51
|
Attias M, Piccirillo CA. The impact of Foxp3 + regulatory T-cells on CD8 + T-cell dysfunction in tumour microenvironments and responses to immune checkpoint inhibitors. Br J Pharmacol 2024. [PMID: 38325330 DOI: 10.1111/bph.16313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/23/2023] [Accepted: 01/01/2024] [Indexed: 02/09/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have been a breakthrough in cancer therapy, inducing durable remissions in responding patients. However, they are associated with variable outcomes, spanning from disease hyperprogression to complete responses with the onset of immune-related adverse events. The consequences of checkpoint inhibition on Foxp3+ regulatory T (Treg ) cells remain unclear but could provide key insights into these variable outcomes. In this review, we first cover the mechanisms that underlie the development of hot and cold tumour microenvironments, which determine the efficacy of immunotherapy. We then outline how differences in tumour-intrinsic immunogenicity, T-cell trafficking, local metabolic environments and inhibitory checkpoint signalling differentially impair CD8+ T-cell function in tumour microenvironments, all the while promoting Treg -cell suppressive activity. Finally, we focus on the mechanisms that enable the induction of polyfunctional CD8+ T-cells upon checkpoint blockade and discuss the role of ICI-induced Treg -cell reactivation in acquired resistance to treatment.
Collapse
Affiliation(s)
- Mikhaël Attias
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
- Centre of Excellence in Translational Immunology (CETI), The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
| | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
- Centre of Excellence in Translational Immunology (CETI), The Research Institute of the McGill University Health Centre (RI-MUHC), Montréal, Québec, Canada
| |
Collapse
|
52
|
Chai W, Yao W, Pan J, Huang Z, Wang B, Xu B, Fan X, He W, Wang W, Zhang W. Moniezia benedeni drives CD3 + T cells residence in the sheep intestinal mucosal effector sites. Front Vet Sci 2024; 11:1342169. [PMID: 38371601 PMCID: PMC10869452 DOI: 10.3389/fvets.2024.1342169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/17/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction T cells are the core of the cellular immunity and play a key role in the regulation of intestinal immune homeostasis. In order to explore the impact Moniezia benedeni (M. benedeni) infection on distributions of CD3+ T cells in the small intestine of the sheep. Methods In this study, sheep pET-28a-CD3 recombinant plasmid were constructed and expressed in BL21 receptor cells, then the rabbit anti-sheep CD3 polyclonal antibody was prepared through recombinant protein inducing. The M. benedeni-infected sheep (infection group, n = 6) and healthy sheep (control group, n = 6) were selected, and the distributions of CD3+ T cells in intestinal laminae propria (LP) and mucous epitheliums were observed and analyzed systematically. Results The results showed that the rabbit anti-sheep CD3 polyclonal antibody had good potency and specificity. In the effector area of small intestine, a large number of CD3+ T cells were mainly diffusely distributed in the intestinal LP as well as in the mucous epitheliums, and the densities of intestinal LP from duodenum to jejunum to ileum were 6.01 cells/104 μm2, 7.01 cells/104 μm2 and 6.43 cells/104 μm2, respectively. Their distribution densities in mucous epitheliums were 6.71 cells/104 μm2, 7.93 cells/104 μm2 and 7.21 cells/104 μm2, respectively; in the infected group, the distributions of CD3+ T cells were similar to that of the control group, and the densities in each intestinal segment were all significantly increased (p < 0.05), meanwhile, the total densities of CD3+ T cells in duodenum, jejunum and ileum were increased by 33.43%, 14.50%, and 34.19%. In LP and mucous epitheliums, it was increased by 33.57% and 27.92% in duodenum; by 25.82% and 7.07% in jejunum, and by 27.07% and 19.23% in ileum, respectively. Discussion It was suggested that M. benedeni infection did not change the spatial distributions of CD3+ T cells in the small intestine of sheep, but significantly increased their densities, which lays a foundation for further research on the regulatory mechanism of sheep intestinal mucosal immune system against M. benedeni infection.
Collapse
Affiliation(s)
- Wenzhu Chai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wanling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jing Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zhen Huang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Baoshan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Bin Xu
- Lanzhou Safari Park Management Co., Lanzhou, China
| | - Xiping Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wanhong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
53
|
Kim H, Lee E, Cho H, Kim E, Jang WI, Yang K, Lee YJ, Kim TJ, Kim MS. Five-Day Spacing of Two Fractionated Ablative Radiotherapies Enhances Antitumor Immunity. Int J Radiat Oncol Biol Phys 2024; 118:498-511. [PMID: 37717785 DOI: 10.1016/j.ijrobp.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/10/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
PURPOSE This study aimed to enhance tumor control and abscopal effects by applying diverse stereotactic ablative radiation therapy (SABR) schedules. METHODS AND MATERIALS FSaII, CT-26, and 4T1 cells were used for tumor growth delay and lung metastases analysis after 1- or 5-day intervals radiation therapy (RT) with 40, 20, and 20 Gy, respectively. Immunodeficient BALB/c-nude, immunocompetent C3H, and BALB/c mouse models were used. For immune monitoring, FSaII tumors were analyzed using flow cytometry, immunofluorescence staining, and real-time quantitative reverse transcription polymerase chain reaction. The spleens were used for the ELISpot assay and flow cytometry to determine effector CD8 T cells. For abscopal effect analysis in CT-26 tumors, the volume of the nonirradiated secondary tumors was measured after primary tumors were irradiated with 1-day or 5-day intervals. RESULTS Contrary to the high-dose 1-day interval RT, the 5-day interval RT significantly delayed tumor growth in immunocompetent mice, which was not observed in immunodeficient mice. In addition, the 5-day interval RT significantly reduced the number of lung metastases in FSaII and CT-26 tumors. Five-day spacing was more effective than 1-day interval in enhancing the antitumor immunity via increasing the secretion of tumor-specific IFN-γ, activating the CD8 T cells, and suppressing the monocytic myeloid-derived suppressor cells. The 5-day spacing inhibited nonirradiated secondary tumor growth more effectively than did the 1-day interval. CONCLUSIONS Compared with the 1-day interval RT, the 5-day interval RT scheme demonstrated enhanced antitumor immunity of CD8 T cells associated with inhibition of myeloid-derived suppressor cells. Enhancing antitumor immunity leads to significant improvements in both primary tumor control and the abscopal effect.
Collapse
Affiliation(s)
| | - Eunju Lee
- Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea
| | - Haeun Cho
- Departments of Radiation Oncology and; Department of Radiological & Medico-Oncological Science, University of Science and Technology, Daejeon, Korea
| | - Eunji Kim
- Departments of Radiation Oncology and
| | | | | | - Yoon-Jin Lee
- Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Tae-Jin Kim
- Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea.
| | - Mi-Sook Kim
- Departments of Radiation Oncology and; Department of Radiological & Medico-Oncological Science, University of Science and Technology, Daejeon, Korea.
| |
Collapse
|
54
|
Fain CE, Zheng J, Jin F, Ayasoufi K, Wu Y, Lilley MT, Dropik AR, Wolf DM, Rodriguez RC, Aibaidula A, Tritz ZP, Bouchal SM, Pewe LL, Urban SL, Chen Y, Chang SY, Hansen MJ, Kachergus JM, Shi J, Thompson EA, Jensen HE, Harty JT, Parney IF, Sun J, Wu LJ, Johnson AJ. Discrete class I molecules on brain endothelium differentially regulate neuropathology in experimental cerebral malaria. Brain 2024; 147:566-589. [PMID: 37776513 DOI: 10.1093/brain/awad319] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 10/02/2023] Open
Abstract
Cerebral malaria is the deadliest complication that can arise from Plasmodium infection. CD8 T-cell engagement of brain vasculature is a putative mechanism of neuropathology in cerebral malaria. To define contributions of brain endothelial cell major histocompatibility complex (MHC) class I antigen-presentation to CD8 T cells in establishing cerebral malaria pathology, we developed novel H-2Kb LoxP and H-2Db LoxP mice crossed with Cdh5-Cre mice to achieve targeted deletion of discrete class I molecules, specifically from brain endothelium. This strategy allowed us to avoid off-target effects on iron homeostasis and class I-like molecules, which are known to perturb Plasmodium infection. This is the first endothelial-specific ablation of individual class-I molecules enabling us to interrogate these molecular interactions. In these studies, we interrogated human and mouse transcriptomics data to compare antigen presentation capacity during cerebral malaria. Using the Plasmodium berghei ANKA model of experimental cerebral malaria (ECM), we observed that H-2Kb and H-2Db class I molecules regulate distinct patterns of disease onset, CD8 T-cell infiltration, targeted cell death and regional blood-brain barrier disruption. Strikingly, ablation of either molecule from brain endothelial cells resulted in reduced CD8 T-cell activation, attenuated T-cell interaction with brain vasculature, lessened targeted cell death, preserved blood-brain barrier integrity and prevention of ECM and the death of the animal. We were able to show that these events were brain-specific through the use of parabiosis and created the novel technique of dual small animal MRI to simultaneously scan conjoined parabionts during infection. These data demonstrate that interactions of CD8 T cells with discrete MHC class I molecules on brain endothelium differentially regulate development of ECM neuropathology. Therefore, targeting MHC class I interactions therapeutically may hold potential for treatment of cases of severe malaria.
