51
|
Hoarau-Véchot J, Rafii A, Touboul C, Pasquier J. Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer-Microenvironment Interactions? Int J Mol Sci 2018; 19:ijms19010181. [PMID: 29346265 PMCID: PMC5796130 DOI: 10.3390/ijms19010181] [Citation(s) in RCA: 302] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/03/2018] [Accepted: 01/04/2018] [Indexed: 02/06/2023] Open
Abstract
An area that has come to be of tremendous interest in tumor research in the last decade is the role of the microenvironment in the biology of neoplastic diseases. The tumor microenvironment (TME) comprises various cells that are collectively important for normal tissue homeostasis as well as tumor progression or regression. Seminal studies have demonstrated the role of the dialogue between cancer cells (at many sites) and the cellular component of the microenvironment in tumor progression, metastasis, and resistance to treatment. Using an appropriate system of microenvironment and tumor culture is the first step towards a better understanding of the complex interaction between cancer cells and their surroundings. Three-dimensional (3D) models have been widely described recently. However, while it is claimed that they can bridge the gap between in vitro and in vivo, it is sometimes hard to decipher their advantage or limitation compared to classical two-dimensional (2D) cultures, especially given the broad number of techniques used. We present here a comprehensive review of the different 3D methods developed recently, and, secondly, we discuss the pros and cons of 3D culture compared to 2D when studying interactions between cancer cells and their microenvironment.
Collapse
Affiliation(s)
- Jessica Hoarau-Véchot
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Qatar Foundation, Education City, Doha 24144, Qatar.
| | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Qatar Foundation, Education City, Doha 24144, Qatar.
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Cyril Touboul
- UMR INSERM U965, Angiogenèse et Recherche Translationnelle, Hôpital Lariboisière, 49 bd de la Chapelle, 75010 Paris, France.
- Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Centre Hospitalier Intercommunal de Créteil, Faculté de Médecine de Créteil UPEC, Paris XII, 40 Avenue de Verdun, 94000 Créteil, France.
| | - Jennifer Pasquier
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar, Qatar Foundation, Education City, Doha 24144, Qatar.
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
- INSERM U955, Equipe 7, 94000 Créteil, France.
| |
Collapse
|
52
|
Alves-Lopes JP, Stukenborg JB. Testicular organoids: a new model to study the testicular microenvironment in vitro? Hum Reprod Update 2017; 24:176-191. [PMID: 29281008 DOI: 10.1093/humupd/dmx036] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND In recent decades, a broad range of strategies have been applied to model the testicular microenvironment in vitro. These models have been utilized to study testicular physiology and development. However, a system that allows investigations into testicular organogenesis and its impact in the spermatogonial stem-cell (SSC) niche in vitro has not been developed yet. Recently, the creation of tissue-specific organ-like structures called organoids has resurged, helping researchers to answer scientific questions that previous in vitro models could not help to elucidate. So far, a small number of publications have concerned the generation of testicular organoids and their application in the field of reproductive medicine and biology. OBJECTIVE AND RATIONALE Here, we aim to elucidate whether testicular organoids might be useful in answering current scientific questions about the regulation and function of the SSC niche as well as germ cell proliferation and differentiation, and whether or not the existing in vitro models are already sufficient to address them. Moreover, we would like to discuss how an organoid system can be a better solution to address these prominent scientific problems in our field, by the creation of a rationale parallel to those in other areas where organoid systems have been successfully utilized. SEARCH METHODS We comprehensively reviewed publications regarding testicular organoids and the methods that most closely led to the formation of these organ-like structures in vitro by searching for the following terms in both PubMed and the Web of Science database: testicular organoid, seminiferous tubule 3D culture, Sertoli cell 3D culture, testicular cord formation in vitro, testicular morphogenesis in vitro, germ cell 3D culture, in vitro spermatogenesis, testicular de novo morphogenesis, seminiferous tubule de novo morphogenesis, seminiferous tubule-like structures, testicular in vitro model and male germ cell niche in vitro, with no restrictions to any publishing year. The inclusion criteria were based on the relation with the main topic (i.e. testicular organoids, testicular- and seminiferous-like structures as in vitro models), methodology applied (i.e. in vitro culture, culture dimensions (2D, 3D), testicular cell suspension or fragments) and outcome of interest (i.e. organization in vitro). Publications about grafting of testicular tissue, germ-cell transplantation and female germ-cell culture were excluded. OUTCOMES The application of organoid systems is making its first steps in the field of reproductive medicine and biology. A restricted number of publications have reported and characterized testicular organoids and even fewer have denominated such structures by this method. However, we detected that a clear improvement in testicular cell reorganization is recognized when 3D culture conditions are utilized instead of 2D conditions. Depending on the scientific question, testicular organoids might offer a more appropriate in vitro model to investigate testicular development and physiology because of the easy manipulation of cell suspensions (inclusion or exclusion of a specific cell population), the fast reorganization of these structures and the controlled in vitro conditions, to the same extent as with other organoid strategies reported in other fields. WIDER IMPLICATIONS By way of appropriate research questions, we might use testicular organoids to deepen our basic understanding of testicular development and the SSC niche, leading to new methodologies for male infertility treatment.
