51
|
Inhibition of SHP2 by the Small Molecule Drug SHP099 Prevents Lipopolysaccharide-Induced Acute Lung Injury in Mice. Inflammation 2023; 46:975-986. [PMID: 36732395 DOI: 10.1007/s10753-023-01784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/05/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023]
Abstract
Excessive pulmonary inflammation in acute lung injury (ALI) causes high patient mortality. Anti-inflammatory therapy, combined with infection resistance, can help to prevent ALI and save lives. The expression of Src homology-2 domain-containing protein tyrosine phosphatase 2 (SHP2) was found to be significantly higher in macrophages and lung tissues with ALI, and SHP2-associated MAPK pathways were activated by lipopolysaccharide (LPS). The knockdown of the SHP2 gene suppressed the LPS-induced release of inflammatory factors and the phosphorylation of regulators in the NF-κB pathways in macrophages. Our findings showed crosstalk between the LPS-induced inflammatory pathway and the SHP2-associated MAPK pathways. SHP2 inhibition could be a valuable therapeutic approach for inhibiting excessive inflammation in ALI. We discovered that giving SHP099, a specific allosteric inhibitor of SHP2, to mice with ALI and sepsis relieves ALI and significantly increases animal survival. Our study highlights the important role of SHP2 in ALI development and demonstrates the potential application of SHP099 for treating ALI.
Collapse
|
52
|
Gonzalez P, Debnath S, Chen YA, Hernandez E, Jha P, Dakanali M, Hsieh JT, Sun X. A Theranostic Small-Molecule Prodrug Conjugate for Neuroendocrine Prostate Cancer. Pharmaceutics 2023; 15:481. [PMID: 36839802 PMCID: PMC9967013 DOI: 10.3390/pharmaceutics15020481] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
After androgen deprivation therapy, a significant number of prostate cancer cases progress with a therapy-resistant neuroendocrine phenotype (NEPC). This represents a challenge for diagnosis and treatment. Based on our previously reported design of theranostic small-molecule prodrug conjugates (T-SMPDCs), herein we report a T-SMPDC tailored for targeted positron emission tomography (PET) imaging and chemotherapy of NEPC. The T-SMPDC is built upon a triazine core (TZ) to present three functionalities: (1) a chelating moiety (DOTA: 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) for PET imaging when labeled with 68Ga (t1/2 = 68 min) or other relevant radiometals; (2) an octreotide (Octr) that targets the somatostatin receptor 2 (SSTR2), which is overexpressed in the innervated tumor microenvironment (TME); and (3) fingolimod, FTY720-an antagonist of sphingosine kinase 1 that is an intracellular enzyme upregulated in NEPC. Polyethylene glycol (PEG) chains were incorporated via conventional conjugation methods or a click chemistry reaction forming a 1,4-disubstituted 1,2,3-triazole (Trz) linkage for the optimization of in vivo kinetics as necessary. The T-SMPDC, DOTA-PEG3-TZ(PEG4-Octr)-PEG2-Trz-PEG3-Val-Cit-pABOC-FTY720 (PEGn: PEG with n repeating ethyleneoxy units (n = 2, 3, or 4); Val: valine; Cit: citrulline; pABOC: p-amino-benzyloxycarbonyl), showed selective SSTR2 binding and mediated internalization of the molecule in SSTR2 high cells. Release of FTY720 was observed when the T-SMPDC was exposed to cathepsin B, and the released FTY720 exerted cytotoxicity in cells. In vivo PET imaging showed significantly higher accumulation (2.1 ± 0.3 %ID/g; p = 0.02) of [68Ga]Ga-DOTA-PEG3-TZ(PEG4-Octr)-PEG2-Trz-PEG3-Val-Cit-pABOC-FTY720 in SSTR2high prostate cancer xenografts than in the SSTR2low xenografts (1.5 ± 0.4 %ID/g) at 13 min post-injection (p.i.) with a rapid excretion through the kidneys. Taken together, these proof-of-concept results validate the design concept of the T-SMPDC, which may hold a great potential for targeted diagnosis and therapy of NEPC.
Collapse
Affiliation(s)
- Paulina Gonzalez
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sashi Debnath
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yu-An Chen
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth Hernandez
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Preeti Jha
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marianna Dakanali
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
53
|
Enzyme Inhibitors from Gorgonians and Soft Corals. Mar Drugs 2023; 21:md21020104. [PMID: 36827145 PMCID: PMC9963996 DOI: 10.3390/md21020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
For decades, gorgonians and soft corals have been considered promising sources of bioactive compounds, attracting the interest of scientists from different fields. As the most abundant bioactive compounds within these organisms, terpenoids, steroids, and alkaloids have received the highest coverage in the scientific literature. However, enzyme inhibitors, a functional class of bioactive compounds with high potential for industry and biomedicine, have received much less notoriety. Thus, we revised scientific literature (1974-2022) on the field of marine natural products searching for enzyme inhibitors isolated from these taxonomic groups. In this review, we present representative enzyme inhibitors from an enzymological perspective, highlighting, when available, data on specific targets, structures, potencies, mechanisms of inhibition, and physiological roles for these molecules. As most of the characterization studies for the new inhibitors remain incomplete, we also included a methodological section presenting a general strategy to face this goal by accomplishing STRENDA (Standards for Reporting Enzymology Data) project guidelines.
Collapse
|
54
|
Feng B, Dong X, Liu Z, Zhang J, Liu H, Xu Y. Virtual Screening and Biological Evaluation of Novel Low Molecular Weight Protein Tyrosine Phosphatase Inhibitor for the Treatment of Insulin Resistance. Drug Des Devel Ther 2023; 17:1191-1201. [PMID: 37113468 PMCID: PMC10128076 DOI: 10.2147/dddt.s406956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Purpose Protein tyrosine phosphatases (PTPs) play an essential way in diseases including cancer, obesity, diabetes and autoimmune disorders. As a member of PTPs, low molecular weight PTP (LMPTP) has been a well-recognized anti-insulin resistance target in obesity. However, the number of reported LMPTP inhibitors is limited. Our research aims to discover a novel LMPTP inhibitor and evaluate its biological activity against insulin resistance. Methods A virtual screening pipeline based on the X-ray co-crystal complex of LMPTP was constructed. Enzyme inhibition assay and cellular bioassay were used to evaluate the activity of screened compounds. Results The screening pipeline rendered 15 potential hits from Specs chemical library. Enzyme inhibition assay identified compound F9 (AN-465/41163730) as a potential LMPTP inhibitor with a K i value of 21.5 ± 7.3 μM. Cellular bioassay showed F9 could effectively increase the glucose consumption of HepG2 cells as a result of releasing insulin resistance by regulating PI3K-Akt pathway. Conclusion In summary, this study presents a versatile virtual screening pipeline for potential LMPTP inhibitor discovery and provides a novel-scaffold lead compound that is worthy of further modification to get more potent LMPTP inhibitors.
Collapse
Affiliation(s)
- Bo Feng
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| | - Xu Dong
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| | - Zhen Liu
- Department of Neurology, The Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| | - Jie Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Hongyu Liu
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
- Correspondence: Hongyu Liu; Yuan Xu, Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China, Email ;
| | - Yuan Xu
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
55
|
Hwang B, Kwon MG, Cho MJ, Lee NK, Lee J, Lee JW, Oh KJ, Bae KH, Hwang JH, Min JK, Park JG. Hepatic PTP4A1 ameliorates high-fat diet-induced hepatosteatosis and hyperglycemia by the activation of the CREBH/FGF21 axis. Theranostics 2023; 13:1076-1090. [PMID: 36793871 PMCID: PMC9925322 DOI: 10.7150/thno.79434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Precise regulation of kinases and phosphatases is crucial for human metabolic homeostasis. This study aimed to investigate the roles and molecular mechanisms of protein tyrosine phosphatase type IVA1 (PTP4A1) in regulating hepatosteatosis and glucose homeostasis. Method: Ptp4a1-/- mice, adeno-associated virus encoding Ptp4a1 under liver-specific promoter, adenovirus encoding Fgf21, and primary hepatocytes were used to evaluate PTP4A1-mediated regulation in the hepatosteatosis and glucose homeostasis. Glucose tolerance test, insulin tolerance test, 2-deoxyglucose uptake assay, and hyperinsulinemic-euglycemic clamp were performed to estimate glucose homeostasis in mice. The staining, including oil red O, hematoxylin & eosin, and BODIPY, and biochemical analysis for hepatic triglycerides were performed to assess hepatic lipids. Luciferase reporter assays, immunoprecipitation, immunoblots, quantitative real-time polymerase chain reaction, and immunohistochemistry staining were conducted to explore the underlying mechanism. Results: Here, we found that deficiency of PTP4A1 aggravated glucose homeostasis and hepatosteatosis in mice fed a high-fat (HF) diet. Increased lipid accumulation in hepatocytes of Ptp4a1-/- mice reduced the level of glucose transporter 2 on the plasma membrane of hepatocytes leading to a diminution of glucose uptake. PTP4A1 prevented hepatosteatosis by activating the transcription factor cyclic adenosine monophosphate-responsive element-binding protein H (CREBH)/fibroblast growth factor 21 (FGF21) axis. Liver-specific PTP4A1 or systemic FGF21 overexpression in Ptp4a1-/- mice fed an HF diet restored the disorder of hepatosteatosis and glucose homeostasis. Finally, liver-specific PTP4A1 expression ameliorated an HF diet-induced hepatosteatosis and hyperglycemia in wild-type mice. Conclusions: Hepatic PTP4A1 is critical for regulating hepatosteatosis and glucose homeostasis by activating the CREBH/FGF21 axis. Our current study provides a novel function of PTP4A1 in metabolic disorders; hence, modulating PTP4A1 may be a potential therapeutic strategy against hepatosteatosis-related diseases.
Collapse
Affiliation(s)
- Byungtae Hwang
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Min-Gi Kwon
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Min Ji Cho
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Nam-Kyung Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jangwook Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeong Woong Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jung Hwan Hwang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jong-Gil Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.,Department of Bioscience, KRIBB School of Bioscience, Korea University of Science and Technology (UST), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
56
|
Gupta MK, Gouda G, Sultana S, Punekar SM, Vadde R, Ravikiran T. Structure-related relationship: Plant-derived antidiabetic compounds. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2023:241-295. [DOI: 10.1016/b978-0-323-91294-5.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
|
57
|
Yarnall MT, Kim SH, Korntner S, Bishop AC. Destabilization of the SHP2 and SHP1 protein tyrosine phosphatase domains by a non-conserved "backdoor" cysteine. Biochem Biophys Rep 2022; 32:101370. [PMID: 36275931 PMCID: PMC9578986 DOI: 10.1016/j.bbrep.2022.101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) are critical regulators of cellular signal transduction that catalyze the hydrolytic dephosphorylation of phosphotyrosine in substrate proteins. Among several conserved features in classical PTP domains are an active-site cysteine residue that is necessary for catalysis and a "backdoor" cysteine residue that can serve to protect the active-site cysteine from irreversible oxidation. Curiously, two biologically important phosphatases, Src homology domain-containing PTPs 2 and 1 (SHP2 and SHP1), each contain an additional backdoor cysteine residue at a position of the PTP domain that is occupied by proline in almost all other classical PTPs (position 333 in human SHP2 numbering). Here we show that the presence of cysteine 333 significantly destabilizes the fold of the PTP domains in the SHPs. We find that replacement of cysteine 333 with proline confers increased thermal stability on the SHP2 and SHP1 PTP domains, as measured by temperature-dependent activity assays and differential scanning fluorimetry. Conversely, we show that substantial destabilization of the PTP-domain fold is conferred by introduction of a non-natural cysteine residue in a non-SHP PTP that contains proline at the 333 position. It has previously been suggested that the extra backdoor cysteine of the SHP PTPs may work in tandem with the conserved backdoor cysteine to provide protection from irreversible oxidative enzyme inactivation. If so, our current results suggest that, during the course of mammalian evolution, the SHP proteins have developed extra protection from oxidation at the cost of the thermal instability that is conferred by the presence of their PTP domains' second backdoor cysteine.