Collapse
Affiliation(s)
- Cori E Fain
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
| | - Jiaying Zheng
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905USA
| | - Fang Jin
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
| | | | - Yue Wu
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
| | - Meredith T Lilley
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
| | - Abigail R Dropik
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
| | - Delaney M Wolf
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
| | | | - Abudumijiti Aibaidula
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905USA
| | - Zachariah P Tritz
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
| | - Samantha M Bouchal
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
| | - Lecia L Pewe
- Department of Pathology, University of Iowa, Iowa City, IA 52242USA
| | - Stina L Urban
- Department of Pathology, University of Iowa, Iowa City, IA 52242USA
| | - Yin Chen
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905USA
| | - Su-Youne Chang
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905USA
| | | | | | - Ji Shi
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224USA
| | - E Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224USA
| | - Hadley E Jensen
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
| | - John T Harty
- Department of Pathology, University of Iowa, Iowa City, IA 52242USA
| | - Ian F Parney
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905USA
| | - Jie Sun
- Department of Medicine, University of Virginia, Charlottesville, VA 22903USA
| | - Long-Jun Wu
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905USA
| | - Aaron J Johnson
- Department of Immunology, Mayo Clinic, Rochester, MN 55905USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905USA
| |
Collapse
|
55
|
Rosenbaum SR, Caksa S, Stefanski CD, Trachtenberg IV, Wilson HP, Wilski NA, Ott CA, Purwin TJ, Haj JI, Pomante D, Kotas D, Chervoneva I, Capparelli C, Aplin AE. SOX10 Loss Sensitizes Melanoma Cells to Cytokine-Mediated Inflammatory Cell Death. Mol Cancer Res 2024; 22:209-220. [PMID: 37847239 PMCID: PMC10842433 DOI: 10.1158/1541-7786.mcr-23-0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/30/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
The transcription factor, SOX10, plays an important role in the differentiation of neural crest precursors to the melanocytic lineage. Malignant transformation of melanocytes leads to the development of melanoma, and SOX10 promotes melanoma cell proliferation and tumor formation. SOX10 expression in melanomas is heterogeneous, and loss of SOX10 causes a phenotypic switch toward an invasive, mesenchymal-like cell state and therapy resistance; hence, strategies to target SOX10-deficient cells are an active area of investigation. The impact of cell state and SOX10 expression on antitumor immunity is not well understood but will likely have important implications for immunotherapeutic interventions. To this end, we tested whether SOX10 status affects the response to CD8+ T cell-mediated killing and T cell-secreted cytokines, TNFα and IFNγ, which are critical effectors in the cytotoxic killing of cancer cells. We observed that genetic ablation of SOX10 rendered melanoma cells more sensitive to CD8+ T cell-mediated killing and cell death induction by either TNFα or IFNγ. Cytokine-mediated cell death in SOX10-deficient cells was associated with features of caspase-dependent pyroptosis, an inflammatory form of cell death that has the potential to increase immune responses. IMPLICATIONS These data support a role for SOX10 expression altering the response to T cell-mediated cell death and contribute to a broader understanding of the interaction between immune cells and melanoma cells.
Collapse
Affiliation(s)
- Sheera R. Rosenbaum
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Signe Caksa
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Casey D. Stefanski
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Isabella V. Trachtenberg
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Haley P. Wilson
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nicole A. Wilski
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Connor A. Ott
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Timothy J. Purwin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jelan I. Haj
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Danielle Pomante
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Daniel Kotas
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Inna Chervoneva
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Division of Biostatistics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Claudia Capparelli
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Andrew E. Aplin
- Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
56
|
Stock AJ, Gonzalez-Paredes P, Previato de Almeida L, Kosanke SD, Chetlur S, Budde H, Wakenight P, Zwingman TA, Rosen AB, Allenspach E, Millen KJ, Buckner JH, Rawlings DJ, Gorman JA. The IFIH1-A946T risk variant promotes diabetes in a sex-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576482. [PMID: 38328221 PMCID: PMC10849491 DOI: 10.1101/2024.01.20.576482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease in which pancreatic islet β-cells are attacked by the immune system, resulting in insulin deficiency and hyperglycemia. One of the top non-synonymous single-nucleotide polymorphisms (SNP) associated with T1D is in the interferon-induced helicase C domain-containing protein 1 ( IFIH1 ), which encodes an anti-viral cytosolic RNA sensor. This SNP results in an alanine to threonine substitution at amino acid 946 (IFIH1 A946T ) and confers an increased risk for several autoimmune diseases, including T1D. We hypothesized that the IFIH1 A946T risk variant, ( IFIH1 R ) would promote T1D pathogenesis by stimulating type I interferon (IFN I) signaling leading to immune cell alterations. To test this, we developed Ifih1 R knock-in mice on the non-obese diabetic (NOD) mouse background, a spontaneous T1D model. Our results revealed a modest increase in diabetes incidence and insulitis in Ifih1 R compared to non-risk Ifih1 ( Ifih1 NR ) mice and a significant acceleration of diabetes onset in Ifih1 R females. Ifih1 R mice exhibited a significantly enhanced interferon stimulated gene (ISG) signature compared to Ifih1 NR , indicative of increased IFN I signaling. Ifih1 R mice exhibited an increased frequency of plasma cells as well as tissue-dependent changes in the frequency and activation of CD8 + T cells. Our results indicate that IFIH1 R may contribute to T1D pathogenesis by altering the frequency and activation of immune cells. These findings advance our knowledge on the connection between the rs1990760 variant and T1D. Further, these data are the first to demonstrate effects of Ifih1 R in NOD mice, which will be important to consider for the development of therapeutics for T1D.
Collapse
|
57
|
Towers R, Trombello L, Fusenig M, Tunger A, Baumann AL, Savoldelli R, Wehner R, Fasslrinner F, Arndt C, Dazzi F, Von Bonin M, Feldmann A, Bachmann MP, Wobus M, Schmitz M, Bornhäuser M. Bone marrow-derived mesenchymal stromal cells obstruct AML-targeting CD8 + clonal effector and CAR T-cell function while promoting a senescence-associated phenotype. Cancer Immunol Immunother 2024; 73:8. [PMID: 38231344 PMCID: PMC10794426 DOI: 10.1007/s00262-023-03594-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/03/2023] [Indexed: 01/18/2024]
Abstract
Bone marrow mesenchymal stromal cells (MSCs) have been described as potent regulators of T-cell function, though whether they could impede the effectiveness of immunotherapy against acute myeloid leukemia (AML) is still under investigation. We examine whether they could interfere with the activity of leukemia-specific clonal cytotoxic T-lymphocytes (CTLs) and chimeric antigen receptor (CAR) T cells, as well as whether the immunomodulatory properties of MSCs could be associated with the induction of T-cell senescence. Co-cultures of leukemia-associated Wilm's tumor protein 1 (WT1) and tyrosine-protein kinase transmembrane receptor 1 (ROR1)-reactive CTLs and of CD123-redirected switchable CAR T cells were prepared in the presence of MSCs and assessed for cytotoxic potential, cytokine secretion, and expansion. T-cell senescence within functional memory sub-compartments was investigated for the senescence-associated phenotype CD28-CD57+ using unmodified peripheral blood mononuclear cells. We describe inhibition of expansion of AML-redirected switchable CAR T cells by MSCs via indoleamine 2,3-dioxygenase 1 (IDO-1) activity, as well as reduction of interferon gamma (IFNγ) and interleukin-2 (IL-2) release. In addition, MSCs interfered with the secretory potential of leukemia-associated WT1- and ROR1-targeting CTL clones, inhibiting the release of IFNγ, tumor necrosis factor alpha, and IL-2. Abrogated T cells were shown to retain their cytolytic activity. Moreover, we demonstrate induction of a CD28loCD27loCD57+KLRG1+ senescent T-cell phenotype by MSCs. In summary, we show that MSCs are potent modulators of anti-leukemic T cells, and targeting their modes of action would likely be beneficial in a combinatorial approach with AML-directed immunotherapy.