Collapse
Affiliation(s)
- João Pedro Alves-Lopes
- Department of Women's and Children's Health, NORDFERTIL Research Lab Stockholm, Paediatric Endocrinology Unit, Q2:08, Karolinska Institutet and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| | - Jan-Bernd Stukenborg
- Department of Women's and Children's Health, NORDFERTIL Research Lab Stockholm, Paediatric Endocrinology Unit, Q2:08, Karolinska Institutet and Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
53
|
Juel Mortensen L, Blomberg Jensen M, Christiansen P, Rønholt AM, Jørgensen A, Frederiksen H, Nielsen JE, Loya AC, Grønkær Toft B, Skakkebæk NE, Rajpert-De Meyts E, Juul A. Germ Cell Neoplasia in Situ and Preserved Fertility Despite Suppressed Gonadotropins in a Patient With Testotoxicosis. J Clin Endocrinol Metab 2017; 102:4411-4416. [PMID: 29029242 DOI: 10.1210/jc.2017-01761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/29/2017] [Indexed: 01/01/2023]
Abstract
CONTEXT Testotoxicosis is an autosomal-dominant, male-limited disorder. Activating mutations in the luteinizing hormone receptor gene (LHCGR) cause high autonomous testosterone secretion, resulting in early-onset peripheral precocious puberty. Little is known about long-term consequences of testotoxicosis. CASE DESCRIPTION We present a rare case of a patient followed for 25 years with two remarkable outcomes: preserved fertility and germ cell neoplasia in situ (GCNIS). He presented with precocious puberty at 10 months of age and was diagnosed with testotoxicosis due to a de novo heterozygous Asp578Tyr mutation in LHCGR. Testicular biopsy in childhood showed Leydig cell hyperplasia with altered cell maturation. From infancy throughout adulthood, elevated testosterone and estradiol, low inhibin B and anti-Müllerian hormone, and completely suppressed follicle-stimulating hormone and luteinizing hormone were noted. Height acceleration and advanced bone age resulted in a reduced final height. Semen analysis revealed ongoing spermatogenesis, and the patient fathered a child by natural conception. Ketoconazole treatment decreased circulating testosterone in childhood, supported by experimental suppression of testosterone production in his adult testis tissue cultured ex vivo. At 25 years of age, ultrasound revealed a testicular tumor, identified as a Leydig cell adenoma, but unexpectedly with GCNIS present in adjacent seminiferous tubules. CONCLUSION The case illustrates that absence of gonadotropins but high intratesticular testosterone concentration is sufficient for spermatogenesis and to allow fatherhood. Our study is also the first description, to our knowledge, of GCNIS in a patient with testotoxicosis. We recommend regular clinical examination and ultrasonic evaluation of the testes in these patients due to potential increased risk of malignancy.