Collapse
Affiliation(s)
| | - Sean H. Kim
- Amherst College, Department of Chemistry, Amherst, MA, 01002, USA
| | - Samuel Korntner
- Amherst College, Department of Chemistry, Amherst, MA, 01002, USA
| | | |
Collapse
|
58
|
Wang T, Ba X, Zhang X, Zhang N, Wang G, Bai B, Li T, Zhao J, Zhao Y, Yu Y, Wang B. Pan-cancer analyses of classical protein tyrosine phosphatases and phosphatase-targeted therapy in cancer. Front Immunol 2022; 13:976996. [PMID: 36341348 PMCID: PMC9630847 DOI: 10.3389/fimmu.2022.976996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/04/2022] [Indexed: 09/23/2023] Open
Abstract
Protein tyrosine phosphatases function in dephosphorylating target proteins to regulate signaling pathways that control a broad spectrum of fundamental physiological and pathological processes. Detailed knowledge concerning the roles of classical PTPs in human cancer merits in-depth investigation. We comprehensively analyzed the regulatory mechanisms and clinical relevance of classical PTPs in more than 9000 tumor patients across 33 types of cancer. The independent datasets and functional experiments were employed to validate our findings. We exhibited the extensive dysregulation of classical PTPs and constructed the gene regulatory network in human cancer. Moreover, we characterized the correlation of classical PTPs with both drug-resistant and drug-sensitive responses to anti-cancer drugs. To evaluate the PTP activity in cancer prognosis, we generated a PTPscore based on the expression and hazard ratio of classical PTPs. Our study highlights the notable role of classical PTPs in cancer biology and provides novel intelligence to improve potential therapeutic strategies based on pTyr regulation.
Collapse
Affiliation(s)
- Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xinlei Ba
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xiaonan Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
- Department of Pathophysiology, Bengbu Medical College, Bengbu, China
| | - Na Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Guowen Wang
- Department of Thoracic surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Bin Bai
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Tong Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Jiahui Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yanjiao Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yang Yu
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Bing Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
59
|
He R, Wang J, Yu ZH, Moyers JS, Michael MD, Durham TB, Cramer JW, Qian Y, Lin A, Wu L, Noinaj N, Barrett DG, Zhang ZY. Structure-Based Design of Active-Site-Directed, Highly Potent, Selective, and Orally Bioavailable Low-Molecular-Weight Protein Tyrosine Phosphatase Inhibitors. J Med Chem 2022; 65:13892-13909. [PMID: 36197449 PMCID: PMC10128051 DOI: 10.1021/acs.jmedchem.2c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein tyrosine phosphatases constitute an important class of drug targets whose potential has been limited by the paucity of drug-like small-molecule inhibitors. We recently described a class of active-site-directed, moderately selective, and potent inhibitors of the low-molecular-weight protein tyrosine phosphatase (LMW-PTP). Here, we report our extensive structure-based design and optimization effort that afforded inhibitors with vastly improved potency and specificity. The leading compound inhibits LMW-PTP potently and selectively (Ki = 1.2 nM, >8000-fold selectivity). Many compounds exhibit favorable drug-like properties, such as low molecular weight, weak cytochrome P450 inhibition, high metabolic stability, moderate to high cell permeability (Papp > 0.2 nm/s), and moderate to good oral bioavailability (% F from 23 to 50% in mice), and therefore can be used as in vivo chemical probes to further dissect the complex biological as well as pathophysiological roles of LMW-PTP and for the development of therapeutics targeting LMW-PTP.
Collapse
Affiliation(s)
- Rongjun He
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46225, United States.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United States
| | - Jifeng Wang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United States
| | - Zhi-Hong Yu
- Department of Medicinal Chemistry and Molecular Pharmacology and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Julie S Moyers
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46225, United States
| | - M Dodson Michael
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46225, United States
| | - Timothy B Durham
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46225, United States
| | - Jeff W Cramer
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46225, United States
| | - Yuewei Qian
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46225, United States
| | - Amy Lin
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46225, United States
| | - Li Wu
- Department of Medicinal Chemistry and Molecular Pharmacology and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| | - Nicholas Noinaj
- Department of Biological Sciences, Purdue University, 240 S. Martin Jischke Drive, West Lafayette, Indiana 47907, United States
| | - David G Barrett
- Lilly Research Laboratories, Eli Lilly and Company, 307 E Merrill Street, Indianapolis, Indiana 46225, United States
| | - Zhong-Yin Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, Indiana 46202, United States.,Department of Medicinal Chemistry and Molecular Pharmacology and Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
60
|
He P, Faris S, Sagabala RS, Datta P, Xu Z, Callahan B, Wang C, Boivin B, Zhang F, Linhardt RJ. Cholesterol Chip for the Study of Cholesterol-Protein Interactions Using SPR. BIOSENSORS 2022; 12:788. [PMID: 36290926 PMCID: PMC9599816 DOI: 10.3390/bios12100788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/16/2022] [Accepted: 09/22/2022] [Indexed: 12/03/2022]
Abstract
Cholesterol, an important lipid in animal membranes, binds to hydrophobic pockets within many soluble proteins, transport proteins and membrane bound proteins. The study of cholesterol-protein interactions in aqueous solutions is complicated by cholesterol's low solubility and often requires organic co-solvents or surfactant additives. We report the synthesis of a biotinylated cholesterol and immobilization of this derivative on a streptavidin chip. Surface plasmon resonance (SPR) was then used to measure the kinetics of cholesterol interaction with cholesterol-binding proteins, hedgehog protein and tyrosine phosphatase 1B.
Collapse
Affiliation(s)
- Peng He
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Shannon Faris
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Reddy Sudheer Sagabala
- Department of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Payel Datta
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Zihan Xu
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - Brian Callahan
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - Chunyu Wang
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Benoit Boivin
- Department of Nanobioscience, College of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, NY 12203, USA
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Departments of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Departments of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
61
|
Nicoletti G, White K. The Anti-Fungal Activity of Nitropropenyl Benzodioxole (NPBD), a Redox-Thiol Oxidant and Tyrosine Phosphatase Inhibitor. Antibiotics (Basel) 2022; 11:antibiotics11091188. [PMID: 36139967 PMCID: PMC9495065 DOI: 10.3390/antibiotics11091188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Phylogenetically diverse fungal species are an increasing cause of severe disease and mortality. Identification of new targets and development of new fungicidal drugs are required to augment the effectiveness of current chemotherapy and counter increasing resistance in pathogens. Nitroalkenyl benzene derivatives are thiol oxidants and inhibitors of cysteine-based molecules, which show broad biological activity against microorganisms. Nitropropenyl benzodioxole (NPBD), one of the most active antimicrobial derivatives, shows high activity in MIC assays for phylogenetically diverse saprophytic, commensal and parasitic fungi. NPBD was fungicidal to all species except the dermatophytic fungi, with an activity profile comparable to that of Amphotericin B and Miconazole. NPBD showed differing patterns of dynamic kill rates under different growth conditions for Candida albicans and Aspergillus fumigatus and was rapidly fungicidal for non-replicating vegetative forms and microconidia. It did not induce resistant or drug tolerant strains in major pathogens on long term exposure. A literature review highlights the complexity and interactivity of fungal tyrosine phosphate and redox signaling pathways, their differing metabolic effects in fungal species and identifies some targets for inhibition. A comparison of the metabolic activities of Amphotericin B, Miconazole and NPBD highlights the multiple cellular functions of these agents and the complementarity of many mechanisms. The activity profile of NPBD illustrates the functional diversity of fungal tyrosine phosphatases and thiol-based redox active molecules and contributes to the validation of tyrosine phosphatases and redox thiol molecules as related and complementary selective targets for antimicrobial drug development. NPBD is a selective antifungal agent with low oral toxicity which would be suitable for local treatment of skin and mucosal infections.
Collapse
|
62
|
The Antidiabetic Activities of Neocryptotanshinone: Screened by Molecular Docking and Related to the Modulation of PTP1B. Nutrients 2022; 14:nu14153031. [PMID: 35893885 PMCID: PMC9330310 DOI: 10.3390/nu14153031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The aim of this study was to provide a practical experimental basis for the development of Neocryptotanshinone (NCTS) as an effective hypoglycemic drug and a theoretical method for the rapid screening of natural compounds with hypoglycemic effects. Molecular docking was used to screen the most suitable ligand. Hematoxylin and eosin, immunohistochemical staining, enzyme-linked immunosorbent assay and Western Blotting approved the hypoglycemic effect of NCTS. According to the free energy of binding, among 180 active compounds from the Traditional Chinese Medicine Integrated Database, NCTS was finally chose for investigation its hypoglycemic effects. In db/db mice, NCTS significantly reduced body weight and plasma glucose, improved glucose tolerance and levels of fasting plasma glucose and glycated hemoglobin A1c, and decreased insulin resistance after six-week administration. NCTS restored the pathological state in the liver of db/db mice and significantly decreased protein tyrosine phosphatase 1B (PTP1B) expression in the liver and muscle of db/db mice, which is related to the regulatory effect of NCTS on insulin receptor substrate 1. In conclusion, we successfully explored the hypoglycemic effect of NCTS in db/db mice via regulating the expression of PTP1B.
