51
|
Li K, Gao P, Xiang P, Zhang X, Cui X, Ma LQ. Molecular mechanisms of PFOA-induced toxicity in animals and humans: Implications for health risks. ENVIRONMENT INTERNATIONAL 2017; 99:43-54. [PMID: 27871799 DOI: 10.1016/j.envint.2016.11.014] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/13/2016] [Accepted: 11/13/2016] [Indexed: 05/22/2023]
Abstract
As an emerging persistent organic pollutant (POP), perfluorooctanoate (PFOA) is one of the most abundant perfluorinated compounds (PFCs) in the environment. This review summarized the molecular mechanisms and signaling pathways of PFOA-induced toxicity in animals and humans as well as their implications for health risks in humans. Traditional PFOA-induced signal pathways such as peroxisome proliferating receptor alpha (PPARα), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), and pregnane-X receptor (PXR) may not be important for PFOA-induced health effects on humans. Instead, pathways including p53/mitochondrial pathway, nuclear lipid hyperaccumulation, phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT), and tumor necrosis factor-α/nuclear factor κB (TNF-α/NF-κB) may play an important role for PFOA-induced health risks in humans. Both in vivo and in vitro studies are needed to better understand the PFOA-induced toxicity mechanisms as well as the associated health risk in humans.
Collapse
Affiliation(s)
- Kan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Peng Gao
- Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States
| | - Ping Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210046, China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
52
|
Brault M, Oberst A. Controlled detonation: evolution of necroptosis in pathogen defense. Immunol Cell Biol 2016; 95:131-136. [PMID: 27909314 DOI: 10.1038/icb.2016.117] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/23/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022]
Abstract
Necroptosis is a lytic form of programmed cell death that involves the swelling and rupture of dying cells. Although several necroptosis-inducing stimuli have been defined, in most cells this pathway is kept in check by the action of the pro-apoptotic protease caspase-8 and the IAP ubiquitin ligases. How and when necroptosis is triggered under physiological conditions therefore remains a persistent question. Because necroptosis likely arose as a defensive mechanism against viral infection, exploration of this question requires a consideration of host-pathogen interactions, and how the sensing of infection could sensitize cells to necroptosis. Here, we will discuss the role of necroptosis in the response to viral infection, consider why the necroptotic pathway has been favored during evolution, and describe emerging evidence for death-independent functions of key necroptotic signaling components.
Collapse
Affiliation(s)
- Michelle Brault
- Department of Immunology, University of Washington, Seattle, WA, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
| |
Collapse
|
53
|
Cloning and functional characterizations of an apoptogenic Hid gene in the Scuttle Fly, Megaselia scalaris (Diptera; Phoridae). Gene 2016; 604:9-21. [PMID: 27940109 DOI: 10.1016/j.gene.2016.11.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 12/19/2022]
Abstract
Although the mechanisms of apoptotic cell death have been well studied in the fruit fly, Drosophila melanogaster, it is unclear whether such mechanisms are conserved in other distantly related species. Using degenerate primers and PCR, we cloned a proapoptotic gene homologous to Head involution defective (Hid) from the Scuttle fly, Megaselia scalaris (MsHid). MsHid cDNA encodes a 197-amino acid-long polypeptide, which so far is the smallest HID protein. PCR analyses revealed that the MsHid gene consists of four exons and three introns. Ectopic expression of MsHid in various peptidergic neurons and non-neuronal tissues in Drosophila effectively induced apoptosis of these cells. However, deletion of either conserved domain, N-terminal IBM or C-terminal MTS, abolished the apoptogenic activity of MsHID, indicating that these two domains are indispensable. Expression of MsHid was found in all life stages, but more prominently in embryos and pupae. MsHid is actively expressed in the central nervous system (CNS), indicating its important role in CNS development. Together MsHID is likely to be an important cell death inducer during embryonic and post-embryonic development in this species. In addition, we found 2-fold induction of MsHid expression in UV-irradiated embryos, indicating a possible role for MsHid in UV-induced apoptosis.
Collapse
|
54
|
Jitobaom K, Tongluan N, Smith DR. Involvement of voltage-dependent anion channel (VDAC) in dengue infection. Sci Rep 2016; 6:35753. [PMID: 27779201 PMCID: PMC5078847 DOI: 10.1038/srep35753] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/05/2016] [Indexed: 01/07/2023] Open
Abstract
During infection, dengue virus (DENV) proteins interact with host cellular constituents promoting the remodeling of the cell to facilitate virus production. While a number of interacting proteins have been identified for DENV non-structural proteins, far fewer interacting partners have been identified for the DENV structural proteins. One protein that has been identified as a DENV E protein interacting protein is the cellular chaperone GRP78. GRP78 has been shown to have a number of cellular interacting partners including the voltage-dependent anion channel (VDAC). In this study we confirmed the interactions between GRP78 and DENV E protein and between GRP78 and VDAC. VDAC was shown to be re-localized during DENV infection, with no change in levels of protein expression. VDAC is predominantly located on the outer membrane of mitochondria and our result is consistent with movement of the mitochondria towards the ER during DENV infection. Down regulation of VDAC through siRNA significantly reduced DENV protein expression, as well as the percentage infection and output virus titer. Our results suggest that VDAC plays an important role in DENV infection.
Collapse
Affiliation(s)
- Kunlakanya Jitobaom
- Institute of Molecular Biosciences Mahidol University, Salaya Campus, 25/25 Phuttamonthon Sai 4, Salaya, Nakhon Pathom 73170, Thailand
| | - Natthida Tongluan
- Institute of Molecular Biosciences Mahidol University, Salaya Campus, 25/25 Phuttamonthon Sai 4, Salaya, Nakhon Pathom 73170, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences Mahidol University, Salaya Campus, 25/25 Phuttamonthon Sai 4, Salaya, Nakhon Pathom 73170, Thailand.,Center for Emerging and Neglected Infectious Diseases, Mahidol University, Salaya Campus, 25/25 Phuttamonthon Sai 4, Salaya, Nakhon Pathom 73170, Thailand
| |
Collapse
|
55
|
Kvitt H, Rosenfeld H, Tchernov D. The regulation of thermal stress induced apoptosis in corals reveals high similarities in gene expression and function to higher animals. Sci Rep 2016; 6:30359. [PMID: 27460544 PMCID: PMC4961959 DOI: 10.1038/srep30359] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/04/2016] [Indexed: 12/16/2022] Open
Abstract
Recent studies suggest that controlled apoptotic response provides an essential mechanism, enabling corals to respond to global warming and ocean acidification. However, the molecules involved and their functions are still unclear. To better characterize the apoptotic response in basal metazoans, we studied the expression profiles of selected genes that encode for putative pro- and anti-apoptotic mediators in the coral Stylophora pistillata under thermal stress and bleaching conditions. Upon thermal stress, as attested by the elevation of the heat-shock protein gene HSP70’s mRNA levels, the expression of all studied genes, including caspase, Bcl-2, Bax, APAF-1 and BI-1, peaked at 6–24 h of thermal stress (hts) and declined at 72 hts. Adversely, the expression levels of the survivin gene showed a shifted pattern, with elevation at 48–72 hts and a return to basal levels at 168 hts. Overall, we show the quantitative anti-apoptotic traits of the coral Bcl-2 protein, which resemble those of its mammalian counterpart. Altogether, our results highlight the similarities between apoptotic networks operating in simple metazoans and in higher animals and clearly demonstrate the activation of pro-cell survival regulators at early stages of the apoptotic response, contributing to the decline of apoptosis and the acclimation to chronic stress.
Collapse
Affiliation(s)
- Hagit Kvitt
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mount Carmel, Haifa 31905, Israel.,The Interuniversity Institute for Marine Science P.O.B 469, Eilat 88103, Israel
| | - Hanna Rosenfeld
- Israel Oceanographic and Limnological Research, National Center for Mariculture, P.O.B. 1212, Eilat 88112, Israel
| | - Dan Tchernov
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mount Carmel, Haifa 31905, Israel
| |
Collapse
|
56
|
Clavier A, Rincheval-Arnold A, Mignotte B, Guénal I. [The comeback of mitochondria in Drosophila apoptosis]. Med Sci (Paris) 2016; 32:478-84. [PMID: 27225920 DOI: 10.1051/medsci/20163205014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The role of the mitochondrion in mammalian cell apoptosis has been established since the mid-1990s. However, the importance of this organelle in non-mammalian apoptosis has long been regarded as minor, notably because of the absence of a crucial role for cytochrome c in caspase activation. Recent results indicate that the control of caspase activation and apoptosis in Drosophila cell death occurs at the mitochondrial level. Numerous proteins that appear key for Drosophila apoptosis regulation constitutively or transiently bind to mitochondria. They participate in the cell death process at different levels such as degradation of an IAP caspase inhibitor, production of mitochondrial reactive oxygen species or stimulation of the mitochondrial fission machinery. The aim of this review is to take stock of these events that might have their counterpart in humans.
Collapse
Affiliation(s)
- Amandine Clavier
- Laboratoire de génétique et biologie cellulaire, université de Versailles Saint-Quentin-en-Yvelines, université Paris-Saclay, 2, avenue de la Source de la Bièvre, 78180 Montigny-le-Bretonneux, France - Laboratoire de génétique moléculaire et physiologique, École pratique des hautes études, PSL research university, 78180 Montigny-le-Bretonneux, France
| | - Aurore Rincheval-Arnold
- Laboratoire de génétique et biologie cellulaire, université de Versailles Saint-Quentin-en-Yvelines, université Paris-Saclay, 2, avenue de la Source de la Bièvre, 78180 Montigny-le-Bretonneux, France
| | - Bernard Mignotte
- Laboratoire de génétique et biologie cellulaire, université de Versailles Saint-Quentin-en-Yvelines, université Paris-Saclay, 2, avenue de la Source de la Bièvre, 78180 Montigny-le-Bretonneux, France - Laboratoire de génétique moléculaire et physiologique, École pratique des hautes études, PSL research university, 78180 Montigny-le-Bretonneux, France
| | - Isabelle Guénal
- Laboratoire de génétique et biologie cellulaire, université de Versailles Saint-Quentin-en-Yvelines, université Paris-Saclay, 2, avenue de la Source de la Bièvre, 78180 Montigny-le-Bretonneux, France
| |
Collapse
|
57
|
Chen J. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb Perspect Med 2016; 6:a026104. [PMID: 26931810 DOI: 10.1101/cshperspect.a026104] [Citation(s) in RCA: 733] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
P53 is a transcription factor highly inducible by many stress signals such as DNA damage, oncogene activation, and nutrient deprivation. Cell-cycle arrest and apoptosis are the most prominent outcomes of p53 activation. Many studies showed that p53 cell-cycle and apoptosis functions are important for preventing tumor development. p53 also regulates many cellular processes including metabolism, antioxidant response, and DNA repair. Emerging evidence suggests that these noncanonical p53 activities may also have potent antitumor effects within certain context. This review focuses on the cell-cycle arrest and apoptosis functions of p53, their roles in tumor suppression, and the regulation of cell fate decision after p53 activation.