Collapse
Affiliation(s)
- Russell Towers
- Medical Clinic 1 (MK1), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- National Centre for Tumor Disease (NCT/UCC), Fetscherstraße 74, 01307, Dresden, Germany
| | - Lidia Trombello
- Medical Clinic 1 (MK1), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
- University of Pisa, Lungarno Antonio Pacinotti 43, 56126, Pisa, Italy
| | - Maximilian Fusenig
- Medical Clinic 1 (MK1), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- Max Bergmann Center of Biomaterials Dresden, Leibniz Institute of Polymer Research Dresden e.V., Hohe Straße 6, 01069, Dresden, Germany
| | - Antje Tunger
- National Centre for Tumor Disease (NCT/UCC), Fetscherstraße 74, 01307, Dresden, Germany
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Anna-Lena Baumann
- Medical Clinic 1 (MK1), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Roberto Savoldelli
- School of Cancer and Pharmaceutical Research, Kings College, London, SE5 9RS, UK
| | - Rebekka Wehner
- National Centre for Tumor Disease (NCT/UCC), Fetscherstraße 74, 01307, Dresden, Germany
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- Partner Site Dresden, and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Frederick Fasslrinner
- Medical Clinic 1 (MK1), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- Faculty of Medicine Carl Gustav Carus, Mildred Scheel Early Career Center, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Claudia Arndt
- Department of Radioimmunology, Helmholtz Center Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzener Straße 400, 01328, Dresden, Germany
- Faculty of Medicine Carl Gustav Carus, Mildred Scheel Early Career Center, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Francesco Dazzi
- School of Cancer and Pharmaceutical Research, Kings College, London, SE5 9RS, UK
| | - Malte Von Bonin
- Medical Clinic 1 (MK1), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Anja Feldmann
- Department of Radioimmunology, Helmholtz Center Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzener Straße 400, 01328, Dresden, Germany
| | - Michael P Bachmann
- National Centre for Tumor Disease (NCT/UCC), Fetscherstraße 74, 01307, Dresden, Germany
- Partner Site Dresden, and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Radioimmunology, Helmholtz Center Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzener Straße 400, 01328, Dresden, Germany
| | - Manja Wobus
- Medical Clinic 1 (MK1), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Marc Schmitz
- National Centre for Tumor Disease (NCT/UCC), Fetscherstraße 74, 01307, Dresden, Germany
- Faculty of Medicine Carl Gustav Carus, Institute of Immunology, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany
- Partner Site Dresden, and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Martin Bornhäuser
- Medical Clinic 1 (MK1), University Hospital Carl Gustav Carus, TU Dresden, Fetscherstraße 74, 01307, Dresden, Germany.
- National Centre for Tumor Disease (NCT/UCC), Fetscherstraße 74, 01307, Dresden, Germany.
- School of Cancer and Pharmaceutical Research, Kings College, London, SE5 9RS, UK.
- Partner Site Dresden, and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
58
|
Chen X, Xu Z, Li T, Thakur A, Wen Y, Zhang K, Liu Y, Liang Q, Liu W, Qin JJ, Yan Y. Nanomaterial-encapsulated STING agonists for immune modulation in cancer therapy. Biomark Res 2024; 12:2. [PMID: 38185685 PMCID: PMC10773049 DOI: 10.1186/s40364-023-00551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
The cGAS-STING signaling pathway has emerged as a critical mediator of innate immune responses, playing a crucial role in improving antitumor immunity through immune effector responses. Targeting the cGAS-STING pathway holds promise for overcoming immunosuppressive tumor microenvironments (TME) and promoting effective tumor elimination. However, systemic administration of current STING agonists faces challenges related to low bioavailability and potential adverse effects, thus limiting their clinical applicability. Recently, nanotechnology-based strategies have been developed to modulate TMEs for robust immunotherapeutic responses. The encapsulation and delivery of STING agonists within nanoparticles (STING-NPs) present an attractive avenue for antitumor immunotherapy. This review explores a range of nanoparticles designed to encapsulate STING agonists, highlighting their benefits, including favorable biocompatibility, improved tumor penetration, and efficient intracellular delivery of STING agonists. The review also summarizes the immunomodulatory impacts of STING-NPs on the TME, including enhanced secretion of pro-inflammatory cytokines and chemokines, dendritic cell activation, cytotoxic T cell priming, macrophage re-education, and vasculature normalization. Furthermore, the review offers insights into co-delivered nanoplatforms involving STING agonists alongside antitumor agents such as chemotherapeutic compounds, immune checkpoint inhibitors, antigen peptides, and other immune adjuvants. These platforms demonstrate remarkable versatility in inducing immunogenic responses within the TME, ultimately amplifying the potential for antitumor immunotherapy.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Tongfei Li
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, 60637, Chicago, IL, USA
| | - Yu Wen
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Furong Laboratory, Central South University, 410008, Changsha, Hunan, China
| | - Kui Zhang
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, 60637, Chicago, IL, USA
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wangrui Liu
- Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200127, Shanghai, China.
| | - Jiang-Jiang Qin
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
| |
Collapse
|
59
|
Tan J, Ding B, Chen H, Meng Q, Li J, Yang C, Zhang W, Li X, Han D, Zheng P, Ma P, Lin J. Effects of Skeleton Structure of Mesoporous Silica Nanoadjuvants on Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305567. [PMID: 37702141 DOI: 10.1002/smll.202305567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/20/2023] [Indexed: 09/14/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) have been widely praised as nanoadjuvants in vaccine/tumor immunotherapy thanks to their excellent biocompatibility, easy-to-modify surface, adjustable particle size, and remarkable immuno-enhancing activity. However, the application of MSNs is still greatly limited by some severe challenges including the unclear and complicated relationships of structure and immune effect. Herein, three commonly used MSNs with different skeletons including MSN with tetrasulfide bonds (TMSN), MSN containing ethoxy framework (EMSN), and pure -Si-O-Si- framework of MSN (MSN) are comprehensively compared to study the impact of chemical construction on immune effect. The results fully demonstrate that the three MSNs have great promise in improving cellular immunity for tumor immunotherapy. Moreover, the TMSN performs better than the other two MSNs in antigen loading, cellular uptake, reactive oxygen species (ROS) generation, lymph node targeting, immune activation, and therapeutic efficiency. The findings provide a new paradigm for revealing the structure-function relationship of mesoporous silica nanoadjuvants, paving the way for their future clinical application.
Collapse
Affiliation(s)
- Jia Tan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hao Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qi Meng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chunzheng Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wenying Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Xinyang Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Di Han
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Pan Zheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
60
|
Kim CG, Kim WK, Kim N, Pyung YJ, Park DJ, Lee JC, Cho CS, Chu H, Yun CH. Intranasal Immunization With Nanoparticles Containing an Orientia tsutsugamushi Protein Vaccine Candidate and a Polysorbitol Transporter Adjuvant Enhances Both Humoral and Cellular Immune Responses. Immune Netw 2023; 23:e47. [PMID: 38188601 PMCID: PMC10767547 DOI: 10.4110/in.2023.23.e47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 01/09/2024] Open
Abstract
Scrub typhus, a mite-borne infectious disease, is caused by Orientia tsutsugamushi. Despite many attempts to develop a protective strategy, an effective preventive vaccine has not been developed. The identification of appropriate Ags that cover diverse antigenic strains and provide long-lasting immunity is a fundamental challenge in the development of a scrub typhus vaccine. We investigated whether this limitation could be overcome by harnessing the nanoparticle-forming polysorbitol transporter (PST) for an O. tsutsugamushi vaccine strategy. Two target proteins, 56-kDa type-specific Ag (TSA56) and surface cell Ag A (ScaA) were used as vaccine candidates. PST formed stable nano-size complexes with TSA56 (TSA56-PST) and ScaA (ScaA-PST); neither exhibited cytotoxicity. The formation of Ag-specific IgG2a, IgG2b, and IgA in mice was enhanced by intranasal vaccination with TSA56-PST or ScaA-PST. The vaccines containing PST induced Ag-specific proliferation of CD8+ and CD4+ T cells. Furthermore, the vaccines containing PST improved the mouse survival against O. tsutsugamushi infection. Collectively, the present study indicated that PST could enhance both Ag-specific humoral immunity and T cell response, which are essential to effectively confer protective immunity against O. tsutsugamushi infection. These findings suggest that PST has potential for use in an intranasal vaccination strategy.
Collapse
Affiliation(s)
- Cheol Gyun Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Korea
| | - Won Kyong Kim
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, National Institute of Health, Cheongju 28159, Korea
| | - Narae Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Young Jin Pyung
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Da-Jeong Park
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jeong-Cheol Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyuk Chu
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, National Institute of Health, Cheongju 28159, Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Institutes of Green-bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
- Interdisciplinary Programs in Agricultural Genomics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
61
|
Mahata D, Mukherjee D, Biswas D, Basak S, Basak AJ, Jamir I, Pandey N, Khatoon H, Samanta D, Basak A, Mukherjee G. Activation and differentiation of cognate T cells by a dextran-based antigen-presenting system for cancer immunotherapy. Eur J Immunol 2023; 53:e2350528. [PMID: 37698527 DOI: 10.1002/eji.202350528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/14/2023] [Accepted: 09/11/2023] [Indexed: 09/13/2023]
Abstract
Immunotherapeutic modulation of antigen-specific T-cell responses instead of the whole repertoire helps avoid immune-related adverse events. We have developed an artificial antigen-presenting system (aAPS) where multiple copies of a multimeric peptide-MHC class I complex presenting a murine class I MHC restricted ovalbumin-derived peptide (signal 1), along with a costimulatory ligand (signal 2) are chemically conjugated to a dextran backbone. Cognate naive CD8+ T cells, when treated with this aAPS underwent significant expansion and showed an activated phenotype. Furthermore, elevated expression of effector cytokines led to the differentiation of these cells to cytotoxic T lymphocytes which resulted in target cell lysis, indicative of the functional efficacy of the aAPS. CD8+ T cells with decreased proliferative potential due to repeated antigenic stimulation could also be re-expanded by the developed aAPS. Thus, the developed aAPS warrants further engineering for future application as a rapidly customizable personalized immunotherapeutic agent, incorporating patient-specific MHC-restricted tumor antigens and different costimulatory signals to modulate both naive and antigen-experienced but exhausted tumor-specific T cells in cancer.