Collapse
|
63
|
Differential Regulation of CD45 Expression on Granulocytes, Lymphocytes, and Monocytes in COVID-19. J Clin Med 2022; 11:jcm11144219. [PMID: 35887979 PMCID: PMC9318847 DOI: 10.3390/jcm11144219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023] Open
Abstract
CD45 is a transmembrane glycoprotein and protein tyrosine phosphatase expressed on the surface of all nucleated hematopoietic cells. While there is increasing evidence demonstrating the involvement of CD45 in immune system regulation, no information on CD45 expression in inflammation and sepsis is currently available. Therefore, we determined the CD45 surface expression on granulocytes, lymphocytes, and monocytes in patients with COVID-19 and healthy volunteers in both absence and presence of lipopolysaccharide (LPS). Following approval by the local ethics committee, whole blood samples were obtained from patients with COVID-19 infection on day 1 of hospital admission and healthy volunteers. Samples were incubated in absence and presence of LPS and CD45 was measured in granulocytes, lymphocytes, and monocytes using flow cytometry. In comparison with healthy individuals, COVID-19 patients showed an increased CD45 expression on the surface of granulocytes (+35%, p < 0.02) and lymphocytes (+39%, p < 0.0001), but a reduced CD45 expression on monocytes (−35%, p < 0.0001). LPS incubation of whole blood from healthy individuals increased the CD45 expression on granulocytes (+430%, p < 0.0001), lymphocytes (+32%, p = 0.0012), and monocytes (+36%, p = 0.0005), respectively. LPS incubation of whole blood samples from COVID-19 patients increased the CD45 expression on granulocytes and monocytes, and decreased the CD45 expression on lymphocytes. In conclusion, CD45 expression on leucocytes is altered: (1) in COVID-19 patients, and (2) in in vitro endotoxemia in a complex cell-specific way, thus representing a new immunoregulatory mechanism.
Collapse
|
64
|
Sim WJ, Kim Y, Jo DU, Seo JW, Chung S, Choi HK, Kim KT, Lim TG. Umbilicaria esculenta Extract Exhibits Antiwrinkle Activity by Suppressing ErbB2 Phosphorylation. J Med Food 2022; 25:770-777. [PMID: 35834632 DOI: 10.1089/jmf.2021.k.0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Umbilicaria esculenta (UE), an edible lichen, is widespread in northeast Asian countries, including China, Japan, and Korea. In the present study, we examined the antiwrinkle activity of UE. We observed that the UE extract (UEE) suppressed ultraviolet (UV)-induced matrix metalloprotein-1 (MMP-1) expression and reactive oxygen species (ROS) generation in a human keratinocyte cell line (HaCaT) and human skin tissue. In addition, UEE reversed the UV-induced decrease in collagen in the human skin tissue. Excessive and chronic UV exposure is a key factor underlying skin wrinkle formation via MMP-1 expression. As treatment with UEE disrupted the UV-activated mitogen-activated protein kinase (MAPK) signaling pathway, we applied an antibody array to unveil the underlying mechanism of UEE. Interestingly, UEE treatment inhibited ErbB2 phosphorylation, but not epidermal growth factor receptor phosphorylation, a heterodimerization partner with ErbB2. Furthermore, UEE treatment enhanced UV-suppressed phosphatase activity via ROS suppression. Collectively, our findings indicate that UEE enhances ErbB2 dephosphorylation to suppress UV-induced MMP-1 expression.
Collapse
Affiliation(s)
- Woo-Jin Sim
- Department of Food Science & Biotechnology, Sejong University, Seoul, Korea
| | - Yongeun Kim
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Dong-Uk Jo
- Department of Food Science & Biotechnology, Sejong University, Seoul, Korea
| | - Ji Won Seo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Sangwon Chung
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
| | - Hyo-Kyoung Choi
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
| | - Kyung-Tack Kim
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Korea
| | - Tae-Gyu Lim
- Department of Food Science & Biotechnology, Sejong University, Seoul, Korea
| |
Collapse
|
65
|
Accorsi M, Tiemann M, Wehrhan L, Finn LM, Cruz R, Rautenberg M, Emmerling F, Heberle J, Keller BG, Rademann J. Pentafluorophosphato‐Phenylalanines: Amphiphilic Phosphotyrosine Mimetics Displaying Fluorine‐Specific Protein Interactions. Angew Chem Int Ed Engl 2022; 61:e202203579. [PMID: 35303375 PMCID: PMC9323422 DOI: 10.1002/anie.202203579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 11/10/2022]
Abstract
Phosphotyrosine residues are essential functional switches in health and disease. Thus, phosphotyrosine biomimetics are crucial for the development of chemical tools and drug molecules. We report here the discovery and investigation of pentafluorophosphato amino acids as novel phosphotyrosine biomimetics. A mild acidic pentafluorination protocol was developed and two PF5‐amino acids were prepared and employed in peptide synthesis. Their structures, reactivities, and fluorine‐specific interactions were studied by NMR and IR spectroscopy, X‐ray diffraction, and in bioactivity assays. The mono‐anionic PF5 motif displayed an amphiphilic character binding to hydrophobic surfaces, to water molecules, and to protein‐binding sites, exploiting charge and H−F‐bonding interactions. The novel motifs bind 25‐ to 30‐fold stronger to the phosphotyrosine binding site of the protein tyrosine phosphatase PTP1B than the best current biomimetics, as rationalized by computational methods, including molecular dynamics simulations.
Collapse
Affiliation(s)
- Matteo Accorsi
- Department of Biology, Chemistry, Pharmacy Institute of Pharmacy Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Germany
| | - Markus Tiemann
- Department of Biology, Chemistry, Pharmacy Institute of Pharmacy Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Germany
| | - Leon Wehrhan
- Department of Biology, Chemistry, Pharmacy Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Lauren M. Finn
- Department of Biology, Chemistry, Pharmacy Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Ruben Cruz
- Department of Physics Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Max Rautenberg
- Bundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstätter-Str.11 12489 Berlin Germany
| | - Franziska Emmerling
- Bundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstätter-Str.11 12489 Berlin Germany
| | - Joachim Heberle
- Department of Physics Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | - Bettina G. Keller
- Department of Biology, Chemistry, Pharmacy Institute of Chemistry and Biochemistry Freie Universität Berlin Arnimallee 22 14195 Berlin Germany
| | - Jörg Rademann
- Department of Biology, Chemistry, Pharmacy Institute of Pharmacy Freie Universität Berlin Königin-Luise-Str. 2+4 14195 Berlin Germany
| |
Collapse
|
66
|
PTPRJ is downregulated in cervical squamous cell carcinoma. J Genet 2022. [DOI: 10.1007/s12041-022-01368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
67
|
Pan J, Zhou L, Zhang C, Xu Q, Sun Y. Targeting protein phosphatases for the treatment of inflammation-related diseases: From signaling to therapy. Signal Transduct Target Ther 2022; 7:177. [PMID: 35665742 PMCID: PMC9166240 DOI: 10.1038/s41392-022-01038-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammation is the common pathological basis of autoimmune diseases, metabolic diseases, malignant tumors, and other major chronic diseases. Inflammation plays an important role in tissue homeostasis. On one hand, inflammation can sense changes in the tissue environment, induce imbalance of tissue homeostasis, and cause tissue damage. On the other hand, inflammation can also initiate tissue damage repair and maintain normal tissue function by resolving injury and restoring homeostasis. These opposing functions emphasize the significance of accurate regulation of inflammatory homeostasis to ameliorate inflammation-related diseases. Potential mechanisms involve protein phosphorylation modifications by kinases and phosphatases, which have a crucial role in inflammatory homeostasis. The mechanisms by which many kinases resolve inflammation have been well reviewed, whereas a systematic summary of the functions of protein phosphatases in regulating inflammatory homeostasis is lacking. The molecular knowledge of protein phosphatases, and especially the unique biochemical traits of each family member, will be of critical importance for developing drugs that target phosphatases. Here, we provide a comprehensive summary of the structure, the "double-edged sword" function, and the extensive signaling pathways of all protein phosphatases in inflammation-related diseases, as well as their potential inhibitors or activators that can be used in therapeutic interventions in preclinical or clinical trials. We provide an integrated perspective on the current understanding of all the protein phosphatases associated with inflammation-related diseases, with the aim of facilitating the development of drugs that target protein phosphatases for the treatment of inflammation-related diseases.
Collapse
Affiliation(s)
- Jie Pan
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Lisha Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chenyang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Biotechnology and Pharmaceutical Sciences, School of Life Science, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
68
|
Luo J, Sun Y, Li Q, Kong L. Research progress of meliaceous limonoids from 2011 to 2021. Nat Prod Rep 2022; 39:1325-1365. [PMID: 35608367 DOI: 10.1039/d2np00015f] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Covering: July 2010 to December 2021Limonoids, a kind of natural tetranortriterpenoids with diverse skeletons and valuable insecticidal and medicinal bioactivities, are the characteristic metabolites of most plants of the Meliaceae family. The chemistry and bioactivities of meliaceous limonoids are a continuing hot area of natural products research; to date, about 2700 meliaceous limonoids have been identified. In particular, more than 1600, including thirty kinds of novel rearranged skeletons, have been isolated and identified in the past decade due to their wide distribution and abundant content in Meliaceae plants and active biosynthetic pathways. In addition to the discovery of new structures, many positive medicinal bioactivities of meliaceous limonoids have been investigated, and extensive achievements regarding the chemical and biological synthesis have been made. This review summarizes the recent research progress in the discovery of new structures, medicinal and agricultural bioactivities, and chem/biosynthesis of limonoids from the plants of the Meliaceae family during the past decade, with an emphasis on the discovery of limonoids with novel skeletons, the medicinal bioactivities and mechanisms, and chemical synthesis. The structures, origins, and bioactivities of other new limonoids were provided as ESI. Studies published from July 2010 to December 2021 are reviewed, and 482 references are cited.
Collapse
Affiliation(s)
- Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Yunpeng Sun
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Qiurong Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research, State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
69
|
Zhao Y, Yang WQ, Yu L, Yang J, Zhu HR, Zhang L. Dl-3-n-butylphthalide alleviates cognitive impairment in amyloid precursor protein/presenilin 1 transgenic mice by regulating the striatal-enriched protein tyrosine phosphatase/ERK/cAMP-response element-binding protein signaling pathway. Exp Ther Med 2022; 23:319. [PMID: 35350668 PMCID: PMC8943801 DOI: 10.3892/etm.2022.11248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/04/2022] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive impairment and the deposition of amyloid plaques in the brain. In a transgenic mouse model of AD, cognitive impairment and synaptic dysfunction were revealed to be associated with soluble amyloid oligomers and to occur prior to plaque formation. The results of our previous studies revealed that striatal-enriched protein tyrosine phosphatase (STEP)61 negatively regulated the β-amyloid protein-mediated ERK/cAMP-response element-binding protein (CREB) signaling pathway. Dl-3-n-butylphthalide (NBP) is a synthetic compound approved by the Food and Drug Administration of China for the treatment of ischemic stroke in 2002. Studies have shown that the neuroprotective effects of NBP involve multiple mechanisms. The present study further explored the mechanism of NBP therapy in amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mice, and the involvement of the STEP/ERK/CREB signaling pathway. The results suggested that NBP treatment effectively ameliorated the spatial learning and memory impairment of the APP/PS1 transgenic mice, which was assessed using a Morris water maze. In addition, NBP reduced amyloid-induced activation of STEP61 levels, while increasing phosphorylated (p)-ERK1/2 and p-CREB levels in the cerebral cortex and hippocampus of APP/PS1 transgenic mice by western blotting and immunostaining. In conclusion, the present study provided evidence to suggest that the new drug NBP improved amyloid-induced learning and memory deficits, likely through the regulation of the STEP/ERK/CREB pathway. The results revealed that NBP, as a multi-target drug, may exert a neuroprotective effect. Therefore, NBP may serve as an effective treatment for AD.