Collapse
Affiliation(s)
- Jiandong Chen
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, Florida 33612
| |
Collapse
|
58
|
Stricker SA, Beckstrom B, Mendoza C, Stanislawski E, Wodajo T. Oocyte aging in a marine protostome worm: The roles of maturation-promoting factor and extracellular signal regulated kinase form of mitogen-activated protein kinase. Dev Growth Differ 2016; 58:250-9. [PMID: 26918273 DOI: 10.1111/dgd.12269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/29/2015] [Accepted: 01/10/2016] [Indexed: 12/15/2022]
Abstract
The roles of maturation-promoting factor (MPF) and an extracellular signal regulated kinase form of mitogen-activated protein kinase (ERK MAPK) are analyzed during oocyte aging in the marine protostome worm Cerebratulus. About a day after removal from the ovary, unfertilized metaphase-I-arrested oocytes of Cerebratulus begin to flatten and swell before eventually lysing, thereby exhibiting characteristics of a necroptotic mode of regulated cell death. Based on immunoblots probed with phospho-specific antibodies, MPF and ERK are initially active in freshly mature specimens. However, as oocytes age, both kinase activities decline, with ERK deactivation occurring well before MPF downregulation. Experiments using pharmacological modulators indicate that oocyte degradation is promoted by the maturation-initiated activation of ERK as well as by the deactivation of MPF that occurs in extensively aged specimens. The potential significance of these findings is discussed relative to previously published results for apoptotic eggs and oocytes of echinoderm and vertebrate deuterostomes.
Collapse
Affiliation(s)
- Stephen A Stricker
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Bradley Beckstrom
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Cristina Mendoza
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Emma Stanislawski
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| | - Tewodros Wodajo
- Department of Biology, MSC03 2020, 1 University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
59
|
Moya A, Sakamaki K, Mason BM, Huisman L, Forêt S, Weiss Y, Bull TE, Tomii K, Imai K, Hayward DC, Ball EE, Miller DJ. Functional conservation of the apoptotic machinery from coral to man: the diverse and complex Bcl-2 and caspase repertoires of Acropora millepora. BMC Genomics 2016; 17:62. [PMID: 26772977 PMCID: PMC4715348 DOI: 10.1186/s12864-015-2355-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 12/21/2015] [Indexed: 11/25/2022] Open
Abstract
Background Apoptotic cell death is a defining and ubiquitous characteristic of metazoans, but its evolutionary origins are unclear. Although Caenorhabditis and Drosophila played key roles in establishing the molecular bases of apoptosis, it is now clear that cell death pathways of these animals do not reflect ancestral characteristics. Conversely, recent work suggests that the apoptotic networks of cnidarians may be complex and vertebrate-like, hence characterization of the apoptotic complement of representatives of the basal cnidarian class Anthozoa will help us to understand the evolution of the vertebrate apoptotic network. Results We describe the Bcl-2 and caspase protein repertoires of the coral Acropora millepora, making use of the comprehensive transcriptomic data available for this species. Molecular phylogenetics indicates that some Acropora proteins are orthologs of specific mammalian pro-apoptotic Bcl-2 family members, but the relationships of other Bcl-2 and caspases are unclear. The pro- or anti-apoptotic activities of coral Bcl-2 proteins were investigated by expression in mammalian cells, and the results imply functional conservation of the effector/anti-apoptotic machinery despite limited sequence conservation in the anti-apoptotic Bcl-2 proteins. A novel caspase type (“Caspase-X”), containing both inactive and active caspase domains, was identified in Acropora and appears to be restricted to corals. When expressed in mammalian cells, full-length caspase-X caused loss of viability, and a truncated version containing only the active domain was more effective in inducing cell death, suggesting that the inactive domain might modulate activity in the full-length protein. Structure prediction suggests that the active and inactive caspase domains in caspase-X are likely to interact, resulting in a structure resembling that of the active domain in procaspase-8 and the inactive caspase domain in the mammalian c-FLIP anti-apoptotic factor. Conclusions The data presented here confirm that many of the basic mechanisms involved in both the intrinsic and extrinsic apoptotic pathways were in place in the common ancestor of cnidarians and bilaterians. With the identification of most or all of the repertoires of coral Bcl-2 and caspases, our results not only provide new perspectives on the evolution of apoptotic pathways, but also a framework for future experimental studies towards a complete understanding of coral bleaching mechanisms, in which apoptotic cell death might be involved. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2355-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aurelie Moya
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Kazuhiro Sakamaki
- Department of Animal Development and Physiology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| | - Benjamin M Mason
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia. .,Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Lotte Huisman
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia. .,Section of Computational Science, Universiteit van Amsterdam, Science Park 904, 1098, XH, Amsterdam, The Netherlands.
| | - Sylvain Forêt
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia. .,Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Bldg. 46, Canberra, ACT, 0200, Australia.
| | - Yvonne Weiss
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia. .,Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Tara E Bull
- Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Kentaro Tomii
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan.
| | - Kenichiro Imai
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan.
| | - David C Hayward
- Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Bldg. 46, Canberra, ACT, 0200, Australia.
| | - Eldon E Ball
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia. .,Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Bldg. 46, Canberra, ACT, 0200, Australia.
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia. .,Comparative Genomics Centre and Department of Molecular and Cell Biology, James Cook University, Townsville, Queensland, 4811, Australia.
| |
Collapse
|
60
|
Abstract
The role of caspase proteases in regulated processes such as apoptosis and inflammation has been studied for more than two decades, and the activation cascades are known in detail. Apoptotic caspases also are utilized in critical developmental processes, although it is not known how cells maintain the exquisite control over caspase activity in order to retain subthreshold levels required for a particular adaptive response while preventing entry into apoptosis. In addition to active site-directed inhibitors, caspase activity is modulated by post-translational modifications or metal binding to allosteric sites on the enzyme, which stabilize inactive states in the conformational ensemble. This review provides a comprehensive global view of the complex conformational landscape of caspases and mechanisms used to select states in the ensemble. The caspase structural database provides considerable detail on the active and inactive conformations in the ensemble, which provide the cell multiple opportunities to fine tune caspase activity. In contrast, the current database on caspase modifications is largely incomplete and thus provides only a low-resolution picture of global allosteric communications and their effects on the conformational landscape. In recent years, allosteric control has been utilized in the design of small drug compounds or other allosteric effectors to modulate caspase activity.
Collapse
Affiliation(s)
- A Clay Clark
- Department of Biology, University of Texas at Arlington , Arlington, Texas 76019, United States
| |
Collapse
|
61
|
Bernardi P, Rasola A, Forte M, Lippe G. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Physiol Rev 2015; 95:1111-55. [PMID: 26269524 DOI: 10.1152/physrev.00001.2015] [Citation(s) in RCA: 420] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mitochondrial permeability transition (PT) is a permeability increase of the inner mitochondrial membrane mediated by a channel, the permeability transition pore (PTP). After a brief historical introduction, we cover the key regulatory features of the PTP and provide a critical assessment of putative protein components that have been tested by genetic analysis. The discovery that under conditions of oxidative stress the F-ATP synthases of mammals, yeast, and Drosophila can be turned into Ca(2+)-dependent channels, whose electrophysiological properties match those of the corresponding PTPs, opens new perspectives to the field. We discuss structural and functional features of F-ATP synthases that may provide clues to its transition from an energy-conserving into an energy-dissipating device as well as recent advances on signal transduction to the PTP and on its role in cellular pathophysiology.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Michael Forte
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Giovanna Lippe
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| |
Collapse
|
62
|
Mácsik LL, Somogyi I, Opper B, Bovári-Biri J, Pollák E, Molnár L, Németh P, Engelmann P. Induction of apoptosis-like cell death by coelomocyte extracts from Eisenia andrei earthworms. Mol Immunol 2015; 67:213-22. [DOI: 10.1016/j.molimm.2015.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/15/2015] [Accepted: 05/16/2015] [Indexed: 12/24/2022]
|
63
|
Kvansakul M, Hinds MG. The Bcl-2 family: structures, interactions and targets for drug discovery. Apoptosis 2015; 20:136-50. [PMID: 25398535 DOI: 10.1007/s10495-014-1051-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two phylogenetically and structurally distinct groups of proteins regulate stress induced intrinsic apoptosis, the programmed disassembly of cells. Together they form the B cell lymphoma-2 (Bcl-2) family. Bcl-2 proteins appeared early in metazoan evolution and are identified by the presence of up to four short conserved sequence blocks known as Bcl-2 homology (BH) motifs, or domains. The simple BH3-only proteins bear only a BH3-motif and are intrinsically disordered proteins and antagonize or activate the other group, the multi-motif Bcl-2 proteins that have up to four BH motifs, BH1-BH4. Multi-motif Bcl-2 proteins are either pro-survival or pro-apoptotic in action and have remarkably similar α-helical bundle structures that provide a binding groove formed from the BH1, BH2, and BH3-motifs for their BH3-bearing antagonists. In mammals a network of interactions between Bcl-2 members regulates mitochondrial outer membrane permeability (MOMP) and efflux of cytochrome c and other death inducing factors from mitochondria to initiate the apoptotic caspase cascade, but the molecular events leading to MOMP are uncertain. Dysregulation of the Bcl-2 family occurs in many diseases and pathogenic viruses have assimilated pro-survival Bcl-2 proteins to evade immune responses. Their role in disease has made the Bcl-2 family the focus of drug design attempts and clinical trials are showing promise for 'BH3-mimics', drugs that mimic the ability of BH3-only proteins to neutralize selected pro-survival proteins to induce cell death in tumor cells. This review focuses on the structural biology of Bcl-2 family proteins, their interactions and attempts to harness them as targets for drug design.