Collapse
Affiliation(s)
- Dhrubajyoti Mahata
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Debangshu Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Debarati Biswas
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Shyam Basak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Aditya Jyoti Basak
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Imlilong Jamir
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Nidhi Pandey
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Huma Khatoon
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Amit Basak
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal, India
| | - Gayatri Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
62
|
Huang Y, Yan H, Zhang B, Zhu G, Yu J, Xiao X, He W, Chen Y, Gao X, She Z, Li M, Yuan J. Ascomylactam C Induces an Immunogenic Cell Death Signature via Mitochondria-Associated ER Stress in Lung Cancer and Melanoma. Mar Drugs 2023; 21:600. [PMID: 38132921 PMCID: PMC10744434 DOI: 10.3390/md21120600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Ascomylactam C (AsC) is a new 13-membered-ring macrocyclic alkaloid, which was first isolated and identified in 2019 from the secondary metabolites of the mangrove endophytic fungus Didymella sp. CYSK-4 in the South China Sea. AsC has been found to have a broad-spectrum cytotoxic activity. However, the antitumor effects in vivo and mechanisms of AsC remain unclear. The aim of this study was to describe the effects of AsC on lung cancer and melanoma cells and to explore the antitumor molecular mechanism of AsC. In vitro, we used plate colony formation experiments and demonstrated the ability of AsC to inhibit low-density tumor growth. An Annexin V/PI cell apoptosis detection experiment revealed that AsC induced tumor cell apoptosis. In vivo, AsC suppressed the tumor growth of LLC and B16F10 allograft significantly in mice, and promoted the infiltration of CD4+ T and CD8+ T cells in tumor tissues. Mechanistically, by analyses of Western blotting, immunofluorescence and ELISA analysis, we found that AsC increased ROS formation, induced endoplasmic reticulum (ER) stress, activated the protein kinase RNA-like ER kinase (PERK)/eukaryotic translation initiation factor (eIF2α)/activating transcription factor 4 (ATF4)/C/EBP homologous protein (CHOP) signaling pathway, and induced immunogenic cell death (ICD) of tumor cells. Our results suggest that AsC may be a potentially promising antitumor drug candidate.
Collapse
Affiliation(s)
- Yun Huang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (Y.H.); (H.Y.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; (G.Z.); (J.Y.); (X.X.)
| | - Hongmei Yan
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (Y.H.); (H.Y.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; (G.Z.); (J.Y.); (X.X.)
| | - Bingzhi Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.Z.); (X.G.)
| | - Ge Zhu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; (G.Z.); (J.Y.); (X.X.)
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jianchen Yu
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; (G.Z.); (J.Y.); (X.X.)
| | - Xuhan Xiao
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; (G.Z.); (J.Y.); (X.X.)
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenxuan He
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Yan Chen
- Department of Traditional Chinese Medicine, School of Pharmacy, Anhui Medical University, Hefei 230032, China;
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China;
| | - Xiaoxia Gao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; (B.Z.); (X.G.)
| | - Zhigang She
- School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China;
| | - Mengfeng Li
- School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; (Y.H.); (H.Y.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; (G.Z.); (J.Y.); (X.X.)
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie Yuan
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China; (G.Z.); (J.Y.); (X.X.)
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
63
|
Wang L, Song J. Role of T Cells in Microbial Pathogenesis. Pathogens 2023; 12:1321. [PMID: 38003786 PMCID: PMC10674777 DOI: 10.3390/pathogens12111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
The immune system functions as a sophisticated defense mechanism, shielding the body from harmful pathogenic invaders [...].
Collapse
Affiliation(s)
- Liqing Wang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA;
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA;
| |
Collapse
|
64
|
Kim HW, Ko MK, Park SH, Shin S, Kim SM, Park JH, Lee MJ. Bestatin, A Pluripotent Immunomodulatory Small Molecule, Drives Robust and Long-Lasting Immune Responses as an Adjuvant in Viral Vaccines. Vaccines (Basel) 2023; 11:1690. [PMID: 38006022 PMCID: PMC10675184 DOI: 10.3390/vaccines11111690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
An inactivated whole-virus vaccine is currently used to prevent foot-and-mouth disease (FMD). Although this vaccine is effective, it offers short-term immunity that requires regular booster immunizations and has several side effects, including local reactions at the vaccination site. To address these limitations, herein, we evaluated the efficacy of bestatin as a novel small molecule adjuvant for inactivated FMD vaccines. Our findings showed that the FMD vaccine formulated with bestatin enhanced early, intermediate-, and particularly long-term immunity in experimental animals (mice) and target animals (pigs). Furthermore, cytokines (interferon (IFN)α, IFNβ, IFNγ, and interleukin (IL)-29), retinoic acid-inducible gene (RIG)-I, and T-cell and B-cell core receptors (cluster of differentiation (CD)28, CD19, CD21, and CD81) markedly increased in the group that received the FMD vaccine adjuvanted with bestatin in pigs compared with the control. These results indicate the significant potential of bestatin to improve the efficacy of inactivated FMD vaccines in terms of immunomodulatory function for the simultaneous induction of potent cellular and humoral immune response and a long-lasting memory response.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Min Ja Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Republic of Korea; (H.W.K.); (M.-K.K.); (S.H.P.); (S.S.); (S.-M.K.); (J.-H.P.)
| |
Collapse
|
65
|
Chandar JS, Bhatia S, Ingle S, Mendez Valdez MJ, Maric D, Seetharam D, Desgraves JF, Govindarajan V, Daggubati L, Merenzon M, Morell A, Luther E, Saad AG, Komotar RJ, Ivan ME, Shah AH. Laser Interstitial Thermal Therapy Induces Robust Local Immune Response for Newly Diagnosed Glioblastoma With Long-term Survival and Disease Control. J Immunother 2023; 46:351-354. [PMID: 37727953 PMCID: PMC10591996 DOI: 10.1097/cji.0000000000000485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023]
Abstract
Laser interstitial thermal therapy (LITT) is a minimally invasive neurosurgical technique used to ablate intra-axial brain tumors. The impact of LITT on the tumor microenvironment is scarcely reported. Nonablative LITT-induced hyperthermia (33-43˚C) increases intra-tumoral mutational burden and neoantigen production, promoting immunogenic cell death. To understand the local immune response post-LITT, we performed longitudinal molecular profiling in a newly diagnosed glioblastoma and conducted a systematic review of anti-tumoral immune responses after LITT. A 51-year-old male presented after a fall with progressive dizziness, ataxia, and worsening headaches with a small, frontal ring-enhancing lesion. After clinical and radiographic progression, the patient underwent stereotactic needle biopsy, confirming an IDH-WT World Health Organization Grade IV Glioblastoma, followed by LITT. The patient was subsequently started on adjuvant temozolomide, and 60 Gy fractionated radiotherapy to the post-LITT tumor volume. After 3 months, surgical debulking was conducted due to perilesional vasogenic edema and cognitive decline, with H&E staining demonstrating perivascular lymphocytic infiltration. Postoperative serial imaging over 3 years showed no evidence of tumor recurrence. The patient is currently alive 9 years after diagnosis. Multiplex immunofluorescence imaging of pre-LITT and post-LITT biopsies showed increased CD8 and activated macrophage infiltration and programmed death ligand 1 expression. This is the first depiction of the in-situ immune response to LITT and the first human clinical presentation of increased CD8 infiltration and programmed death ligand 1 expression in post-LITT tissue. Our findings point to LITT as a treatment approach with the potential for long-term delay of recurrence and improving response to immunotherapy.
