51
|
Vandenabeele P, Vandecasteele K, Bachert C, Krysko O, Krysko DV. Immunogenic Apoptotic Cell Death and Anticancer Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 930:133-49. [PMID: 27558820 DOI: 10.1007/978-3-319-39406-0_6] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
For many years it has been thought that apoptotic cells rapidly cleared by phagocytic cells do not trigger an immune response but rather have anti-inflammatory properties. However, accumulating experimental data indicate that certain anticancer therapies can induce an immunogenic form of apoptosis associated with the emission of damage-associated molecular patterns (DAMPs), which function as adjuvants to activate host antitumor immune responses. In this review, we will first discuss recent advances and the significance of danger signaling pathways involved in the emission of DAMPs, including calreticulin, ATP, and HMGB1. We will also emphasize that switching on a particular signaling pathway depends on the immunogenic cell death stimulus. Further, we address the role of ER stress in danger signaling and the classification of immunogenic cell death inducers in relation to how ER stress is triggered. In the final part, we discuss the role of radiotherapy-induced immunogenic apoptosis and the relationship of its immunogenicity to the fraction dose and concomitant chemotherapy.
Collapse
Affiliation(s)
- Peter Vandenabeele
- Molecular Signalling and Cell Death Unit, Inflammation Research Center, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Methusalem program, Ghent University, Ghent, Belgium
| | - Katrien Vandecasteele
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Ghent, Belgium
| | - Claus Bachert
- The Upper Airway Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| | - Olga Krysko
- The Upper Airway Research Laboratory, Department of Oto-Rhino-Laryngology, Ghent University Hospital, Ghent, Belgium
| | - Dmitri V Krysko
- Molecular Signalling and Cell Death Unit, Inflammation Research Center, VIB, Ghent, Belgium. .,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
52
|
Grzymajlo K, Ugorski M, Suchanski J, Kedzierska AE, Kolenda R, Jarzab A, Biernatowska A, Schierack P. The Novel Type 1 Fimbriae FimH Receptor Calreticulin Plays a Role in Salmonella Host Specificity. Front Cell Infect Microbiol 2017; 7:326. [PMID: 28770174 PMCID: PMC5516122 DOI: 10.3389/fcimb.2017.00326] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/03/2017] [Indexed: 01/25/2023] Open
Abstract
It was suggested that minor differences in the structure of FimH are most likely associated with differences in its adhesion specificities and may determine the tropism of various Salmonella serovars to different species and tissues. We have recently shown that FimH adhesins from host-adapted serovars, e.g., Salmonella Choleraesuis (SCh), bind to other glycoprotein receptors compared to FimH from host-unrestricted Salmonella Enteritidis (SE). Here we identify porcine calreticulin expressed by swine intestinal cells as a host-specific receptor for SCh FimH adhesin, suggesting that such an interaction may contribute to SCh host specificity. Calreticulin was identified by 2D electrophoresis and mass spectrometry as a glycoprotein that was bound specifically by recombinant SCh FimH protein, but not by FimH from SE. The functionality of calreticulin as a specific receptor of SCh FimH adhesin was further confirmed by adhesion and invasion of mutated strains of SCh carrying different variants of FimH proteins to IPEC-J2 cells with overexpression and silenced expression of calreticulin. It was found that SCh carrying the active variant of FimH adhered and invaded IPEC-J2 cells with calreticulin overexpression at significantly higher numbers than those of SCh expressing the non-active variant or SE variant of FimH. Moreover, binding of SCh carrying the active variant of FimH to IPEC-J2 with silenced calreticulin expression was significantly weaker. Furthermore, we observed that SCh infection induces translocation of calreticulin to cell membrane. All of the aforementioned results lead to the general conclusion that Salmonella host specificity requires not only special mechanisms and proteins expressed by the pathogen but also specifically recognized receptors expressed by a specific host.
Collapse
Affiliation(s)
- Krzysztof Grzymajlo
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, Wrocław University of Environmental and Life SciencesWrocław, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, Wrocław University of Environmental and Life SciencesWrocław, Poland
| | - Jaroslaw Suchanski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Sciences, Wrocław University of Environmental and Life SciencesWrocław, Poland
| | - Anna E Kedzierska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocław, Poland
| | - Rafal Kolenda
- Faculty of Environment and Natural Sciences, Institute of Biotechnology, Brandenburg University of Technology Cottbus-SenftenbergSenftenberg, Germany
| | - Anna Jarzab
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of SciencesWrocław, Poland
| | - Agnieszka Biernatowska
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of WrocławWrocław, Poland
| | - Peter Schierack
- Faculty of Environment and Natural Sciences, Institute of Biotechnology, Brandenburg University of Technology Cottbus-SenftenbergSenftenberg, Germany
| |
Collapse
|
53
|
Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol 2017; 17:559-572. [PMID: 28555670 DOI: 10.1038/nri.2017.49] [Citation(s) in RCA: 1521] [Impact Index Per Article: 190.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The tumour microenvironment is the primary location in which tumour cells and the host immune system interact. Different immune cell subsets are recruited into the tumour microenvironment via interactions between chemokines and chemokine receptors, and these populations have distinct effects on tumour progression and therapeutic outcomes. In this Review, we focus on the main chemokines that are found in the human tumour microenvironment; we elaborate on their patterns of expression, their regulation and their roles in immune cell recruitment and in cancer and stromal cell biology, and we consider how they affect cancer immunity and tumorigenesis. We also discuss the potential of targeting chemokine networks, in combination with other immunotherapies, for the treatment of cancer.