Collapse
Affiliation(s)
- Marc Kvansakul
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, 3086, Australia,
| | | |
Collapse
|
64
|
Romero A, Novoa B, Figueras A. The complexity of apoptotic cell death in mollusks: An update. FISH & SHELLFISH IMMUNOLOGY 2015; 46:79-87. [PMID: 25862972 DOI: 10.1016/j.fsi.2015.03.038] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 02/28/2015] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
Apoptosis is a type of programmed cell death that produces changes in cell morphology and in biochemical intracellular processes without inflammatory reactions. The components of the apoptotic pathways are conserved throughout evolution. Caspases are key molecules involved in the transduction of the death signal and are responsible for many of the biochemical and morphological changes associated with apoptosis. Nowadays, It is known that caspases are activated through two major apoptotic pathways (the extrinsic or death receptor pathway and the intrinsic or mitochondrial pathway), but there are also evidences of at least other alternative pathway (the perforin/granzyme pathway). Apoptosis in mollusks seems to be similar in complexity to apoptosis in vertebrates but also has unique features maybe related to their recurrent exposure to environmental changes, pollutants, pathogens and also related to the sedentary nature of some stages in the life cycle of mollusks bivalves and gastropods. As in other animals, apoptotic process is involved in the maintenance of tissue homeostasis and also constitutes an important immune response that can be triggered by a variety of stimuli, including cytokines, hormones, toxic insults, viruses, and protozoan parasites. The main goal of this work is to present the current knowledge of the molecular mechanisms of apoptosis in mollusks and to highlight those steps that need further study.
Collapse
Affiliation(s)
- A Romero
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - B Novoa
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain
| | - A Figueras
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain.
| |
Collapse
|
65
|
Chimento A, Sirianni R, Casaburi I, Zolea F, Rizza P, Avena P, Malivindi R, De Luca A, Campana C, Martire E, Domanico F, Fallo F, Carpinelli G, Cerquetti L, Amendola D, Stigliano A, Pezzi V. GPER agonist G-1 decreases adrenocortical carcinoma (ACC) cell growth in vitro and in vivo. Oncotarget 2015; 6:19190-203. [PMID: 26131713 PMCID: PMC4662484 DOI: 10.18632/oncotarget.4241] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/23/2015] [Indexed: 12/26/2022] Open
Abstract
We have previously demonstrated that estrogen receptor (ER) alpha (ESR1) increases proliferation of adrenocortical carcinoma (ACC) through both an estrogen-dependent and -independent (induced by IGF-II/IGF1R pathways) manner. Then, the use of tamoxifen, a selective estrogen receptor modulator (SERM), appears effective in reducing ACC growth in vitro and in vivo. However, tamoxifen not only exerts antiestrogenic activity, but also acts as full agonist on the G protein-coupled estrogen receptor (GPER). Aim of this study was to investigate the effect of a non-steroidal GPER agonist G-1 in modulating ACC cell growth. We found that G-1 is able to exert a growth inhibitory effect on H295R cells both in vitro and, as xenograft model, in vivo. Treatment of H295R cells with G-1 induced cell cycle arrest, DNA damage and cell death by the activation of the intrinsic apoptotic mechanism. These events required sustained extracellular regulated kinase (ERK) 1/2 activation. Silencing of GPER by a specific shRNA partially reversed G-1-mediated cell growth inhibition without affecting ERK activation. These data suggest the existence of G-1 activated but GPER-independent effects that remain to be clarified. In conclusion, this study provides a rational to further study G-1 mechanism of action in order to include this drug as a treatment option to the limited therapy of ACC.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Rosa Sirianni
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Ivan Casaburi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Fabiana Zolea
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Pietro Rizza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Paola Avena
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Arianna De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Carmela Campana
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Emilia Martire
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Francesco Domanico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Francesco Fallo
- Department of Medicine-DIMED, University of Padova, Padova, Italy
| | - Giulia Carpinelli
- Department of Cell Biology and Neurosciences, National Institute of Health, Rome, Italy
| | - Lidia Cerquetti
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Faculty of Medicine and Psychology, Rome, Italy
| | | | - Antonio Stigliano
- Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Faculty of Medicine and Psychology, Rome, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
66
|
Sulmon C, van Baaren J, Cabello-Hurtado F, Gouesbet G, Hennion F, Mony C, Renault D, Bormans M, El Amrani A, Wiegand C, Gérard C. Abiotic stressors and stress responses: What commonalities appear between species across biological organization levels? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 202:66-77. [PMID: 25813422 DOI: 10.1016/j.envpol.2015.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 05/07/2023]
Abstract
Organisms are regularly subjected to abiotic stressors related to increasing anthropogenic activities, including chemicals and climatic changes that induce major stresses. Based on various key taxa involved in ecosystem functioning (photosynthetic microorganisms, plants, invertebrates), we review how organisms respond and adapt to chemical- and temperature-induced stresses from molecular to population level. Using field-realistic studies, our integrative analysis aims to compare i) how molecular and physiological mechanisms related to protection, repair and energy allocation can impact life history traits of stressed organisms, and ii) to what extent trait responses influence individual and population responses. Common response mechanisms are evident at molecular and cellular scales but become rather difficult to define at higher levels due to evolutionary distance and environmental complexity. We provide new insights into the understanding of the impact of molecular and cellular responses on individual and population dynamics and assess the potential related effects on communities and ecosystem functioning.
Collapse
Affiliation(s)
- Cécile Sulmon
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France.
| | - Joan van Baaren
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Francisco Cabello-Hurtado
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Gwenola Gouesbet
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Françoise Hennion
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Cendrine Mony
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - David Renault
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Myriam Bormans
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Abdelhak El Amrani
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - Claudia Wiegand
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France; Biologisk Institut, Syddansk Universitet, Campusvej 55, 5230 Odense M, Denmark
| | - Claudia Gérard
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France.
| |
Collapse
|
67
|
Shalaeva DN, Dibrova DV, Galperin MY, Mulkidjanian AY. Modeling of interaction between cytochrome c and the WD domains of Apaf-1: bifurcated salt bridges underlying apoptosome assembly. Biol Direct 2015; 10:29. [PMID: 26014357 PMCID: PMC4445527 DOI: 10.1186/s13062-015-0059-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Accepted: 05/13/2015] [Indexed: 12/19/2022] Open
Abstract
Background Binding of cytochrome c, released from the damaged mitochondria, to the apoptotic protease activating factor 1 (Apaf-1) is a key event in the apoptotic signaling cascade. The binding triggers a major domain rearrangement in Apaf-1, which leads to oligomerization of Apaf-1/cytochrome c complexes into an apoptosome. Despite the availability of crystal structures of cytochrome c and Apaf-1 and cryo-electron microscopy models of the entire apoptosome, the binding mode of cytochrome c to Apaf-1, as well as the nature of the amino acid residues of Apaf-1 involved remain obscure. Results We investigated the interaction between cytochrome c and Apaf-1 by combining several modeling approaches. We have applied protein-protein docking and energy minimization, evaluated the resulting models of the Apaf-1/cytochrome c complex, and carried out a further analysis by means of molecular dynamics simulations. We ended up with a single model structure where all the lysine residues of cytochrome c that are known as functionally-relevant were involved in forming salt bridges with acidic residues of Apaf-1. This model has revealed three distinctive bifurcated salt bridges, each involving a single lysine residue of cytochrome c and two neighboring acidic resides of Apaf-1. Salt bridge-forming amino acids of Apaf-1 showed a clear evolutionary pattern within Metazoa, with pairs of acidic residues of Apaf-1, involved in bifurcated salt bridges, reaching their highest numbers in the sequences of vertebrates, in which the cytochrome c-mediated mechanism of apoptosome formation seems to be typical. Conclusions The reported model of an Apaf-1/cytochrome c complex provides insights in the nature of protein-protein interactions which are hard to observe in crystallographic or electron microscopy studies. Bifurcated salt bridges can be expected to be stronger than simple salt bridges, and their formation might promote the conformational change of Apaf-1, leading to the formation of an apoptosome. Combination of structural and sequence analyses provides hints on the evolution of the cytochrome c-mediated apoptosis. Reviewers This article was reviewed by Andrei L. Osterman, Narayanaswamy Srinivasan, Igor N. Berezovsky, and Gerrit Vriend (nominated by Martijn Huynen). Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0059-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daria N Shalaeva
- School of Physics, Osnabrück University, 49069, Osnabrück, Germany. .,School of Bioengineering and Bioinformatics, 117999, Moscow, Russia.
| | - Daria V Dibrova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 117999, Moscow, Russia.
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA.
| | - Armen Y Mulkidjanian
- School of Physics, Osnabrück University, 49069, Osnabrück, Germany. .,School of Bioengineering and Bioinformatics, 117999, Moscow, Russia. .,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 117999, Moscow, Russia.
| |
Collapse
|
68
|
Shalaeva DN, Dibrova DV, Galperin MY, Mulkidjanian AY. Modeling of interaction between cytochrome c and the WD domains of Apaf-1: bifurcated salt bridges underlying apoptosome assembly. Biol Direct 2015. [PMID: 26014357 DOI: 10.1186/s13062-015-0059- 4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Binding of cytochrome c, released from the damaged mitochondria, to the apoptotic protease activating factor 1 (Apaf-1) is a key event in the apoptotic signaling cascade. The binding triggers a major domain rearrangement in Apaf-1, which leads to oligomerization of Apaf-1/cytochrome c complexes into an apoptosome. Despite the availability of crystal structures of cytochrome c and Apaf-1 and cryo-electron microscopy models of the entire apoptosome, the binding mode of cytochrome c to Apaf-1, as well as the nature of the amino acid residues of Apaf-1 involved remain obscure. RESULTS We investigated the interaction between cytochrome c and Apaf-1 by combining several modeling approaches. We have applied protein-protein docking and energy minimization, evaluated the resulting models of the Apaf-1/cytochrome c complex, and carried out a further analysis by means of molecular dynamics simulations. We ended up with a single model structure where all the lysine residues of cytochrome c that are known as functionally-relevant were involved in forming salt bridges with acidic residues of Apaf-1. This model has revealed three distinctive bifurcated salt bridges, each involving a single lysine residue of cytochrome c and two neighboring acidic resides of Apaf-1. Salt bridge-forming amino acids of Apaf-1 showed a clear evolutionary pattern within Metazoa, with pairs of acidic residues of Apaf-1, involved in bifurcated salt bridges, reaching their highest numbers in the sequences of vertebrates, in which the cytochrome c-mediated mechanism of apoptosome formation seems to be typical. CONCLUSIONS The reported model of an Apaf-1/cytochrome c complex provides insights in the nature of protein-protein interactions which are hard to observe in crystallographic or electron microscopy studies. Bifurcated salt bridges can be expected to be stronger than simple salt bridges, and their formation might promote the conformational change of Apaf-1, leading to the formation of an apoptosome. Combination of structural and sequence analyses provides hints on the evolution of the cytochrome c-mediated apoptosis.
