51
|
Li J, Yang Z, Li Y, Xia J, Li D, Li H, Ren M, Liao Y, Yu S, Chen Y, Yang Y, Zhang Y. Cell apoptosis, autophagy and necroptosis in osteosarcoma treatment. Oncotarget 2016; 7:44763-44778. [PMID: 27007056 PMCID: PMC5190133 DOI: 10.18632/oncotarget.8206] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 03/07/2016] [Indexed: 12/23/2022] Open
Abstract
Osteosarcoma is the most common primary bone tumor in children and adolescents. Although combined therapy including surgery and multi-agent chemotherapy have resulted in great improvements in the overall survival of patients, chemoresistance remains an obstacle for the treatment of osteosarcoma. Molecular targets or effective agents that are actively involved in cell death including apoptosis, autophagy and necroptosis have been studied. We summarized how these agents (novel compounds, miRNAs, or proteins) regulate apoptotic, autophagic and necroptotic pathways; and discussed the current knowledge on the role of these new agents in chemotherapy resistance in osteosarcoma.
Collapse
Affiliation(s)
- Jing Li
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Yi Li
- Department of Oncology, Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan, China
| | - Junfeng Xia
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Dongqi Li
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Huiling Li
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Mingyan Ren
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Yedan Liao
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Shunling Yu
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Yanjin Chen
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Yihao Yang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| | - Ya Zhang
- Bone and Soft Tissue Tumors Research Center of Yunnan Province, Department of Orthopaedics, the Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, China
| |
Collapse
|
52
|
Liang Z, Guo YT, Yi YJ, Wang RC, Hu QL, Xiong XY. Ganoderma lucidum polysaccharides target a Fas/caspase dependent pathway to induce apoptosis in human colon cancer cells. Asian Pac J Cancer Prev 2016; 15:3981-6. [PMID: 24935584 DOI: 10.7314/apjcp.2014.15.9.3981] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Ganoderma lucidum polysaccharides (GLP) extracted from Ganoderma lucidum have been shown to induce cell death in some kinds of cancer cells. This study investigated the cytotoxic and apoptotic effect of GLP on HCT-116 human colon cancer cells and the molecular mechanisms involved. Cell proliferation, cell migration, lactate dehydrogenase (LDH) levels and intracellular free calcium levels ([Ca(2+)]i) were determined by MTT, wound-healing, LDH release and fluorescence assays, respectively. Cell apoptosis was observed by scanning and transmission electron microscopy. For the mechanism studies, caspase-8 activation, and Fas and caspase-3 expression were evaluated. Treatment of HCT-116 cells with various concentrations of GLP (0.625-5 mg/mL) resulted in a significant decrease in cell viability (P< 0.01). This study showed that the antitumor activity of GLP was related to cell migration inhibition, cell morphology changes, intracellular Ca(2+) elevation and LDH release. Also, increase in the levels of caspase-8 activity was involved in GLP-induced apoptosis. Western blotting indicated that Fas and caspase-3 protein expression was up-regulated after exposure to GLP. This investigation demonstrated for the first time that GLP shows prominent anticancer activities against the HCT-116 human colon cancer cell line through triggering intracellular calcium release and the death receptor pathway.
Collapse
Affiliation(s)
- Zengenni Liang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China E-mail : ;
| | | | | | | | | | | |
Collapse
|
53
|
Cytotoxicity of atropine to human corneal epithelial cells by inducing cell cycle arrest and mitochondrion-dependent apoptosis. ACTA ACUST UNITED AC 2015; 67:517-24. [DOI: 10.1016/j.etp.2015.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 07/31/2015] [Indexed: 01/21/2023]
|
54
|
Hassan HA, Edrees GM, El-Gamel EM, El-Sayed EA. Proanthocyanidin and fish oil potent activity against cisplatin-induced renal cell cycle arrest and apoptosis in rats. Ren Fail 2015; 37:1356-62. [DOI: 10.3109/0886022x.2015.1073528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
55
|
Sancho-Martínez SM, López-Novoa JM, López-Hernández FJ. Pathophysiological role of different tubular epithelial cell death modes in acute kidney injury. Clin Kidney J 2015; 8:548-59. [PMID: 26413280 PMCID: PMC4581387 DOI: 10.1093/ckj/sfv069] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/30/2015] [Indexed: 12/14/2022] Open
Abstract
The histological substrate of many forms of intrinsic acute kidney injury (AKI) has been classically attributed to tubular necrosis. However, more recent studies indicate that necrosis is not the main form of cell death in AKI and that other forms such as apoptosis, regulated necrosis (i.e. necroptosis and parthanatos), autophagic cell death and mitotic catastrophe, also participate in AKI and that their contribution depends on the cause and stage of AKI. Herein, we briefly summarize the main characteristics of the major types of cell death and we also critically review the existing evidence on the occurrence of different types of cell death reported in the most common experimental models of AKI and human specimens. We also discuss the pathophysiological mechanisms linking tubule epithelial cell death with reduced glomerular filtration, azotaemia and hydroelectrolytic imbalance. For instance, special relevance is given to the analysis of the inflammatory component of some forms of cell death over that of others, as an important and differential pathophysiological determinant. Finally, known molecular mechanisms and signalling pathways involved in each cell death type pose appropriate targets to specifically prevent or reverse AKI, provided that further knowledge of their participation and repercussion in each AKI syndrome is progressively increased in the near future.