Collapse
Affiliation(s)
- Nisha Nagarsheth
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109, USA.,Graduate Programs in Immunology and Tumour Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Max S Wicha
- Graduate Programs in Immunology and Tumour Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Medicine, University of Michigan School of Medicine, 1150 E. Medical Center Drive, Ann Arbor, Michigan 48109, USA.,The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, 109 Zina Pitcher Place, Ann Arbor, Michigan 48109, USA.,Graduate Programs in Immunology and Tumour Biology, University of Michigan, Ann Arbor, Michigan 48109, USA.,The University of Michigan Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
54
|
Jo SH, Choi JA, Lim YJ, Lee J, Cho SN, Oh SM, Go D, Kim SH, Song CH. Calreticulin modulates the intracellular survival of mycobacteria by regulating ER-stress-mediated apoptosis. Oncotarget 2017; 8:58686-58698. [PMID: 28938588 PMCID: PMC5601684 DOI: 10.18632/oncotarget.17419] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 03/28/2017] [Indexed: 12/31/2022] Open
Abstract
Endoplasmic reticulum (ER)-stress-mediated apoptosis is a host defense mechanism against Mycobacterium tuberculosis (Mtb) infection. Calreticulin (CRT) is the major calcium-binding chaperone protein. Previous reports have suggested a close relationship between the cell-surface expression of CRT and apoptosis. In this study, the role of CRT during Mtb infection was examined. The results showed that Mtb infection induces CRT production by macrophages and that CRT levels are correlated with the degree of apoptotic cell death. The enhanced production of CRT was associated with the ER stress induced by Mtb infection. A significant increase in CRT translocation from the cytosol to the plasma membrane after 24 h of infection suggested the importance of CRT localization in the induction of apoptosis during Mtb infection. An investigation of the factors associated with CRT translocation and the ability of ectopically expressed CRT to induce apoptosis showed that pretreatment with a reactive oxygen species scavenger decreased Mtb-induced CRT expression, leading to the reduction of CHOP and caspase-3 activation. The intracellular survival of Mtb was significantly higher in macrophages transfected with a CRT-specific small interfering RNA than in control cells. The key role of CRT in inducing apoptosis included its interaction with CXCR1 and TNFR1 in Mtb-infected macrophages. The CRT/CXCR1/TNFR1 complex was shown to induce the extrinsic apoptotic pathway during Mtb infection. Together, these results demonstrate that CRT is critical for the intracellular survival of Mtb, via ER-stress-induced apoptosis, as well as the importance of ER stress-mediated CRT localization in the pathogenesis of tuberculosis.
Collapse
Affiliation(s)
- Sung Hee Jo
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Microbiology, Chungnam National University, Daejeon, Republic of Korea.,College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ji-Ae Choi
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Microbiology, Chungnam National University, Daejeon, Republic of Korea.,College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yun-Ji Lim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Microbiology, Chungnam National University, Daejeon, Republic of Korea.,College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Junghwan Lee
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Microbiology, Chungnam National University, Daejeon, Republic of Korea.,College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Soo-Na Cho
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Microbiology, Chungnam National University, Daejeon, Republic of Korea.,College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sung-Man Oh
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Microbiology, Chungnam National University, Daejeon, Republic of Korea.,College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Dam Go
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Microbiology, Chungnam National University, Daejeon, Republic of Korea.,College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Seon-Hwa Kim
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Microbiology, Chungnam National University, Daejeon, Republic of Korea.,College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Chang-Hwa Song
- Department of Medical Science, Chungnam National University, Daejeon, Republic of Korea.,Department of Microbiology, Chungnam National University, Daejeon, Republic of Korea.,Research Institute for Medical Sciences, Chungnam National University, Daejeon, Republic of Korea.,College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
55
|
Abstract
Dying cells have an important role in the initiation of CD8+ T cell-mediated immunity. The cross-presentation of antigens derived from dying cells enables dendritic cells to present exogenous tissue-restricted or tumour-restricted proteins on MHC class I molecules. Importantly, this pathway has been implicated in multiple autoimmune diseases and accounts for the priming of tumour antigen-specific T cells. Recent data have revealed that in addition to antigen, dying cells provide inflammatory and immunogenic signals that determine the efficiency of CD8+ T cell cross-priming. The complexity of these signals has been evidenced by the multiple molecular pathways that result in cell death and that have now been shown to differentially influence antigen transfer and immunity. In this Review, we provide a detailed summary of both the passive and active signals that are generated by dying cells during their initiation of CD8+ T cell-mediated immunity. We propose that molecules generated alongside cell death pathways - inducible damage-associated molecular patterns (iDAMPs) - are upstream immunological cues that actively regulate adaptive immunity.
Collapse
|
56
|
Pitt JM, Kroemer G, Zitvogel L. Immunogenic and Non-immunogenic Cell Death in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:65-79. [PMID: 29275465 DOI: 10.1007/978-3-319-67577-0_5] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The host immune system is continuously exposed to dying cells and has evolved to distinguish between cell death events signaling potential threats and physiological apoptosis that should be tolerated. Tumors can use this distinction to their advantage, promoting apoptotic death of cancer cells to induce tolerance and evasion of immunosurveillance. On the other hand, stimuli that cause immunogenic death of cancer cells can induce an effective anti-tumor immune response. In this chapter we discuss different forms of cell death in the tumor microenvironment, and how these interact with host immune cells to impact tumor progression and cancer therapy. We focus on how cancer cells hijack aspects of cell death to promote tumor survival, and how anti-cancer treatments that activate immunogenic death modalities give strong and durable clinical efficacy.
Collapse
Affiliation(s)
- Jonathan M Pitt
- Gustave Roussy Cancer Campus, Villejuif, Cedex, France
- INSERM U1015, Villejuif, France
- Faculté de Médecine, Université Paris Sud-XI, Le Kremlin Bicêtre, France
| | - Guido Kroemer
- Gustave Roussy Cancer Campus, Villejuif, Cedex, France
- INSERM U848, Villejuif, France
- Metabolomics Platform, Institut Gustave Roussy, Villejuif, France
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Université Paris Descartes-V, Sorbonne Paris Cité, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, Cedex, France.
- INSERM U1015, Villejuif, France.
- Faculté de Médecine, Université Paris Sud-XI, Le Kremlin Bicêtre, France.
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.
| |
Collapse
|
57
|
Gebremeskel S, Johnston B. Concepts and mechanisms underlying chemotherapy induced immunogenic cell death: impact on clinical studies and considerations for combined therapies. Oncotarget 2016; 6:41600-19. [PMID: 26486085 PMCID: PMC4747176 DOI: 10.18632/oncotarget.6113] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/22/2015] [Indexed: 01/12/2023] Open
Abstract
Chemotherapy has historically been thought to induce cancer cell death in an immunogenically silent manner. However, recent studies have demonstrated that therapeutic outcomes with specific chemotherapeutic agents (e.g. anthracyclines) correlate strongly with their ability to induce a process of immunogenic cell death (ICD) in cancer cells. This process generates a series of signals that stimulate the immune system to recognize and clear tumor cells. Extensive studies have revealed that chemotherapy-induced ICD occurs via the exposure/release of calreticulin (CALR), ATP, chemokine (C–X–C motif) ligand 10 (CXCL10) and high mobility group box 1 (HMGB1). This review provides an in-depth look into the concepts and mechanisms underlying CALR exposure, activation of the Toll-like receptor 3/IFN/CXCL10 axis, and the release of ATP and HMGB1 from dying cancer cells. Factors that influence the impact of ICD in clinical studies and the design of therapies combining chemotherapy with immunotherapy are also discussed.
