Abstract
Proteoglycans (PGs) and in particular the syndecans are involved in the differentiation process across the epithelial-mesenchymal axis, principally through their ability to bind growth factors and modulate their downstream signaling. Malignant tumors have individual proteoglycan profiles, which are closely associated with their differentiation and biological behavior, mesenchymal tumors showing a different profile from that of epithelial tumors. Syndecan-1 is the main syndecan of epithelial malignancies, whereas in sarcomas its expression level is generally low, in accordance with their mesenchymal phenotype and highly malignant behavior. This proteoglycan is often overexpressed in adenocarcinoma cells, whereas mesothelioma and fibrosarcoma cells express syndecan-2 and syndecan-4 more abundantly. Increased expression of syndecan-1 in mesenchymal tumors changes the tumor cell morphology to an epithelioid direction whereas downregulation results in a change in shape from polygonal to spindle-like morphology. Although syndecan-1 plays major roles on the cell-surface, there are also intracellular functions, which are not very well studied. On the functional level, syndecan-1 affects mesenchymal tumor cell proliferation, adhesion, migration and motility, and the effect varies with the different domains of the core protein. Syndecan-1 may exert stimulatory or inhibitory effects, depending on the concentration of various mitogens, enzymes, and signaling molecules, the ratio between the shed and membrane-associated syndecan-1 and histological grade of the tumour. Growth factor signaling seems to be delicately controlled by regulatory loops involving the syndecan expression levels and their sulfation patterns. Overexpression of syndecan-1 modulates the biosynthesis and sulfation of heparan sulfate and it also affects the expression of other PGs. On transcriptomic level, syndecan-1 modulation results in profound effects on genes involved in regulation of cell growth.
Collapse
Affiliation(s)
- Tünde Szatmári
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital , Stockholm , Sweden
| | - Katalin Dobra
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital , Stockholm , Sweden
| |
Collapse
|
92
|
Benad-Mehner P, Thiele S, Rachner TD, Göbel A, Rauner M, Hofbauer LC. Targeting syndecan-1 in breast cancer inhibits osteoclast functions through up-regulation of osteoprotegerin. J Bone Oncol 2013; 3:18-24. [PMID: 26909290 PMCID: PMC4723417 DOI: 10.1016/j.jbo.2013.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/25/2013] [Accepted: 11/05/2013] [Indexed: 11/28/2022] Open
Abstract
Background Breast cancer often metastasizes into bone and leads to osteolytic lesions. The underlying mechanisms, however, are complex and not fully understood. Syndecan-1 is a proteoglycan that has various functions relevant for tumor progression including cell–cell communication and cell–matrix interactions. Moreover, its two glycosaminoglycan-binding sites suggest that it may interfere with glycoproteins such as osteoprotegerin, a potent inhibitor of osteoclastogenesis. Thus, we hypothesize that tumor-derived syndecan-1 alters osteoclast biology by modulating osteoprotegerin. Methods Syndecan-1 expression was down-regulated via siRNA and the cell fate of the breast cancer cell lines MCF-7, T-47D, and MDA-MB-231 was investigated. Furthermore, we determined the regulation of syndecan-1 by dexamethasone, a commonly used antiemetic in breast cancer therapy. Additionally, we analyzed the genesis and activity of osteoclasts in indirect co-culture experiments using supernatants from MCF-7 cells with deficient and sufficient levels of syndecan-1. Results Dexamethasone time- and dose-dependently increased syndecan-1 expression up to 4-fold but did not alter cell behavior. Syndecan-1 up-regulation did not affect the survival or migration of breast cancer cells. Depletion of syndecan-1 using siRNA led to decreased vitality of progesterone receptor-positive cell lines. In MCF-7 cells osteoprotegerin production was up-regulated 2.5-fold after syndecan-1 knock-down. The culture of osteoclast precursors with the supernatant of MCF-7 cells with reduced syndecan-1 levels suppressed osteoclast formation and activity by 21% and 23%, respectively. Adding neutralizing antibodies to osteoprotegerin to the breast cancer supernatants reversed osteoclastogenesis. Conclusion Thus, we identified tumor-derived syndecan-1 as a novel positive regulator of osteoclastogenesis and new player in the tumor-bone dialog.