Collapse
Affiliation(s)
- Sandra M Sancho-Martínez
- Departamento de Fisiología y Farmacología , Universidad de Salamanca , Salamanca , Spain ; Instituto de Investigación Biomédica de Salamanca (IBSAL) , Salamanca , Spain ; Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo , Madrid , Spain
| | - José M López-Novoa
- Departamento de Fisiología y Farmacología , Universidad de Salamanca , Salamanca , Spain ; Instituto de Investigación Biomédica de Salamanca (IBSAL) , Salamanca , Spain ; Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo , Madrid , Spain ; Critical Care Biomedical Research Group (BioCritic) , Valladolid , Spain
| | - Francisco J López-Hernández
- Departamento de Fisiología y Farmacología , Universidad de Salamanca , Salamanca , Spain ; Instituto de Investigación Biomédica de Salamanca (IBSAL) , Salamanca , Spain ; Instituto Reina Sofía de Investigación Nefrológica, Fundación Iñigo Álvarez de Toledo , Madrid , Spain ; Critical Care Biomedical Research Group (BioCritic) , Valladolid , Spain ; Instituto de Estudios de Ciencias de la Salud de Castilla y León (IESCYL) , Salamanca , Spain
| |
Collapse
|
56
|
Saias L, Swoger J, D’Angelo A, Hayes P, Colombelli J, Sharpe J, Salbreux G, Solon J. Decrease in Cell Volume Generates Contractile Forces Driving Dorsal Closure. Dev Cell 2015; 33:611-21. [DOI: 10.1016/j.devcel.2015.03.016] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 08/18/2014] [Accepted: 03/16/2015] [Indexed: 01/06/2023]
|
57
|
Li L, Li P, Fang J, Li Q, Xiao H, Zhou H, Tang B. Simultaneous Quantitation of Na+ and K+ in Single Normal and Cancer Cells Using a New Near-Infrared Fluorescent Probe. Anal Chem 2015; 87:6057-63. [DOI: 10.1021/acs.analchem.5b00571] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Lu Li
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Ping Li
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Juan Fang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Qingling Li
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Haibin Xiao
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Hui Zhou
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| | - Bo Tang
- College of Chemistry, Chemical
Engineering and Materials Science, Collaborative Innovation Center
of Functionalized Probes for Chemical Imaging in Universities of Shandong,
Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P.R. China
| |
Collapse
|
58
|
Wu H, Che X, Zheng Q, Wu A, Pan K, Shao A, Wu Q, Zhang J, Hong Y. Caspases: a molecular switch node in the crosstalk between autophagy and apoptosis. Int J Biol Sci 2014; 10:1072-83. [PMID: 25285039 PMCID: PMC4183927 DOI: 10.7150/ijbs.9719] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/20/2014] [Indexed: 12/16/2022] Open
Abstract
Autophagy and apoptosis are two important catabolic processes contributing to the maintenance of cellular and tissue homeostasis. Autophagy controls the turnover of protein aggregates and damaged organelles within cells, while apoptosis is the principal mechanism by which unwanted cells are dismantled and eliminated from organisms. Despite marked differences between these two pathways, they are highly interconnected in determining the fate of cells. Intriguingly, caspases, the primary drivers of apoptotic cell death, play a critical role in mediating the complex crosstalk between autophagy and apoptosis. Pro-apoptotic signals can converge to activate caspases to execute apoptotic cell death. In addition, activated caspases can degrade autophagy proteins (i.e., Beclin-1, Atg5, and Atg7) to shut down the autophagic response. Moreover, caspases can convert pro-autophagic proteins into pro-apoptotic proteints to trigger apoptotic cell death instead. It is clear that caspases are important in both apoptosis and autophagy, thus a detailed deciphering of the role of caspases in these two processes is still required to clarify the functional relationship between them. In this article, we provide a current overview of caspases in its interplay between autophagy and apoptosis. We emphasized that defining the role of caspases in autophagy-apoptosis crosstalk will provide a framework for more precise manipulation of these two processes during cell death.
Collapse
Affiliation(s)
- Haijian Wu
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoru Che
- 2. Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Qiaoli Zheng
- 3. Clinical Research Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - An Wu
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kun Pan
- 4. Department of Neurological Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Anwen Shao
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qun Wu
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan Hong
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
59
|
Lang F, Hoffmann EK. CrossTalk proposal: Cell volume changes are an essential step in the cell death machinery. J Physiol 2014; 591:6119-21. [PMID: 24339145 DOI: 10.1113/jphysiol.2013.258632] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
60
|
Mohamed MS, Veeranarayanan S, Minegishi H, Sakamoto Y, Shimane Y, Nagaoka Y, Aki A, Poulose AC, Echigo A, Yoshida Y, Maekawa T, Kumar DS. Cytological and Subcellular Response of Cells Exposed to the Type-1 RIP Curcin and its Hemocompatibility Analysis. Sci Rep 2014. [DOI: 10.1038/srep05747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
61
|
Spencer DM, Gauley J, Pisetsky DS. The properties of microparticles from RAW 264.7 macrophage cells undergoing in vitro activation or apoptosis. Innate Immun 2014; 20:239-48. [PMID: 23839527 PMCID: PMC4165519 DOI: 10.1177/1753425913492552] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Microparticles (MPs) are small, membrane-bound vesicles that arise from dead and dying cells, and display pro-inflammatory and pro-thrombotic activity. As shown previously, the RAW 264.7 murine macrophage cell line can release MPs following stimulation with LPS or polyinosinic:polycytidylic acid [poly (I:C)], ligands of TLR4 and TLR3 respectively. To determine the relationship of these MPs to those released during apoptosis, the nucleic acid content of MPs from cultures stimulated with LPS or poly (I:C) was compared with the nucleic acid content of MPs from untreated cells or cells induced to undergo apoptosis by treatment with etoposide or staurosporine (STS). As results of these studies showed, MPs from activated, apoptotic and untreated cells had features in common, as demonstrated by binding of the nucleic acid dyes SYTO 13 and propidium iodide; molecular mass of DNA; and binding of monoclonal anti-DNA and anti-nucleosome Abs. While MPs from the different culture conditions all contained ribosomal RNA, ribosomal RNA from MPs from STS-treated cells showed cleavage and degradation. Taken together, these studies indicate that the nucleic acid content of MPs from activated and apoptotic cells have important similarities, suggesting that events during TLR activation may lead to apoptosis and subsequent MP release.