Collapse
Affiliation(s)
- Jay S. Chandar
- University of Miami School of Medicine, Department of Neurosurgery, Miami, Florida, United States
- Florida International University Herbert Wertheim College of Medicine, Miami, Florida, United States
| | - Shovan Bhatia
- University of Miami School of Medicine, Department of Neurosurgery, Miami, Florida, United States
| | - Shreya Ingle
- University of Miami School of Medicine, Department of Neurosurgery, Miami, Florida, United States
| | - Mynor J. Mendez Valdez
- University of Miami School of Medicine, Department of Neurosurgery, Miami, Florida, United States
| | - Dragan Maric
- National Institutes of Health, National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, Maryland, United States
| | - Deepa Seetharam
- University of Miami School of Medicine, Department of Neurosurgery, Miami, Florida, United States
| | - Jelisah F. Desgraves
- University of Miami School of Medicine, Department of Neurosurgery, Miami, Florida, United States
| | - Vaidya Govindarajan
- University of Miami School of Medicine, Department of Neurosurgery, Miami, Florida, United States
| | - Lekhaj Daggubati
- University of Miami School of Medicine, Department of Neurosurgery, Miami, Florida, United States
| | - Martin Merenzon
- University of Miami School of Medicine, Department of Neurosurgery, Miami, Florida, United States
| | - Alexis Morell
- University of Miami School of Medicine, Department of Neurosurgery, Miami, Florida, United States
| | - Evan Luther
- University of Miami School of Medicine, Department of Neurosurgery, Miami, Florida, United States
| | - Ali G. Saad
- University of Miami School of Medicine, Department of Neurosurgery, Miami, Florida, United States
| | - Ricardo J. Komotar
- University of Miami School of Medicine, Department of Neurosurgery, Miami, Florida, United States
| | - Michael E. Ivan
- University of Miami School of Medicine, Department of Neurosurgery, Miami, Florida, United States
| | - Ashish H. Shah
- University of Miami School of Medicine, Department of Neurosurgery, Miami, Florida, United States
| |
Collapse
|
66
|
Kinoshita F, Takada K, Wakasu S, Saito S, Hashinokuchi A, Matsudo K, Nagano T, Akamine T, Kohno M, Takenaka T, Shimokawa M, Oda Y, Yoshizumi T. Granzyme B (GZMB)-Positive Tumor-Infiltrating Lymphocytes in Lung Adenocarcinoma: Significance as a Prognostic Factor and Association with Immunosuppressive Proteins. Ann Surg Oncol 2023; 30:7579-7589. [PMID: 37587364 DOI: 10.1245/s10434-023-14085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/20/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Granzyme B (GZMB) is a serine protease produced by cytotoxic lymphocytes that reflects the activity of anti-tumor immune responses in tumor-infiltrating lymphocytes (TILs); however, the prognostic significance of GZMB+ TILs in lung adenocarcinoma is poorly understood. METHODS We analyzed 273 patients with pathological stage (pStage) I-IIIA lung adenocarcinoma who underwent surgery at Kyushu University from 2003 to 2012. We evaluated GZMB+ TIL counts by immunohistochemistry. We set the cut-off values at 12 cells/0.04 mm2 for GZMB+ TILs and divided the patients into GZMB-High (n = 171) and GZMB-Low (n = 102) groups. Then, we compared the clinicopathological characteristics of the two groups and clinical outcomes. Programmed cell death ligand-1 (PD-L1) and indoleamine 2,3-dioxygenase 1 (IDO1) expression in tumor cells was also evaluated, and combined prognostic analyses of GZMB+ TILs with PD-L1 or IDO1 were performed. RESULTS GZMB-Low was significantly associated with pStage II-III, PD-L1 positivity, and IDO1 positivity. Disease-free survival (DFS) and overall survival (OS) in the GZMB-Low group were significantly worse than in the GZMB-High group. In multivariable analysis, GZMB-Low was an independent prognostic factor for both DFS and OS. Furthermore, combined prognostic analyses of GZMB+ TILs with PD-L1 or IDO1 showed that GZMB-Low with high expression of these immunosuppressive proteins had the worst prognosis. CONCLUSIONS We analyzed GZMB+ TIL counts in lung adenocarcinoma and elucidated its prognostic significance and association with PD-L1 and IDO1. GZMB+ TIL counts might reflect the patient's immunity against cancer cells and could be a useful prognostic marker of lung adenocarcinoma.
Collapse
Affiliation(s)
- Fumihiko Kinoshita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuki Takada
- Department of Surgery, Saiseikai Fukuoka General Hospital, Fukuoka, Japan
| | - Sho Wakasu
- Department of Thoracic Surgery, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - Shunichi Saito
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Asato Hashinokuchi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyoto Matsudo
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Taichi Nagano
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takaki Akamine
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mikihiro Kohno
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoyoshi Takenaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Mototsugu Shimokawa
- Department of Biostatistics, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
67
|
Park N, Kim KS, Na K. Stem cell-derived paracrine factors by modulated reactive oxygen species to enhance cancer immunotherapy. J Control Release 2023; 363:670-681. [PMID: 37838223 DOI: 10.1016/j.jconrel.2023.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Herein, we present an approach for manipulating paracrine factors and signaling pathways in adipose-derived stem cells (ADSCs) to achieve highly effective tumor immunotherapy. Our method involves precise control of reactive oxygen species concentration using the CD90-maleimide-pluronic F68-chlorin e6 conjugate (CPFC) to create ACPFC, which is then attached to ADSCs through the CD90 receptor-specific interaction. By regulating the irradiated laser power, ACPFC promotes signaling pathways such as cascade-3, VEGFR2, α2β1, C3AR1, CR1-4, and C5AR1, leading to the secretion of various inflammatory cytokines such as IFN-γ, TGF-β, and IL-6, while inhibiting AKT, ERK, NFkB, PAR1, and PAR3/4 signaling pathways to reduce the secretion of cell growth factors like TIMP-1, TIMP-2, VEGF, Ang-2, FGF-2, and HGF. When ACPFC is injected intravenously into a tumor animal model, it autonomously targets and accumulates at the tumor site, and upon laser irradiation, it generates various anti-inflammatory factors while reducing angiogenesis growth factors. The resulting antitumor response recruits CD3+CD8+ cytotoxic T cells and CD3+CD4+ helper T cells into the tumor and spleen, leading to highly effective melanoma and pancreatic tumor treatment in mice. Our technology for regulating stem cell paracrine factors holds significant promise for the treatment of various diseases.
Collapse
Affiliation(s)
- Naeun Park
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kyoung Sub Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kun Na
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
68
|
Jutel M, Agache I, Zemelka-Wiacek M, Akdis M, Chivato T, Del Giacco S, Gajdanowicz P, Gracia IE, Klimek L, Lauerma A, Ollert M, O'Mahony L, Schwarze J, Shamji MH, Skypala I, Palomares O, Pfaar O, Torres MJ, Bernstein JA, Cruz AA, Durham SR, Galli SJ, Gómez RM, Guttman-Yassky E, Haahtela T, Holgate ST, Izuhara K, Kabashima K, Larenas-Linnemann DE, von Mutius E, Nadeau KC, Pawankar R, Platts-Mills TAE, Sicherer SH, Park HS, Vieths S, Wong G, Zhang L, Bilò MB, Akdis CA. Nomenclature of allergic diseases and hypersensitivity reactions: Adapted to modern needs: An EAACI position paper. Allergy 2023; 78:2851-2874. [PMID: 37814905 DOI: 10.1111/all.15889] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 10/11/2023]
Abstract
The exponential growth of precision diagnostic tools, including omic technologies, molecular diagnostics, sophisticated genetic and epigenetic editing, imaging and nano-technologies and patient access to extensive health care, has resulted in vast amounts of unbiased data enabling in-depth disease characterization. New disease endotypes have been identified for various allergic diseases and triggered the gradual transition from a disease description focused on symptoms to identifying biomarkers and intricate pathogenetic and metabolic pathways. Consequently, the current disease taxonomy has to be revised for better categorization. This European Academy of Allergy and Clinical Immunology Position Paper responds to this challenge and provides a modern nomenclature for allergic diseases, which respects the earlier classifications back to the early 20th century. Hypersensitivity reactions originally described by Gell and Coombs have been extended into nine different types comprising antibody- (I-III), cell-mediated (IVa-c), tissue-driven mechanisms (V-VI) and direct response to chemicals (VII). Types I-III are linked to classical and newly described clinical conditions. Type IVa-c are specified and detailed according to the current understanding of T1, T2 and T3 responses. Types V-VI involve epithelial barrier defects and metabolic-induced immune dysregulation, while direct cellular and inflammatory responses to chemicals are covered in type VII. It is notable that several combinations of mixed types may appear in the clinical setting. The clinical relevance of the current approach for allergy practice will be conferred in another article that will follow this year, aiming at showing the relevance in clinical practice where various endotypes can overlap and evolve over the lifetime.