Collapse
Affiliation(s)
- Yan Zhao
- Life Science Institution, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Wen-Qiang Yang
- Life Science Institution, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Lu Yu
- Provincial Key Laboratory of Cardiovascular and Cerebrovascular Drug Basic Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Jing Yang
- Provincial Key Laboratory of Cardiovascular and Cerebrovascular Drug Basic Research, Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Hai-Rong Zhu
- Department of Neurology, Affiliated Taizhou Hospital of Nanjing University of Chinese Medicine, Taizhou, Jiangsu 225300, P.R. China
| | - Lin Zhang
- Department of Neurology, Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, Zhejiang 317500, P.R. China,Correspondence to: Dr Lin Zhang, Department of Neurology, Affiliated Wenling Hospital of Wenzhou Medical University, 333 Chuan'an South Road, Chengxi Street, Wenling, Zhejiang 317500, P.R. China
| |
Collapse
|
70
|
Li Z, Tian J, Cheng Z, Teng W, Zhang W, Bao Y, Wang Y, Song B, Chen Y, Li B. Hypoglycemic bioactivity of anthocyanins: A review on proposed targets and potential signaling pathways. Crit Rev Food Sci Nutr 2022; 63:7878-7895. [PMID: 35333674 DOI: 10.1080/10408398.2022.2055526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with complicated interrelationships responsible for initiating its pathogenesis. Novel strategies for the treatment of this devastating disease have attracted increasing attention worldwide. Anthocyanins are bioactive compounds that are widely distributed in the plant kingdom, and multiple studies have elucidated their beneficial role in preventing and managing T2DM. This review summarizes and comments on the hypoglycemic actions of anthocyanins from the perspective of molecular mechanisms and different target-related signaling pathways in vitro, in vivo, and clinical trials. Anthocyanins can ameliorate T2DM by functioning as carbohydrate digestive enzyme inhibitors, facilitating glucose transporter 4 (GLUT4) translocation, suppressing the effectiveness of dipeptidyl peptidase IV (DPP-IV), promoting glucagon-like peptide-1 (GLP-1) secretion, inhibiting protein tyrosine phosphatase 1B (PTP1B) overexpression, and interacting with sodium-glucose co-transporter (SGLT) to delay glucose absorption in various organs and tissues. In summary, anthocyanin is a promising and practical small molecule that can hyperglycemic symptoms and accompanying complications suffered by patients with diabetes. However, rational and potent doses for daily intake and clinical studies are required in the future.
Collapse
Affiliation(s)
- Zhiying Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Zhen Cheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Wei Teng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Weijia Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Yiwen Bao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Yidi Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Baoge Song
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, China
- Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Shenyang, Liaoning, China
| |
Collapse
|
71
|
Accorsi M, Tiemann M, Wehrhan L, Finn LM, Cruz R, Rautenberg M, Emmerling F, Heberle J, Keller BG, Rademann J. Pentafluorophosphato‐Phenylalanines: Amphiphilic Phosphotyrosine Mimetics Displaying Fluorine‐Specific Protein Interactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Matteo Accorsi
- Freie Universität Berlin: Freie Universitat Berlin Department of Biology, Chemistry, Pharmacy; Institute of Pharmacy GERMANY
| | - Markus Tiemann
- Freie Universität Berlin: Freie Universitat Berlin Department of Biology, Chemistry, Pharmacy, Institute of Pharmacy GERMANY
| | - Leon Wehrhan
- Freie Universität Berlin: Freie Universitat Berlin Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry GERMANY
| | - Lauren M. Finn
- Freie Universität Berlin: Freie Universitat Berlin Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry GERMANY
| | - Ruben Cruz
- Freie Universität Berlin: Freie Universitat Berlin Department of Physics GERMANY
| | - Max Rautenberg
- Bundesanstalt für Materialforschung und -prüfung: Bundesanstalt fur Materialforschung und -prufung Structure Analysis GERMANY
| | - Franziska Emmerling
- Bundesanstalt für Materialforschung und -prüfung: Bundesanstalt fur Materialforschung und -prufung Structural Analytics GERMANY
| | - Joachim Heberle
- Freie Universität Berlin: Freie Universitat Berlin Department of Physics GERMANY
| | - Bettina G. Keller
- Freie Universität Berlin: Freie Universitat Berlin Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry GERMANY
| | - Jörg Rademann
- Freie Universitat Berlin, Institute of Pharmacy Medicinal Chemistry Königin-Luise-Str. 2+4 14195 Berlin GERMANY
| |
Collapse
|
72
|
Hexachlorophene, a selective SHP2 inhibitor, suppresses proliferation and metastasis of KRAS-mutant NSCLC cells by inhibiting RAS/MEK/ERK and PI3K/AKT signaling pathways. Toxicol Appl Pharmacol 2022; 441:115988. [DOI: 10.1016/j.taap.2022.115988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/04/2022] [Accepted: 03/14/2022] [Indexed: 12/25/2022]
|
73
|
Terminalin from African Mango (Irvingia gabonensis) Stimulates Glucose Uptake through Inhibition of Protein Tyrosine Phosphatases. Biomolecules 2022; 12:biom12020321. [PMID: 35204821 PMCID: PMC8869479 DOI: 10.3390/biom12020321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Protein tyrosine phosphatases (PTPs), along with protein tyrosine kinases, control signaling pathways involved in cell growth, metabolism, differentiation, proliferation, and survival. Several PTPs, such as PTPN1, PTPN2, PTPN9, PTPN11, PTPRS, and DUSP9, disrupt insulin signaling and trigger type 2 diabetes, indicating that PTPs are promising drug targets for the treatment or prevention of type 2 diabetes. As part of an ongoing study on the discovery of pharmacologically active bioactive natural products, we conducted a phytochemical investigation of African mango (Irvingia gabonensis) using liquid chromatography–mass spectrometry (LC/MS)-based analysis, which led to the isolation of terminalin as a major component from the extract of the seeds of I. gabonensis. The structure of terminalin was characterized by spectroscopic methods, including one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) and high-resolution (HR) electrospray ionization (ESI) mass spectroscopy. Moreover, terminalin was evaluated for its antidiabetic property; terminalin inhibited the catalytic activity of PTPN1, PTPN9, PTPN11, and PTPRS in vitro and led to a significant increase in glucose uptake in differentiated C2C12 muscle cells, indicating that terminalin exhibits antidiabetic effect through the PTP inhibitory mechanism. These findings suggest that terminalin derived from African mango could be used as a functional food ingredient or pharmaceutical supplement for the prevention of type 2 diabetes.
Collapse
|
74
|
Hongdusit A, Liechty ET, Fox JM. Analysis of Three Architectures for Controlling PTP1B with Light. ACS Synth Biol 2022; 11:61-68. [PMID: 34898189 DOI: 10.1021/acssynbio.1c00398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photosensory domains are powerful tools for placing proteins under optical control, but their integration into light-sensitive chimeras is often challenging. Many designs require structural iterations, and direct comparisons of alternative approaches are rare. This study uses protein tyrosine phosphatase 1B (PTP1B), an influential regulatory enzyme, to compare three architectures for controlling PTPs with light: a protein fusion, an insertion chimera, and a split construct. All three designs permitted optical control of PTP1B activity in vitro (i.e., kinetic assays of purified enzyme) and in mammalian cells; photoresponses measured under both conditions, while different in magnitude, were linearly correlated. The fusion- and insertion-based architectures exhibited the highest dynamic range and maintained native localization patterns in mammalian cells. A single insertion architecture enabled optical control of both PTP1B and TCPTP, but not SHP2, where the analogous chimera was active but not photoswitchable. Findings suggest that PTPs are highly tolerant of domain insertions and support the use of in vitro screens to evaluate different optogenetic designs.
Collapse
Affiliation(s)
- Akarawin Hongdusit
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Evan T. Liechty
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Jerome M. Fox
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| |
Collapse
|
75
|
Ragunathan V, Chithra K, Shivanika C, Sudharsan MS. Modelling and targeting mitochondrial protein tyrosine phosphatase 1: a computational approach. In Silico Pharmacol 2022; 10:3. [PMID: 35111562 PMCID: PMC8762535 DOI: 10.1007/s40203-022-00119-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 01/03/2022] [Indexed: 01/19/2023] Open
Abstract
The present research scintillates on the homology modelling of rat mitochondrial protein tyrosine phosphatase 1 (PTPMT1) and targeting its activity using flavonoids through a computational docking approach. PTPMT1 is a dual-specificity phosphatase responsible for protein phosphorylation and plays a vital role in the metabolism of cardiolipin biosynthesis, insulin regulation, etc. The inhibition of PTPMT1 has also shown enhanced insulin levels. The three-dimensional structure of the protein is not yet known. The homology modelling was performed using SWISS-MODEL and Geno3D webservers to compare the efficiencies. The PROCHECK for protein modelled using SWISS-MODEL showed 91.6% of amino acids in the most favoured region, 0.7% residues in the disallowed region that was found to be significant compared to the model built using Geno3D. 210 common flavonoids were docked in the modelled protein using the AutoDock 4.2.6 along with a control drug alexidine dihydrochloride. Our results show promising candidates that bind protein tyrosine phosphatase 1, including, prunin (- 8.66 kcal/mol); oroxindin (- 8.56 kcal/mol); luteolin 7-rutinoside (- 8.47 kcal/mol); 3(2H)-isoflavenes (- 8.36 kcal/mol); nicotiflorin (- 8.29 kcal/mol), ranked top in the docking experiments. We predicted the pharmacokinetic and Lipinski properties of the top ten compounds with the lowest binding energies. To further validate the stability of the modelled protein and docked complexes molecular dynamics simulations were performed using Desmond, Schrodinger for 150 ns in conjunction with MM-GBSA. Thus, flavonoids could act as potential inhibitors of PTPMT1, and further, in-vitro and in-vivo studies are essential to complete the drug development process.
Collapse
Affiliation(s)
- Venkataraghavan Ragunathan
- grid.252262.30000 0001 0613 6919Nanomaterials and Environmental Research Laboratory, Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai, 600025 India
| | - K. Chithra
- grid.252262.30000 0001 0613 6919Nanomaterials and Environmental Research Laboratory, Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai, 600025 India
| | - C. Shivanika
- grid.412813.d0000 0001 0687 4946Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore Campus, Vellore, Tamil Nadu 632014 India
| | - Meenambiga Setti Sudharsan
- grid.412815.b0000 0004 1760 6324Department of Bioengineering, School of Engineering, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, 600117 India
| |
Collapse
|
76
|
Khan MM, Kalim UU, Khan MH, Lahesmaa R. PP2A and Its Inhibitors in Helper T-Cell Differentiation and Autoimmunity. Front Immunol 2022; 12:786857. [PMID: 35069561 PMCID: PMC8766794 DOI: 10.3389/fimmu.2021.786857] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a highly complex heterotrimeric Ser/Thr phosphatase that regulates many cellular processes. The role of PP2A as a tumor suppressor has been extensively studied and reviewed. However, emerging evidence suggests PP2A constrains inflammatory responses and is important in autoimmune and neuroinflammatory diseases. Here, we reviewed the existing literature on the role of PP2A in T-cell differentiation and autoimmunity. We have also discussed the modulation of PP2A activity by endogenous inhibitors and its small-molecule activators as potential therapeutic approaches against autoimmunity.