Collapse
Affiliation(s)
| | | | - David S. Pisetsky
- Duke University Medical Center, Durham, North Carolina, USA
- Medical Research Service, Durham Veterans Administration Medical Center, Durham, North Carolina, USA
| |
Collapse
|
62
|
Model MA. Possible causes of apoptotic volume decrease: an attempt at quantitative review. Am J Physiol Cell Physiol 2014; 306:C417-24. [DOI: 10.1152/ajpcell.00328.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell shrinkage and dehydration are essential characteristics of apoptosis, and loss of as much as half of the initial cell volume is not uncommon. This phenomenon is usually explained by efflux of K+and Cl−. We reexamine this hypothesis on the basis of the available data for ion concentrations and the requirements for osmotic equilibrium and electroneutrality. In addition to ion loss, we discuss the possible impacts of several other processes: efflux of low-molecular-weight osmolytes, acidification of the cytosol, effects of water channels and pumps, heterogeneity of intracellular water, and dissociation of apoptotic bodies. We conclude that most mammalian cells are theoretically capable of reducing their volume by 15–20% through ion loss or a decrease in cytosolic pH, although, in reality, the contribution of these mechanisms to apoptotic shrinkage may be smaller. Transitions between osmotically active and inactive water pools might influence cell volume as well; these mechanisms are poorly understood but are amenable to experimental study. Dissociation of apoptotic bodies is a separate mechanism of volume reduction and should be monitored closely; this can be best achieved by measurement of intracellular water, rather than cell volume.
Collapse
Affiliation(s)
- Michael A. Model
- Department of Biological Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
63
|
Schuh A, Butzbach B, Curaj A, Simsekyilmaz S, Bucur O, Kanzler I, Deneke B, Konschalla S, Kroh A, Sönmez TT, Marx N, Liehn EA. Novel insights into the mechanism of cell-based therapy after chronic myocardial infarction. Discoveries (Craiova) 2014; 2:e9. [PMID: 32309541 PMCID: PMC6941593 DOI: 10.15190/d.2014.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Cell transplantation therapy is considered a novel and promising strategy in regenerative medicine. Recent studies point out that paracrine effects and inflammation induced by transplanted cells are key factors for the improvement of myocardial function. The present study aims at differentiating paracrine effects from inflammatory reactions after cell transplantation.
Therefore, in vitro induced apoptotic bodies were transplanted after myocardial infarction in a rat model. Eight weeks after transplantation, the functional results showed no improvement in left ventricular function. Histological analysis revealed no significant differences in the amount of infiltrated cells and collagen content did not differ among the four groups, which sustains the functional data. Surprisingly, angiogenesis increased in groups with apoptotic bodies derived from HUVEC and endothelial progenitor cells, but not from fibroblasts. A complex genetic analysis of apoptotic bodies indicated that miRNAs could be responsible for these changes.
Our study demonstrates that inflammatory reaction is critical for scar remodelling and improvement of the heart function after late cell therapy, while neoangiogenesis alone is not sufficient to improve heart function.
Collapse
Affiliation(s)
- Alexander Schuh
- Department of Cardiology and Pulmonology, Medical Faculty, RWTH Aachen University, Germany
| | - Britta Butzbach
- Department of Cardiology and Pulmonology, Medical Faculty, RWTH Aachen University, Germany.,Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany
| | - Adelina Curaj
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany.,Department of Experimental Molecular Imaging, RWTH Aachen University, Germany.,"Victor Babes" National Institute of Pathology, Bucharest, Romania
| | - Sakine Simsekyilmaz
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany
| | - Octavian Bucur
- Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Isabela Kanzler
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany.,Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen, Germany.,Department of Cardiothoracic and Vascular Surgery, Johann Wolfgang Goethe-University, Frankfurt/Main, Germany
| | - Bernd Deneke
- Interdisciplinary Centre for Clinical Research (IZKF) Aachen, RWTH Aachen University, Aachen, Germany
| | - Simone Konschalla
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany
| | - Andreas Kroh
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany.,Department of Surgery, University Hospital Aachen, Germany
| | - Tolga Taha Sönmez
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany.,Department of Oral and Maxillofacial Surgery, University Hospital Aachen, Germany
| | - Nikolaus Marx
- Department of Cardiology and Pulmonology, Medical Faculty, RWTH Aachen University, Germany
| | - Elisa A Liehn
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Germany
| |
Collapse
|
64
|
Siewert B, Csuk R. Membrane damaging activity of a maslinic acid analog. Eur J Med Chem 2014; 74:1-6. [PMID: 24440377 DOI: 10.1016/j.ejmech.2013.12.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/28/2013] [Accepted: 12/22/2013] [Indexed: 02/06/2023]
Abstract
Close inspection of human ovarian cancer cells A2780 in the course of an antitumor screening using maslinic acid analogs revealed for one of the compounds, 4-oxa-4-phenyl-butyl 2,3-dihydroxy-olean-12-en-28-oate (1), an unusual behavior. During the incubation of the cells with 1, at the perimeter of the cells or close by crystals were formed consisting of cholesterol and excess 1. Compound 1 was incorporated into the cell's membrane followed by an extrusion of cholesterol from the lipid rafts. As a consequence of the alterations of the cell membrane, a volume decrease was initiated that triggered apoptosis; this extends previous models on apoptosis initiating mechanisms.
Collapse
Affiliation(s)
- Bianka Siewert
- Bereich Organische Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Straße 2, D-06120 Halle (Saale), Germany
| | - René Csuk
- Bereich Organische Chemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Straße 2, D-06120 Halle (Saale), Germany.