Collapse
Affiliation(s)
- Simon Gebremeskel
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Brent Johnston
- Department of Microbiology & Immunology, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada.,Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.,Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| |
Collapse
|
58
|
Di Blasio S, Wortel IMN, van Bladel DAG, de Vries LE, Duiveman-de Boer T, Worah K, de Haas N, Buschow SI, de Vries IJM, Figdor CG, Hato SV. Human CD1c(+) DCs are critical cellular mediators of immune responses induced by immunogenic cell death. Oncoimmunology 2016; 5:e1192739. [PMID: 27622063 PMCID: PMC5007971 DOI: 10.1080/2162402x.2016.1192739] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/29/2016] [Accepted: 05/18/2016] [Indexed: 12/22/2022] Open
Abstract
Chemotherapeutics, including the platinum compounds oxaliplatin (OXP) and cisplatin (CDDP), are standard care of treatment for cancer. Although chemotherapy has long been considered immunosuppressive, evidence now suggests that certain cytotoxic agents can efficiently stimulate antitumor responses, through the induction of a form of apoptosis, called immunogenic cell death (ICD). ICD is characterized by exposure of calreticulin and heat shock proteins (HSPs), secretion of ATP and release of high-mobility group box 1 (HMGB1). Proper activation of the immune system relies on the integration of these signals by dendritic cells (DCs). Studies on the crucial role of DCs, in the context of ICD, have been performed using mouse models or human in vitro-generated monocyte-derived DCs (moDCs), which do not fully recapitulate the in vivo situation. Here, we explore the effect of platinum-induced ICD on phenotype and function of human blood circulating DCs. Tumor cells were treated with OXP or CDDP and induction of ICD was investigated. We show that both platinum drugs triggered translocation of calreticulin and HSP70, as well as the release of ATP and HMGB1. Platinum treatment increased phagocytosis of tumor fragments by human blood DCs and enhanced phenotypic maturation of blood myeloid and plasmacytoid DCs. Moreover, upon interaction with platinum-treated tumor cells, CD1c+ DCs efficiently stimulated allogeneic proliferation of T lymphocytes. Together, our observations indicate that platinum-treated tumor cells may exert an active stimulatory effect on human blood DCs. In particular, these data suggest that CD1c+ DCs are critical mediators of immune responses induced by ICD.
Collapse
Affiliation(s)
- Stefania Di Blasio
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Inge M N Wortel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Diede A G van Bladel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Laura E de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Tjitske Duiveman-de Boer
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Kuntal Worah
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Nienke de Haas
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Sonja I Buschow
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| | - Stanleyson V Hato
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen, the Netherlands
| |
Collapse
|
59
|
The oncolytic peptide LTX-315 triggers immunogenic cell death. Cell Death Dis 2016; 7:e2134. [PMID: 26962684 PMCID: PMC4823948 DOI: 10.1038/cddis.2016.47] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 12/22/2022]
Abstract
LTX-315 is a cationic amphilytic peptide that preferentially permeabilizes mitochondrial membranes, thereby causing partially BAX/BAK1-regulated, caspase-independent necrosis. Based on the observation that intratumorally injected LTX-315 stimulates a strong T lymphocyte-mediated anticancer immune response, we investigated whether LTX-315 may elicit the hallmarks of immunogenic cell death (ICD), namely (i) exposure of calreticulin on the plasma membrane surface, (ii) release of ATP into the extracellular space, (iii) exodus of HMGB1 from the nucleus, and (iv) induction of a type-1 interferon response. Using a panel of biosensor cell lines and robotized fluorescence microscopy coupled to automatic image analysis, we observed that LTX-315 induces all known ICD characteristics. This conclusion was validated by several independent methods including immunofluorescence stainings (for calreticulin), bioluminescence assays (for ATP), immunoassays (for HMGB1), and RT-PCRs (for type-1 interferon induction). When injected into established cancers, LTX-315 caused a transiently hemorrhagic focal necrosis that was accompanied by massive release of HMGB1 (from close-to-all cancer cells), as well as caspase-3 activation in a fraction of the cells. LTX-315 was at least as efficient as the positive control, the anthracycline mitoxantrone (MTX), in inducing local inflammation with infiltration by myeloid cells and T lymphocytes. Collectively, these results support the idea that LTX-315 can induce ICD, hence explaining its capacity to mediate immune-dependent therapeutic effects.
Collapse
|
60
|
Emens LA, Middleton G. The interplay of immunotherapy and chemotherapy: harnessing potential synergies. Cancer Immunol Res 2016; 3:436-43. [PMID: 25941355 DOI: 10.1158/2326-6066.cir-15-0064] [Citation(s) in RCA: 611] [Impact Index Per Article: 67.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although cancer chemotherapy has historically been considered immune suppressive, it is now accepted that certain chemotherapies can augment tumor immunity. The recent success of immune checkpoint inhibitors has renewed interest in immunotherapies, and in combining them with chemotherapy to achieve additive or synergistic clinical activity. Two major ways that chemotherapy promotes tumor immunity are by inducing immunogenic cell death as part of its intended therapeutic effect and by disrupting strategies that tumors use to evade immune recognition. This second strategy, in particular, is dependent on the drug, its dose, and the schedule of chemotherapy administration in relation to antigen exposure or release. In this Cancer Immunology at the Crossroads article, we focus on cancer vaccines and immune checkpoint blockade as a forum for reviewing preclinical and clinical data demonstrating the interplay between immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Leisha A Emens
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland. Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland.
| | - Gary Middleton
- Cancer Immunology and Immunotherapy Centre, School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom. Department of Medical Oncology, University Hospital Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
61
|
Wang H, Hou Y, Guo J, Chen H, Liu X, Wu Z, Zhao S, Zhu M. Transcriptomic landscape for lymphocyte count variation in poly I:C-induced porcine peripheral blood. Anim Genet 2015; 47:49-61. [PMID: 26607402 DOI: 10.1111/age.12379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2015] [Indexed: 12/28/2022]
Abstract
Lymphocyte count is an important phenotypic metric that has been reported to be related to the individual antiviral capacity of pigs and other mammals. To date, aside from information regarding several genes and pathways, little is known about the mechanism by which gene expression affects variation in lymphocyte count. In this work, we investigated the lymphocyte count variation after poly I:C stimulation and compared the transcriptomes of pigs with large and small differences of lymphocyte counts before and after poly I:C stimulation. Pigs with large and small differences of lymphocyte counts were designated as extreme response (ER) and moderate response (MR) pigs respectively. Lymphocyte counts in all animals were observed to decline after poly I:C stimulation. Transcriptomic analysis identified 1121 transcripts (981 differentially expressed genes) in MR pigs and 1045 transcripts (904 differentially expressed genes) in ER pigs. We found that the majority of the differentially expressed genes were involved in both innate and adaptive immune responses. However, the innate immune response of ER pigs was more rapid than that of MR pigs. Results indicated that the activation of signaling pathways associated with cell death, cytotoxicity and apoptosis may contribute to the poly I:C-induced decrease of lymphocyte counts in the periphery. Moreover, the differential expression patterns of chemokines and FAS either totally or partially provided an interpretation for the different degrees of decrease in the lymphocyte counts between MR and ER pigs. Overall, our study will provide further understanding of the molecular basis for the antiviral capacity of pigs and other mammals.