Collapse
Affiliation(s)
- Daria N Shalaeva
- School of Physics, Osnabrück University, 49069, Osnabrück, Germany. .,School of Bioengineering and Bioinformatics, 117999, Moscow, Russia.
| | - Daria V Dibrova
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 117999, Moscow, Russia.
| | - Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 20894, Bethesda, MD, USA.
| | - Armen Y Mulkidjanian
- School of Physics, Osnabrück University, 49069, Osnabrück, Germany. .,School of Bioengineering and Bioinformatics, 117999, Moscow, Russia. .,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 117999, Moscow, Russia.
| |
Collapse
|
69
|
Paul SS, Sil P, Haldar S, Mitra S, Chattopadhyay K. Subtle Change in the Charge Distribution of Surface Residues May Affect the Secondary Functions of Cytochrome c. J Biol Chem 2015; 290:14476-90. [PMID: 25873393 DOI: 10.1074/jbc.m114.607010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Indexed: 11/06/2022] Open
Abstract
Although the primary function of cytochrome c (cyt c) is electron transfer, the protein caries out an additional secondary function involving its interaction with membrane cardiolipin (CDL), its peroxidase activity, and the initiation of apoptosis. Whereas the primary function of cyt c is essentially conserved, its secondary function varies depending on the source of the protein. We report here a detailed experimental and computational study, which aims to understand, at the molecular level, the difference in the secondary functions of cyt c obtained from horse heart (mammalian) and Saccharomyces cerevisiae (yeast). The conformational landscape of cyt c has been found to be heterogeneous, consisting of an equilibrium between the compact and extended conformers as well as the oligomeric species. Because the determination of relative populations of these conformers is difficult to obtain by ensemble measurements, we used fluorescence correlation spectroscopy (FCS), a method that offers single-molecule resolution. The population of different species is found to depend on multiple factors, including the protein source, the presence of CDL and urea, and their concentrations. The complex interplay between the conformational distribution and oligomerization plays a crucial role in the variation of the pre-apoptotic regulation of cyt c observed from different sources. Finally, computational studies reveal that the variation in the charge distribution at the surface and the charge reversal sites may be the key determinant of the conformational stability of cyt c.
Collapse
Affiliation(s)
- Simanta Sarani Paul
- From the Protein Folding and Dynamics Laboratory, Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Pallabi Sil
- From the Protein Folding and Dynamics Laboratory, Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Shubhasis Haldar
- From the Protein Folding and Dynamics Laboratory, Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Samaresh Mitra
- From the Protein Folding and Dynamics Laboratory, Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Krishnananda Chattopadhyay
- From the Protein Folding and Dynamics Laboratory, Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
70
|
Choi JS, Maity A, Gray T, Berdis AJ. A metal-containing nucleoside that possesses both therapeutic and diagnostic activity against cancer. J Biol Chem 2015; 290:9714-26. [PMID: 25713072 DOI: 10.1074/jbc.m114.620294] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 12/29/2022] Open
Abstract
Nucleoside transport is an essential process that helps maintain the hyperproliferative state of most cancer cells. As such, it represents an important target for developing diagnostic and therapeutic agents that can effectively detect and treat cancer, respectively. This report describes the development of a metal-containing nucleoside designated Ir(III)-PPY nucleoside that displays both therapeutic and diagnostic properties against the human epidermal carcinoma cell line KB3-1. The cytotoxic effects of Ir(III)-PPY nucleoside are both time- and dose-dependent. Flow cytometry analyses validate that the nucleoside analog causes apoptosis by blocking cell cycle progression at G2/M. Fluorescent microscopy studies show rapid accumulation in the cytoplasm within 4 h. However, more significant accumulation is observed in the nucleus and mitochondria after 24 h. This localization is consistent with the ability of the metal-containing nucleoside to influence cell cycle progression at G2/M. Mitochondrial depletion is also observed after longer incubations (Δt ∼48 h), and this effect may produce additional cytotoxic effects. siRNA knockdown experiments demonstrate that the nucleoside transporter, hENT1, plays a key role in the cellular entry of Ir(III)-PPY nucleoside. Collectively, these data provide evidence for the development of a metal-containing nucleoside that functions as a combined therapeutic and diagnostic agent against cancer.
Collapse
Affiliation(s)
- Jung-Suk Choi
- From the Department of Chemistry and the Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio 44115 and
| | - Ayan Maity
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Thomas Gray
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Anthony J Berdis
- From the Department of Chemistry and the Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, Ohio 44115 and
| |
Collapse
|
71
|
Licht V, Noack K, Schlott B, Förster M, Schlenker Y, Licht A, Krämer OH, Heinzel T. Caspase-3 and caspase-6 cleave STAT1 in leukemic cells. Oncotarget 2015; 5:2305-17. [PMID: 24810717 PMCID: PMC4039164 DOI: 10.18632/oncotarget.1911] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Signal Transducer and Activator of Transcription-1 (STAT1) is phosphorylated upon interferon (IFN) stimulation, which can restrict cell proliferation and survival. Nevertheless, in some cancers STAT1 can act in an anti-apoptotic manner. Moreover, certain malignancies are characterized by the overexpression and constitutive activation of STAT1. Here, we demonstrate that the treatment of transformed hematopoietic cells with epigenetic drugs belonging to the class of histone deacetylase inhibitors (HDACi) leads to the cleavage of STAT1 at multiple sites by caspase-3 and caspase-6. This process does not occur in solid tumor cells, normal hematopoietic cells, and leukemic cells that underwent granulocytic or monocytic differentiation. STAT1 cleavage was studied under cell free conditions with purified STAT1 and a set of candidate caspases as well as with mass spectrometry. These assays indicate that unmodified STAT1 is cleaved at multiple sites by caspase-3 and caspase-6. Our study shows that STAT1 is targeted by caspases in malignant undifferentiated hematopoietic cells. This observation may provide an explanation for the selective toxicity of HDACi against rapidly proliferating leukemic cells.
Collapse
Affiliation(s)
- Verena Licht
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany. Friedrich-Schiller-Universität Jena, Centre for Molecular Biomedicine (CMB), Institute for Biochemistry and Biophysics, Hans-Knöll-Str. 2, 07745 Jena, Germany
| | | | | | | | | | | | | | | |
Collapse
|
72
|
von Stockum S, Giorgio V, Trevisan E, Lippe G, Glick GD, Forte MA, Da-Rè C, Checchetto V, Mazzotta G, Costa R, Szabò I, Bernardi P. F-ATPase of Drosophila melanogaster forms 53-picosiemen (53-pS) channels responsible for mitochondrial Ca2+-induced Ca2+ release. J Biol Chem 2014; 290:4537-4544. [PMID: 25550160 DOI: 10.1074/jbc.c114.629766] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondria of Drosophila melanogaster undergo Ca(2+)-induced Ca(2+) release through a putative channel (mCrC) that has several regulatory features of the permeability transition pore (PTP). The PTP is an inner membrane channel that forms from F-ATPase, possessing a conductance of 500 picosiemens (pS) in mammals and of 300 pS in yeast. In contrast to the PTP, the mCrC of Drosophila is not permeable to sucrose and appears to be selective for Ca(2+) and H(+). We show (i) that like the PTP, the mCrC is affected by the sense of rotation of F-ATPase, by Bz-423, and by Mg(2+)/ADP; (ii) that expression of human cyclophilin D in mitochondria of Drosophila S2R(+) cells sensitizes the mCrC to Ca(2+) but does not increase its apparent size; and (iii) that purified dimers of D. melanogaster F-ATPase reconstituted into lipid bilayers form 53-pS channels activated by Ca(2+) and thiol oxidants and inhibited by Mg(2+)/γ-imino ATP. These findings indicate that the mCrC is the PTP of D. melanogaster and that the signature conductance of F-ATPase channels depends on unique structural features that may underscore specific roles in different species.