| |
Collapse
|
65
|
Abstract
Cell shrinkage is a hallmark and contributes to signaling of apoptosis. Apoptotic cell shrinkage requires ion transport across the cell membrane involving K(+) channels, Cl(-) or anion channels, Na(+)/H(+) exchange, Na(+),K(+),Cl(-) cotransport, and Na(+)/K(+)ATPase. Activation of K(+) channels fosters K(+) exit with decrease of cytosolic K(+) concentration, activation of anion channels triggers exit of Cl(-), organic osmolytes, and HCO3(-). Cellular loss of K(+) and organic osmolytes as well as cytosolic acidification favor apoptosis. Ca(2+) entry through Ca(2+)-permeable cation channels may result in apoptosis by affecting mitochondrial integrity, stimulating proteinases, inducing cell shrinkage due to activation of Ca(2+)-sensitive K(+) channels, and triggering cell-membrane scrambling. Signaling involved in the modification of cell-volume regulatory ion transport during apoptosis include mitogen-activated kinases p38, JNK, ERK1/2, MEKK1, MKK4, the small G proteins Cdc42, and/or Rac and the transcription factor p53. Osmosensing involves integrin receptors, focal adhesion kinases, and tyrosine kinase receptors. Hyperosmotic shock leads to vesicular acidification followed by activation of acid sphingomyelinase, ceramide formation, release of reactive oxygen species, activation of the tyrosine kinase Yes with subsequent stimulation of CD95 trafficking to the cell membrane. Apoptosis is counteracted by mechanisms involved in regulatory volume increase (RVI), by organic osmolytes, by focal adhesion kinase, and by heat-shock proteins. Clearly, our knowledge on the interplay between cell-volume regulatory mechanisms and suicidal cell death is still far from complete and substantial additional experimental effort is needed to elucidate the role of cell-volume regulatory mechanisms in suicidal cell death.
Collapse
Affiliation(s)
- Florian Lang
- Institute of Physiology, University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
66
|
Song M, Yu SP. Ionic regulation of cell volume changes and cell death after ischemic stroke. Transl Stroke Res 2013; 5:17-27. [PMID: 24323733 DOI: 10.1007/s12975-013-0314-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 10/16/2013] [Accepted: 11/19/2013] [Indexed: 12/20/2022]
Abstract
Stroke is a leading cause of human death and disability in the USA and around the world. Shortly after the cerebral ischemia, cell swelling is the earliest morphological change in injured neuronal, glial, and endothelial cells. Cytotoxic swelling directly results from increased Na(+) (with H2O) and Ca(2+) influx into cells via ionic mechanisms evoked by membrane depolarization and a number of harmful factors such as glutamate accumulation and the production of oxygen reactive species. During the sub-acute and chronic phases after ischemia, injured cells may show a phenotype of cell shrinkage due to complex processes involving membrane receptors/channels and programmed cell death signals. This review will introduce some progress in the understanding of the regulation of pathological cell volume changes and the involved receptors and channels, including NMDA and AMPA receptors, acid-sensing ion channels, hemichannels, transient receptor potential channels, and KCNQ channels. Moreover, accumulating evidence supports a key role of energy deficiency and dysfunction of Na(+)/K(+)-ATPase in ischemia-induced cell volume changes and cell death. Specifically, the Na(+) pump failure is a prerequisite for disruption of ionic homeostasis including a pro-apoptotic disruption of the K(+) homeostasis. Finally, we will introduce the concept of hybrid cell death as a result of the Na(+) pump failure in cultured cells and the ischemic brain. The goal of this review is to outline recent understanding of the ionic mechanism of ischemic cytotoxicity and suggest innovative ideas for future translational research.
Collapse
Affiliation(s)
- Mingke Song
- Department of Anesthesiology, Emory University School of Medicine, 101 Woodruff Circle, WMB Building Suite 620, Atlanta, GA, 30322, USA
| | | |
Collapse
|
67
|
Soekmadji C, Russell PJ, Nelson CC. Exosomes in prostate cancer: putting together the pieces of a puzzle. Cancers (Basel) 2013; 5:1522-44. [PMID: 24351670 PMCID: PMC3875952 DOI: 10.3390/cancers5041522] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/21/2013] [Accepted: 11/01/2013] [Indexed: 01/08/2023] Open
Abstract
Exosomes have been shown to act as mediators for cell to cell communication and as a potential source of biomarkers for many diseases, including prostate cancer. Exosomes are nanosized vesicles secreted by cells and consist of proteins normally found in multivesicular bodies, RNA, DNA and lipids. As a potential source of biomarkers, exosomes have attracted considerable attention, as their protein content resembles that of their cells of origin, even though it is noted that the proteins, miRNAs and lipids found in the exosomes are not a reflective stoichiometric sampling of the contents from the parent cells. While the biogenesis of exosomes in dendritic cells and platelets has been extensively characterized, much less is known about the biogenesis of exosomes in cancer cells. An understanding of the processes involved in prostate cancer will help to further elucidate the role of exosomes and other extracellular vesicles in prostate cancer progression and metastasis. There are few methodologies available for general isolation of exosomes, however validation of those methodologies is necessary to study the role of exosomal-derived biomarkers in various diseases. In this review, we discuss “exosomes” as a member of the family of extracellular vesicles and their potential to provide candidate biomarkers for prostate cancer.
Collapse
Affiliation(s)
- Carolina Soekmadji
- Australian Prostate Cancer Research Centre-Queensland, Institute of Health and Biomedical Innovation, Queensland University of Technology, Translational Research Institute, Level 3 West, 37 Kent Street, Brisbane, Queensland 4102, Australia.