Collapse
Affiliation(s)
- H Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Y Hou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - J Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - H Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023, China
| | - X Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Z Wu
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - S Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - M Zhu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
62
|
Modulation of P2X4/P2X7/Pannexin-1 sensitivity to extracellular ATP via Ivermectin induces a non-apoptotic and inflammatory form of cancer cell death. Sci Rep 2015; 5:16222. [PMID: 26552848 PMCID: PMC4639773 DOI: 10.1038/srep16222] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022] Open
Abstract
Overexpression of P2X7 receptors correlates with tumor growth and metastasis. Yet, release of ATP is associated with immunogenic cancer cell death as well as inflammatory responses caused by necrotic cell death at sites of trauma or ischemia-reperfusion injury. Using an FDA-approved anti-parasitic agent Ivermectin as a prototype agent to allosterically modulate P2X4 receptors, we can switch the balance between the dual pro-survival and cytotoxic functions of purinergic signaling in breast cancer cells. This is mediated through augmented opening of the P2X4/P2X7-gated Pannexin-1 channels that drives a mixed apoptotic and necrotic mode of cell death associated with activation of caspase-1 and is consistent with pyroptosis. We show that cancer cell death is dependent on ATP release and death signals downstream of P2X7 receptors that can be reversed by inhibition of NADPH oxidases-generated ROS, Ca2+/Calmodulin-dependent protein kinase II (CaMKII) or mitochondrial permeability transition pore (MPTP). Ivermectin induces autophagy and release of ATP and HMGB1, key mediators of inflammation. Potentiated P2X4/P2X7 signaling can be further linked to the ATP rich tumor microenvironment providing a mechanistic explanation for the tumor selectivity of purinergic receptors modulation and its potential to be used as a platform for integrated cancer immunotherapy.
Collapse
|
63
|
Simovic B, Walsh SR, Wan Y. Mechanistic insights into the oncolytic activity of vesicular stomatitis virus in cancer immunotherapy. Oncolytic Virother 2015; 4:157-67. [PMID: 27512679 PMCID: PMC4918393 DOI: 10.2147/ov.s66079] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy and oncolytic virotherapy have both shown anticancer efficacy in the clinic as monotherapies but the greatest promise lies in therapies that combine these approaches. Vesicular stomatitis virus is a prominent oncolytic virus with several features that promise synergy between oncolytic virotherapy and immunotherapy. This review will address the cytotoxicity of vesicular stomatitis virus in transformed cells and what this means for antitumor immunity and the virus’ immunogenicity, as well as how it facilitates the breaking of tolerance within the tumor, and finally, we will outline how these features can be incorporated into the rational design of new treatment strategies in combination with immunotherapy.
Collapse
Affiliation(s)
- Boris Simovic
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Scott R Walsh
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Yonghong Wan
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
64
|
Dudek-Perić AM, Gołąb J, Garg AD, Agostinis P. Melanoma targeting with the loco-regional chemotherapeutic, Melphalan: From cell death to immunotherapeutic efficacy. Oncoimmunology 2015; 4:e1054600. [PMID: 26587333 DOI: 10.1080/2162402x.2015.1054600] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022] Open
Abstract
All immunoregulatory chemotherapeutics are chiefly applied in a systemic setting for anticancer therapy. However, immune responses following loco-regional application of chemotherapy may differ from those after systemic application. We recently found that Melphalan, a prototypical loco-regionally applied chemotherapeutic agent, exhibits the ability to increase the immunogenicity of dying melanoma cells.
Collapse
Affiliation(s)
- Aleksandra Maria Dudek-Perić
- Cell Death Research and Therapy Laboratory, Department of Cellular and Molecular Medicine; Faculty of Medicine ; KU Leuven , Leuven, Belgium
| | - Jakub Gołąb
- Department of Immunology; Center of Biostructure Research; Medical University of Warsaw ; Warsaw, Poland ; Institute of Physical Chemistry; Polish Academy of Sciences ; Warsaw, Poland
| | - Abhishek D Garg
- Cell Death Research and Therapy Laboratory, Department of Cellular and Molecular Medicine; Faculty of Medicine ; KU Leuven , Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Laboratory, Department of Cellular and Molecular Medicine; Faculty of Medicine ; KU Leuven , Leuven, Belgium
| |
Collapse
|
65
|
The PERKs of damage-associated molecular patterns mediating cancer immunogenicity: From sensor to the plasma membrane and beyond. Semin Cancer Biol 2015; 33:74-85. [PMID: 25882379 DOI: 10.1016/j.semcancer.2015.03.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/17/2015] [Accepted: 03/19/2015] [Indexed: 12/20/2022]
Abstract
Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) are emerging as key adaptation mechanisms in response to loss of proteostasis, with major cell autonomous and non-autonomous functions impacting cancer progression and therapeutic responses. In recent years, vital physiological roles of the ER in maintenance of proteostasis, Ca(2+) signaling and trafficking through the secretory pathway have emerged. Some of these functions have been shown to be decisive for mobilizing certain signals from injured/dying cancer cells in response to certain anticancer treatments, toward the plasma membrane and ultimately emit them into the extracellular environment, where they may act as danger signals. The spatiotemporally defined emission of these signals, better known as damage-associated molecular patterns (DAMPs), distinguishes this type of cancer cell death from physiological apoptosis, which is tolerogenic in nature, thereby enabling these dying cancer cells to alert the immune system and "re-activate" antitumor immunity. The emission of DAMPs, decisive for immunogenic cell death (ICD) and which include the ER chaperone calreticulin and ATP, is reliant on a danger signaling module induced by certain assorted anticancer treatments through oxidative-ER stress. The main focus of this review is to discuss the emerging role of ER-stress regulated pathways and processes in danger signaling thereby regulating the cancer cell-immune cell interface by the extracellular emission of DAMPs. In particular, we discuss signaling contexts existing upstream and around PERK, a major ER-stress sensor in ICD context, which have not been emphatically discussed in the context of antitumor immunity and ICD up until now. Finally, we briefly discuss the pros and cons of targeting PERK in the context of ICD.