Collapse
Key Words
- ACTB, β-actin
- Breast cancer
- C, control
- DEX, dexamethasone
- ER, estrogen receptor
- ERBB2, v-erb-b2 erythroblastic leukemia viral oncogene homolog 2
- GAPDH, glyceraldehyde 3-phosphate-dehydrogenase
- OPG, osteoprotegerin
- Osteoclast
- Osteoprotegerin
- PR, progesterone receptor
- RANKL, receptor activator of NF-κB ligand
- SDC1, syndecan-1
- Syndecan-1
Collapse
Affiliation(s)
- Peggy Benad-Mehner
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technical University Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Stefanie Thiele
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technical University Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Tilman D Rachner
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technical University Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Andy Göbel
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technical University Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Martina Rauner
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technical University Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III, Technical University Dresden, Fetscherstr. 74, D-01307 Dresden, Germany; Center for Regenerative Therapies Dresden, Technical University, Dresden, Germany
| |
Collapse
|
93
|
van Wijk XMR, van Kuppevelt TH. Heparan sulfate in angiogenesis: a target for therapy. Angiogenesis 2013; 17:443-62. [PMID: 24146040 DOI: 10.1007/s10456-013-9401-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/15/2013] [Indexed: 01/02/2023]
Abstract
Heparan sulfate (HS), a long linear polysaccharide of alternating disaccharide residues, interacts with a wide variety of proteins, including many angiogenic factors. The involvement of HS in signaling of pro-angiogenic factors (e.g. vascular endothelial growth factor and fibroblast growth factor 2), as well as interaction with anti-angiogenic factors (e.g. endostatin), warrants its role as an important modifier of (tumor) angiogenesis. This review summarizes our current understanding of the role of HS in angiogenic growth factor signaling, and discusses therapeutic strategies to target HS and modulate angiogenesis.
Collapse
Affiliation(s)
- Xander M R van Wijk
- Department of Biochemistry (280), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | |
Collapse
|
94
|
Nguyen TL, Grizzle WE, Zhang K, Hameed O, Siegal GP, Wei S. Syndecan-1 overexpression is associated with nonluminal subtypes and poor prognosis in advanced breast cancer. Am J Clin Pathol 2013; 140:468-74. [PMID: 24045542 DOI: 10.1309/ajcpz1d8calhdxcj] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVES Syndecan-1 expression is decreased in diverse tumor types but remains controversial in breast carcinomas. The goal of the study was to examine syndecan-1 expression in breast carcinoma and its prognostic significance. METHODS The epithelial expression of syndecan-1 was examined in tissue microarrays constructed from 62 consecutive breast carcinoma cases diagnosed between 1997 and 2004 with distant organ metastasis and 10 consecutive control cases (breast carcinoma with no distant metastasis after at least 8 years of follow-up). The prognostic significance of syndecan-1 was estimated by utilizing a Cox proportional hazards regression model. RESULTS Among tumors with distant metastasis, syndecan-1 expression was significantly associated with a higher histologic grade and inversely related to hormonal receptor status. The HER2 subtype and triple-negative carcinomas exhibited markedly higher syndecan-1 levels than those of luminal subtypes, while the latter remained significantly higher than nonmetastatic control cases. Furthermore, high syndecan-1 expression had a negative impact on both overall and disease-free survival rates. CONCLUSIONS These findings suggest that syndecan-1 may regulate breast cancer cell behavior and thus deserves further investigation to ascertain its potential as a therapeutic target, especially in metastatic, triple-negative carcinomas.