Collapse
Affiliation(s)
| | | | | | - Giovanna Lippe
- the Department of Food Science, University of Udine, I-33100 Udine, Italy
| | - Gary D Glick
- the Department of Chemistry, Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Michael A Forte
- the Vollum Institute, Oregon Health and Sciences University, Portland, Oregon 97239
| | - Caterina Da-Rè
- Biology, University of Padova and Consiglio Nazionale delle Ricerche Neuroscience Institute, I-35131 Padova, Italy
| | - Vanessa Checchetto
- Biology, University of Padova and Consiglio Nazionale delle Ricerche Neuroscience Institute, I-35131 Padova, Italy
| | - Gabriella Mazzotta
- Biology, University of Padova and Consiglio Nazionale delle Ricerche Neuroscience Institute, I-35131 Padova, Italy
| | - Rodolfo Costa
- Biology, University of Padova and Consiglio Nazionale delle Ricerche Neuroscience Institute, I-35131 Padova, Italy
| | - Ildikò Szabò
- Biology, University of Padova and Consiglio Nazionale delle Ricerche Neuroscience Institute, I-35131 Padova, Italy
| | | |
Collapse
|
73
|
Setia S, Nehru B, Sanyal SN. Celecoxib prevents colitis associated colon carcinogenesis: An upregulation of apoptosis. Pharmacol Rep 2014; 66:1083-91. [DOI: 10.1016/j.pharep.2014.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 07/17/2014] [Accepted: 07/17/2014] [Indexed: 01/16/2023]
|
74
|
Jiang W, Chen L, Zhang XJ, Chen J, Li XC, Hou WS, Xiao N. Red photon treatment inhibits apoptosis via regulation of bcl-2 proteins and ROS levels, alleviating hypoxic-ischemic brain damage. Neuroscience 2014; 268:66-74. [PMID: 24607343 DOI: 10.1016/j.neuroscience.2014.02.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/14/2014] [Accepted: 02/21/2014] [Indexed: 10/25/2022]
Abstract
Therapeutic options for hypoxic-ischemic brain damage (HIBD) are scarce and inefficient. Recently, many studies have demonstrated that red photon plays an important role in anti-inflammatory processes as well as apoptosis, the main trait of HIBD. In this study, we investigated whether red photon can protect from HIBD in SD rats and oxygen-glucose deprivation (OGD) in PC12 cells. Apoptosis, mitochondrial transmembrane potential (MMP), and reactive oxygen species (ROS) rates were assessed in PC12 cells. We found that 6-h irradiation resulted in decreased MMP, ROS and apoptosis rates, although these changes were reversible with prolonged irradiation. Importantly, these effects were sustained for 2-8h upon quenching of the red photon. Similar trends were observed for protein and mRNA expression of bax and bcl-2, with short-term irradiation (6h) inhibiting apoptosis in PC12 Cells. However, long-term (>6h) irradiation caused cell damage. In vivo experiments, bax mRNA and protein levels were reduced after 7days in HIBD model rats treated with red photon, in contrast to bcl-2. Furthermore, we found that bax and bcl-2 were mainly expressed in pyramidal cells of the hippocampus CA1 and CA3. Importantly, Morris Water Maze test results revealed an improvement in learning ability and spatial memory in rats after irradiation. Overall, our data showed that short-term irradiation with red photon in the acute phase inhibits the mitochondrial apoptotic pathway via regulation of bcl-2-related proteins and reduction of ROS levels, thereby decreasing apoptosis in nerve cells and improving the neurological prognosis of HIBD.
Collapse
Affiliation(s)
- W Jiang
- Rehabilitation Centers, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Children Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - L Chen
- Rehabilitation Centers, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Children Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Department of Pediatrics, University-Town Hospital of Chong Qing Medical University, Chongqing 401331, China
| | - X J Zhang
- Children Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China
| | - J Chen
- Children Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Developmental Diseases in Childhood, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China
| | - X C Li
- Biological Engineering Institute of Chongqing University, Chongqing 400014, China
| | - W S Hou
- Biological Engineering Institute of Chongqing University, Chongqing 400014, China
| | - N Xiao
- Rehabilitation Centers, Children's Hospital of Chongqing Medical University, Chongqing 400014, China; Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Developmental Diseases in Childhood, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing 400014, China.
| |
Collapse
|
75
|
MitoSatPlant: mitochondrial microsatellites database of viridiplantae. Mitochondrion 2014; 19 Pt B:334-7. [PMID: 24561221 DOI: 10.1016/j.mito.2014.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/10/2014] [Accepted: 02/11/2014] [Indexed: 01/12/2023]
Abstract
Microsatellites also known as simple sequence repeats (SSRs) consist of 1-6 nucleotide long repeating units. The importance of mitochondrial SSRs (mtSSRs) in fields like population genetics, plant phylogenetics and genome mapping motivated us to develop MitoSatPlant, a repository of plant mtSSRs. It contains information for perfect, imperfect and compound SSRs mined from 92 mitochondrial genomes of green plants, available at NCBI (as of 1 Feb 2014). A total of 72,798 SSRs were found, of which PCR primers were designed for 72,495 SSRs. Among all sequences, tetranucleotide repeats (26,802) were found to be most abundant whereas hexanucleotide repeats (2751) were detected with least frequency. MitoSatPlant was developed using SQL server 2008 and can be accessed through a front end designed in ASP.Net. It is an easy to use, user-friendly database and will prove to be a useful resource for plant scientists. To the best of our knowledge MitoSatPlant is the only database available for plant mtSSRs and can be freely accessed at http://compubio.in/mitosatplant/.
Collapse
|
76
|
The C-terminal domain (CTD) in linker histones antagonizes anti-apoptotic proteins to modulate apoptotic outcomes at the mitochondrion. Cell Death Dis 2014; 5:e1058. [PMID: 24525734 PMCID: PMC3944238 DOI: 10.1038/cddis.2014.20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/03/2014] [Accepted: 01/07/2014] [Indexed: 01/06/2023]
Abstract
The loss of mitochondrial integrity as a consequence of apoptogenic complexes formed on the outer membrane constitutes a key step in controlling progression of apoptotic cascades. Here, we show that multiple members of the linker histone (LH) family of proteins modify apoptotic cascades initiated by the Bcl-2 protein Bak, and impart resistance to its endogenous antagonist Bcl-xL. Our experiments reveal apoptogenic capabilities equivalent to those documented for H1.2 in H1.1 and H1.3 isoforms. Deletion mutants of H1.2 and site-directed mutagenesis of H1.1 and H1.2 implicated the C-terminal domain in apoptogenic activity. In this context, disruption of protein kinase-C activity using chemical inhibitors, dominant-negative approaches and RNA interference coupled with site-directed modifications in H1.1, identified the protein kinase-Cβ1 isoform as a repressor of H1.1/H1.3 apoptogenic activity. Finally, a H1.2 C-terminal tail recombinant attenuated Bcl-xl inhibition of Bak-induced apoptosis, suggesting that the C-terminal domain was necessary and sufficient for apoptogenic functions. Thus, integration with apoptotic intermediates (via C-terminal tail interactions) may constitute a more generalized function of LH isoforms in apoptotic cascades.
Collapse
|
77
|
Su X, Dong C, Zhang J, Su L, Wang X, Cui H, Chen Z. Combination therapy of anti-cancer bioactive peptide with Cisplatin decreases chemotherapy dosing and toxicity to improve the quality of life in xenograft nude mice bearing human gastric cancer. Cell Biosci 2014; 4:7. [PMID: 24507386 PMCID: PMC3930002 DOI: 10.1186/2045-3701-4-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 12/13/2013] [Indexed: 12/15/2022] Open
Abstract
Background A great challenge of cancer chemotherapy is to eliminate cancer cells and concurrently maintain the quality of life (QOL) for cancer patients. Previously, we identified a novel anti-cancer bioactive peptide (ACBP), a peptide induced in goat spleen or liver following immunization with human gastric cancer protein extract. ACBP alone exhibited anti-tumor activity without measurable side effects. Thus, we hypothesize that ACBP and combined chemotherapy could improve the efficacy of treatment and lead to a better QOL. Results In this study, ACBP was isolated and purified from immunized goat liver, and designated as ACBP-L. The anti-tumor activity was investigated in a previously untested human gastric cancer MGC-803 cell line and tumor model. ACBP-L inhibited cell proliferation in vitro in a dose and time dependent manner, titrated by MTT assay. The effect of ACBP-L on cell morphology was observed through light and scanning electron microscopy. In vivo ACBP-L alone significantly inhibited MGC-803 tumor growth in a xenograft nude mouse model without measurable side effects. Treatment with the full dosage of Cisplatin alone (5 mg/kg every 5 days) strongly suppressed tumor growth. However, the QOL in these mice had been significantly affected when measured by food intakes and body weight. The combinatory regiment of ACBP-L with a fewer doses of Cisplatin (5 mg/kg every 10 days) resulted in a similar anti-tumor activity with improved QOL. 18F-FDG PET/CT scan was used to examine the biological activity in tumors of live animals and indicated the consistent treatment effects. The tumor tissues were harvested after treatment, and ACBP-L and Cisplatin treatment suppressed Bcl-2, and induced Bax, Caspase 3, and Caspase 8 molecules as detected by RT-PCR and immunohistochemistry. The combinatory regiment induced stronger Bax and Caspase 8 protein expression. Conclusion Our current finding in this gastric cancer xenograft animal model demonstrated that ACBP-L could lower Cisplatin dose to achieve a similar anti-tumor efficacy as the higher dose of Cisplatin alone, through enhanced modulation of apoptotic molecules. This newly developed combination regiment improved QOL in tumor bearing hosts, which could lead to clinical investigation for the new strategy of combination therapy.
Collapse
Affiliation(s)
- Xiulan Su
- Clinical Medicine Research Center of The Affiliated Hospital, Inner Mongolia Medical University, No 1 Tongdao North Street, Huimin District, Hohhot, Inner Mongolia 010050, China.
| | | | | | | | | | | | | |
Collapse
|
78
|
Bortner CD, Cidlowski JA. Ion channels and apoptosis in cancer. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130104. [PMID: 24493752 DOI: 10.1098/rstb.2013.0104] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Humans maintain a constant cell number throughout their lifespan. This equilibrium of cell number is accomplished when cell proliferation and cell death are kept balanced, achieving a steady-state cell number. Abnormalities in cell growth or cell death can lead to an overabundance of cells known as neoplasm or tumours. While the perception of cancer is often that of an uncontrollable rate of cell growth or increased proliferation, a decrease in cell death can also lead to tumour formation. Most cells when detached from their normal tissue die. However, cancer cells evade cell death, tipping the balance to an overabundance of cell number. Therefore, overcoming this resistance to cell death is a decisive factor in the treatment of cancer. Ion channels play a critical role in cancer in regards to cell proliferation, malignant angiogenesis, migration and metastasis. Additionally, ion channels are also known to be critical components of apoptosis. In this review, we discuss the modes of cell death focusing on the ability of cancer cells to evade apoptosis. Specifically, we focus on the role ion channels play in controlling and regulating life/death decisions and how they can be used to overcome resistance to apoptosis in the treatment of cancer.