Collapse
|
66
|
Kepp O, Semeraro M, Bravo-San Pedro JM, Bloy N, Buqué A, Huang X, Zhou H, Senovilla L, Kroemer G, Galluzzi L. eIF2α phosphorylation as a biomarker of immunogenic cell death. Semin Cancer Biol 2015; 33:86-92. [PMID: 25749194 DOI: 10.1016/j.semcancer.2015.02.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/13/2015] [Accepted: 02/21/2015] [Indexed: 12/20/2022]
Abstract
Cancer cells exposed to some forms of chemotherapy and radiotherapy die while eliciting an adaptive immune response. Such a functionally peculiar variant of apoptosis has been dubbed immunogenic cell death (ICD). One of the central events in the course of ICD is the activation of an endoplasmic reticulum (ER) stress response. This is instrumental for cells undergoing ICD to emit all the signals that are required for their demise to be perceived as immunogenic by the host, and culminates with the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α). In particular, eIF2α phosphorylation is required for the pre-apoptotic exposure of the ER chaperone calreticulin (CALR) on the cell surface, which is a central determinant of ICD. Importantly, phosphorylated eIF2α can be quantified in both preclinical and clinical samples by immunoblotting or immunohistochemistry using phosphoneoepitope-specific monoclonal antibodies. Of note, the phosphorylation of eIF2α and CALR exposure do not necessarily correlate with each other, and neither of these parameters is sufficient for cell death to be perceived as immunogenic. Nonetheless, accumulating data indicate that assessing the degree of phosphorylation of eIF2α provides a convenient parameter to monitor ICD. Here, we discuss the role of the ER stress response in ICD and the potential value of eIF2α phosphorylation as a biomarker for this clinically relevant variant of apoptosis.
Collapse
Affiliation(s)
- Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Michaela Semeraro
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1015, Paris, France
| | - José Manuel Bravo-San Pedro
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Norma Bloy
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Aitziber Buqué
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Xing Huang
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Heng Zhou
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
| | - Laura Senovilla
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France.
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France.
| |
Collapse
|
67
|
Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N, Bracci L, Breckpot K, Brough D, Buqué A, Castro MG, Cirone M, Colombo MI, Cremer I, Demaria S, Dini L, Eliopoulos AG, Faggioni A, Formenti SC, Fučíková J, Gabriele L, Gaipl US, Galon J, Garg A, Ghiringhelli F, Giese NA, Guo ZS, Hemminki A, Herrmann M, Hodge JW, Holdenrieder S, Honeychurch J, Hu HM, Huang X, Illidge TM, Kono K, Korbelik M, Krysko DV, Loi S, Lowenstein PR, Lugli E, Ma Y, Madeo F, Manfredi AA, Martins I, Mavilio D, Menger L, Merendino N, Michaud M, Mignot G, Mossman KL, Multhoff G, Oehler R, Palombo F, Panaretakis T, Pol J, Proietti E, Ricci JE, Riganti C, Rovere-Querini P, Rubartelli A, Sistigu A, Smyth MJ, Sonnemann J, Spisek R, Stagg J, Sukkurwala AQ, Tartour E, Thorburn A, Thorne SH, Vandenabeele P, Velotti F, Workenhe ST, Yang H, Zong WX, Zitvogel L, Kroemer G, Galluzzi L. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 2014; 3:e955691. [PMID: 25941621 PMCID: PMC4292729 DOI: 10.4161/21624011.2014.955691] [Citation(s) in RCA: 645] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 02/07/2023] Open
Abstract
Apoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named "immunogenic cell death" (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the immune system to perceive cell death as immunogenic negatively influence disease outcome among cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination experiments involving immunocompetent murine models and syngeneic cancer cells, an approach that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, based on a high-content, high-throughput platform that we recently developed. Such a platform allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. We surmise that this technology will facilitate the development of next-generation anticancer regimens, which kill malignant cells and simultaneously convert them into a cancer-specific therapeutic vaccine.
Collapse
Key Words
- APC, antigen-presenting cell
- ATF6, activating transcription factor 6
- ATP release
- BAK1, BCL2-antagonist/killer 1
- BAX, BCL2-associated X protein
- BCL2, B-cell CLL/lymphoma 2 protein
- CALR, calreticulin
- CTL, cytotoxic T lymphocyte
- DAMP, damage-associated molecular pattern
- DAPI, 4′,6-diamidino-2-phenylindole
- DiOC6(3), 3,3′-dihexyloxacarbocyanine iodide
- EIF2A, eukaryotic translation initiation factor 2A
- ER, endoplasmic reticulum
- FLT3LG, fms-related tyrosine kinase 3 ligand
- G3BP1, GTPase activating protein (SH3 domain) binding protein 1
- GFP, green fluorescent protein
- H2B, histone 2B
- HMGB1
- HMGB1, high mobility group box 1
- HSP, heat shock protein
- HSV-1, herpes simplex virus type I
- ICD, immunogenic cell death
- IFN, interferon
- IL, interleukin
- MOMP, mitochondrial outer membrane permeabilization
- PDIA3, protein disulfide isomerase family A
- PI, propidium iodide
- RFP, red fluorescent protein
- TLR, Toll-like receptor
- XBP1, X-box binding protein 1
- autophagy
- calreticulin
- endoplasmic reticulum stress
- immunotherapy
- member 3
- Δψm, mitochondrial transmembrane potential
Collapse
Affiliation(s)
- Oliver Kepp
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Laura Senovilla
- INSERM; U1138; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
- INSERM; U1015; Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
| | - Erika Vacchelli
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Sandy Adjemian
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Molecular Cell Biology Laboratory; Department of Immunology; Institute of Biomedical Sciences; University of São Paulo; São Paulo, Brazil
| | - Patrizia Agostinis
- Cell Death Research and Therapy (CDRT) Laboratory; Department of Cellular and Molecular Medicine; University of Leuven; Leuven, Belgium
| | - Lionel Apetoh
- INSERM; UMR866; Dijon, France
- Centre Georges François Leclerc; Dijon, France
- Université de Bourgogne; Dijon, France
| | - Fernando Aranda
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Vincenzo Barnaba
- Departement of Internal Medicine and Medical Sciences; University of Rome La Sapienza; Rome, Italy
- Istituto Pasteur; Fondazione Cenci Bolognetti; Rome, Italy
| | - Norma Bloy
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Laura Bracci
- Department of Hematology; Oncology and Molecular Medicine; Istituto Superiore di Sanità (ISS); Rome, Italy