| | | | | |
Collapse
|
68
|
Hanauske-Abel HM, Saxena D, Palumbo PE, Hanauske AR, Luchessi AD, Cambiaghi TD, Hoque M, Spino M, Gandolfi DD, Heller DS, Singh S, Park MH, Cracchiolo BM, Tricta F, Connelly J, Popowicz AM, Cone RA, Holland B, Pe’ery T, Mathews MB. Drug-induced reactivation of apoptosis abrogates HIV-1 infection. PLoS One 2013; 8:e74414. [PMID: 24086341 PMCID: PMC3781084 DOI: 10.1371/journal.pone.0074414] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/01/2013] [Indexed: 12/11/2022] Open
Abstract
HIV-1 blocks apoptosis, programmed cell death, an innate defense of cells against viral invasion. However, apoptosis can be selectively reactivated in HIV-infected cells by chemical agents that interfere with HIV-1 gene expression. We studied two globally used medicines, the topical antifungal ciclopirox and the iron chelator deferiprone, for their effect on apoptosis in HIV-infected H9 cells and in peripheral blood mononuclear cells infected with clinical HIV-1 isolates. Both medicines activated apoptosis preferentially in HIV-infected cells, suggesting that the drugs mediate escape from the viral suppression of defensive apoptosis. In infected H9 cells, ciclopirox and deferiprone enhanced mitochondrial membrane depolarization, initiating the intrinsic pathway of apoptosis to execution, as evidenced by caspase-3 activation, poly(ADP-ribose) polymerase proteolysis, DNA degradation, and apoptotic cell morphology. In isolate-infected peripheral blood mononuclear cells, ciclopirox collapsed HIV-1 production to the limit of viral protein and RNA detection. Despite prolonged monotherapy, ciclopirox did not elicit breakthrough. No viral re-emergence was observed even 12 weeks after drug cessation, suggesting elimination of the proviral reservoir. Tests in mice predictive for cytotoxicity to human epithelia did not detect tissue damage or activation of apoptosis at a ciclopirox concentration that exceeded by orders of magnitude the concentration causing death of infected cells. We infer that ciclopirox and deferiprone act via therapeutic reclamation of apoptotic proficiency (TRAP) in HIV-infected cells and trigger their preferential elimination. Perturbations in viral protein expression suggest that the antiretroviral activity of both drugs stems from their ability to inhibit hydroxylation of cellular proteins essential for apoptosis and for viral infection, exemplified by eIF5A. Our findings identify ciclopirox and deferiprone as prototypes of selectively cytocidal antivirals that eliminate viral infection by destroying infected cells. A drug-based drug discovery program, based on these compounds, is warranted to determine the potential of such agents in clinical trials of HIV-infected patients.
Collapse
Affiliation(s)
- Hartmut M. Hanauske-Abel
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Obstetrics, Gynecology & Women’s Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Deepti Saxena
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Paul E. Palumbo
- Department of Pediatrics, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Axel-Rainer Hanauske
- Oncology Center and Medical Clinic III, Asklepios Clinic St. George, Hamburg, Germany
| | - Augusto D. Luchessi
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Tavane D. Cambiaghi
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Mainul Hoque
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Michael Spino
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
- ApoPharma Inc., Toronto, Ontario, Canada
| | | | - Debra S. Heller
- Department of Pathology & Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Sukhwinder Singh
- Department of Pathology & Laboratory Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Myung Hee Park
- Oral and Pharyngeal Cancer Branch, National Institute for Dental and Craniofacial Research, Bethesda, Maryland, United States of America
| | - Bernadette M. Cracchiolo
- Department of Obstetrics, Gynecology & Women’s Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | | | | | - Anthony M. Popowicz
- Department of Information Technology, Rockefeller University, New York, New York, United States of America
| | - Richard A. Cone
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Bart Holland
- Department of Preventive Medicine & Community Health, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Tsafi Pe’ery
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
- Department of Medicine, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| | - Michael B. Mathews
- Department of Biochemistry & Molecular Biology, New Jersey Medical School, Rutgers University, Newark, New Jersey, United States of America
| |
Collapse
|
69
|
Mancini M, Saintigny G, Mahé C, Annicchiarico-Petruzzelli M, Melino G, Candi E. MicroRNA-152 and -181a participate in human dermal fibroblasts senescence acting on cell adhesion and remodeling of the extra-cellular matrix. Aging (Albany NY) 2013; 4:843-53. [PMID: 23238588 PMCID: PMC3560438 DOI: 10.18632/aging.100508] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ageing of human skin is associated with phenotypic changes in the cutaneous cells; the major functional markers of ageing occur as consequences of dermal and epidermal cell senescence and of structural and compositional remodeling of normally long-lived dermal extracellular matrix proteins. Understanding the contribution of the dermal cells in skin ageing is a key question, since this tissue is particularly important for skin integrity and its properties can affect the epidermis. Several microRNAs have been shown to be involved in the regulation of pathways involved in cellular senescence and exerted important effects on tissues ageing. In this study, we demonstrate that the expression of miR-152 and miR-181a increased during the human dermal fibroblasts senescence and that their overexpression, is sufficient to induce cellular senescence in early-passage cells. The increase of these miRNAs during cells senescence was accompanied by a decrease in integrin α5 and collagen XVI expression at mRNA and/or protein levels resulting in reduced cellular adhesion and suggesting extracellular matrix remodeling. These findings indicate that changes in miRNAs expression, by modulating the levels of adhesion proteins and extra-cellular matrix components, such as integrin α5 and collagen XVI, could contribute to the compositional remodelling of the dermis and epidermis occurring during skin aging.
Collapse
Affiliation(s)
- Mara Mancini
- University of Tor Vergata, Department of Experimental Medicine and Surgery, 00133 Rome, Italy
| | | | | | | | | | | |
Collapse
|
70
|
Pintus F, Floris G, Rufini A. Nutrient availability links mitochondria, apoptosis, and obesity. Aging (Albany NY) 2013; 4:734-41. [PMID: 23211444 PMCID: PMC3560440 DOI: 10.18632/aging.100505] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mitochondria are the dominant source of the cellular energy requirements through oxidative phosphorylation, but they are also central players in apoptosis. Nutrient availability may have been the main evolutionary driving force behind these opposite mitochondrial functions: production of energy to sustain life and release of apoptotic proteins to trigger cell death. Here, we explore the link between nutrients, mitochondria and apoptosis with known and potential implications for age-related decline and metabolic syndromes.
Collapse
Affiliation(s)
- Francesca Pintus
- Medical Research Council, Toxicology Unit/University of Leicester, LE1 1QH, Leicester UK
| | | | | |
Collapse
|
71
|
Bottone MG, Santin G, Aredia F, Bernocchi G, Pellicciari C, Scovassi AI. Morphological Features of Organelles during Apoptosis: An Overview. Cells 2013; 2:294-305. [PMID: 24709702 PMCID: PMC3972681 DOI: 10.3390/cells2020294] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/24/2013] [Accepted: 04/19/2013] [Indexed: 12/13/2022] Open
Abstract
An apoptotic program leading to controlled cell dismantling implies perturbations of nuclear dynamics, as well as changes affecting the organelle structure and distribution. In human cancer cells driven to apoptosis by different stimuli, we have recently investigated the morphological properties of several organelles, including mitochondria, lysosomes, endoplasmic reticulum and Golgi apparatus. In this review, we will discuss the body of evidence in the literature suggesting that organelles are generally relocated and/or degraded during apoptosis, irrespectively of the apoptogenic stimulus and cell type.