Collapse
Affiliation(s)
- Thuy L. Nguyen
- Department of Pathology, School of Medicine, University of Alabama at Birmingham
| | - William E. Grizzle
- Department of Pathology, School of Medicine, University of Alabama at Birmingham
| | - Kui Zhang
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham
| | - Omar Hameed
- Department of Pathology, School of Medicine, University of Alabama at Birmingham
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Gene P. Siegal
- Department of Pathology, School of Medicine, University of Alabama at Birmingham
| | - Shi Wei
- Department of Pathology, School of Medicine, University of Alabama at Birmingham
| |
Collapse
|
95
|
Zhang X, Wu C, Song J, Götte M, Sorokin L. Syndecan-1, a cell surface proteoglycan, negatively regulates initial leukocyte recruitment to the brain across the choroid plexus in murine experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2013; 191:4551-61. [PMID: 24078687 DOI: 10.4049/jimmunol.1300931] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cell surface heparan sulfate proteoglycan, syndecan-1, has been reported to be a negative regulator of various inflammatory processes, but its precise mode of action is poorly defined. In this study, we use the murine model of the 35-55 peptide of myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (EAE), a T lymphocyte-mediated inflammation where the steps in disease development and recovery are well characterized, to decipher how syndecan-1 impacts on the inflammatory reaction. Syndecan-1 knockout (Sdc-1(-/-)) mice show enhanced disease severity and impaired recovery. The use of bone marrow chimeric mice reveals that both an immune cell and a CNS-resident source of syndecan-1 contribute to this phenotype. Epithelial cells of the choroid plexus, where initial CCL20-induced leukocyte recruitment to the brain occurs, are identified as the predominant site of syndecan-1 expression. Syndecan-1 is lost from this site during the course of EAE by shedding into the cerebrospinal fluid, which correlates with loss of epithelial cell surface-bound CCL20 and is associated with the upregulation of IL-6 expression. In Sdc-1(-/-) mice, early leukocyte recruitment via the choroid plexus is enhanced, and IL-6 is elevated, which collectively results in higher numbers of the disease inducing Th17 cells in the CNS, thereby contributing to enhanced disease severity. Furthermore, Sdc-1(-/-) mice have intrinsically elevated plasma cell numbers and higher myelin oligodendrocyte glycoprotein-specific Ab levels during EAE, which we propose contributes to impaired recovery. Our data identify the choroid plexus epithelium as a novel source of IL-6 in EAE and demonstrate that its expression negatively correlates with syndecan-1 expression at this site.
Collapse
Affiliation(s)
- Xueli Zhang
- Institute for Physiological Chemistry and Pathobiochemistry, University of Muenster, 48149 Muenster, Germany
| | | | | | | | | |
Collapse
|
96
|
Liu C, Gu S, Sun C, Ye W, Song Z, Zhang Y, Chen Y. FGF signaling sustains the odontogenic fate of dental mesenchyme by suppressing β-catenin signaling. Development 2013; 140:4375-85. [PMID: 24067353 DOI: 10.1242/dev.097733] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Odontoblasts and osteoblasts develop from multipotent craniofacial neural crest cells during tooth and jawbone development, but the mechanisms that specify and sustain their respective fates remain largely unknown. In this study we used early mouse molar and incisor tooth germs that possess distinct tooth-forming capability after dissociation and reaggregation in vitro to investigate the mechanism that sustains odontogenic fate of dental mesenchyme during tooth development. We found that after dissociation and reaggregation, incisor, but not molar, mesenchyme exhibits a strong osteogenic potency associated with robustly elevated β-catenin signaling activity in a cell-autonomous manner, leading to failed tooth formation in the reaggregates. Application of FGF3 to incisor reaggregates inhibits β-catenin signaling activity and rescues tooth formation. The lack of FGF retention on the cell surface of incisor mesenchyme appears to account for the differential osteogenic potency between incisor and molar, which can be further attributed to the differential expression of syndecan 1 and NDST genes. We further demonstrate that FGF signaling inhibits intracellular β-catenin signaling by activating the PI3K/Akt pathway to regulate the subcellular localization of active GSK3β in dental mesenchymal cells. Our results reveal a novel function for FGF signaling in ensuring the proper fate of dental mesenchyme by regulating β-catenin signaling activity during tooth development.