Collapse
Affiliation(s)
- Li Juel Mortensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Denmark
- Division of Bone and Mineral Research, Harvard School of Dental Medicine, Harvard University
| | - Martin Blomberg Jensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Denmark
- Division of Bone and Mineral Research, Harvard School of Dental Medicine, Harvard University
| | - Peter Christiansen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Denmark
| | | | - Anne Jørgensen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Denmark
| | - John E Nielsen
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Denmark
| | - Anand C Loya
- Department of Pathology, Rigshospitalet, University of Copenhagen, Denmark
| | | | - Niels E Skakkebæk
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Denmark
| | - Ewa Rajpert-De Meyts
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Denmark
- International Research and Research Training Centre in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
54
|
Rudolph C, Melau C, Nielsen JE, Vile Jensen K, Liu D, Pena-Diaz J, Rajpert-De Meyts E, Rasmussen LJ, Jørgensen A. Involvement of the DNA mismatch repair system in cisplatin sensitivity of testicular germ cell tumours. Cell Oncol (Dordr) 2017; 40:341-355. [PMID: 28536927 DOI: 10.1007/s13402-017-0326-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Testicular germ cell tumours (TGCT) are highly sensitive to cisplatin-based chemotherapy, but patients with tumours containing differentiated teratoma components are less responsive to this treatment. The cisplatin sensitivity in TGCT has previously been linked to the embryonic phenotype in the majority of tumours, although the underlying mechanism largely remains to be elucidated. The aim of this study was to investigate the role of the DNA mismatch repair (MMR) system in the cisplatin sensitivity of TGCT. METHODS The expression pattern of key MMR proteins, including MSH2, MSH6, MLH1 and PMS2, were investigated during testis development and in the pathogenesis of TGCT, including germ cell neoplasia in situ (GCNIS). The TGCT-derived cell line NTera2 was differentiated using retinoic acid (10 μM, 6 days) after which MMR protein expression and activity, as well as cisplatin sensitivity, were investigated in both undifferentiated and differentiated cells. Finally, the expression of MSH2 was knocked down by siRNA in NTera2 cells after which the effect on cisplatin sensitivity was examined. RESULTS MMR proteins were expressed in proliferating cells in the testes, while in malignant germ cells MMR protein expression was found to coincide with the expression of the pluripotency factor OCT4, with no or low expression in the more differentiated yolk sac tumours, choriocarcinomas and teratomas. In differentiated NTera2 cells we found a significantly (p < 0.05) lower expression of the MMR and pluripotency factors, as well as a reduced MMR activity and cisplatin sensitivity, compared to undifferentiated NTera2 cells. Also, we found that partial knockdown of MSH2 expression in undifferentiated NTera2 cells resulted in a significantly (p < 0.001) reduced cisplatin sensitivity. CONCLUSION This study reports, for the first time, expression of the MMR system in fetal gonocytes, from which GCNIS cells are derived. Our findings in primary TGCT specimens and TGCT-derived cells suggest that a reduced sensitivity to cisplatin in differentiated TGCT components could result from a reduced expression of MMR proteins, in particular MSH2 and MLH1, which are involved in the recognition of cisplatin adducts and in activation of the DNA damage response pathway to initiate apoptosis.
Collapse
Affiliation(s)
- Christiane Rudolph
- University Department of Growth and Reproduction (Rigshospitalet), Blegdamsvej 9, 2100, Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Cecilie Melau
- University Department of Growth and Reproduction (Rigshospitalet), Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - John E Nielsen
- University Department of Growth and Reproduction (Rigshospitalet), Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Kristina Vile Jensen
- University Department of Growth and Reproduction (Rigshospitalet), Blegdamsvej 9, 2100, Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Dekang Liu
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Javier Pena-Diaz
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Ewa Rajpert-De Meyts
- University Department of Growth and Reproduction (Rigshospitalet), Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Department of Cellular and Molecular Medicine, Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Anne Jørgensen
- University Department of Growth and Reproduction (Rigshospitalet), Blegdamsvej 9, 2100, Copenhagen, Denmark.