Collapse
Affiliation(s)
- Mohd Moin Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Turku Doctoral Programme of Molecular Medicine (TuDMM), University of Turku, Turku, Finland
| | - Ubaid Ullah Kalim
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Meraj H. Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| |
Collapse
|
77
|
Bae JH, Park D. Effect of dietary calcium on the gender-specific association between polymorphisms in the PTPRD locus and osteoporosis. Clin Nutr 2022; 41:680-686. [DOI: 10.1016/j.clnu.2022.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/01/2022] [Accepted: 01/21/2022] [Indexed: 11/03/2022]
|
78
|
Rahimi HR, Mojarrad M, Moghbeli M. MicroRNA-96: A therapeutic and diagnostic tumor marker. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:3-13. [PMID: 35656454 DOI: 10.22038/ijbms.2021.59604.13226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022]
Abstract
Cancer has been always considered as one of the main human health challenges worldwide. One of the main causes of cancer-related mortality is late diagnosis in the advanced stages of the disease, which reduces the therapeutic efficiency. Therefore, novel non-invasive diagnostic methods are required for the early detection of tumors and improving the quality of life and survival in cancer patients. MicroRNAs (miRNAs) have pivotal roles in various cellular processes such as cell proliferation, motility, and neoplastic transformation. Since circulating miRNAs have high stability in body fluids, they can be suggested as efficient noninvasive tumor markers. MiR-96 belongs to the miR-183-96-182 cluster that regulates cell migration and tumor progression as an oncogene or tumor suppressor by targeting various genes in solid tumors. In the present review, we have summarized all of the studies that assessed the role of miR-96 during tumor progression. This review clarifies the molecular mechanisms and target genes recruited by miR-96 to regulate tumor progression and metastasis. It was observed that miR-96 mainly affects tumorigenesis by targeting the structural proteins and FOXO transcription factors.
Collapse
Affiliation(s)
- Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
79
|
Fulo HF, Rueb NJ, Gaston R, Batsomboon P, Ahmed KT, Barrios AM, Dudley GB. Synthesis of illudalic acid and analogous phosphatase inhibitors. Org Biomol Chem 2021; 19:10596-10600. [PMID: 34847212 PMCID: PMC8906844 DOI: 10.1039/d1ob02106k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Developing an efficient, concise synthesis of the fungal natural product illudalic acid has been a long-standing challenge, made more pressing by the recent discovery that illudalic acid and analogs are selective phosphatase inhibitors. Syntheses of illudalic acid have become progressively more efficient over the decades yet remain strategically grounded in a 17-step synthesis reported in 1977. Here we validate a two-step process-convergent [4 + 2] benzannulation and one-pot coordinated functional group manipulations-for preparing the key trifunctional pharmacophore of illudalic acid. The modular building blocks are readily available in 2-3 steps, for a longest linear sequence (LLS) of 5 steps to illudalic acid from 3,3-dimethylcyclopentanone. A small collection of analogous indanes and tetralins featuring the same pharmacophore were prepared by a similar route. These compounds potently and selectively inhibit the human leukocyte common antigen-related (LAR) subfamily of protein tyrosine phosphatases (PTPs). Evidence supporting a postulated covalent ligation mechanism is provided herein.
Collapse
Affiliation(s)
- Harvey F Fulo
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
| | - Nicole J Rueb
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA.
| | - Robert Gaston
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
| | - Paratchata Batsomboon
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
| | - Kh Tanvir Ahmed
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
| | - Amy M Barrios
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, 84112, USA.
| | - Gregory B Dudley
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, 26506, USA.
| |
Collapse
|
80
|
Ismail MA, Nasrallah GK, Monne M, AlSayab A, Yassin MA, Varadharaj G, Younes S, Sorio C, Cook R, Modjtahedi H, Al-Dewik NI. Description of PTPRG genetic variants identified in a cohort of Chronic Myeloid Leukemia patients and their ability to influence response to Tyrosine kinase Inhibitors. Gene 2021; 813:146101. [PMID: 34906644 DOI: 10.1016/j.gene.2021.146101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/07/2021] [Accepted: 11/16/2021] [Indexed: 12/25/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) have remarkably transformed Ph+ chronic myeloid leukemia (CML) management; however, TKI resistance remains a major clinical challenge. Mutations in BCR-ABL1 are well studied but fail to explain 20-40% of resistant cases, suggesting the activation of alternative, BCR-ABL1-independent pathways. Protein Tyrosine Phosphatase Receptor Gamma (PTPRG), a tumor suppressor, was found to be well expressed in CML patients responsive to TKIs and down-regulated in resistant patients. In this study, we aimed to identify genetic variants in PTPRG that could potentially modulate TKIs response in CML patients. DNA was extracted from peripheral blood samples collected from two CML cohorts (Qatar and Italy) and targeted exome sequencing was performed. Among 31 CML patients, six were TKI-responders and 25 were TKI-resistant. Sequencing identified ten variants, seven were annotated and three were novel SNPs (c.1602_1603insC, c.85+86delC, and c.2289-129delA). Among them, five variants were identified in 15 resistant cases. Of these, one novel exon variant (c.1602_1603insC), c.841-29C>T (rs199917960) and c.1378-224A>G (rs2063204) were found to be significantly different between the resistant cases compared to responders. Our findings suggest that PTPRG variants may act as an indirect resistance mechanism of BCR-ABL1 to affect TKI treatment.
Collapse
Affiliation(s)
- Mohamed A Ismail
- School of Life Science, Pharmacy and Chemistry, Faculty of science, engineering & computing-Kingston University London, United Kingdom; Interim Translational Research Institute (iTRI), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Gheyath K Nasrallah
- Department of Biomedical Science, College of Health Sciences, Member of QU Health, Qatar University, Doha, Qatar
| | - Maria Monne
- Centro di Diagnostica Biomolecolare e Citogenetica Emato-Oncologica, "San Francesco" Hospital, Nuoro, Italy
| | - Ali AlSayab
- Interim Translational Research Institute (iTRI), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Mohamed A Yassin
- Department of Medical Oncology, National Centre for Cancer Care and Research, Hamad Medical Corporation (HMC), Doha, Qatar
| | | | - Salma Younes
- Department of Research, Women's Wellness and Research Center, Hamad Medical Corporation, Qatar
| | - Claudio Sorio
- Department of Medicine, University of Verona, Verona, Italy
| | - Richard Cook
- School of Life Science, Pharmacy and Chemistry, Faculty of science, engineering & computing-Kingston University London, United Kingdom
| | - Helmout Modjtahedi
- School of Life Science, Pharmacy and Chemistry, Faculty of science, engineering & computing-Kingston University London, United Kingdom
| | - Nader I Al-Dewik
- Interim Translational Research Institute (iTRI), Hamad Medical Corporation (HMC), Doha, Qatar; Faculty of Health and Social Care Sciences, Kingston University, St. George's University of London, UK; Clinical and Metabolic Genetics, Department of Pediatrics, Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Science (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar.
| |
Collapse
|
81
|
Yamazaki H, Tsuge H, Takahashi O, Uchida R. Germacrane sesquiterpenes from leaves of Eupatorium chinense inhibit protein tyrosine phosphatase. Bioorg Med Chem Lett 2021; 53:128422. [PMID: 34710624 DOI: 10.1016/j.bmcl.2021.128422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/15/2022]
Abstract
Three new germacrane-type sesquiterpene lactones (1-3) were isolated alongside seven known related congeners (4-10) from the leaves of Eupatorium chinense L. (Compositae). The planar structures of 1-3 were elucidated by their spectroscopic data, including 1D and 2D NMR spectra. The relative and absolute configurations of 1-3 were determined using NOESY experiments and electronic circular dichroism analyses. Compounds 1, 4, 5, and 7 inhibited protein tyrosine phosphatase (PTP) 1B activity with IC50 values of 25, 11, 28, and 24 μM, respectively. Among these, compound 4 exhibited an inhibitory effect on T-cell PTP (TCPTP) with an IC50 value of 25 μM. To our knowledge, this is the first study demonstrating the PTP inhibitory activity of the germacrane sesquiterpenes. The results show that compound 4 acts as an inhibitor of both PTP1B and TCPTP.
Collapse
Affiliation(s)
- Hiroyuki Yamazaki
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan.
| | - Hayato Tsuge
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Ohgi Takahashi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan; Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-48 Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan
| | - Ryuji Uchida
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan.
| |
Collapse
|
82
|
Xie F, Dong H, Zhang H. Regulatory Functions of Protein Tyrosine Phosphatase Receptor Type O in Immune Cells. Front Immunol 2021; 12:783370. [PMID: 34880876 PMCID: PMC8645932 DOI: 10.3389/fimmu.2021.783370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/04/2021] [Indexed: 01/01/2023] Open
Abstract
The members of the protein tyrosine phosphatase (PTP) family are key regulators in multiple signal transduction pathways and therefore they play important roles in many cellular processes, including immune response. As a member of PTP family, protein tyrosine phosphatase receptor type O (PTPRO) belongs to the R3 receptor-like protein tyrosine phosphatases. The expression of PTPRO isoforms is tissue-specific and the truncated PTPRO (PTPROt) is mainly observed in hematopoietic cells, including B cells, T cells, macrophages and other immune cells. Therefore, PTPROt may play an important role in immune cells by affecting their growth, differentiation, activation and immune responses. In this review, we will focus on the regulatory roles and underlying molecular mechanisms of PTPRO/PTPROt in immune cells, including B cells, T cells, and macrophages.
Collapse
Affiliation(s)
- Feiling Xie
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Hongmei Dong
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, School of Medicine, Jinan University, Guangzhou, China
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Minister of Education Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China
| |
Collapse
|
83
|
Elhassan RM, Hou X, Fang H. Recent advances in the development of allosteric protein tyrosine phosphatase inhibitors for drug discovery. Med Res Rev 2021; 42:1064-1110. [PMID: 34791703 DOI: 10.1002/med.21871] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 09/26/2021] [Accepted: 10/24/2021] [Indexed: 01/07/2023]
Abstract
Protein tyrosine phosphatases (PTPs) superfamily catalyzes tyrosine de-phosphorylation which affects a myriad of cellular processes. Imbalance in signal pathways mediated by PTPs has been associated with development of many human diseases including cancer, metabolic, and immunological diseases. Several compelling evidence suggest that many members of PTP family are novel therapeutic targets. However, the clinical development of conventional PTP-based active-site inhibitors originally was hampered by the poor selectivity and pharmacokinetic properties. In this regard, PTPs has been widely dismissed as "undruggable." Nonetheless, allosteric modulation has become increasingly an influential and alternative approach that can be exploited for drug development against PTPs. Unlike active-site inhibitors, allosteric inhibitors exhibit a remarkable target-selectivity, drug-likeness, potency, and in vivo activity. Intriguingly, there has been a high interest in novel allosteric PTPs inhibitors within the last years. In this review, we focus on the recent advances of allosteric inhibitors that have been explored in drug discovery and have shown an excellent result in the development of PTPs-based therapeutics. A special emphasis is placed on the structure-activity relationship and molecular mechanistic studies illustrating applications in chemical biology and medicinal chemistry.