Collapse
Affiliation(s)
- Carl D Bortner
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Department of Health and Human Services, National Institutes of Health, , Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
79
|
Apoptosis in schistosomes: toward novel targets for the treatment of schistosomiasis. Trends Parasitol 2014; 30:75-84. [DOI: 10.1016/j.pt.2013.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/29/2013] [Accepted: 12/06/2013] [Indexed: 12/25/2022]
|
80
|
Zhang L, Li L, Zhu Y, Zhang G, Guo X. Transcriptome analysis reveals a rich gene set related to innate immunity in the Eastern oyster (Crassostrea virginica). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:17-33. [PMID: 23907648 DOI: 10.1007/s10126-013-9526-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
As a benthic filter-feeder of estuaries, the eastern oyster, Crassostrea virginica, faces tremendous exposure to microbial pathogens. How eastern oysters without adaptive immunity survive in pathogen-rich environments is of fundamental interest, but studies on its immune system are hindered by the lack of genomic resources. We sequenced the transcriptome of an adult oyster with short Illumina reads and assembled 66,229 contigs with a N50 length of 1,503 bp. The assembly covered 89.4 % of published ESTs and 97.9 % of mitochondrial genes demonstrating its quality. A set of 39,978 contigs and unigenes (>300 bp) were identified and annotated by searching public databases. Analysis of the gene set yielded a diverse set of 657 genes related to innate immunity, including many pertaining to pattern recognition, effectors, signal transduction, cytokines, and apoptosis. Gene families encoding C1q domain containing proteins, CTLD, IAPs, Ig_I-set, and TRAFs expanded in C. virginica and Crassostrea gigas. Many key genes of the apoptosis system including IAP, BAX, BAC-2, caspase, FADD, and TNFR were identified, suggesting C. virginica possess advanced apoptosis and apoptosis-regulating systems. Our results show that short Illumina reads can produce transcriptomes of highly polymorphic genomes with coverage and integrity comparable to that from longer 454 reads. The expansion and high diversity in gene families related to innate immunity, point to a complex defense system in the lophotrochozoan C. virginica, probably in adaptation to a pathogen-rich environment.
Collapse
Affiliation(s)
- Linlin Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | | | | | | | | |
Collapse
|
81
|
Ortega-Arellano HF, Jimenez-Del-Rio M, Velez-Pardo C. Dmp53, basket and drICE gene knockdown and polyphenol gallic acid increase life span and locomotor activity in a Drosophila Parkinson's disease model. Genet Mol Biol 2013; 36:608-15. [PMID: 24385865 PMCID: PMC3873193 DOI: 10.1590/s1415-47572013000400020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/08/2013] [Indexed: 12/22/2022] Open
Abstract
Understanding the mechanism(s) by which dopaminergic (DAergic) neurons are eroded in Parkinson's disease (PD) is critical for effective therapeutic strategies. By using the binary tyrosine hydroxylase (TH)-Gal4/UAS-X RNAi Drosophila melanogaster system, we report that Dmp53, basket and drICE gene knockdown in dopaminergic neurons prolong life span (p < 0.05; log-rank test) and locomotor activity (p < 0.05; χ(2) test) in D. melanogaster lines chronically exposed to (1 mM) paraquat (PQ, oxidative stress (OS) generator) compared to untreated transgenic fly lines. Likewise, knockdown flies displayed higher climbing performance than control flies. Amazingly, gallic acid (GA) significantly protected DAergic neurons, ameliorated life span, and climbing abilities in knockdown fly lines treated with PQ compared to flies treated with PQ only. Therefore, silencing specific gene(s) involved in neuronal death might constitute an excellent tool to study the response of DAergic neurons to OS stimuli. We propose that a therapy with antioxidants and selectively "switching off" death genes in DAergic neurons could provide a means for pre-clinical PD individuals to significantly ameliorate their disease condition.
Collapse
Affiliation(s)
- Hector Flavio Ortega-Arellano
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| |
Collapse
|
82
|
Liu F, Gamez G, Myers DR, Clemmons W, Lam WA, Jobe SM. Mitochondrially mediated integrin αIIbβ3 protein inactivation limits thrombus growth. J Biol Chem 2013; 288:30672-30681. [PMID: 24014035 PMCID: PMC3798537 DOI: 10.1074/jbc.m113.472688] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 08/26/2013] [Indexed: 11/06/2022] Open
Abstract
When platelets are strongly stimulated, a procoagulant platelet subpopulation is formed that is characterized by phosphatidylserine (PS) exposure and epitope modulation of integrin αIIbβ3 or a loss of binding of activation-dependent antibodies. Mitochondrial permeability transition pore (mPTP) formation, which is essential for the formation of procoagulant platelets, is impaired in the absence of cyclophilin D (CypD). Here we investigate the mechanisms responsible for these procoagulant platelet-associated changes in integrin αIIbβ3 and the physiologic role of procoagulant platelet formation in the regulation of platelet aggregation. Among strongly stimulated adherent platelets, integrin αIIbβ3 epitope changes, mPTP formation, PS exposure, and platelet rounding were closely associated. Furthermore, platelet mPTP formation resulted in a decreased ability to recruit additional platelets. In the absence of CypD, integrin αIIbβ3 function was accentuated in both static and flow conditions, and, in vivo, a prothrombotic phenotype occurred in mice with a platelet-specific deficiency of CypD. CypD-dependent proteolytic events, including cleavage of the integrin β3 cytoplasmic domain, coincided closely with integrin αIIbβ3 inactivation. Calpain inhibition blocked integrin β3 cleavage and inactivation but not mPTP formation or PS exposure, indicating that integrin inactivation and PS exposure are mediated by distinct pathways subsequent to mPTP formation. mPTP-dependent alkalinization occurred in procoagulant platelets, suggesting a possible alternative mechanism for enhancement of calpain activity in procoagulant platelets. Together, these results indicate that, in strongly stimulated platelets, mPTP formation initiates the calpain-dependent cleavage of integrin β3 and associated regulatory proteins, resulting in integrin αIIbβ3 inactivation, and demonstrate a novel CypD-dependent negative feedback mechanism that limits platelet aggregation and thrombotic occlusion.
Collapse
Affiliation(s)
- Fang Liu
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Graciela Gamez
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - David R Myers
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322,; the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30322, and
| | - Wayne Clemmons
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Wilbur A Lam
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322,; the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30322, and; the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia 30322
| | - Shawn M Jobe
- From the Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322,; the Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Atlanta, Georgia 30322.
| |
Collapse
|
83
|
Martínez-Fábregas J, Díaz-Moreno I, González-Arzola K, Janocha S, Navarro JA, Hervás M, Bernhardt R, Díaz-Quintana A, De la Rosa MÁ. New Arabidopsis thaliana cytochrome c partners: a look into the elusive role of cytochrome c in programmed cell death in plants. Mol Cell Proteomics 2013; 12:3666-76. [PMID: 24019145 DOI: 10.1074/mcp.m113.030692] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Programmed cell death is an event displayed by many different organisms along the evolutionary scale. In plants, programmed cell death is necessary for development and the hypersensitive response to stress or pathogenic infection. A common feature in programmed cell death across organisms is the translocation of cytochrome c from mitochondria to the cytosol. To better understand the role of cytochrome c in the onset of programmed cell death in plants, a proteomic approach was developed based on affinity chromatography and using Arabidopsis thaliana cytochrome c as bait. Using this approach, ten putative new cytochrome c partners were identified. Of these putative partners and as indicated by bimolecular fluorescence complementation, nine of them bind the heme protein in plant protoplasts and human cells as a heterologous system. The in vitro interaction between cytochrome c and such soluble cytochrome c-targets was further corroborated using surface plasmon resonance. Taken together, the results obtained in the study indicate that Arabidopsis thaliana cytochrome c interacts with several distinct proteins involved in protein folding, translational regulation, cell death, oxidative stress, DNA damage, energetic metabolism, and mRNA metabolism. Interestingly, some of these novel Arabidopsis thaliana cytochrome c-targets are closely related to those for Homo sapiens cytochrome c (Martínez-Fábregas et al., unpublished). These results indicate that the evolutionarily well-conserved cytosolic cytochrome c, appearing in organisms from plants to mammals, interacts with a wide range of targets on programmed cell death. The data have been deposited to the ProteomeXchange with identifier PXD000280.
Collapse
Affiliation(s)
- Jonathan Martínez-Fábregas
- Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla-Consejo Superior de Investigaciones Científicas (CSIC), Seville, 41092, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Caspase-3 and RasGAP: a stress-sensing survival/demise switch. Trends Cell Biol 2013; 24:83-9. [PMID: 24007977 DOI: 10.1016/j.tcb.2013.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/02/2013] [Accepted: 08/05/2013] [Indexed: 12/31/2022]
Abstract
The final decision on cell fate, survival versus cell death, relies on complex and tightly regulated checkpoint mechanisms. The caspase-3 protease is a predominant player in the execution of apoptosis. However, recent progress has shown that this protease paradoxically can also protect cells from death. Here, we discuss the underappreciated, protective, and prosurvival role of caspase-3 and detail the evidence showing that caspase-3, through differential processing of p120 Ras GTPase-activating protein (RasGAP), can modulate a given set of proteins to generate, depending on the intensity of the input signals, opposite outcomes (survival vs death).
Collapse
|
85
|
Tait SWG, Green DR. Mitochondrial regulation of cell death. Cold Spring Harb Perspect Biol 2013; 5:5/9/a008706. [PMID: 24003207 DOI: 10.1101/cshperspect.a008706] [Citation(s) in RCA: 340] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although required for life, paradoxically, mitochondria are often essential for initiating apoptotic cell death. Mitochondria regulate caspase activation and cell death through an event termed mitochondrial outer membrane permeabilization (MOMP); this leads to the release of various mitochondrial intermembrane space proteins that activate caspases, resulting in apoptosis. MOMP is often considered a point of no return because it typically leads to cell death, even in the absence of caspase activity. Because of this pivotal role in deciding cell fate, deregulation of MOMP impacts on many diseases and represents a fruitful site for therapeutic intervention. Here we discuss the mechanisms underlying mitochondrial permeabilization and how this key event leads to cell death through caspase-dependent and -independent means. We then proceed to explore how the release of mitochondrial proteins may be regulated following MOMP. Finally, we discuss mechanisms that enable cells sometimes to survive MOMP, allowing them, in essence, to return from the point of no return.