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy (LMCT); Department of Biomedical Sciences Medical School of the Free University of Brussels (VUB); Jette, Belgium
| | - David Brough
- Faculty of Life Sciences; University of Manchester; Manchester, UK
| | - Aitziber Buqué
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Maria G. Castro
- Department of Neurosurgery and Cell and Developmental Biology; University of Michigan School of Medicine; Ann Arbor, MI USA
| | - Mara Cirone
- Department of Experimental Medicine; University of Rome La Sapienza; Rome, Italy
| | - Maria I. Colombo
- Laboratorio de Biología Celular y Molecular; Instituto de Histología y Embriología (IHEM); Facultad de Ciencias Médicas; Universidad Nacional de Cuyo; CONICET; Mendoza, Argentina
| | - Isabelle Cremer
- INSERM; U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Equipe 13; Center de Recherche des Cordeliers; Paris, France
| | - Sandra Demaria
- Department of Pathology; New York University School of Medicine; New York, NY USA
| | - Luciana Dini
- Department of Biological and Environmental Science and Technology (DiSTeBA); University of Salento; Lecce, Italy
| | - Aristides G. Eliopoulos
- Molecular and Cellular Biology Laboratory; Division of Basic Sciences; University of Crete Medical School; Heraklion, Greece
- Institute of Molecular Biology and Biotechnology; Foundation of Research and Technology - Hellas; Heraklion, Greece
| | - Alberto Faggioni
- Department of Experimental Medicine; University of Rome La Sapienza; Rome, Italy
| | - Silvia C. Formenti
- Department of Radiation Oncology; NewYork University School of Medicine and Langone Medical Center; New York, NY USA
| | - Jitka Fučíková
- Department of Immunology; 2 Faculty of Medicine and University Hospital Motol, Charles University; Prague, Czech Republic
- Sotio; Prague, Czech Republic
| | - Lucia Gabriele
- Department of Hematology; Oncology and Molecular Medicine; Istituto Superiore di Sanità (ISS); Rome, Italy
| | - Udo S. Gaipl
- Department of Radiation Oncology; University Hospital Erlangen; University of Erlangen-Nürnberg; Erlangen, Germany
| | - Jérôme Galon
- INSERM; U1138; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Laboratory of Integrative Cancer Immunology; Center de Recherche des Cordeliers; Paris, France
| | - Abhishek Garg
- Cell Death Research and Therapy (CDRT) Laboratory; Department of Cellular and Molecular Medicine; University of Leuven; Leuven, Belgium
| | - François Ghiringhelli
- INSERM; UMR866; Dijon, France
- Centre Georges François Leclerc; Dijon, France
- Université de Bourgogne; Dijon, France
| | - Nathalia A. Giese
- European Pancreas Center; Department of Surgery; University Hospital Heidelberg; Heidelberg, Germany
| | - Zong Sheng Guo
- Department of Surgery; University of Pittsburgh; Pittsburgh, PA USA
| | - Akseli Hemminki
- Cancer Gene Therapy Group; Transplantation laboratory; Haartman Institute; University of Helsinki; Helsinki, Finland
| | - Martin Herrmann
- Department of Internal Medicine 3; University of Erlangen-Nuremberg; Erlangen, Germany
| | - James W. Hodge
- Laboratory of Tumor Immunology and Biology; Center for Cancer Research; National Cancer Institute (NCI), National Institutes of Health (NIH); Bethesda, MD USA
| | - Stefan Holdenrieder
- Institute of Clinical Chemistry and Clinical Pharmacology; University Hospital Bonn; Bonn, Germany
| | - Jamie Honeychurch
- Faculty of Medical and Human Sciences, Institute of Cancer Studies; Manchester Academic Health Sciences Center; University of Manchester; Manchester, UK
| | - Hong-Min Hu
- Cancer Research and Biotherapy Center; Second Affiliated Hospital of Southeast University; Nanjing, China
- Laboratory of Cancer Immunobiology; Earle A. Chiles Research Institute; Providence Portland Medical Center; Portland, OR USA
| | - Xing Huang
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
| | - Tim M. Illidge
- Faculty of Medical and Human Sciences, Institute of Cancer Studies; Manchester Academic Health Sciences Center; University of Manchester; Manchester, UK
| | - Koji Kono
- Department of Surgery; National University of Singapore; Singapore, Singapore
- Cancer Science Institute of Singapore; National University of Singapore; Singapore, Singapore
| | | | - Dmitri V. Krysko
- VIB Inflammation Research Center; Ghent, Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent, Belgium
| | - Sherene Loi
- Division of Cancer Medicine and Division of Research; Peter MacCallum Cancer Center; East Melbourne; Victoria, Australia
| | - Pedro R. Lowenstein
- Department of Neurosurgery and Cell and Developmental Biology; University of Michigan School of Medicine; Ann Arbor, MI USA
| | - Enrico Lugli
- Unit of Clinical and Experimental Immunology; Humanitas Clinical and Research Center; Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan; Rozzano, Italy
| | - Yuting Ma
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Frank Madeo
- Institute of Molecular Biosciences; University of Graz; Graz, Austria
| | - Angelo A. Manfredi
- University Vita-Salute San Raffaele; Milano, Italy
- San Raffaele Scientific Institute; Milano, Italy
| | - Isabelle Martins
- Gustave Roussy Cancer Campus; Villejuif, France
- INSERM, U1030; Villejuif, France
- Faculté de Médecine; Université Paris-Sud/Paris XI; Kremlin-Bicêtre, France
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology; Humanitas Clinical and Research Center; Milan, Italy
- Department of Medical Biotechnologies and Translational Medicine, University of Milan; Rozzano, Italy
| | - Laurie Menger
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Cancer Immunology Unit, Research Department of Haematology; University College London (UCL) Cancer Institute; London, UK
| | - Nicolò Merendino
- Department of Ecological and Biological Sciences (DEB), Tuscia University; Viterbo, Italy
| | - Michael Michaud
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Gregoire Mignot
- Cellular and Molecular Immunology and Endocrinology, Oniris; Nantes, France
| | - Karen L. Mossman
- Department of Pathology and Molecular Medicine; McMaster Immunology Research Center; Hamilton, Canada
- Institute for Infectious Disease Research; McMaster University; Hamilton, Canada
| | - Gabriele Multhoff
- Department of Radiation Oncology; Klinikum rechts der Isar; Technical University of Munich; Munich, Germany
| | - Rudolf Oehler
- Comprehensive Cancer Center; Medical University of Vienna; Vienna, Austria
| | - Fabio Palombo
- Departement of Internal Medicine and Medical Sciences; University of Rome La Sapienza; Rome, Italy
- Istituto Pasteur; Fondazione Cenci Bolognetti; Rome, Italy
| | | | - Jonathan Pol
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
| | - Enrico Proietti
- Department of Hematology; Oncology and Molecular Medicine; Istituto Superiore di Sanità (ISS); Rome, Italy
| | - Jean-Ehrland Ricci
- INSERM; U1065; Nice, France
- Equipe “Contrôle Métabolique des Morts Cellulaires,” Center Méditerranéen de Médecine Moléculaire (C3M); Nice, France