Collapse
Affiliation(s)
- Maria Grazia Bottone
- Laboratorio di Biologia Cellulare e Neurobiologia, Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, 27100 Pavia, Italy.
| | - Giada Santin
- Laboratorio di Biologia Cellulare e Neurobiologia, Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, 27100 Pavia, Italy.
| | | | - Graziella Bernocchi
- Laboratorio di Biologia Cellulare e Neurobiologia, Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, 27100 Pavia, Italy.
| | - Carlo Pellicciari
- Laboratorio di Biologia Cellulare e Neurobiologia, Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, 27100 Pavia, Italy.
| | | |
Collapse
|
72
|
Platonova AA, Koltsova SV, Maksimov GV, Grygorszyk R, Orlov SN. 3-Dimensional microscopy as a method for volume measurement in cells undergoing apoptosis. Biophysics (Nagoya-shi) 2013. [DOI: 10.1134/s0006350913030135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
73
|
Jinesh GG, Choi W, Shah JB, Lee EK, Willis DL, Kamat AM. Blebbishields, the emergency program for cancer stem cells: sphere formation and tumorigenesis after apoptosis. Cell Death Differ 2012; 20:382-95. [PMID: 23175184 DOI: 10.1038/cdd.2012.140] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Caspases mediate apoptosis and have also been implicated in stem-cell biology. How caspases are linked to stem-cell biology is not known. Here, we show that the apoptotic blebs of cancer cells fuse together to form novel structures called 'blebbishields'. Blebbishields form spheres by fusion. Both blebbishield formation and sphere formation involve active caspases and N-linked glycosylation. Sphere formation is enhanced by acidic pH and is counteracted by inhibitors of proton pump, caspases, and cholesterol. The blebbishields from VEGFR2(High) cells are capable of enhanced sphere formation. Blebbishields express transiently downregulated stem-cell markers and the sphere-forming blebbishield-derived cells are tumorigenic. Our study demonstrates that the cancer stem cells can survive after apoptosis by blebbishield formation and subsequent sphere formation.
Collapse
Affiliation(s)
- G G Jinesh
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
74
|
Sancho-Martínez SM, Prieto-García L, Prieto M, López-Novoa JM, López-Hernández FJ. Subcellular targets of cisplatin cytotoxicity: An integrated view. Pharmacol Ther 2012; 136:35-55. [DOI: 10.1016/j.pharmthera.2012.07.003] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 12/29/2022]
|
75
|
Swelling rather than shrinkage precedes apoptosis in serum-deprived vascular smooth muscle cells. Apoptosis 2012; 17:429-38. [PMID: 22249286 DOI: 10.1007/s10495-011-0694-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Contrasting cell volume behaviours (swelling vs. shrinkage) are considered as criteria to distinguish necrosis from apoptosis. In this study, we employed a time-lapse, dual-image surface reconstruction technique to assess the volume of single vascular smooth muscle cells transfected with E1A-adenoviral protein (E1A-VSMC) and undergoing rapid apoptosis in the absence of growth factors or in the presence of staurosporine. After 30- to 60-min lag-phase, serum-deprived E1A-VSMC volume was increased by ~40%, which preceded maximal increments of caspase-3 activity and chromatin cleavage. Swollen cells underwent rapid apoptotic collapse, documented by plasma membrane budding, and terminated in 10-15 min by the formation of numerous apoptotic bodies. Suppression of apoptosis by inhibition of Na(+),K(+)-ATPase and activation of cAMP signalling with ouabain and forskolin, respectively, completely abolished the swelling of serum-deprived E1A-VSMC. In contrast to serum deprivation, apoptotic collapse of staurosporine-treated E1A-VSMC preceded attenuation of their volume by ~30%. Neither transient hyposmotic swelling nor isosmtotic shrinkage triggered apoptosis. Our results show that cell shrinkage can not be considered as ubiquitous hallmark of apoptosis. The involvement of stimulus-specific cell volume perturbations in initiation and progression of apoptosis in vascular smooth muscle cells should be examined further.
Collapse
|
76
|
Sirois I, Groleau J, Pallet N, Brassard N, Hamelin K, Londono I, Pshezhetsky AV, Bendayan M, Hébert MJ. Caspase activation regulates the extracellular export of autophagic vacuoles. Autophagy 2012; 8:927-37. [PMID: 22692030 DOI: 10.4161/auto.19768] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The endothelium plays a central role in the regulation of vascular wall cellularity and tone by secreting an array of mediators of importance in intercellular communication. Nutrient deprivation of human endothelial cells (EC) evokes unconventional forms of secretion leading to the release of nanovesicles distinct from apoptotic bodies and bearing markers of multivesicular bodies (MVB). Nutrient deficiency is also a potent inducer of autophagy and vesicular transport pathways can be assisted by autophagy. Nutrient deficiency induced a significant and rapid increase in autophagic features, as imaged by electron microscopy and immunoblotting analysis of LC3-II/LC3-I ratios. Increased autophagic flux was confirmed by exposing serum-starved cells to bafilomycin A 1. Induction of autophagy was followed by indices of an apoptotic response, as assessed by microscopy and poly (ADP-ribose) polymerase cleavage in absence of cell membrane permeabilization indicative of necrosis. Pan-caspase inhibition with ZVAD-FMK did not prevent the development of autophagy but negatively impacted autophagic vacuole (AV) maturation. Adopting a multidimensional proteomics approach with validation by immunoblotting, we determined that nutrient-deprived EC released AV components (LC3I, LC3-II, ATG16L1 and LAMP2) whereas pan-caspase inhibition with ZVAD-FMK blocked AV release. Similarly, nutrient deprivation in aortic murine EC isolated from CASP3/caspase 3-deficient mice induced an autophagic response in absence of apoptosis and failed to prompt LC3 release. Collectively, the present results demonstrate the release of autophagic components by nutrient-deprived apoptotic human cells in absence of cell membrane permeabilization. These results also identify caspase-3 as a novel regulator of AV release.