Collapse
Affiliation(s)
- Stephen W G Tait
- Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, United Kingdom.
| | | |
Collapse
|
86
|
Theodossiou TA, Sideratou Z, Katsarou ME, Tsiourvas D. Mitochondrial Delivery of Doxorubicin by Triphenylphosphonium-Functionalized Hyperbranched Nanocarriers Results in Rapid and Severe Cytotoxicity. Pharm Res 2013; 30:2832-42. [DOI: 10.1007/s11095-013-1111-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
|
87
|
Selective GPER activation decreases proliferation and activates apoptosis in tumor Leydig cells. Cell Death Dis 2013; 4:e747. [PMID: 23907461 PMCID: PMC3763437 DOI: 10.1038/cddis.2013.275] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 12/19/2022]
Abstract
We have previously shown that estrogens binding to estrogen receptor (ER) α increase proliferation of Leydig tumor cells. Estrogens can also bind to G protein-coupled ER (GPER) and activation of this receptor can either increase or decrease cell proliferation of several tumor types. The aim of this study was to investigate GPER expression in R2C rat tumor Leydig cells, evaluate effects of its activation on Leydig tumor cell proliferation and define the molecular mechanisms triggered in response to its activation. R2C cells express GPER and its activation, using the specific ligand G-1, is associated with decreased cell proliferation and initiation of apoptosis. Apoptosis after G-1 treatment was asserted by appearance of DNA condensation and fragmentation, decrease in Bcl-2 and increase in Bax expression, cytochrome c release, caspase and poly (ADP-ribose) polymerase-1 (PARP-1) activation. These effects were dependent on GPER activation because after silencing of the gene, using a specific small interfering RNA, cyt c release, PARP-1 activation and decrease in cell proliferation were abrogated. These events required a rapid, however, sustained extracellular regulated kinase 1/2 activation. G-1 was able to decrease the growth of R2C xenograft tumors in CD1 nude mice while increasing the number of apoptotic cells. In addition, in vivo administration of G-1 to male CD1 mice did not cause any alteration in testicular morphology, while cisplatin, the cytotoxic drug currently used for the therapy of Leydig tumors, severely damaged testicular structure, an event associated with infertility in cisplatin-treated patients. These observations indicate that GPER targeting for the therapy of Leydig cell tumor may represent a good alternative to cisplatin to preserve fertility in Leydig tumor patients.
Collapse
|
88
|
Linkermann A, Bräsen JH, Darding M, Jin MK, Sanz AB, Heller JO, De Zen F, Weinlich R, Ortiz A, Walczak H, Weinberg JM, Green DR, Kunzendorf U, Krautwald S. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc Natl Acad Sci U S A 2013; 110:12024-9. [PMID: 23818611 PMCID: PMC3718149 DOI: 10.1073/pnas.1305538110] [Citation(s) in RCA: 538] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulated necrosis (RN) may result from cyclophilin (Cyp)D-mediated mitochondrial permeability transition (MPT) and receptor-interacting protein kinase (RIPK)1-mediated necroptosis, but it is currently unclear whether there is one common pathway in which CypD and RIPK1 act in or whether separate RN pathways exist. Here, we demonstrate that necroptosis in ischemia-reperfusion injury (IRI) in mice occurs as primary organ damage, independent of the immune system, and that mice deficient for RIPK3, the essential downstream partner of RIPK1 in necroptosis, are protected from IRI. Protection of RIPK3-knockout mice was significantly stronger than of CypD-deficient mice. Mechanistically, in vivo analysis of cisplatin-induced acute kidney injury and hyperacute TNF-shock models in mice suggested the distinctness of CypD-mediated MPT from RIPK1/RIPK3-mediated necroptosis. We, therefore, generated CypD-RIPK3 double-deficient mice that are viable and fertile without an overt phenotype and that survived prolonged IRI, which was lethal to each single knockout. Combined application of the RIPK1 inhibitor necrostatin-1 and the MPT inhibitor sanglifehrin A confirmed the results with mutant mice. The data demonstrate the pathophysiological coexistence and corelevance of two separate pathways of RN in IRI and suggest that combination therapy targeting distinct RN pathways can be beneficial in the treatment of ischemic injury.
Collapse
Affiliation(s)
| | - Jan Hinrich Bräsen
- Institute for Pathology, Christian-Albrechts-University, 24105 Kiel, Germany
- Pathology Hamburg-West, Institute for Diagnostic Histopathology and Cytopathology, 22767 Hamburg, Germany
| | - Maurice Darding
- Cell Death and Inflammation Laboratory, Centre for Cell Death, Cancer and Inflammation, University College London Cancer Institute, London WC1E 6BT, United Kingdom
| | | | - Ana B. Sanz
- El Instituto de Investigación Sanitaria de la Fundacion Jimenez Diaz, Redinren, Fundación Renal Íñigo Álvarez de Toledo, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | - Ricardo Weinlich
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678; and
| | - Alberto Ortiz
- El Instituto de Investigación Sanitaria de la Fundacion Jimenez Diaz, Redinren, Fundación Renal Íñigo Álvarez de Toledo, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Henning Walczak
- Cell Death and Inflammation Laboratory, Centre for Cell Death, Cancer and Inflammation, University College London Cancer Institute, London WC1E 6BT, United Kingdom
| | - Joel M. Weinberg
- Division for Nephrology, University of Michigan Medical Center, Ann Arbor, MI 48109-5676
| | - Douglas R. Green
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105-3678; and
| | | | | |
Collapse
|
89
|
Kundu M. Helicobacter pylori Peptidyl Prolyl cis, trans Isomerase: A Modulator of the Host Immune Response. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-94-007-6787-4_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
90
|
Lee Y, Whang I, Lee S, Menike U, Oh C, Kang DH, Heo GJ, Lee J, De Zoysa M. Two molluscan BCL-2 family members from Manila clam, Ruditapes philippinarum: molecular characterization and immune responses. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1628-1634. [PMID: 23558058 DOI: 10.1016/j.fsi.2013.03.366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/23/2013] [Accepted: 03/24/2013] [Indexed: 06/02/2023]
Abstract
Apoptosis based immune responses are important component of host defense in mollusks. In this study, we have identified two novel molluscan BCL-2 cDNAs from Manila clam, Ruditapes philippinarum and named as RpBCL-2A and RpBCL-2B. There were four and three highly conserved BCL-2 homology (BH) regions in RpBCL-2A and RpBCL-2B, respectively suggesting these two genes could be different isoforms of anti-apoptotic BCL-2 family. Phylogenetic results revealed that Manila clam BCL-2 genes were clustered closely with invertebrate BCL-2 members. It gives evidence of their common origin and conserved features of invertebrate BCL-2 family. RpBCL-2A and 2B were expressed in tissue-specific manner showing the highest and lowest level of expression in gills and hemocytes, respectively. However there was no clear expression profile difference between two genes. After Vibrio tapetis challenge, transcriptional responses of RpBCL-2A and RpBCL-2B were induced in gills and hemocytes with high variation that could be due to effects of immune reactions of other host defense molecules.
Collapse
Affiliation(s)
- Youngdeuk Lee
- Korea Institute of Ocean Science Technology, Ansan 426-744, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Genes of the mitochondrial apoptotic pathway in Mytilus galloprovincialis. PLoS One 2013; 8:e61502. [PMID: 23626691 PMCID: PMC3634015 DOI: 10.1371/journal.pone.0061502] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/12/2013] [Indexed: 11/27/2022] Open
Abstract
Bivalves play vital roles in marine, brackish, freshwater and terrestrial habitats. In recent years, these ecosystems have become affected through anthropogenic activities. The ecological success of marine bivalves is based on the ability to modify their physiological functions in response to environmental changes. One of the most important mechanisms involved in adaptive responses to environmental and biological stresses is apoptosis, which has been scarcely studied in mollusks, although the final consequence of this process, DNA fragmentation, has been frequently used for pollution monitoring. Environmental stressors induce apoptosis in molluscan cells via an intrinsic pathway. Many of the proteins involved in vertebrate apoptosis have been recognized in model invertebrates; however, this process might not be universally conserved. Mytilus galloprovincialis is presented here as a new model to study the linkage between molecular mechanisms that mediate apoptosis and marine bivalve ecological adaptations. Therefore, it is strictly necessary to identify the key elements involved in bivalve apoptosis. In the present study, six mitochondrial apoptotic-related genes were characterized, and their gene expression profiles following UV irradiation were evaluated. This is the first step for the development of potential biomarkers to assess the biological responses of marine organisms to stress. The results confirmed that apoptosis and, more specifically, the expression of the genes involved in this process can be used to assess the biological responses of marine organisms to stress.
Collapse
|
92
|
Poly(ADP-ribose) polymerase is a substrate recognized by two metacaspases of Podospora anserina. EUKARYOTIC CELL 2013; 12:900-12. [PMID: 23584991 DOI: 10.1128/ec.00337-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The two metacaspases MCA1 and MCA2 of the fungal aging model organism Podospora anserina (PaMCA1 and PaMCA2, respectively) have previously been demonstrated to be involved in the control of programmed cell death (PCD) and life span. In order to identify specific pathways and components which are controlled by the activity of these enzymes, we set out to characterize them further. Heterologous overexpression in Escherichia coli of the two metacaspase genes resulted in the production of proteins which aggregate and form inclusion bodies from which the active protein has been recovered via refolding in appropriate buffers. The renaturated proteins are characterized by an arginine-specific activity and are active in caspase-like self-maturation leading to the generation of characteristic small protein fragments. Both activities are dependent on the presence of calcium. Incubation of the two metacaspases with recombinant poly(ADP-ribose) polymerase (PARP), a known substrate of mammalian caspases, led to the identification of PARP as a substrate of the two P. anserina proteases. Using double mutants in which P. anserina Parp (PaParp) is overexpressed and PaMca1 is either overexpressed or deleted, we provide evidence for in vivo degradation of PaPARP by PaMCA1. These results support the idea that the substrate profiles of caspases and metacaspases are at least partially overlapping. Moreover, they link PCD and DNA maintenance in the complex network of molecular pathways involved in aging and life span control.
Collapse
|
93
|
Abstract
Mitochondria have long been considered as crucial organelles, primarily for their roles in biosynthetic reactions such as ATP synthesis. However, it is becoming increasingly apparent that mitochondria are intimately involved in cell signalling pathways. Mitochondria perform various signalling functions, serving as platforms to initiate cell signalling, as well as acting as transducers and effectors in multiple processes. Here, we discuss the active roles that mitochondria have in cell death signalling, innate immunity and autophagy. Common themes of mitochondrial regulation emerge from these diverse but interconnected processes. These include: the outer mitochondrial membrane serving as a major signalling platform, and regulation of cell signalling through mitochondrial dynamics and by mitochondrial metabolites, including ATP and reactive oxygen species. Importantly, defects in mitochondrial control of cell signalling and in the regulation of mitochondrial homeostasis might underpin many diseases, in particular age-related pathologies.