Collapse
Affiliation(s)
- Reham M Elhassan
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
84
|
Yoon SY, Ahn D, Kim JK, Seo SO, Chung SJ. Nepetin Acts as a Multi-Targeting Inhibitor of Protein Tyrosine Phosphatases Relevant to Insulin Resistance. Chem Biodivers 2021; 19:e202100600. [PMID: 34725898 DOI: 10.1002/cbdv.202100600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/01/2021] [Indexed: 11/11/2022]
Abstract
Protein tyrosine phosphatases (PTPs) are essential modulators of signal transduction pathways and has been implicated in many human diseases such as cancer, diabetes, obesity, autoimmune disorders, and neurological diseases, indicating that PTPs are next-generation drug targets. Since PTPN1, PTPN2, and PTPN11 have been reported to be negative regulators of insulin action, the identification of PTP inhibitors may be an effective strategy to develop therapeutic agents for the treatment of type 2 diabetes. In this study, we observed for the first time that nepetin inhibits the catalytic activity of PTPN1, PTPN2, and PTPN11 in vitro, indicating that nepetin acts as a multi-targeting inhibitor of PTPN1, PTPN2, and PTPN11. Furthermore, treatment of mature 3T3-L1 adipocytes with 20 μM nepetin stimulates glucose uptake through AMPK activation. Taken together, our findings provide evidence that nepetin, a multi-targeting inhibitor of PTPN1, PTPN2, and PTPN11, could be a promising therapeutic candidate for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Sun-Young Yoon
- Department of Cosmetic Science, Kwangju Women's University, Gwangju, 62396, Republic of Korea
| | - Dohee Ahn
- Department of Biopharmaceutical Convergence and School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae Kwan Kim
- Department of Biopharmaceutical Convergence and School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seung-Oh Seo
- Department of Biopharmaceutical Convergence and School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sang J Chung
- Department of Biopharmaceutical Convergence and School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
85
|
Chen MY, Xie QY, Kong FD, Ma QY, Zhou LM, Yuan JZ, Dai HF, Wu YG, Zhao YX. Two new indole-diterpenoids from the marine-derived fungus Penicillium sp. KFD28. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:1030-1036. [PMID: 33225746 DOI: 10.1080/10286020.2020.1849150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
Two new compounds named epipaxilline (1) and penerpene J (2) were isolated from the marine-derived fungus Penicillium sp. KFD28. Their structures including absolute configurations were determined on the basis of spectroscopic methods and ECD analysis. Compounds 1 and 2 showed inhibitory activities against PTP1B with IC50 values of 31.5 and 9.5 μM, respectively, and compound 2 also showed inhibitory activities against TCPTP with IC50 value of 14.7 μM.
Collapse
Affiliation(s)
- Ming-Yang Chen
- College of Horticulture, Hainan University, Haikou 570228, China
| | - Qing-Yi Xie
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China
| | - Fan-Dong Kong
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China
| | - Qing-Yun Ma
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China
| | - Li-Man Zhou
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China
| | - Jing-Zhe Yuan
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China
| | - Hao-Fu Dai
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China
- Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou 571101, China
| | - You-Gen Wu
- College of Horticulture, Hainan University, Haikou 570228, China
| | - You-Xing Zhao
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou 571101, China
- Hainan Academy of Tropical Agricultural Resource, CATAS, Haikou 571101, China
| |
Collapse
|
86
|
Li B, Fu R, Tan H, Zhang Y, Teng W, Li Z, Tian J. Characteristics of the interaction mechanisms of procyanidin B1 and procyanidin B2 with protein tyrosine phosphatase-1B: Analysis by kinetics, spectroscopy methods and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 259:119910. [PMID: 33992895 DOI: 10.1016/j.saa.2021.119910] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Protein tyrosine phosphatase-1B (PTP1B) is a novel and indispensable drug target for the treatment of type 2 diabetes mellitus (T2DM). Procyanidins are flavonoids that exhibit a significant hypoglycemic function. However, the potential inhibitory effects of procyanidins on PTP1B are unclear. In this study, the interaction mechanisms of PTP1B with procyanidin B1 (PB1) and procyanidin B2 (PB2) were investigated through kinetics analysis, UV-visible spectroscopy, fluorescence spectroscopy, circular dichroism spectroscopy and molecular docking. The results showed that PB1 and PB2 could inhibit the activity of PTP1B in a mixed inhibition mode, which was one of the reversible inhibition types. Multi-spectral analysis showed that PB1/PB2 formed complexes with PTP1B, which effectively quenched the intrinsic fluorescence of PTP1B based on the static mechanism. The values of the binding constants were KS(PTP1B-PB1) = 4.06 × 102 L·mol-1 and KS(PTP1B-PB2) = 2.53 × 102 L·mol-1, indicating that the binding affinity of PTP1B to PB1 was higher than that for PB2. PB1 and PB2 both changed the secondary structure of the enzyme, thereby decreasing the PTP1B activity. Thermodynamic investigations revealed that the binding of procyanidin B1 and B2 to PTP1B was spontaneous in both cases, and highlighted the key role of hydrophobic interactions. Molecular docking analysis provided further information regarding the interactions between PB1 or PB2 and the amino acid residues of PTP1B. Moreover, PB1 and PB2 were found to down-regulate the expression level of PTP1B in insulin-resistant HepG2 cells. These findings are the first to elucidate the inhibitory effects of PB1 and PB2 on PTP1B, and highlight the role of procyanidins as dietary supplements in regulating T2DM.
Collapse
Affiliation(s)
- Bin Li
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Ranran Fu
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Hui Tan
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Ye Zhang
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Wei Teng
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Zhiying Li
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, National R&D Professional Center for Berry Processing, National Engineering and Technology of Research Center for Small Berry, Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing, Liaoning Province, Shenyang, Liaoning 110866, China.
| |
Collapse
|
87
|
Li X, Niu M, Wang A, Lu L, Englert U, Feng S, Zhang L, Yuan C. Synthesis, structure and in vitro biological properties of a new copper(II) complex with 4-{[3-(pyridin-2-yl)-1H-pyrazol-1-yl]methyl}benzoic acid. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2021; 77:641-648. [PMID: 34607987 DOI: 10.1107/s2053229621009748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/18/2021] [Indexed: 11/10/2022]
Abstract
The new copper(II) complex dichloridobis(4-{[3-(pyridin-2-yl-κN)-1H-pyrazol-1-yl-κN2]methyl}benzoic acid)copper(II) methanol sesquisolvate hemihydrate, [CuCl2L2]·1.5CH3OH·0.5H2O, (1), has been synthesized from CuCl2·2H2O and the ligand 4-{[3-(pyridin-2-yl)-1H-pyrazol-1-yl]methyl}benzoic acid (L, C15H11N3O2). The complex was characterized by elemental analysis, Fourier transform IR spectroscopy, electrospray ionization mass spectrometry and single-crystal X-ray diffraction. Two chloride ligands and two bidentate L ligands coordinate the CuII centre in 1 in a Jahn-Teller-distorted octahedral geometry of rather unusual configuration: a chloride substituent and a pyrazole N atom of an N,N'-chelating ligand occupy the more distant axial positions. Classical O-H...O hydrogen bonds and O-H...Cl interactions link neighbouring complex molecules and cocrystallized methanol molecules into chains that propagate parallel to the b direction. The title compound shows intriguing bioactivity: the effects of 1 on the enzymatic activity of protein tyrosine phosphatase 1B (PTP1B) and on the viability of human breast cancer cells of cell line MCF7 were evaluated. Complex 1, with an IC50 value of 0.51 µM, can efficiently inhibit PTP1B activity. An enzyme kinetic assay suggests that 1 inhibits PTP1B in a noncompetitive manner. A fluorescence titration assay indicates that 1 has a strong affinity for PTP1B, with a binding constant of 4.39 × 106 M-1. Complex 1 may also effectively decrease the viability of MCF7 cells in an extent comparable to that of cisplatin (IC50 = 6.3 µM). The new copper complex therefore represents a promising PTP1B inhibitor and an efficient antiproliferation reagent against MCF7 cells.
Collapse
Affiliation(s)
- Xinhua Li
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, Shanxi Province, People's Republic of China
| | - Mengyuan Niu
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, Shanxi Province, People's Republic of China
| | - Ai Wang
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, Shanxi Province, People's Republic of China
| | - Liping Lu
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, Shanxi Province, People's Republic of China
| | - Ulli Englert
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg. 1, Aachen 52074, Germany
| | - Sisi Feng
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, Shanxi Province, People's Republic of China
| | - Lizhen Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi Province, People's Republic of China
| | - Caixia Yuan
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, Shanxi Province, People's Republic of China
| |
Collapse
|
88
|
Geng Q, Xian R, Yu Y, Chen F, Li R. SHP-1 acts as a tumor suppressor by interacting with EGFR and predicts the prognosis of human breast cancer. Cancer Biol Med 2021; 19:j.issn.2095-3941.2020.0501. [PMID: 34591414 PMCID: PMC9088191 DOI: 10.20892/j.issn.2095-3941.2020.0501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/03/2021] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE The aims of this study were to examine the prognostic value of SHP-1 in breast cancer, its roles in the regulation of breast cancer cell growth and metastasis, and the underlying mechanisms. METHODS Tumor specimens from 160 patients with breast cancer and 160 noncancerous tissues were used to examine the expression of SHP-1 and to analyze its association with overall survival through Kaplan-Meier and multivariate Cox regression analyses. RNA sequencing data and the expression and clinical importance of SHP-1 in breast cancer were evaluated with data from The Cancer Genome Atlas. In vitro and in vivo assays were performed to elucidate the effects of SHP-1 on breast cancer cell proliferation and invasion. Confocal immunofluorescence and GST pulldown assays were used to demonstrate the interaction between SHP-1 and epidermal growth factor receptor, as well as its downstream pathways. Immunohistochemistry and The Cancer Genome Atlas database were used to investigate the clinical association between SHP-1 and EGFR in human breast cancer. RESULTS SHP-1 expression was associated with better survival in patients with breast cancer, whereas SHP-1 expression was negatively correlated with EGFR in human breast cancer. Ectopic SHP-1 expression significantly suppressed breast cancer cell proliferation, migration, and invasion. SHP-1 knockdown induced a more invasive phenotype and accelerated cell growth. Mechanistically, EGFR, a protein directly interacting with SHP-1, mediates the SHP-1-induced inactivation of Ras/Erk/GSK3β signaling and its downstream effectors. CONCLUSIONS SHP-1 is an important prognostic biomarker in patients with breast cancer, and the SHP-1-EGFR axis is a promising target for treatment.