Collapse
Affiliation(s)
- Isabelle Sirois
- Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Schneider A, Simons M. Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res 2012; 352:33-47. [PMID: 22610588 PMCID: PMC3602607 DOI: 10.1007/s00441-012-1428-2] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 04/05/2012] [Indexed: 12/11/2022]
Abstract
The intercellular transfer of misfolded proteins has received increasing attention in various neurodegenerative diseases characterized by the aggregation of specific proteins, as observed in Alzheimer's, Parkinson's and Huntington's disease. One hypothesis holds that intercellular dissemination of these aggregates within the central nervous system results in the seeded assembly of the cognate soluble protein in target cells, similar to that proposed for transmissible prion diseases. The molecular mechanisms underlying the intercellular transfer of these proteinaceous aggregates are poorly understood. Various transfer modes of misfolded proteins including continuous cell-cell contacts such as nanotubes, unconventional secretion or microvesicle/exosome-associated dissemination have been suggested. Cells can release proteins, lipids and nucleic acids by vesicular exocytosis pathways destined for horizontal transfer. Encapsulation into microvesicular/exosomal vehicles not only protects these molecules from degradation and dilution in the extracellular space but also facilitates delivery over large distances, e.g. within the blood flow or interstitial fluid. Specific surface ligands might allow the highly efficient and targeted uptake of these vesicles by recipient cells. In this review, we focus on the cell biology and function of neuronal microvesicles/exosomes and discuss the evidence for pathogenic intercellular protein transfer mediated by vesicular carriers.
Collapse
Affiliation(s)
- Anja Schneider
- Department of Psychiatry and Psychotherapy, University Medicine Goettingen, Von-Siebold-Str.5, 37075, Goettingen, Germany.
| | | |
Collapse
|
78
|
Villous trophoblast apoptosis is elevated and restricted to cytotrophoblasts in pregnancies complicated by preeclampsia, IUGR, or preeclampsia with IUGR. Placenta 2012; 33:352-9. [PMID: 22341340 DOI: 10.1016/j.placenta.2012.01.017] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/19/2012] [Accepted: 01/20/2012] [Indexed: 12/21/2022]
Abstract
Human placental villi are surfaced by an outer multinucleated syncytiotrophoblast and underlying mononucleated cytotrophoblasts. Conflicting data have attributed one, or the other, of these villous trophoblast phenotypes to undergo enhanced apoptosis in complicated pregnancies, compared to term, normotensive pregnancies. We use high-resolution confocal microscopy after co-staining for E-cadherin, as a trophoblast plasma membrane marker, and for the cleavage products of cytokeratin 18 and PARP1, as markers for caspase-mediated apoptosis, to distinguish between apoptotic cytotrophoblasts and apoptosis within the syncytiotrophoblast. We test the hypothesis that increased caspase-mediated apoptosis occurs in villi of placentas derived from pregnancies complicated by preeclampsia, intrauterine growth restriction (IUGR), or both. We find significantly elevated apoptosis in villous cytotrophoblasts from women with preeclampsia and/or IUGR, compared to term, normotensive pregnancies. Apoptosis of cytotrophoblasts in villi from complicated pregnancies appears to progress similarly to what we found previously for apoptotic cytotrophoblasts in villi from in term, normotensive pregnancies. Notably, caspase-mediated apoptosis was not detectable in regions with intact syncytiotrophoblast, suggesting strong repression of apoptosis in this trophoblast phenotype in vivo. We suggest that the elevated apoptosis in cytotrophoblasts in preeclampsia contributes to the placental dysfunction characteristic of this disorder. We also propose that repression of apoptosis in the syncytiotrophoblast is important to prevent apoptosis sweeping throughout the syncytium, which would result in widespread death of this essential interface for maternal-fetal exchange.
Collapse
|
79
|
Schwarzer C, Fu Z, Patanwala M, Hum L, Lopez-Guzman M, Illek B, Kong W, Lynch SV, Machen TE. Pseudomonas aeruginosa biofilm-associated homoserine lactone C12 rapidly activates apoptosis in airway epithelia. Cell Microbiol 2012; 14:698-709. [PMID: 22233488 DOI: 10.1111/j.1462-5822.2012.01753.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pseudomonas aeruginosa (PA) forms biofilms in lungs of cystic fibrosis (CF) patients, a process regulated by quorum-sensing molecules including N-(3-oxododecanoyl)-l-homoserine lactone (C12). C12 (10-100 µM) rapidly triggered events commonly associated with the intrinsic apoptotic pathway in JME (CF ΔF508CFTR, nasal surface) epithelial cells: depolarization of mitochondrial (mito) membrane potential (Δψ(mito)) and release of cytochrome C (cytoC) from mitos into cytosol and activation of caspases 3/7, 8 and 9. C12 also had novel effects on the endoplasmic reticulum (release of both Ca(2+) and ER-targeted GFP and oxidized contents into the cytosol). Effects began within 5 min and were complete in 1-2 h. C12 caused similar activation of caspases and release of cytoC from mitos in Calu-3 (wtCFTR, bronchial gland) cells, showing that C12-triggered responses occurred similarly in different airway epithelial types. C12 had nearly identical effects on three key aspects of the apoptosis response (caspase 3/7, depolarization of Δψ(mito) and reduction of redox potential in the ER) in JME and CFTR-corrected JME cells (adenoviral expression), showing that CFTR was likely not an important regulator of C12-triggered apoptosis in airway epithelia. Exposure of airway cultures to biofilms from PAO1wt caused depolarization of Δψ(mito) and increases in Ca(cyto) like 10-50 µM C12. In contrast, biofilms from PAO1ΔlasI (C12 deficient) had no effect, suggesting that C12 from P. aeruginosa biofilms may contribute to accumulation of apoptotic cells that cannot be cleared from CF lungs. A model to explain the effects of C12 is proposed.