Collapse
Affiliation(s)
- Stephen W G Tait
- Institute of Cancer Sciences, CR-UK Beatson Labs, University of Glasgow, Switchback Road, Glasgow, UK
| | | |
Collapse
|
94
|
Leu JH, Lin SJ, Huang JY, Chen TC, Lo CF. A model for apoptotic interaction between white spot syndrome virus and shrimp. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1011-1017. [PMID: 22683516 DOI: 10.1016/j.fsi.2012.05.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/16/2012] [Accepted: 05/31/2012] [Indexed: 06/01/2023]
Abstract
White spot syndrome virus (WSSV) is an enveloped, large dsDNA virus that mainly infects penaeid shrimp, causing serious damage to the shrimp aquaculture industry. Like other animal viruses, WSSV infection induces apoptosis. Although this occurs even in by-stander cells that are free of WSSV virions, apoptosis is generally regarded as a kind of antiviral immune response. To counter this response, WSSV has evolved several different strategies. From the presently available literature, we construct a model of how the host and virus both attempt to regulate apoptosis to their respective advantage. The basic sequence of events is as follows: first, when a WSSV infection occurs, cellular sensors detect the invading virus, and activate signaling pathways that lead to (1) the expression of pro-apoptosis proteins, including PmCasp (an effecter caspase), MjCaspase (an initiator caspase) and voltage-dependent anion channel (VDAC); and (2) mitochondrial changes, including the induction of mitochondrial membrane permeabilization and increased oxidative stress. These events initiate the apoptosis program. Meanwhile, WSSV begins to express its genes, including two anti-apoptosis proteins: AAP-1, which is a direct caspase inhibitor, and WSV222, which is an E3 ubiquitin ligase that blocks apoptosis through the ubiquitin-mediated degradation of shrimp TSL protein (an apoptosis inducer). WSSV also induces the expression of a shrimp anti-apoptosis protein, Pm-fortilin, which can act on Bax to inhibit mitochondria-triggered apoptosis. This is a life and death struggle because the virus needs to prevent apoptosis in order to replicate. If WSSV succeeds in replicating in sufficient numbers, this will result in the death of the infected penaeid shrimp host.
Collapse
Affiliation(s)
- Jiann-Horng Leu
- Institute of Marine Biology, College of Life Science, National Taiwan Ocean University, Keelung 202, Taiwan.
| | | | | | | | | |
Collapse
|
95
|
Abstract
The number of available eukaryotic genomes has expanded to the point where we can evaluate the complete evolutionary history of many cellular processes. Such analyses for the apoptosis regulatory networks suggest that this network already existed in the ancestor of the entire animal kingdom (Metazoa) in a form more complex than in some popular animal model organisms. This supports the growing realization that regulatory networks do not necessarily evolve from simple to complex and that the relative simplicity of these networks in nematodes and insects does not represent an ancestral state, but is the result of secondary simplifications. Network evolution is not a process of monotonous increase in complexity, but a dynamic process that includes lineage-specific gene losses and expansions, protein domain reshuffling, and emergence/reemergence of similar protein architectures by parallel evolution. Studying the evolution of such networks is a challenging yet interesting subject for research and investigation, and such studies on the apoptosis networks provide us with interesting hints of how these networks, critical in so many human diseases, have developed.
Collapse
Affiliation(s)
- Christian M Zmasek
- Program on Bioinformatics and Systems Biology, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
96
|
NSAIDs may regulate EGR-1-mediated induction of reactive oxygen species and non-steroidal anti-inflammatory drug-induced gene (NAG)-1 to initiate intrinsic pathway of apoptosis for the chemoprevention of colorectal cancer. Mol Cell Biochem 2013; 378:47-64. [DOI: 10.1007/s11010-013-1593-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 02/08/2013] [Indexed: 01/30/2023]
|
97
|
Abstract
BCL-2 family proteins are the regulators of apoptosis, but also have other functions. This family of interacting partners includes inhibitors and inducers of cell death. Together they regulate and mediate the process by which mitochondria contribute to cell death known as the intrinsic apoptosis pathway. This pathway is required for normal embryonic development and for preventing cancer. However, before apoptosis is induced, BCL-2 proteins have critical roles in normal cell physiology related to neuronal activity, autophagy, calcium handling, mitochondrial dynamics and energetics, and other processes of normal healthy cells. The relative importance of these physiological functions compared to their apoptosis functions in overall organismal physiology is difficult to decipher. Apoptotic and noncanonical functions of these proteins may be intertwined to link cell growth to cell death. Disentanglement of these functions may require delineation of biochemical activities inherent to the characteristic three-dimensional shape shared by distantly related viral and cellular BCL-2 family members.
Collapse
|
98
|
Liu Z, Ouyang L, Peng H, Zhang WZ. Oridonin: targeting programmed cell death pathways as an anti-tumour agent. Cell Prolif 2013; 45:499-507. [PMID: 23106297 DOI: 10.1111/j.1365-2184.2012.00849.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Oridonin, an active diterpenoid isolated from traditional Chinese herbal medicine, has drawn rising attention for its remarkable apoptosis- and autophagy-inducing activity and relevant molecular mechanisms in cancer therapy. Apoptosis is a well known type of cell death, whereas autophagy can play either pro-survival or pro-death roles in cancer cells. Accumulating evidence has recently revealed relationships between apoptosis and autophagy induced by oridonin; however, molecular mechanisms behind them remain to be discovered. In this review, we focus on highlighting updated research on oridonin-induced cell death signalling pathways implicated in apoptosis and autophagy, in many types of cancer. In addition, we further discuss cross-talk between apoptosis and autophagy induced by oridonin, in cancer. Taken together, these findings open new perspectives for further exploring oridonin as a potential anti-tumour agent targeting apoptosis and autophagy, in future anti-cancer therapeutics.
Collapse
Affiliation(s)
- Z Liu
- Department of Hepato-biliary Surgery, General Hospital of PLA, Beijing, China
| | | | | | | |
Collapse
|
99
|
Amritraj A, Wang Y, Revett TJ, Vergote D, Westaway D, Kar S. Role of cathepsin D in U18666A-induced neuronal cell death: potential implication in Niemann-Pick type C disease pathogenesis. J Biol Chem 2012; 288:3136-52. [PMID: 23250759 DOI: 10.1074/jbc.m112.412460] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cathepsin D is an aspartyl protease that plays a crucial role in normal cellular functions and in a variety of neurodegenerative disorders, including Niemann-Pick type C (NPC) disease, which is characterized by intracellular accumulation of cholesterol and glycosphingolipids in many tissues, including the brain. There is evidence that the level and activity of cathepsin D increased markedly in vulnerable neurons in NPC pathology, but its involvement in neurodegeneration remains unclear. In the present study, using mouse hippocampal cultured neurons, we evaluated the significance of cathepsin D in toxicity induced by U18666A, a class II amphiphile, which triggers cell death by impairing the trafficking of cholesterol, as observed in NPC pathology. Our results showed that U18666A-mediated toxicity is accompanied by an increase in cathepsin D mRNA and enzyme activity but a decrease in the total peptide content. The cytosolic level of cathepsin D, on the other hand, was increased along with cytochrome c and activated caspase-3 in U18666A-treated neurons. The cathepsin D inhibitor, pepstatin A, partially protected neurons against toxicity by attenuating these signaling mechanisms. Additionally, down-regulation of cathepsin D level prevented, whereas overexpression of the protease increased, vulnerability of cultured N2a cells to U18666A-induced toxicity. We also showed that extracellular cathepsin D from U18666A-treated neurons or application of exogenous enzyme can induce neurotoxicity by activating the autophagic pathway. These results suggest that increased release/activation of cathepsin D can trigger neurodegeneration and possibly development of NPC pathology. Thus, targeting cathepsin D level/activity may provide a new therapeutic opportunity for the treatment of NPC pathology.
Collapse
Affiliation(s)
- Asha Amritraj
- Department of Psychiatry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
| | | | | | | | | | | |
Collapse
|
100
|
Li R, Yan G, Li Q, Sun H, Hu Y, Sun J, Xu B. MicroRNA-145 protects cardiomyocytes against hydrogen peroxide (H₂O₂)-induced apoptosis through targeting the mitochondria apoptotic pathway. PLoS One 2012; 7:e44907. [PMID: 23028672 PMCID: PMC3445575 DOI: 10.1371/journal.pone.0044907] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/09/2012] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs, a class of small and non-encoding RNAs that transcriptionally or post-transcriptionally modulate the expression of their target genes, has been implicated as critical regulatory molecules in many cardiovascular diseases, including ischemia/reperfusion induced cardiac injury. Here, we report microRNA-145, a tumor suppressor miRNA, can protect cardiomyocytes from hydrogen peroxide (H2O2)-induced apoptosis through targeting the mitochondrial pathway. Quantitative real-time PCR (qPCR) demonstrated that the expression of miR-145 in either ischemia/reperfused mice myocardial tissues or H2O2-treated neonatal rat ventricle myocytes (NRVMs) was markedly down-regulated. Over-expression of miR-145 significantly inhibited the H2O2-induced cellular apoptosis, ROS production, mitochondrial structure disruption as well as the activation of key signaling proteins in mitochondrial apoptotic pathway. These protective effects of miR-145 were abrogated by over-expression of Bnip3, an initiation factor of the mitochondrial apoptotic pathway in cardiomyocytes. Finally, we utilized both luciferase reporter assay and western blot analysis to identify Bnip3 as a direct target of miR-145. Our results suggest miR-145 plays an important role in regulating mitochondrial apoptotic pathway in heart challenged with oxidative stress. MiR-145 may represent a potential therapeutic target for treatment of oxidative stress-associated cardiovascular diseases, such as myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Ruotian Li
- Department of Cardiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Guijun Yan
- Department of Cardiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Qiaoling Li
- Department of Cardiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Haixiang Sun
- Department of Cardiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Yali Hu
- Department of Cardiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Jianxin Sun
- Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennslyvania, The United States of America
- * E-mail: (BX); (JS)
| | - Biao Xu
- Department of Cardiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
- * E-mail: (BX); (JS)
| |
Collapse
|