Collapse
Affiliation(s)
- Qian Geng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Cancer Center, the Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou 213003, China
| | - Ruiting Xian
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yinjue Yu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fengsheng Chen
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | - Rong Li
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
89
|
Choi JH, Park S, Kim GD, Kim JY, Jun JH, Bae SH, Baik SK, Hwang SG, Kim GJ. Increased Phosphatase of Regenerating Liver-1 by Placental Stem Cells Promotes Hepatic Regeneration in a Bile-Duct-Ligated Rat Model. Cells 2021; 10:cells10102530. [PMID: 34685509 PMCID: PMC8533985 DOI: 10.3390/cells10102530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Phosphatase of regenerating liver-1 (PRL-1) controls various cellular processes and liver regeneration. However, the roles of PRL-1 in liver regeneration induced by chorionic-plate-derived mesenchymal stem cells (CP-MSCs) transplantation remain unknown. Here, we found that increased PRL-1 expression by CP-MSC transplantation enhanced liver regeneration in a bile duct ligation (BDL) rat model by promoting the migration and proliferation of hepatocytes. Engrafted CP-MSCs promoted liver function via enhanced hepatocyte proliferation through increased PRL-1 expression in vivo and in vitro. Moreover, higher increased expression of PRL-1 regulated CP-MSC migration into BDL-injured rat liver through enhancement of migration-related signals by increasing Rho family proteins. The dual effects of PRL-1 on proliferation of hepatocytes and migration of CP-MSCs were substantially reduced when PRL-1 was silenced with siRNA-PRL-1 treatment. These findings suggest that PRL-1 may serve as a multifunctional enhancer for therapeutic applications of CP-MSC transplantation.
Collapse
Affiliation(s)
- Jong Ho Choi
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung-si 25457, Korea;
| | - Sohae Park
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Korea; (S.P.); (J.Y.K.); (J.H.J.)
- Research Institute of Placental Science, CHA University, Seongnam-si 13488, Korea
| | - Gi Dae Kim
- Department of Food and Nutrition, Kyungnam University, Changwon-si 51767, Korea;
| | - Jae Yeon Kim
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Korea; (S.P.); (J.Y.K.); (J.H.J.)
| | - Ji Hye Jun
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Korea; (S.P.); (J.Y.K.); (J.H.J.)
- Research Institute of Placental Science, CHA University, Seongnam-si 13488, Korea
| | - Si Hyun Bae
- Department of Internal Medicine, Catholic University Medical College, Seoul 03312, Korea;
| | - Soon Koo Baik
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Korea;
| | - Seong-Gyu Hwang
- CHA Bundang Medical Center, Department of Internal Medicine, Division of Gastroenterology, CHA University School of Medicine, Seongnam-si 13496, Korea;
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam-si 13488, Korea; (S.P.); (J.Y.K.); (J.H.J.)
- Research Institute of Placental Science, CHA University, Seongnam-si 13488, Korea
- Correspondence: ; Tel.: +82-31-881-7145
| |
Collapse
|
90
|
Shah N, Abdalla MA, Deshmukh H, Sathyapalan T. Therapeutics for type-2 diabetes mellitus: a glance at the recent inclusions and novel agents under development for use in clinical practice. Ther Adv Endocrinol Metab 2021; 12:20420188211042145. [PMID: 34589201 PMCID: PMC8474306 DOI: 10.1177/20420188211042145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic, progressive, and multifaceted illness resulting in significant physical and psychological detriment to patients. As of 2019, 463 million people are estimated to be living with DM worldwide, out of which 90% have type-2 diabetes mellitus (T2DM). Over the years, significant progress has been made in identifying the risk factors for developing T2DM, understanding its pathophysiology and uncovering various metabolic pathways implicated in the disease process. This has culminated in the implementation of robust prevention programmes and the development of effective pharmacological agents, which have had a favourable impact on the management of T2DM in recent times. Despite these advances, the incidence and prevalence of T2DM continue to rise. Continuing research in improving efficacy, potency, delivery and reducing the adverse effect profile of currently available formulations is required to keep pace with this growing health challenge. Moreover, new metabolic pathways need to be targeted to produce novel pharmacotherapy to restore glucose homeostasis and address metabolic sequelae in patients with T2DM. We searched PubMed, MEDLINE, and Google Scholar databases for recently included agents and novel medication under development for treatment of T2DM. We discuss the pathophysiology of T2DM and review how the emerging anti-diabetic agents target the metabolic pathways involved. We also look at some of the limiting factors to developing new medication and the introduction of unique methods, including facilitating drug delivery to bypass some of these obstacles. However, despite the advances in the therapeutic options for the treatment of T2DM in recent years, the industry still lacks a curative agent.
Collapse
Affiliation(s)
- Najeeb Shah
- Hull University Teaching Hospitals NHS Trust,
Hull, UK
- Department of Academic Diabetes, Endocrinology
& Metabolism, Hull York Medical School, University of Hull, Brocklehurst
Building, 220-236 Anlaby Road, Hull, HU3 2RW, UK
| | - Mohammed Altigani Abdalla
- Department of Academic Diabetes, Endocrinology
& Metabolism, Hull York Medical School, University of Hull, Hull,
UK
| | - Harshal Deshmukh
- University Teaching Hospitals NHS Trust and
Department of Academic Diabetes, Endocrinology & Metabolism, Hull York
Medical School, University of Hull, Hull, UK
| | - Thozhukat Sathyapalan
- University Teaching Hospitals NHS Trust and
Department of Academic Diabetes, Endocrinology & Metabolism, Hull York
Medical School, University of Hull, Hull, UK
| |
Collapse
|
91
|
Yamazaki H. Exploration of marine natural resources in Indonesia and development of efficient strategies for the production of microbial halogenated metabolites. J Nat Med 2021; 76:1-19. [PMID: 34415546 PMCID: PMC8732978 DOI: 10.1007/s11418-021-01557-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 07/29/2021] [Indexed: 11/12/2022]
Abstract
Nature is a prolific source of organic products with diverse scaffolds and biological activities. The process of natural product discovery has gradually become more challenging, and advances in novel strategic approaches are essential to evolve natural product chemistry. Our focus has been on surveying untouched marine resources and fermentation to enhance microbial productive performance. The first topic is the screening of marine natural products isolated from Indonesian marine organisms for new types of bioactive compounds, such as antineoplastics, antimycobacterium substances, and inhibitors of protein tyrosine phosphatase 1B, sterol O-acyl-transferase, and bone morphogenetic protein-induced osteoblastic differentiation. The unique biological properties of marine organohalides are discussed herein and attempts to efficiently produce fungal halogenated metabolites are documented. This review presents an overview of our recent work accomplishments based on the MONOTORI study.
Collapse
Affiliation(s)
- Hiroyuki Yamazaki
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai, 981-8558, Japan.
| |
Collapse
|
92
|
Qian L, Wang Q, Wei C, Wang L, Yang Y, Deng X, Liu J, Qi F. Protein tyrosine phosphatase 1B regulates fibroblasts proliferation, motility and extracellular matrix synthesis via the MAPK/ERK signalling pathway in keloid. Exp Dermatol 2021; 31:202-213. [PMID: 34370343 DOI: 10.1111/exd.14443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/27/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022]
Abstract
Keloid is a fibroproliferative disorder resulting from trauma, characterized by abnormal activation of keloid fibroblasts and excessive deposition of extracellular matrix (ECM). It affects life quality of patients and lacks of effective therapeutic targets. Protein tyrosine phosphatase 1B (PTP1B) belongs to the protein tyrosine phosphatases and participates in many cellular processes such as metabolism, proliferation and motility. It has been reported that PTP1B negatively regulated diabetic wound healing and tumor progression. However, its effects in keloid remain unclear. Here, we aimed to evaluate the effects of PTP1B on keloid fibroblasts which play essential roles in keloids pathogenesis. Our results revealed that PTP1B expression was decreased both in keloid tissues and in keloid fibroblasts compared to healthy controls. Keloid fibroblasts (KFs) showed higher cell proliferation, motility, ECM production and ERK activity than normal fibroblasts (NFs). Overexpression of PTP1B in KFs and NFs inhibited cell proliferation, motility, ECM synthesis and the MAPK/ERK signalling pathway while knockdown of PTP1B showed converse effects. The rescue experiments with ERK inhibitor further verified that MAPK/ERK signalling pathway involved in PTP1B regulatory network. Taken together, our findings indicated that overexpression of PTP1B suppressed keloid fibroblasts bio-behaviours and promoted their phenotype switch to normal cells via inhibiting the MAPK/ERK signalling pathway, suggesting it may be a potential anti-keloid therapy.
Collapse
Affiliation(s)
- Leqi Qian
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chuanyuan Wei
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lu Wang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanwen Yang
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyi Deng
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaqi Liu
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China.,Artificial Intelligence Center for Plastic Surgery and Cutaneous Soft Tissue Cancers, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fazhi Qi
- Department of Plastic and Reconstructive Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
93
|
Yoon SY, Ahn D, Hwang JY, Kang MJ, Chung SJ. Linoleic acid exerts antidiabetic effects by inhibiting protein tyrosine phosphatases associated with insulin resistance. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
94
|
Vu TH, Delalande O, Lalli C, Reider S, Ferron S, Boustie J, Waltenberger B, Lohézic-Le Dévéhat F. Inhibitory Effects of Secondary Metabolites from the Lichen Stereocaulon evolutum on Protein Tyrosine Phosphatase 1B. PLANTA MEDICA 2021; 87:701-708. [PMID: 33618379 DOI: 10.1055/a-1334-4480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Protein tyrosine phosphatase 1B plays a significant role in type 2 diabetes mellitus and other diseases and is therefore considered a new drug target. Within this study, an acetone extract from the lichen Stereocaulon evolutum was identified to possess strong protein tyrosine phosphatase 1B inhibition in a cell-free assay (IC50 of 11.8 µg/mL). Fractionation of this bioactive extract led to the isolation of seven known molecules belonging to the depsidones and the related diphenylethers and one new natural product, i.e., 3-butyl-3,7-dihydroxy-5-methoxy-1(3H)-isobenzofurane. The isolated compounds were evaluated for their inhibition of protein tyrosine phosphatase 1B. Two depsidones, lobaric acid and norlobaric acid, and the diphenylether anhydrosakisacaulon A potently inhibited protein tyrosine phosphatase 1B with IC50 values of 12.9, 15.1, and 16.1 µM, respectively, which is in the range of the protein tyrosine phosphatase 1B inhibitory activity of the positive control ursolic acid (IC50 of 14.4 µM). Molecular simulations performed on the eight compounds showed that i) a contact between the molecule and the four main regions of the protein is required for inhibitory activity, ii) the relative rigidity of the depsidones lobaric acid and norlobaric acid and the reactivity related to hydrogen bond donors or acceptors, which interact with protein tyrosine phosphatase 1B key amino acids, are involved in the bioactivity on protein tyrosine phosphatase 1B, iii) the cycle opening observed for diphenylethers decreased the inhibition, except for anhydrosakisacaulon A where its double bond on C-8 offsets this loss of activity, iv) the function present at C-8 is a determinant for the inhibitory effect on protein tyrosine phosphatase 1B, and v) the more hydrogen bonds with Arg221 there are, the more anchorage is favored.