Collapse
Affiliation(s)
- Chao Liu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | | | | | |
Collapse
|
97
|
Skandalis SS, Afratis N, Smirlaki G, Nikitovic D, Theocharis AD, Tzanakakis GN, Karamanos NK. Cross-talk between estradiol receptor and EGFR/IGF-IR signaling pathways in estrogen-responsive breast cancers: focus on the role and impact of proteoglycans. Matrix Biol 2013; 35:182-93. [PMID: 24063949 DOI: 10.1016/j.matbio.2013.09.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 02/07/2023]
Abstract
In hormone-dependent breast cancer, estrogen receptors are the principal signaling molecules that regulate several cell functions either by the genomic pathway acting directly as transcription factors in the nucleus or by the non-genomic pathway interacting with other receptors and their adjacent pathways like EGFR/IGFR. It is well established in literature that EGFR and IGFR signaling pathways promote cell proliferation and differentiation. Moreover, recent data indicate the cross-talk between ERs and EGFR/IGFR signaling pathways causing a transformation of cell functions as well as deregulation on normal expression pattern of matrix molecules. Specifically, proteoglycans, a major category of extracellular matrix (ECM) and cell surface macromolecules, are modified during malignancy and cause alterations in cancer cell signaling, affecting eventually functional cell properties such as proliferation, adhesion and migration. The on-going strategies to block only one of the above signaling effectors result cancer cells to overcome such inactivation using alternative signaling pathways. In this article, we therefore review the underlying mechanisms in respect to the role of ERs and the involvement of cross-talk between ERs, IGFR and EGFR in breast cancer cell properties and expression of extracellular secreted and cell bound proteoglycans involved in cancer progression. Understanding such signaling pathways may help to establish new potential pharmacological targets in terms of using ECM molecules to design novel anticancer therapies.
Collapse
Affiliation(s)
- Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Nikolaos Afratis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Gianna Smirlaki
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Dragana Nikitovic
- Department of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Achilleas D Theocharis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - George N Tzanakakis
- Department of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - Nikos K Karamanos
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece.
| |
Collapse
|
98
|
Neugebauer JM, Cadwallader AB, Amack JD, Bisgrove BW, Yost HJ. Differential roles for 3-OSTs in the regulation of cilia length and motility. Development 2013; 140:3892-902. [PMID: 23946439 DOI: 10.1242/dev.096388] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As cells integrate molecular signals from their environment, cell surface receptors require modified proteoglycans for the robust activation of signaling pathways. Heparan sulfate proteoglycans (HSPGs) have long unbranched chains of repetitive disaccharide units that can be sulfated at specific positions by heparan sulfate O-sulfotransferase (OST) families. Here, we show that two members of the 3-OST family are required in distinct signaling pathways to control left-right (LR) patterning through control of Kupffer's vesicle (KV) cilia length and motility. 3-OST-5 functions in the fibroblast growth factor pathway to control cilia length via the ciliogenic transcription factors FoxJ1a and Rfx2. By contrast, a second 3-OST family member, 3-OST-6, does not regulate cilia length, but regulates cilia motility via kinesin motor molecule (Kif3b) expression and cilia arm dynein assembly. Thus, two 3-OST family members cell-autonomously control LR patterning through distinct pathways that regulate KV fluid flow. We propose that individual 3-OST isozymes create distinct modified domains or 'glycocodes' on cell surface proteoglycans, which in turn regulate the response to diverse cell signaling pathways.
Collapse
Affiliation(s)
- Judith M Neugebauer
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
99
|
De Rossi G, Whiteford JR. Novel insight into the biological functions of syndecan ectodomain core proteins. Biofactors 2013; 39:374-82. [PMID: 23559542 DOI: 10.1002/biof.1104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/18/2013] [Indexed: 01/02/2023]
Abstract
Syndecans are a four member family of multifunctional transmembrane heparan sulphate bearing cell surface receptors. Each family member has common molecular architecture but a distinct expression profile. Numerous molecular interactions between syndecan heparan sulphate chains, growth factors, cytokines, and extracellular matrix molecules have been reported and syndecans are intimately associated with cell adhesion and migration. Here, we describe the important emerging concept that contained within syndecan extracellular core proteins are "adhesion regulatory domains." Cell adhesion is driven by the integrins and syndecan ectodomain adhesion regulatory domains can alter integrin driven cellular responses. Cell adhesion and migration is central to numerous pathologies and an understanding of how syndecan ectodomains influence integrins will lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Giulia De Rossi
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6B, UK
| | | |
Collapse
|
100
|
Choi SS, Kim JS, Song J, Kim Y. High-yield Expression and Characterization of Syndecan-4 Extracellular, Transmembrane and Cytoplasmic Domains. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.4.1120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|