Collapse
Affiliation(s)
- Christian Schwarzer
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Longtine MS, Chen B, Odibo AO, Zhong Y, Nelson DM. Caspase-mediated apoptosis of trophoblasts in term human placental villi is restricted to cytotrophoblasts and absent from the multinucleated syncytiotrophoblast. Reproduction 2011; 143:107-21. [PMID: 22046053 PMCID: PMC3631347 DOI: 10.1530/rep-11-0340] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human placental villi are surfaced by a multinucleated and terminally differentiated epithelium, the syncytiotrophoblast, with a subjacent layer of mononucleated cytotrophoblasts that can divide and fuse to replenish the syncytiotrophoblast. The objectives of this study were i) to develop an approach to definitively identify and distinguish cytotrophoblasts from the syncytiotrophoblast, ii) to unambiguously determine the relative susceptibility of villous cytotrophoblasts and syncytiotrophoblast to constitutive and stress-induced apoptosis mediated by caspases, and iii) to understand the progression of apoptosis in villous trophoblasts. Confocal microscopy with co-staining for E-cadherin and DNA allowed us to clearly distinguish the syncytiotrophoblast from cytotrophoblasts and identified that many cytotrophoblasts are deeply interdigitated into the syncytiotrophoblast. Staining for specific markers of caspase-mediated apoptosis indicate that apoptosis occurs readily in cytotrophoblasts but is remarkably inhibited in the syncytiotrophoblast. To determine if an apoptotic cell or cell fragment was from a cytotrophoblast or syncytiotrophoblast, we found co-staining with E-cadherin along with a marker for apoptosis was essential: in the absence of E-cadherin staining, apoptotic cytotrophoblasts would easily be mistaken as representing localized regions of apoptosis in the syncytiotrophoblast. Regions with perivillous fibrin-containing fibrinoid contain the remnants of trophoblast apoptosis, and we propose this apoptosis occurs only after physical isolation of a region of the syncytium from the main body of the syncytium. We propose models for the progression of apoptosis in villous cytotrophoblasts and for why caspase-mediated apoptosis does not occur within the syncytium of placental villi.
Collapse
Affiliation(s)
- Mark S Longtine
- Department of Obstetrics and Gynecology, School of Medicine, Washington University, 4566 Scott Avenue, St Louis, MO 63110, USA.
| | | | | | | | | |
Collapse
|
81
|
Abstract
Programmed cell death (PCD) is an integral part of plant development and of responses to abiotic stress or pathogens. Although the morphology of plant PCD is, in some cases, well characterised and molecular mechanisms controlling plant PCD are beginning to emerge, there is still confusion about the classification of PCD in plants. Here we suggest a classification based on morphological criteria. According to this classification, the use of the term 'apoptosis' is not justified in plants, but at least two classes of PCD can be distinguished: vacuolar cell death and necrosis. During vacuolar cell death, the cell contents are removed by a combination of autophagy-like process and release of hydrolases from collapsed lytic vacuoles. Necrosis is characterised by early rupture of the plasma membrane, shrinkage of the protoplast and absence of vacuolar cell death features. Vacuolar cell death is common during tissue and organ formation and elimination, whereas necrosis is typically found under abiotic stress. Some examples of plant PCD cannot be ascribed to either major class and are therefore classified as separate modalities. These are PCD associated with the hypersensitive response to biotrophic pathogens, which can express features of both necrosis and vacuolar cell death, PCD in starchy cereal endosperm and during self-incompatibility. The present classification is not static, but will be subject to further revision, especially when specific biochemical pathways are better defined.
Collapse
|
82
|
Paris I, Muñoz P, Huenchuguala S, Couve E, Sanders LH, Greenamyre JT, Caviedes P, Segura-Aguilar J. Autophagy protects against aminochrome-induced cell death in substantia nigra-derived cell line. Toxicol Sci 2011; 121:376-88. [PMID: 21427056 DOI: 10.1093/toxsci/kfr060] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aminochrome, the precursor of neuromelanin, has been proposed to be involved in the neurodegeneration neuromelanin-containing dopaminergic neurons in Parkinson's disease. We aimed to study the mechanism of aminochrome-dependent cell death in a cell line derived from rat substantia nigra. We found that aminochrome (50μM), in the presence of NAD(P)H-quinone oxidoreductase, EC 1.6.99.2 (DT)-diaphorase inhibitor dicoumarol (DIC) (100μM), induces significant cell death (62 ± 3%; p < 0.01), increase in caspase-3 activation (p < 0.001), release of cytochrome C, disruption of mitochondrial membrane potential (p < 0.01), damage of mitochondrial DNA, damage of mitochondria determined with transmission electron microscopy, a dramatic morphological change characterized as cell shrinkage, and significant increase in number of autophagic vacuoles. To determine the role of autophagy on aminochrome-induced cell death, we incubated the cells in the presence of vinblastine and rapamycin. Interestingly, 10μM vinblastine induces a 5.9-fold (p < 0.001) and twofold (p < 0.01) significant increase in cell death when the cells were incubated with 30μM aminochrome in the absence and presence of DIC, respectively, whereas 10μM rapamycin preincubated 24 h before addition of 50μM aminochrome in the absence and the presence of 100μM DIC induces a significant decrease (p < 0.001) in cell death. In conclusion, autophagy seems to be an important protective mechanism against two different aminochrome-induced cell deaths that initially showed apoptotic features. The cell death induced by aminochrome when DT-diaphorase is inhibited requires activation of mitochondrial pathway, whereas the cell death induced by aminochrome alone requires inhibition of autophagy-dependent degrading of damaged organelles and recycling through lysosomes.
Collapse
Affiliation(s)
- Irmgard Paris
- Program of Molecular and Clinical Pharmacology, Biomedical Science Institute, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | | | | | | | | | | | | | | |
Collapse
|