| |
Collapse
|
55
|
Wang S, Wang X, Boone J, Wie J, Yip KP, Zhang J, Wang L, Liu R. Application of Hanging Drop Technique for Kidney Tissue Culture. Kidney Blood Press Res 2017; 42:220-231. [PMID: 28478441 PMCID: PMC6050513 DOI: 10.1159/000476018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/07/2017] [Indexed: 12/13/2022] Open
Abstract
Background/Aims The hanging drop technique is a well-established method used in culture of animal tissues. However, this method has not been used in adult kidney tissue culture yet. This study was to explore the feasibility of using this technique for culturing adult kidney cortex to study the time course of RNA viability in the tubules and vasculature, as well as the tissue structural integrity. Methods In each Petri dish with the plate covered with sterile buffer, a section of mouse renal cortex was cultured within a drop of DMEM culture medium on the inner surface of the lip facing downward. The tissue were then harvested at each specific time points for Real-time PCR analysis and histological studies. Results The results showed that the mRNA level of most Na+ related transporters and cotransporters were stably maintained within 6 hours in culture, and that the mRNA level of most receptors found in the vasculature and glomeruli were stably maintained for up to 9 days in culture. Paraffin sections of the cultured renal cortex indicated that the tubules began to lose tubular integrity after 6 hours, but the glomeruli and vasculatures were still recognizable up to 9 days in culture. Conclusions We concluded that adult kidney tissue culture by hanging drop method can be used to study gene expressions in vasculature and glomeruli.
Collapse
Affiliation(s)
- Shaohui Wang
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Ximing Wang
- Present Address: Shandong Medical Imaging Research Institute, Shandong provincial key laboratory of diagnosis and treatment of cardio-cerebral vascular disease, Shandong University, Jinan, China
| | - Jasmine Boone
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Jin Wie
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Kay-Pong Yip
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Jie Zhang
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Ruisheng Liu
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| |
Collapse
|
56
|
Testicular activin and follistatin levels are elevated during the course of experimental autoimmune epididymo-orchitis in mice. Sci Rep 2017; 7:42391. [PMID: 28205525 PMCID: PMC5304336 DOI: 10.1038/srep42391] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
Experimental autoimmune epididymo-orchitis (EAEO) is a model of chronic inflammation, induced by immunisation with testicular antigens, which reproduces the pathology of some types of human infertility. Activins A and B regulate spermatogenesis and steroidogenesis, but are also pro-inflammatory, pro-fibrotic cytokines. Expression of the activins and their endogenous antagonists, inhibin and follistatin, was examined in murine EAEO. Adult untreated and adjuvant-treated control mice showed no pathology. All mice immunised with testis antigens developed EAEO by 50 days, characterised by loss of germ cells, immune cell infiltration and fibrosis in the testis, similar to biopsies from human inflamed testis. An increase of total CD45+ leukocytes, comprising CD3+ T cells, CD4 + CD8− and CD4 + CD25+ T cells, and a novel population of CD4 + CD8+ double positive T cells was also detected in EAEO testes. This was accompanied by increased expression of TNF, MCP-1 and IL-10. Activin A and B and follistatin protein levels were elevated in EAEO testes, with peak activin expression during the active phase of the disease, whereas mRNA expression of the inhibin B subunits (Inha and Inhbb) and activin receptor subunits (Acvr1b and Acvr2b) were downregulated. These data suggest that activin–follistatin regulation may play a role during the development of EAEO.
Collapse
|
57
|
Loveland KL, Klein B, Pueschl D, Indumathy S, Bergmann M, Loveland BE, Hedger MP, Schuppe HC. Cytokines in Male Fertility and Reproductive Pathologies: Immunoregulation and Beyond. Front Endocrinol (Lausanne) 2017; 8:307. [PMID: 29250030 PMCID: PMC5715375 DOI: 10.3389/fendo.2017.00307] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
Germline development in vivo is dependent on the environment formed by somatic cells and the differentiation cues they provide; hence, the impact of local factors is highly relevant to the production of sperm. Knowledge of how somatic and germline cells interact is central to achieving biomedical goals relating to restoring, preserving or restricting fertility in humans. This review discusses the growing understanding of how cytokines contribute to testicular function and maintenance of male reproductive health, and to the pathologies associated with their abnormal activity in this organ. Here we consider both cytokines that signal through JAKs and are regulated by SOCS, and those utilizing other pathways, such as the MAP kinases and SMADs. The importance of cytokines in the establishment and maintenance of the testis as an immune-privilege site are described. Current research relating to the involvement of immune cells in testis development and disease is highlighted. This includes new data relating to testicular cancer which reinforce the understanding that tumorigenic cells shape their microenvironment through cytokine actions. Clinical implications in pathologies relating to local inflammation and to immunotherapies are discussed.