Collapse
Affiliation(s)
- Marek Jutel
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
- ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | | | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Tomás Chivato
- School of Medicine, University CEU San Pablo, Madrid, Spain
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Unit of Allergy and Clinical Immunology, University Hospital "Duilio Casula", Monserrato, Italy
| | - Pawel Gajdanowicz
- Department of Clinical Immunology, Wroclaw Medical University, Wroclaw, Poland
| | - Ibon Eguiluz Gracia
- Allergy Unit, UMA-Regional University Hospital of Malaga, IBIMA-BIONAND, Malaga, Spain
| | - Ludger Klimek
- Department of Otolaryngology, Head and Neck Surgery, Universitätsmedizin Mainz, Mainz, Germany
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Antti Lauerma
- Department of Dermatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Centre, Odense University Hospital, Odense Research Center for Anaphylaxis (ORCA), Odense, Denmark
| | - Liam O'Mahony
- Departments of Medicine and Microbiology, APC Microbiome Ireland, National University of Ireland, Cork, Ireland
| | - Jürgen Schwarze
- Child Life and Health, Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, UK
- NIHR Imperial Biomedical Research Centre, London, UK
| | - Isabel Skypala
- Department of Inflammation and Repair, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Part of Guys and St Thomas' NHS Foundation Trust, London, UK
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Maria Jose Torres
- Allergy Unit, UMA-Regional University Hospital of Malaga, IBIMA-BIONAND, Malaga, Spain
| | - Jonathan A Bernstein
- Department of Internal Medicine, Division of Rheumatology, Allergy and Immunology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Alvaro A Cruz
- Fundaçao ProAR, Federal University of Bahia and GARD/WHO Planning Group, Salvador, Bahia, Brazil
| | - Stephen R Durham
- Allergy and Clinical Immunology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Stephen J Galli
- Department of Pathology and Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | | | - Emma Guttman-Yassky
- Department of Dermatology and the Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Stephen T Holgate
- Academic Unit of Clinical and Experimental Sciences, University of Southampton, Southampton, UK
| | - Kenji Izuhara
- Department of Biomolecular Sciences, Division of Medical Biochemistry, Saga Medical School, Saga, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Désirée E Larenas-Linnemann
- Center of Excellence in Asthma and Allergy, Médica Sur Clinical Foundation and Hospital, Mexico City, Mexico
| | - Erica von Mutius
- Department of Pediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, Munich, Germany
- Institute of Asthma and Allergy Prevention, Helmholtz Centre Munich, Munich, Germany
- German Center for Lung Research (DZL), Giesen, Germany
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ruby Pawankar
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| | - Tomas A E Platts-Mills
- Department of Medicine, Division of Allergy and Clinical Immunology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Scott H Sicherer
- Division of Pediatric Allergy and Immunology, Jaffe Food Allergy Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | | | - Gary Wong
- Prince of Wales Hospital, Chinese University of Hong Kong, Hong Kong, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - M Beatrice Bilò
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona and Allergy Unit, Department of Internal Medicine, University Hospital of Marche, Ancona, Italy
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
69
|
Uhl LFK, Cai H, Oram SL, Mahale JN, MacLean AJ, Mazet JM, Piccirilli T, He AJ, Lau D, Elliott T, Gerard A. Interferon-γ couples CD8 + T cell avidity and differentiation during infection. Nat Commun 2023; 14:6727. [PMID: 37872155 PMCID: PMC10593754 DOI: 10.1038/s41467-023-42455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Effective responses to intracellular pathogens are characterized by T cell clones with a broad affinity range for their cognate peptide and diverse functional phenotypes. How T cell clones are selected throughout the response to retain a breadth of avidities remains unclear. Here, we demonstrate that direct sensing of the cytokine IFN-γ by CD8+ T cells coordinates avidity and differentiation during infection. IFN-γ promotes the expansion of low-avidity T cells, allowing them to overcome the selective advantage of high-avidity T cells, whilst reinforcing high-avidity T cell entry into the memory pool, thus reducing the average avidity of the primary response and increasing that of the memory response. IFN-γ in this context is mainly provided by virtual memory T cells, an antigen-inexperienced subset with memory features. Overall, we propose that IFN-γ and virtual memory T cells fulfil a critical immunoregulatory role by enabling the coordination of T cell avidity and fate.
Collapse
Affiliation(s)
- Lion F K Uhl
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Han Cai
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Sophia L Oram
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Jagdish N Mahale
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Andrew J MacLean
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Julie M Mazet
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Theo Piccirilli
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Alexander J He
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Doreen Lau
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Tim Elliott
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Audrey Gerard
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| |
Collapse
|
70
|
Lê H, Deforges J, Hua G, Idoux-Gillet Y, Ponté C, Lindner V, Olland A, Falcoz PE, Zaupa C, Jain S, Quéméneur E, Benkirane-Jessel N, Balloul JM. In vitro vascularized immunocompetent patient-derived model to test cancer therapies. iScience 2023; 26:108094. [PMID: 37860774 PMCID: PMC10582498 DOI: 10.1016/j.isci.2023.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
This work describes a patient-derived tumoroid model (PDTs) to support precision medicine in lung oncology. The use of human adipose tissue-derived microvasculature and patient-derived peripheral blood mononuclear cells (PBMCs) permits to achieve a physiologically relevant tumor microenvironment. This study involved ten patients at various stages of tumor progression. The vascularized, immune-infiltrated PDT model could be obtained within two weeks, matching the requirements of the therapeutic decision. Histological and transcriptomic analyses confirmed that the main features from the original tumor were reproduced. The 3D tumor model could be used to determine the dynamics of response to antiangiogenic therapy and platinum-based chemotherapy. Antiangiogenic therapy showed a significant decrease in vascular endothelial growth factor (VEGF)-A expression, reflecting its therapeutic effect in the model. In an immune-infiltrated PDT model, chemotherapy showed the ability to decrease the levels of lymphocyte activation gene-3 protein (LAG-3), B and T lymphocyte attenuator (BTLA), and inhibitory receptors of T cells functions.
Collapse
Affiliation(s)
- Hélène Lê
- Transgene S.A, 400 Boulevard Gonthier d’Andernach, 67400 Illkirch-Graffenstaden, France
- INSERM UMR 1260, Regenerative Nanomedicine, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Jules Deforges
- Transgene S.A, 400 Boulevard Gonthier d’Andernach, 67400 Illkirch-Graffenstaden, France
| | - Guoqiang Hua
- INSERM UMR 1260, Regenerative Nanomedicine, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Ysia Idoux-Gillet
- INSERM UMR 1260, Regenerative Nanomedicine, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Charlotte Ponté
- INSERM UMR 1260, Regenerative Nanomedicine, 1 rue Eugène Boeckel, 67000 Strasbourg, France
- Hopitaux Universitaires de Strasbourg, 1 Place de l’Hôpital, 67000 Strasbourg, France
| | - Véronique Lindner
- INSERM UMR 1260, Regenerative Nanomedicine, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Anne Olland
- INSERM UMR 1260, Regenerative Nanomedicine, 1 rue Eugène Boeckel, 67000 Strasbourg, France
- Hopitaux Universitaires de Strasbourg, 1 Place de l’Hôpital, 67000 Strasbourg, France
| | - Pierre-Emanuel Falcoz
- INSERM UMR 1260, Regenerative Nanomedicine, 1 rue Eugène Boeckel, 67000 Strasbourg, France
- Hopitaux Universitaires de Strasbourg, 1 Place de l’Hôpital, 67000 Strasbourg, France
| | - Cécile Zaupa
- Boehringer Ingelheim, 29 avenue Tony Garnier, 69007 Lyon, France
| | - Shreyansh Jain
- Transgene S.A, 400 Boulevard Gonthier d’Andernach, 67400 Illkirch-Graffenstaden, France
| | - Eric Quéméneur
- Transgene S.A, 400 Boulevard Gonthier d’Andernach, 67400 Illkirch-Graffenstaden, France
| | - Nadia Benkirane-Jessel
- INSERM UMR 1260, Regenerative Nanomedicine, 1 rue Eugène Boeckel, 67000 Strasbourg, France
| | - Jean-Marc Balloul
- Transgene S.A, 400 Boulevard Gonthier d’Andernach, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
71
|
de Fàbregues O, Sellés M, Ramos-Vicente D, Roch G, Vila M, Bové J. Relevance of tissue-resident memory CD8 T cells in the onset of Parkinson's disease and examination of its possible etiologies: infectious or autoimmune? Neurobiol Dis 2023; 187:106308. [PMID: 37741513 DOI: 10.1016/j.nbd.2023.106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/05/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023] Open
Abstract
Tissue-resident memory CD8 T cells are responsible for local immune surveillance in different tissues, including the brain. They constitute the first line of defense against pathogens and cancer cells and play a role in autoimmunity. A recently published study demonstrated that CD8 T cells with markers of residency containing distinct granzymes and interferon-γ infiltrate the parenchyma of the substantia nigra and contact dopaminergic neurons in an early premotor stage of Parkinson's disease. This infiltration precedes α-synuclein aggregation and neuronal loss in the substantia nigra, suggesting a relevant role for CD8 T cells in the onset of the disease. To date, the nature of the antigen that initiates the adaptive immune response remains unknown. This review will discuss the role of tissue-resident memory CD8 T cells in brain immune homeostasis and in the onset of Parkinson's disease and other neurological diseases. We also discuss how aging and genetic factors can affect the CD8 T cell immune response and how animal models can be misleading when studying human-related immune response. Finally, we speculate about a possible infectious or autoimmune origin of Parkinson's disease.
Collapse
Affiliation(s)
- Oriol de Fàbregues
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Movement Disorders Unit, Neurology Department, Vall d'Hebron University Hospital
| | - Maria Sellés
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - David Ramos-Vicente
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Gerard Roch
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Catalonia, Spain; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Jordi Bové
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain.
| |
Collapse
|
72
|
Khilwani R, Singh S. Systems Biology and Cytokines Potential Role in Lung Cancer Immunotherapy Targeting Autophagic Axis. Biomedicines 2023; 11:2706. [PMID: 37893079 PMCID: PMC10604646 DOI: 10.3390/biomedicines11102706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023] Open
Abstract
Lung cancer accounts for the highest number of deaths among men and women worldwide. Although extensive therapies, either alone or in conjunction with some specific drugs, continue to be the principal regimen for evolving lung cancer, significant improvements are still needed to understand the inherent biology behind progressive inflammation and its detection. Unfortunately, despite every advancement in its treatment, lung cancer patients display different growth mechanisms and continue to die at significant rates. Autophagy, which is a physiological defense mechanism, serves to meet the energy demands of nutrient-deprived cancer cells and sustain the tumor cells under stressed conditions. In contrast, autophagy is believed to play a dual role during different stages of tumorigenesis. During early stages, it acts as a tumor suppressor, degrading oncogenic proteins; however, during later stages, autophagy supports tumor cell survival by minimizing stress in the tumor microenvironment. The pivotal role of the IL6-IL17-IL23 signaling axis has been observed to trigger autophagic events in lung cancer patients. Since the obvious roles of autophagy are a result of different immune signaling cascades, systems biology can be an effective tool to understand these interconnections and enhance cancer treatment and immunotherapy. In this review, we focus on how systems biology can be exploited to target autophagic processes that resolve inflammatory responses and contribute to better treatment in carcinogenesis.