- Faculté de Médecine; Université de Nice Sophia Antipolis; Nice, France
- Centre Hospitalier Universitaire de Nice; Nice, France
| | - Chiara Riganti
- Department of Oncology and Subalpine Center for Research and Experimental Medicine (CeRMS); University of Turin; Turin, Italy
| | - Patrizia Rovere-Querini
- University Vita-Salute San Raffaele; Milano, Italy
- San Raffaele Scientific Institute; Milano, Italy
| | - Anna Rubartelli
- Cell Biology Unit; Azienda Ospedaliera Universitaria San Martino; Istituto Nazionale per la Ricerca sul Cancro; Genova, Italy
| | | | - Mark J. Smyth
- Immunology in Cancer and Infection Laboratory; QIMR Berghofer Medical Research Institute; Herston, Australia
- School of Medicine, University of Queensland; Herston, Australia
| | - Juergen Sonnemann
- Department of Pediatric Haematology and Oncology; Jena University Hospital, Children's Clinic; Jena, Germany
| | - Radek Spisek
- Department of Immunology; 2 Faculty of Medicine and University Hospital Motol, Charles University; Prague, Czech Republic
- Sotio; Prague, Czech Republic
| | - John Stagg
- Centre de Recherche du Center Hospitalier de l’Université de Montréal; Faculté de Pharmacie, Université de Montréal; Montréal, Canada
| | - Abdul Qader Sukkurwala
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Department of Pathology, Dow International Medical College; Dow University of Health Sciences; Karachi, Pakistan
| | - Eric Tartour
- INSERM; U970; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
| | - Andrew Thorburn
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| | | | - Peter Vandenabeele
- VIB Inflammation Research Center; Ghent, Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent, Belgium
- Methusalem Program; Ghent University; Ghent, Belgium
| | - Francesca Velotti
- Department of Ecological and Biological Sciences (DEB), Tuscia University; Viterbo, Italy
| | - Samuel T. Workenhe
- Department of Pathology and Molecular Medicine; McMaster Immunology Research Center; Hamilton, Canada
- Institute for Infectious Disease Research; McMaster University; Hamilton, Canada
| | - Haining Yang
- University of Hawaii Cancer Center; Honolulu, HI USA
| | - Wei-Xing Zong
- Department of Molecular Genetics and Microbiology; Stony Brook University; Stony Brook, NY USA
| | - Laurence Zitvogel
- INSERM; U1015; Villejuif, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Centre d’Investigation Clinique Biothérapie 507 (CICBT507); Gustave Roussy Cancer Campus; Villejuif, France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
| | - Lorenzo Galluzzi
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Center de Recherche des Cordeliers; Paris, France
- INSERM; U1138; Paris, France
- Gustave Roussy Cancer Campus; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
| |
Collapse
|
68
|
Abstract
Recent clinical data have emphatically shown the capacity of our immune systems to eradicate even advanced cancers. Although oncolytic viruses (OVs) were originally designed to function as tumour-lysing therapeutics, they have now been clinically shown to initiate systemic antitumour immune responses. Cell signalling pathways that are activated and promote the growth of tumour cells also favour the growth and replication of viruses within the cancer. The ability to engineer OVs that express immune-stimulating 'cargo', the induction of immunogenic tumour cell death by OVs and the selective targeting of OVs to tumour beds suggests that they are the ideal reagents to enhance antitumour immune responses. Coupling of OV therapy with tumour antigen vaccination, immune checkpoint inhibitors and adoptive cell therapy seems to be ready to converge towards a new generation of multimodal therapeutics to improve outcomes for cancer patients.
Collapse
Affiliation(s)
- Brian D Lichty
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8S4K1, Canada
| | | | - David F Stojdl
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario (CHEO) Research Institute, Ottawa, Ontario K1H 8L1, Canada
| | - John C Bell
- Centre for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada; and the Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
69
|
Garg AD, Agostinis P. ER stress, autophagy and immunogenic cell death in photodynamic therapy-induced anti-cancer immune responses. Photochem Photobiol Sci 2014; 13:474-87. [PMID: 24493131 DOI: 10.1039/c3pp50333j] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumours are a form of pseudo-organs with their own microenvironment where the cancer cells nurture a dysfunctional immune environment incapable of inciting anti-tumour immunity. It had been proposed that the only way to counteract such an immune system dysfunction in tumours is by eliciting, therapeutically, a cancer cell death pathway that is accompanied by high immunogenicity and possibly inhibits or reduces the influence of the pro-tumourigenic cytokine signalling. Subsequently, a small and a large-scale screening study as well as several targeted studies found that few, selected anticancer therapeutic regimens are able to induce a promising kind of cancer cell demise called immunogenic cell death (ICD), which can activate the immune system owing to the spatiotemporally defined emission of danger signals. Recently, photodynamic therapy (PDT) utilizing the photosensitiser, hypericin (Hyp), became the first PDT paradigm characterized to be capable of inducing bona fide ICD. In the present perspective, we discuss the various technical, conceptual, and molecular advancements and unprecedented results revealed by Hyp-PDT that have influenced the fields of ICD, ER stress biology, cancer cell death, anti-cancer immune responses, photoimmunology and PDT.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Unit, Department for Cellular and Molecular Medicine, University of Leuven (KULeuven), Leuven, Belgium.
| | | |
Collapse
|
70
|
Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 2014; 15:81-94. [PMID: 24401948 DOI: 10.1038/nrm3735q10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Autophagy and apoptosis control the turnover of organelles and proteins within cells, and of cells within organisms, respectively, and many stress pathways sequentially elicit autophagy, and apoptosis within the same cell. Generally autophagy blocks the induction of apoptosis, and apoptosis-associated caspase activation shuts off the autophagic process. However, in special cases, autophagy or autophagy-relevant proteins may help to induce apoptosis or necrosis, and autophagy has been shown to degrade the cytoplasm excessively, leading to 'autophagic cell death'. The dialogue between autophagy and cell death pathways influences the normal clearance of dying cells, as well as immune recognition of dead cell antigens. Therefore, the disruption of the relationship between autophagy and apoptosis has important pathophysiological consequences.