Collapse
Affiliation(s)
- Kate L. Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- *Correspondence: Kate L. Loveland,
| | - Britta Klein
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Dana Pueschl
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany
| | - Sivanjah Indumathy
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Bergmann
- Institute of Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Mark P. Hedger
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, School of Clinical Sciences, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Hans-Christian Schuppe
- Department of Urology, Pediatric Urology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
58
|
Nath S, Devi GR. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol Ther 2016; 163:94-108. [PMID: 27063403 DOI: 10.1016/j.pharmthera.2016.03.013] [Citation(s) in RCA: 571] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer cells propagated in three-dimensional (3D) culture systems exhibit physiologically relevant cell-cell and cell-matrix interactions, gene expression and signaling pathway profiles, heterogeneity and structural complexity that reflect in vivo tumors. In recent years, development of various 3D models has improved the study of host-tumor interaction and use of high-throughput screening platforms for anti-cancer drug discovery and development. This review attempts to summarize the various 3D culture systems, with an emphasis on the most well characterized and widely applied model - multicellular tumor spheroids. This review also highlights the various techniques to generate tumor spheroids, methods to characterize them, and its applicability in cancer research.
Collapse
Affiliation(s)
- Sritama Nath
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, United States
| | - Gayathri R Devi
- Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, NC 27710, United States; Duke Cancer Institute, Women's Cancer Program, Duke University School of Medicine, Durham, NC 27710, United States.
| |
Collapse
|
59
|
de Groot TE, Veserat KS, Berthier E, Beebe DJ, Theberge AB. Surface-tension driven open microfluidic platform for hanging droplet culture. LAB ON A CHIP 2016; 16:334-44. [PMID: 26660268 PMCID: PMC4712910 DOI: 10.1039/c5lc01353d] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The hanging droplet technique for three-dimensional tissue culture has been used for decades in biology labs, with the core technology remaining relatively unchanged. Recently microscale approaches have expanded the capabilities of the hanging droplet method, making it more user-friendly. We present a spontaneously driven, open hanging droplet culture platform to address many limitations of current platforms. Our platform makes use of two interconnected hanging droplet wells, a larger well where cells are cultured and a smaller well for user interface via a pipette. The two-well system results in lower shear stress in the culture well during fluid exchange, enabling shear sensitive or non-adherent cells to be cultured in a droplet. The ability to perform fluid exchanges in-droplet enables long-term culture, treatment, and characterization without disruption of the culture. The open well format of the platform was utilized to perform time-dependent coculture, enabling culture configurations with bone tissue scaffolds and cells grown in suspension. The open nature of the system allowed the direct addition or removal of tissue over the course of an experiment, manipulations that would be impractical in other microfluidic or hanging droplet culture platforms.
Collapse
Affiliation(s)
- T E de Groot
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - K S Veserat
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - E Berthier
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - D J Beebe
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - A B Theberge
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
60
|
Young JC, Wakitani S, Loveland KL. TGF-β superfamily signaling in testis formation and early male germline development. Semin Cell Dev Biol 2015; 45:94-103. [PMID: 26500180 DOI: 10.1016/j.semcdb.2015.10.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022]
Abstract
The TGF-β ligand superfamily contains at least 40 members, many of which are produced and act within the mammalian testis to facilitate formation of sperm. Their progressive expression at key stages and in specific cell types determines the fertility of adult males, influencing testis development and controlling germline differentiation. BMPs are essential for the interactive instructions between multiple cell types in the early embryo that drive initial specification of gamete precursors. In the nascent foetal testis, several ligands including Nodal, TGF-βs, Activins and BMPs, serve as key masculinizing switches by regulating male germline pluripotency, somatic and germline proliferation, and testicular vascularization and architecture. In postnatal life, local production of these factors determine adult testis size by regulating Sertoli cell multiplication and differentiation, in addition to specifying germline differentiation and multiplication. Because TGF-β superfamily signaling is integral to testis formation, it affects processes that underlie testicular pathologies, including testicular cancer, and its potential to contribute to subfertility is beginning to be understood.