Collapse
Affiliation(s)
| | - Shailza Singh
- Systems Medicine Laboratory, National Centre for Cell Science, SPPU Campus, Ganeshkhind Road, Pune 411007, India;
| |
Collapse
|
73
|
Wolff CM, Singer D, Schmidt A, Bekeschus S. Immune and inflammatory responses of human macrophages, dendritic cells, and T-cells in presence of micro- and nanoplastic of different types and sizes. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132194. [PMID: 37572607 DOI: 10.1016/j.jhazmat.2023.132194] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/14/2023]
Abstract
Environmental pollution by microplastics (MPs) is a growing concern regarding their impact on aquatic and terrestrial systems and human health. Typical exposure routes of MPs are dermal contact, digestion, and inhalation. Recent in vitro and in vivo studies observed alterations in immunity after MPs exposure, but systemic studies using primary human immune cells are scarce. In our investigation, we addressed the effect of polystyrene (PS) and poly methyl methacrylate (PMMA) in three different sizes (50-1100 nm) as well as amino-modified PS (PS-NH2; 50 nm) on cells of the adaptive and innate immune system. T-cells isolated from human peripheral blood mononuclear cells (PBMCs) were least affected regarding the cytotoxicity but displayed increased activation marker expression after 72 h, and strongly modulated cytokine secretion patterns. Conversely, phagocytic dendritic cells and macrophages derived from isolated monocytes were highly sensitive to pristine MPs. Their marker expression suggested a downregulation of the inflammatory phenotypes indicative of M2 macrophage induction after MPs exposure for 24 h. Our results showed that even pristine MPs affected immune cell function and inflammatory phenotype dependent on MPs polymers, size, and immune cell type.
Collapse
Affiliation(s)
- Christina M Wolff
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Debora Singer
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Anke Schmidt
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; Clinic and Policlinic for Dermatology and Venerology, Rostock University Medical Center, Strempelstr. 13, 18057 Rostock, Germany.
| |
Collapse
|
74
|
Ann S, Ibo J, Megha M, Reu Hans D, Bruggen Laura V, Julien L, An B, Nathalie C. Treatment of in vitro generated Langerhans cells with JAK-STAT inhibitor reduces their inflammatory potential. Clin Exp Med 2023; 23:2571-2582. [PMID: 36282458 DOI: 10.1007/s10238-022-00899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
Alopecia areata (AA) is a condition in which hair is lost in small regions or over the entire body. It has a prevalence of 1 in 1000 and has a great impact on psychological wellbeing. AA is generally considered an autoimmune disease in which a collapse of the immune privilege system of the hair follicle has shown to play an important role, potentially driven by interferon gamma (IFN-γ). The most prominent cells located in or around the hair follicle in AA are Langerhans cells, CD4+ or CD8+ T cells, macrophages and mast cells. Langerhans cells, specialized dendritic cells, are resident in the epidermis and are known to associate with hair follicles. Therefore, we aimed to develop in vitro generated Langerhans cells contributing as an in vitro model of disease. In vitro models provide insight into the behaviour of cells and are a valuable tool before being in need of an animal model or patient samples. For this, Langerhans-like cells were generated from CD14+ monocytes in the presence of GM-CSF and TGF-β. After 10 days of cell culture, Langerhans-like cells express CD207 and CD1a but lack CD209 expression as well as Birbeck granules. Next, Langerhans-like cells were exposed to inflammatory conditions and the effect of different AA treatments was investigated. All treatments-diphencyprone contact immunotherapy, UV-B light therapy and JAK-STAT inhibition-affect the expression of costimulatory and skin-homing markers on Langerhans-like cells. Importantly, also the T cell stimulatory capacity of Langerhans-like cells was significantly reduced following treatment under inflammatory conditions. Noteworthy, JAK-STAT inhibition outperformed conventional AA treatments. In conclusion, our findings demonstrate that in vitro generated Langerhans-like cells can be used as a model of disease. Moreover, JAK-STAT inhibition may become a valuable new approach for the treatment of AA.
Collapse
Affiliation(s)
- Sterkens Ann
- Department of Dermatology, University Hospital of Antwerp, Drie Eikenstraat 655, 2650, Edegem, Belgium.
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| | - Janssens Ibo
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Meena Megha
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - De Reu Hans
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Van Bruggen Laura
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Lambert Julien
- Department of Dermatology, University Hospital of Antwerp, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - Bervoets An
- Department of Dermatology, University Hospital of Antwerp, Drie Eikenstraat 655, 2650, Edegem, Belgium
| | - Cools Nathalie
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine (CCRG), University Hospital of Antwerp, Drie Eikenstraat 655, 2650, Edegem, Belgium
| |
Collapse
|
75
|
Brummer C, Pukrop T, Wiskemann J, Bruss C, Ugele I, Renner K. Can Exercise Enhance the Efficacy of Checkpoint Inhibition by Modulating Anti-Tumor Immunity? Cancers (Basel) 2023; 15:4668. [PMID: 37760634 PMCID: PMC10526963 DOI: 10.3390/cancers15184668] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Immune checkpoint inhibition (ICI) has revolutionized cancer therapy. However, response to ICI is often limited to selected subsets of patients or not durable. Tumors that are non-responsive to checkpoint inhibition are characterized by low anti-tumoral immune cell infiltration and a highly immunosuppressive tumor microenvironment. Exercise is known to promote immune cell circulation and improve immunosurveillance. Results of recent studies indicate that physical activity can induce mobilization and redistribution of immune cells towards the tumor microenvironment (TME) and therefore enhance anti-tumor immunity. This suggests a favorable impact of exercise on the efficacy of ICI. Our review delivers insight into possible molecular mechanisms of the crosstalk between muscle, tumor, and immune cells. It summarizes current data on exercise-induced effects on anti-tumor immunity and ICI in mice and men. We consider preclinical and clinical study design challenges and discuss the role of cancer type, exercise frequency, intensity, time, and type (FITT) and immune sensitivity as critical factors for exercise-induced impact on cancer immunosurveillance.
Collapse
Affiliation(s)
- Christina Brummer
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, 93053 Regensburg, Germany;
- Comprehensive Cancer Center Ostbayern (CCCO), 93053 Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, 93053 Regensburg, Germany;
- Comprehensive Cancer Center Ostbayern (CCCO), 93053 Regensburg, Germany
- Bavarian Cancer Research Center (BZKF), 93053 Regensburg, Germany
| | - Joachim Wiskemann
- National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany;
| | - Christina Bruss
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany;
| | - Ines Ugele
- Department of Otorhinolaryngology, University Hospital Regensburg, 93053 Regensburg, Germany; (I.U.); (K.R.)
| | - Kathrin Renner
- Comprehensive Cancer Center Ostbayern (CCCO), 93053 Regensburg, Germany
- Department of Otorhinolaryngology, University Hospital Regensburg, 93053 Regensburg, Germany; (I.U.); (K.R.)
| |
Collapse
|
76
|
Akilov OE. What Does the Future Hold for Biomarkers of Response to Extracorporeal Photopheresis for Mycosis Fungoides and Sézary Syndrome? Cells 2023; 12:2321. [PMID: 37759543 PMCID: PMC10527589 DOI: 10.3390/cells12182321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Extracorporeal photopheresis (ECP) is an FDA-approved immunotherapy for cutaneous T-cell lymphoma, which can provide a complete response in some patients. However, it is still being determined who will respond well, and predictive biomarkers are urgently needed to target patients for timely treatment and to monitor their response over time. The aim of this review is to analyze the current state of the diagnostic, prognostic, and disease state-monitoring biomarkers of ECP, and outline the future direction of the ECP biomarker discovery. Specifically, we focus on biomarkers of response to ECP in mycosis fungoides and Sézary syndrome. The review summarizes the current knowledge of ECP biomarkers, including their limitations and potential applications, and identifies key challenges in ECP biomarker discovery. In addition, we discuss emerging technologies that could revolutionize ECP biomarker discovery and accelerate the translation of biomarker research into clinical practice. This review will interest researchers and clinicians seeking to optimize ECP therapy for cutaneous T-cell lymphoma.