Collapse
Affiliation(s)
- Guillermo Mariño
- 1] Institut national de la santé et de la recherche médicale (INSERM), U1138, F-94805 Villejuif, France. [2] Université Paris Descartes/Paris V, Sorbonne Paris Cité, F-75006 Paris, France
| | - Mireia Niso-Santano
- 1] Institut national de la santé et de la recherche médicale (INSERM), U1138, F-94805 Villejuif, France. [2] Université Paris Descartes/Paris V, Sorbonne Paris Cité, F-75006 Paris, France
| | - Eric H Baehrecke
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Guido Kroemer
- 1] Institut national de la santé et de la recherche médicale (INSERM), U1138, F-94805 Villejuif, France. [2] Université Paris Descartes/Paris V, Sorbonne Paris Cité, F-75006 Paris, France. [3] Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, F-75006 Paris, France. [4] Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, F-75015 Paris. [5] Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, F-94805 Villejuif, France
| |
Collapse
|
71
|
Ma Y, Adjemian S, Galluzzi L, Zitvogel L, Kroemer G. Chemokines and chemokine receptors required for optimal responses to anticancer chemotherapy. Oncoimmunology 2014; 3:e27663. [PMID: 24800170 PMCID: PMC4008453 DOI: 10.4161/onci.27663] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 12/25/2013] [Indexed: 11/29/2022] Open
Abstract
Depending on tumor type, stage and immunological contexture, the inhibition of chemokines or their receptors may yield positive or deleterious effects on disease progression. We have recently demonstrated in several murine models of anthracycline-based chemotherapy that the inhibition of chemokine (C-C motif) ligand 2 (CCL2) or chemokine (C-C motif) receptor 2 (CCR2) may impair the elicitation of anticancer immune responses that contribute to therapeutic success.
Collapse
Affiliation(s)
- Yuting Ma
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Gustave Roussy Cancer Campus; Villejuif, France
| | - Sandy Adjemian
- Gustave Roussy Cancer Campus; Villejuif, France ; INSERM, U848; Villejuif, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; Gustave Roussy Cancer Campus; Villejuif, France
| | - Laurence Zitvogel
- INSERM, U1015; Villejuif, France ; Faculté de Médecine; Université Paris-Saclay; Le Kremlin Bicêtre, France ; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 507; Villejuif, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France ; INSERM, U848; Villejuif, France ; Metabolomics and Cell Biology Platforms; Gustave Roussy Cancer Campus; Villejuif, France ; Pôle de Biologie; Hôpital Européen Georges Pompidou; AP-HP; Paris, France
| |
Collapse
|
72
|
Abstract
Autophagy and apoptosis control the turnover of organelles and proteins within cells, and of cells within organisms, respectively, and many stress pathways sequentially elicit autophagy, and apoptosis within the same cell. Generally autophagy blocks the induction of apoptosis, and apoptosis-associated caspase activation shuts off the autophagic process. However, in special cases, autophagy or autophagy-relevant proteins may help to induce apoptosis or necrosis, and autophagy has been shown to degrade the cytoplasm excessively, leading to 'autophagic cell death'. The dialogue between autophagy and cell death pathways influences the normal clearance of dying cells, as well as immune recognition of dead cell antigens. Therefore, the disruption of the relationship between autophagy and apoptosis has important pathophysiological consequences.
Collapse
|
73
|
Affiliation(s)
- M E Bianchi
- San Raffaele University and Research Institute, Milano, Italy
| |
Collapse
|
74
|
Vacchelli E, Vitale I, Tartour E, Eggermont A, Sautès-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Anticancer radioimmunotherapy. Oncoimmunology 2013; 2:e25595. [PMID: 24319634 PMCID: PMC3850274 DOI: 10.4161/onci.25595] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy has extensively been employed as a curative or palliative intervention against cancer throughout the last century, with a varying degree of success. For a long time, the antineoplastic activity of X- and γ-rays was entirely ascribed to their capacity of damaging macromolecules, in particular DNA, and hence triggering the (apoptotic) demise of malignant cells. However, accumulating evidence indicates that (at least part of) the clinical potential of radiotherapy stems from cancer cell-extrinsic mechanisms, including the normalization of tumor vasculature as well as short- and long-range bystander effects. Local bystander effects involve either the direct transmission of lethal signals between cells connected by gap junctions or the production of diffusible cytotoxic mediators, including reactive oxygen species, nitric oxide and cytokines. Conversely, long-range bystander effects, also known as out-of-field or abscopal effects, presumably reflect the elicitation of tumor-specific adaptive immune responses. Ionizing rays have indeed been shown to promote the immunogenic demise of malignant cells, a process that relies on the spatiotemporally defined emanation of specific damage-associated molecular patterns (DAMPs). Thus, irradiation reportedly improves the clinical efficacy of other treatment modalities such as surgery (both in neo-adjuvant and adjuvant settings) or chemotherapy. Moreover, at least under some circumstances, radiotherapy may potentiate anticancer immune responses as elicited by various immunotherapeutic agents, including (but presumably not limited to) immunomodulatory monoclonal antibodies, cancer-specific vaccines, dendritic cell-based interventions and Toll-like receptor agonists. Here, we review the rationale of using radiotherapy, alone or combined with immunomodulatory agents, as a means to elicit or boost anticancer immune responses, and present recent clinical trials investigating the therapeutic potential of this approach in cancer patients.
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy; Villejuif, France
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
- INSERM, U848; Villejuif, France
| | - Ilio Vitale
- Regina Elena National Cancer Institute; Rome, Italy
- National Institute of Health; Rome, Italy
| | - Eric Tartour
- INSERM, U970; Paris, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique-Hôpitaux de Paris; Paris, France
| | | | - Catherine Sautès-Fridman
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique-Hôpitaux de Paris; Paris, France
- Equipe 13, Centre de Recherche des Cordeliers; Paris, France
| | - Jérôme Galon
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Equipe 15, Centre de Recherche des Cordeliers; Paris, France
- INSERM, U872; Paris, France
- Université Pierre et Marie Curie/Paris VI; Paris, France
| | - Laurence Zitvogel
- Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France
- INSERM, U1015; Villejuif, France
| | - Guido Kroemer
- INSERM, U848; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Pôle de Biologie; Hôpital Européen Georges Pompidou; Assistance Publique-Hôpitaux de Paris; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
- Metabolomics and Cell Biology Platforms; Institut Gustave Roussy; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy; Villejuif, France
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France
- Equipe 11 labelisée par la Ligue Nationale contre le Cancer; Centre de Recherche des Cordeliers; Paris, France
| |
Collapse
|