Collapse
Affiliation(s)
- Thi Huyen Vu
- University of Rennes, CNRS, ISCR - UMR 6226, Rennes, France
| | | | - Claudia Lalli
- University of Rennes, CNRS, ISCR - UMR 6226, Rennes, France
| | - Stefanie Reider
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck and Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | - Solenn Ferron
- University of Rennes, CNRS, ISCR - UMR 6226, Rennes, France
| | - Joel Boustie
- University of Rennes, CNRS, ISCR - UMR 6226, Rennes, France
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy, University of Innsbruck and Center for Molecular Biosciences Innsbruck (CMBI), Innsbruck, Austria
| | | |
Collapse
|
95
|
Ershov P, Kaluzhskiy L, Mezentsev Y, Yablokov E, Gnedenko O, Ivanov A. Enzymes in the Cholesterol Synthesis Pathway: Interactomics in the Cancer Context. Biomedicines 2021; 9:biomedicines9080895. [PMID: 34440098 PMCID: PMC8389681 DOI: 10.3390/biomedicines9080895] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
A global protein interactome ensures the maintenance of regulatory, signaling and structural processes in cells, but at the same time, aberrations in the repertoire of protein-protein interactions usually cause a disease onset. Many metabolic enzymes catalyze multistage transformation of cholesterol precursors in the cholesterol biosynthesis pathway. Cancer-associated deregulation of these enzymes through various molecular mechanisms results in pathological cholesterol accumulation (its precursors) which can be disease risk factors. This work is aimed at systematization and bioinformatic analysis of the available interactomics data on seventeen enzymes in the cholesterol pathway, encoded by HMGCR, MVK, PMVK, MVD, FDPS, FDFT1, SQLE, LSS, DHCR24, CYP51A1, TM7SF2, MSMO1, NSDHL, HSD17B7, EBP, SC5D, DHCR7 genes. The spectrum of 165 unique and 21 common protein partners that physically interact with target enzymes was selected from several interatomic resources. Among them there were 47 modifying proteins from different protein kinases/phosphatases and ubiquitin-protein ligases/deubiquitinases families. A literature search, enrichment and gene co-expression analysis showed that about a quarter of the identified protein partners was associated with cancer hallmarks and over-represented in cancer pathways. Our results allow to update the current fundamental view on protein-protein interactions and regulatory aspects of the cholesterol synthesis enzymes and annotate of their sub-interactomes in term of possible involvement in cancers that will contribute to prioritization of protein targets for future drug development.
Collapse
|
96
|
Sarkar A, Kim EY, Jang T, Hongdusit A, Kim H, Choi JM, Fox JM. Microbially Guided Discovery and Biosynthesis of Biologically Active Natural Products. ACS Synth Biol 2021; 10:1505-1519. [PMID: 33988973 DOI: 10.1021/acssynbio.1c00074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The design of small molecules that inhibit disease-relevant proteins represents a longstanding challenge of medicinal chemistry. Here, we describe an approach for encoding this challenge-the inhibition of a human drug target-into a microbial host and using it to guide the discovery and biosynthesis of targeted, biologically active natural products. This approach identified two previously unknown terpenoid inhibitors of protein tyrosine phosphatase 1B (PTP1B), an elusive therapeutic target for the treatment of diabetes and cancer. Both inhibitors appear to target an allosteric site, which confers selectivity, and can inhibit PTP1B in living cells. A screen of 24 uncharacterized terpene synthases from a pool of 4464 genes uncovered additional hits, demonstrating a scalable discovery approach, and the incorporation of different PTPs into the microbial host yielded alternative PTP-specific detection systems. Findings illustrate the potential for using microbes to discover and build natural products that exhibit precisely defined biochemical activities yet possess unanticipated structures and/or binding sites.
Collapse
Affiliation(s)
- Ankur Sarkar
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Edward Y. Kim
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Taehwan Jang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Akarawin Hongdusit
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| | - Hyungjun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jeong-Mo Choi
- Department of Chemistry, Pusan National University, Geumjeong-gu, Busan 46241, Republic of Korea
| | - Jerome M. Fox
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Avenue, Boulder, Colorado 80303, United States
| |
Collapse
|
97
|
Zhao D, Zhong S. Binding mechanisms of varic acid inhibitors on protein tyrosine phosphatase 1B and in silico design of the novel derivatives. MOLECULAR SIMULATION 2021. [DOI: 10.1080/08927022.2021.1929970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Dan Zhao
- School of Bioengineering, Dalian University of Technology, Dalian, People’s Republic of China
| | - Shijun Zhong
- School of Bioengineering, Dalian University of Technology, Dalian, People’s Republic of China
| |
Collapse
|
98
|
Pandey R, Gupta P, Mohmmed A, Malhotra P, Gupta D. A Plasmodium falciparum protein tyrosine phosphatase inhibitor identified from the ChEMBL-NTD database blocks parasite growth. FEBS Open Bio 2021; 11:1921-1929. [PMID: 33934569 PMCID: PMC8255846 DOI: 10.1002/2211-5463.13171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/31/2021] [Indexed: 02/03/2023] Open
Abstract
Post‐translational modifications, especially reversible phosphorylation, are among the most common mechanisms that regulate protein function and biological processes in Plasmodium species. Of the Plasmodium phosphatases, phosphatase of regenerating liver (PfPRL) is secreted and is an essential phosphatase. Here, we expressed PfPRL in a heterologous expression system, and then purified and characterized its phosphatase activity. We found that Novartis_003209, a previously identified inhibitor, inhibited the PfPRL phosphatase activity of recombinant PfPRL and blocked in vitro parasite growth in a dose‐dependent manner. Further, in silico docking analysis of Novartis_003209 with all four P. falciparum tyrosine phosphatases (PTP) demonstrated that Novartis_003209 is a Plasmodium PTP inhibitor. Overall, our results identify a scaffold as a potential starting point to design a PTP‐specific inhibitor.
Collapse
Affiliation(s)
- Rajan Pandey
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Priya Gupta
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Asif Mohmmed
- Parasite Cell Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Pawan Malhotra
- Malaria Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
99
|
Yu M, Xu C, Zhang H, Lun J, Wang L, Zhang G, Fang J. The tyrosine phosphatase SHP2 promotes proliferation and oxaliplatin resistance of colon cancer cells through AKT and ERK. Biochem Biophys Res Commun 2021; 563:1-7. [PMID: 34052504 DOI: 10.1016/j.bbrc.2021.05.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 02/05/2023]
Abstract
The SH2 domain-containing phosphatase 2 (SHP2) is a widely expressed protein tyrosine phosphatase, and it is proposed to act as an oncogenic protein. SHP2 is also engaged in drug resistance of a variety of cancers. However, the role of SHP2 in the proliferation and drug resistance of colon cancer cells remains elusive. In this work we determined the effect of SHP2 expression on colon cancer cell proliferation and resistance to oxaliplatin (L-OHP), a commonly used drug in the clinic. Our results show that knockdown of SHP2 decreased and overexpression of SHP2 increased the proliferation of SW480 cells, respectively. Knockdown of SHP2 increased, and overexpression of SHP2 decreased apoptosis of the cells. We selected oxaliplatin-resistant SW480(SW480/L-OHP) and HCT116(HCT116/L-OHP) cells and found that the SHP2 protein level was raised in these drug-resistant cells. The upregulated SHP2 contributed to oxaliplatin resistance of the cells, as knockdown of SHP2 decreased the IC50 of oxaliplatin and abated proliferation and survival of SW480/L-OHP and HCT116/L-OHP cells in the presence of oxaliplatin. Also, SW480/L-OHP and HCT116/L-OHP cells had increased phosphorylation of AKT and ERK. Inhibition of AKT, ERK, or SHP2 sensitized SW480/L-OHP and HCT116/L-OHP cells to oxaliplatin. Our results indicate that SHP2 contributes oxaliplatin resistance through AKT and ERK. These results also suggest that SHP2-targeting is a potential strategy for overcoming oxaliplatin resistance of colon cancer cells.
Collapse
Affiliation(s)
- Mengchao Yu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao 266061, Qingdao Cancer Institute, Qingdao University, Qingdao 266061, China
| | - Chengzhen Xu
- Department of Chinese Medicine, Qingdao No. 6 People's Hospital, Qingdao, China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital, Jinan 250014, China
| | - Jie Lun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao 266061, Qingdao Cancer Institute, Qingdao University, Qingdao 266061, China
| | - Lei Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao 266061, Qingdao Cancer Institute, Qingdao University, Qingdao 266061, China
| | - Gang Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao 266061, Qingdao Cancer Institute, Qingdao University, Qingdao 266061, China
| | - Jing Fang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao 266061, Qingdao Cancer Institute, Qingdao University, Qingdao 266061, China.
| |
Collapse
|
100
|
Al Barashdi MA, Ali A, McMullin MF, Mills K. Protein tyrosine phosphatase receptor type C (PTPRC or CD45). J Clin Pathol 2021; 74:548-552. [PMID: 34039664 PMCID: PMC8380896 DOI: 10.1136/jclinpath-2020-206927] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
The leucocyte common antigen, protein tyrosine phosphatase receptor type C (PTPRC), also known as CD45, is a transmembrane glycoprotein, expressed on almost all haematopoietic cells except for mature erythrocytes, and is an essential regulator of T and B cell antigen receptor-mediated activation. Disruption of the equilibrium between protein tyrosine kinase and phosphatase activity (from CD45 and others) can result in immunodeficiency, autoimmunity, or malignancy. CD45 is normally present on the cell surface, therefore it works upstream of a large signalling network which differs between cell types, and thus the effects of CD45 on these cells are also different. However, it is becoming clear that CD45 plays an essential role in the innate immune system and this is likely to be a key area for future research. In this review of PTPRC (CD45), its structure and biological activities as well as abnormal expression of CD45 in leukaemia and lymphoma will be discussed.
Collapse
Affiliation(s)
| | - Ahlam Ali
- Patrick G Johnston Centre for Cancer Research (PGJCCR), Queen's University Belfast, Belfast, UK
| | | | - Ken Mills
- Patrick G Johnston Centre for Cancer Research (PGJCCR), Queen's University Belfast, Belfast, UK
| |
Collapse
|