Collapse
Affiliation(s)
- Julia C Young
- Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Shoichi Wakitani
- Hudson Institute of Medical Research, Clayton, Victoria, Australia; Laboratory of Veterinary Biochemistry and Molecular Biology, University of Miyazaki, Japan
| | - Kate L Loveland
- Hudson Institute of Medical Research, Clayton, Victoria, Australia; School of Clinical Sciences, Monash University, Clayton, Victoria, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
61
|
Jørgensen A, Nielsen JE, Perlman S, Lundvall L, Mitchell RT, Juul A, Rajpert-De Meyts E. Ex vivo culture of human fetal gonads: manipulation of meiosis signalling by retinoic acid treatment disrupts testis development. Hum Reprod 2015; 30:2351-63. [PMID: 26251460 DOI: 10.1093/humrep/dev194] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/13/2015] [Indexed: 01/01/2023] Open
Abstract
STUDY QUESTION What are the effects of experimentally manipulating meiosis signalling by addition of retinoic acid (RA) in cultured human fetal gonads? SUMMARY ANSWER RA-treatment accelerated meiotic entry in cultured fetal ovary samples, while addition of RA resulted in a dysgenetic gonadal phenotype in fetal testis cultures. WHAT IS KNOWN ALREADY One of the first manifestations of sex differentiation is the initiation of meiosis in fetal ovaries. In contrast, meiotic entry is actively prevented in the fetal testis at this developmental time-point. It has previously been shown that RA-treatment mediates initiation of meiosis in human fetal ovary ex vivo. STUDY DESIGN, SIZE, DURATION This was a controlled ex vivo study of human fetal gonads treated with RA in 'hanging-drop' tissue cultures. The applied experimental set-up preserves germ cell-somatic niche interactions and the investigated outcomes included tissue integrity and morphology, cell proliferation and survival and the expression of markers of meiosis and sex differentiation. PARTICIPANTS/MATERIALS, SETTING, METHODS Tissue from 24 first trimester human fetuses was included in this study, all from elective terminations at gestational week (GW) 7-12. Gonads were cultured for 2 weeks with and without addition of 1 µM RA. Samples were subsequently formalin-fixed and investigated by immunohistochemistry and cell counting. Proteins investigated and quantified included; octamer-binding transcription factor 4 (OCT4), transcription factor AP-2 gamma (AP2γ) (embryonic germ cell markers), SRY (sex determining region Y)-box 9 (SOX9), anti-Müllerian hormone (AMH) (immature Sertoli cell markers), COUP transcription factor 2 (COUP-TFII) (marker of interstitial cells), forkhead box L2 (FOXL2) (granulosa cell marker), H2A histone family, member X (γH2AX) (meiosis marker), doublesex and mab-3 related transcription factor 1 (DMRT1) (meiosis regulator), cleaved poly ADP ribose polymerase (PARP), cleaved Caspase 3 (apoptosis markers) and Ki-67 antigen (Ki-67) (proliferation marker). Also, proliferation was determined using a 5'-bromo-2'-deoxyuridine (BrdU) incorporation assay. MAIN RESULTS AND THE ROLE OF CHANCE A novel ex vivo 'hanging-drop' culture model for human fetal gonads was successfully established. Continued proliferation of cells without signs of increased apoptosis was observed after 2 weeks of culture. In cultured fetal ovaries treated with RA, an increased number of meiotic germ cells (P < 0.05) and DMRT1-positive oogonia initiating meiosis (P < 0.05) was observed, which is in agreement with a previous study. In fetal testes, RA-treatment resulted in a decreased number of gonocytes (P < 0.05), a reduced percentage of proliferating gonocytes (P < 0.05), altered expression pattern of the somatic cell markers AMH and COUP-TFII, as well as disrupted seminiferous cord structure and testis morphology. LIMITATIONS, REASONS FOR CAUTION The number of samples included in this study was relatively small due to the limited availability of human fetal tissue. WIDER IMPLICATIONS OF THE FINDINGS The hanging-drop culture, similarly to other organ culture approaches, allows studies of germ cell-somatic niche interactions and determination of effects after manipulating specific signalling pathways. Our novel finding of disrupted fetal testis development after treatment with RA indicates that abnormal meiosis regulation can potentially cause gonadal dysgenesis. Further studies will elucidate the exact mechanisms and timing of observed effects. STUDY FUNDING/COMPETING INTERESTS This work was supported in part by an ESPE Research Fellowship, sponsored by Novo Nordisk A/S to A.Jø. Additional funding for this project was obtained from The Research Council of the Capital Region of Denmark (E.R.-D.M.), The Research Fund at Rigshospitalet (A.Ju. and J.E.N.), Familien Erichssens Fund (A.Jø.), Dagmar Marshalls Fund (A.Jø.) and Aase & Ejnar Danielsens Fund (A.Jø.). The authors have no conflicts of interest.
Collapse
Affiliation(s)
- A Jørgensen
- University Department of Growth and Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - J E Nielsen
- University Department of Growth and Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - S Perlman
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - L Lundvall
- Department of Gynaecology, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - R T Mitchell
- MRC Centre for Reproductive Health, The University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK Edinburgh Royal Hospital for Sick Children, 9 Sciennes Road, Edinburgh EH9 1LF, UK
| | - A Juul
- University Department of Growth and Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - E Rajpert-De Meyts
- University Department of Growth and Reproduction and EDMaRC, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
62
|
Nettersheim D, Jostes S, Sharma R, Schneider S, Hofmann A, Ferreira HJ, Hoffmann P, Kristiansen G, Esteller MB, Schorle H. BMP Inhibition in Seminomas Initiates Acquisition of Pluripotency via NODAL Signaling Resulting in Reprogramming to an Embryonal Carcinoma. PLoS Genet 2015; 11:e1005415. [PMID: 26226633 PMCID: PMC4520454 DOI: 10.1371/journal.pgen.1005415] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/02/2015] [Indexed: 12/18/2022] Open
Abstract
Type II germ cell cancers (GCC) can be subdivided into seminomas and non-seminomas. Seminomas are similar to carcinoma in situ (CIS) cells, the common precursor of type II GCCs, with regard to epigenetics and expression, while embryonal carcinomas (EC) are totipotent and differentiate into teratomas, yolk-sac tumors and choriocarcinomas. GCCs can present as seminomas with a non-seminoma component, raising the question if a CIS gives rise to seminomas and ECs at the same time or whether seminomas can be reprogrammed to ECs. In this study, we utilized the seminoma cell line TCam-2 that acquires an EC-like status after xenografting into the murine flank as a model for a seminoma to EC transition and screened for factors initiating and driving this process. Analysis of expression and DNA methylation dynamics during transition of TCam-2 revealed that many pluripotency- and reprogramming-associated genes were upregulated while seminoma-markers were downregulated. Changes in expression level of 53 genes inversely correlated to changes in DNA methylation. Interestingly, after xenotransplantation 6 genes (GDF3, NODAL, DNMT3B, DPPA3, GAL, AK3L1) were rapidly induced, followed by demethylation of their genomic loci, suggesting that these 6 genes are poised for expression driving the reprogramming. We demonstrate that inhibition of BMP signaling is the initial event in reprogramming, resulting in activation of the pluripotency-associated genes and NODAL signaling. We propose that reprogramming of seminomas to ECs is a multi-step process. Initially, the microenvironment causes inhibition of BMP signaling, leading to induction of NODAL signaling. During a maturation phase, a fast acting NODAL loop stimulates its own activity and temporarily inhibits BMP signaling. During the stabilization phase, a slow acting NODAL loop, involving WNTs re-establishes BMP signaling and the pluripotency circuitry. In parallel, DNMT3B-driven de novo methylation silences seminoma-associated genes and epigenetically fixes the EC state.
Collapse
Affiliation(s)
- Daniel Nettersheim
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - Sina Jostes
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - Rakesh Sharma
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - Simon Schneider
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| | - Andrea Hofmann
- Institute of Human Genetics, University Medical School, Bonn, Germany
| | - Humberto J Ferreira
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute, L'Hospitalet, Barcelona, Catalonia, Spain
| | - Per Hoffmann
- Institute of Human Genetics, University Medical School, Bonn, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Medical School, Bonn, Germany
| | - Manel B Esteller
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute, L'Hospitalet, Barcelona, Catalonia, Spain; Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain; Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - Hubert Schorle
- Institute of Pathology, Department of Developmental Pathology, University Medical School, Bonn, Germany
| |
Collapse
|