Collapse
Affiliation(s)
- Oleg E Akilov
- Cutaneous Lymphoma Program, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
77
|
Blanch-Lombarte O, Ouchi D, Jimenez-Moyano E, Carabelli J, Marin MA, Peña R, Pelletier A, Talla A, Sharma A, Dalmau J, Santos JR, Sékaly RP, Clotet B, Prado JG. Selective loss of CD107a TIGIT+ memory HIV-1-specific CD8+ T cells in PLWH over a decade of ART. eLife 2023; 12:e83737. [PMID: 37723971 PMCID: PMC10508883 DOI: 10.7554/elife.83737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
The co-expression of inhibitory receptors (IRs) is a hallmark of CD8+ T-cell exhaustion (Tex) in people living with HIV-1 (PLWH). Understanding alterations of IRs expression in PLWH on long-term antiretroviral treatment (ART) remains elusive but is critical to overcoming CD8+ Tex and designing novel HIV-1 cure immunotherapies. To address this, we combine high-dimensional supervised and unsupervised analysis of IRs concomitant with functional markers across the CD8+ T-cell landscape on 24 PLWH over a decade on ART. We define irreversible alterations of IRs co-expression patterns in CD8+ T cells not mitigated by ART and identify negative associations between the frequency of TIGIT+ and TIGIT+ TIM-3+ and CD4+ T-cell levels. Moreover, changes in total, SEB-activated, and HIV-1-specific CD8+ T cells delineate a complex reshaping of memory and effector-like cellular clusters on ART. Indeed, we identify a selective reduction of HIV-1 specific-CD8+ T-cell memory-like clusters sharing TIGIT expression and low CD107a that can be recovered by mAb TIGIT blockade independently of IFNγ and IL-2. Collectively, these data characterize with unprecedented detail the patterns of IRs expression and functions across the CD8+ T-cell landscape and indicate the potential of TIGIT as a target for Tex precision immunotherapies in PLWH at all ART stages.
Collapse
Affiliation(s)
- Oscar Blanch-Lombarte
- IrsiCaixa AIDS Research InstituteBarcelonaSpain
- Universitat Autònoma de Barcelona, Cerdanyola del VallèsBarcelonaSpain
| | - Dan Ouchi
- IrsiCaixa AIDS Research InstituteBarcelonaSpain
| | | | | | | | - Ruth Peña
- IrsiCaixa AIDS Research InstituteBarcelonaSpain
| | - Adam Pelletier
- Pathology Department, Case Western Reserve UniversityClevelandUnited States
| | - Aarthi Talla
- Pathology Department, Case Western Reserve UniversityClevelandUnited States
| | - Ashish Sharma
- Pathology Department, Case Western Reserve UniversityClevelandUnited States
| | | | - José Ramón Santos
- Lluita contra la SIDA Foundation, Hospital Universitari Germans Trias i PujolBarcelonaSpain
- Infectious Diseases Department, Hospital Universitari Germans Trias i PujolBadalonaSpain
| | | | - Bonaventura Clotet
- IrsiCaixa AIDS Research InstituteBarcelonaSpain
- Lluita contra la SIDA Foundation, Hospital Universitari Germans Trias i PujolBarcelonaSpain
- Infectious Diseases Department, Hospital Universitari Germans Trias i PujolBadalonaSpain
- Germans Trias i Pujol Research Institute (IGTP)BadalonaSpain
- Faculty of Medicine, University of Vic - Central University of Catalonia (UVic-UCC)CataloniaSpain
| | - Julia G Prado
- IrsiCaixa AIDS Research InstituteBarcelonaSpain
- Germans Trias i Pujol Research Institute (IGTP)BadalonaSpain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
78
|
Raj A, Ramirez K, Young KM, Stone N, Shankles P, Ali MNR, Compton AM, Lam W, Alexeev A, Sulchek T. Label-free microfluidic isolation of functional and viable lymphocytes from peripheral blood mononuclear cells. BIOMICROFLUIDICS 2023; 17:054102. [PMID: 37736019 PMCID: PMC10511259 DOI: 10.1063/5.0161047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
The separation of peripheral blood mononuclear cells (PBMCs) into constituent blood cell types is a vital step to obtain immune cells for autologous cell therapies. The ability to separate PBMCs using label-free microfluidic techniques, based on differences in biomechanical properties, can have a number of benefits over other conventional techniques, including lower cost, ease of use, and avoidance of animal-derived labeling antibodies. Here, we report a microfluidic device that uses compressive diagonal ridges to separate PBMCs into highly pure samples of viable and functional lymphocytes. The technique utilizes the differences in the biophysical properties of PBMC sub-populations to direct the lymphocytes and monocytes into separate outlets. The biophysical properties of the monocytes and lymphocytes from healthy donors were first characterized using atomic force microscopy. Lymphocytes were found to be significantly stiffer than monocytes, with a mean cell stiffness of 1495 and 931 Pa, respectively. The differences in biophysical properties resulted in distinct trajectories through the microchannel terminating at different outlets, resulting in a lymphocyte sample with purity and viability both greater than 96% with no effect on the cells' ability to produce interferon gamma, a cytokine crucial for innate and adaptive immunity.
Collapse
Affiliation(s)
- Abhishek Raj
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30332-0405, USA
| | - Katily Ramirez
- School of Chemistry & Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0400, USA
| | - Katherine M. Young
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, Georgia 30332-0535, USA
| | - Nicholas Stone
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30332-0405, USA
| | - Peter Shankles
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30332-0405, USA
| | - Mehdia Nadeem Rajab Ali
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, Georgia 30332-0535, USA
| | - Anthony Malik Compton
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, Georgia 30332-0535, USA
| | | | - Alexander Alexeev
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 801 Ferst Drive, Atlanta, Georgia 30332-0405, USA
| | - Todd Sulchek
- Author to whom correspondence should be addressed:
| |
Collapse
|
79
|
Prakash S, Kumbhojkar N, Lu A, Kapate N, Suja VC, Park KS, Wang LLW, Mitragotri S. Polymer Micropatches as Natural Killer Cell Engagers for Tumor Therapy. ACS NANO 2023; 17:15918-15930. [PMID: 37565806 DOI: 10.1021/acsnano.3c03980] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Natural killer (NK) cell therapies have emerged as a potential therapeutic approach to various cancers. Their efficacy, however, is limited by their low persistence and anergy. Current approaches to sustain NK cell persistence in vivo include genetic modification, activation via pretreatment, or coadministration of supporting cytokines or antibodies. Such supporting therapies exhibit limited efficacy in vivo, in part due to the reversal of their effect within the immunosuppressive tumor microenvironment and off-target toxicity. Here, we report a material-based approach to address this challenge. Specifically, we describe the use of polymeric micropatches as a platform for sustained, targeted activation of NK cells, an approach referred to as microparticles as cell engagers (MACE). Poly(lactide-co-glycolic) acid (PLGA) micropatches, 4-8 μm in diameter and surface-modified with NK cell receptor targeting antibodies, exhibited strong adhesion to NK cells and induced their activation without the need of coadministered cytokines. The activation induced by MACE was greater than that induced by nanoparticles, attesting to the crucial role of MACE geometry in the activation of NK cells. MACE-bound NK cells remained viable and exhibited trans-endothelial migration and antitumor activity in vitro. MACE-bound NK cells activated T cells, macrophages, and dendritic cells in vitro. Adoptive transfer of NK-MACE also demonstrated superior antitumor efficacy in a mouse melanoma lung metastasis model compared to unmodified NK cells. Overall, MACE offers a simple, scalable, and effective way of activating NK cells and represents an attractive platform to improve the efficacy of NK cell therapy.
Collapse
Affiliation(s)
- Supriya Prakash
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, Massachusetts 02134, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - Ninad Kumbhojkar
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, Massachusetts 02134, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - Andrew Lu
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, Massachusetts 02134, United States
| | - Neha Kapate
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, Massachusetts 02134, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
- Harvard-MIT Program in Health Science and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vineeth Chandran Suja
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, Massachusetts 02134, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - Kyung Soo Park
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, Massachusetts 02134, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| | - Lily Li-Wen Wang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, Massachusetts 02134, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
- Harvard-MIT Program in Health Science and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Samir Mitragotri
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, Massachusetts 02134, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, United States
| |
Collapse
|
80
|
Toledo E, Iraqi M, Pandey A, Tzadka S, Le Saux G, Porgador A, Schvartzman M. Multifunctional Nanoscale Platform for the Study of T Cell Receptor Segregation. ACS OMEGA 2023; 8:28968-28975. [PMID: 37599975 PMCID: PMC10433356 DOI: 10.1021/acsomega.2c08194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/10/2023] [Indexed: 08/22/2023]
Abstract
T cells respond not only to biochemical stimuli transmitted through their activating, costimulatory, and inhibitory receptors but also to biophysical aspects of their environment, including the receptors' spatial arrangement. While these receptors form nanoclusters that can either colocalize or segregate, the roles of these colocalization and segregation remain unclear. Deciphering these roles requires a nanoscale platform with independent and simultaneous spatial control of multiple types of receptors. Herein, using a straightforward and modular fabrication process, we engineered a tunable nanoscale chip used as a platform for T cell stimulation, allowing spatial control over the clustering and segregation of activating, costimulatory, and inhibitory receptors. Using this platform, we showed that, upon blocked inhibition, cells became sensitive to changes in the nanoscale ligand configuration. The nanofabrication methodology described here opens a pathway to numerous studies, which will produce an important insight into the molecular mechanism of T cell activation. This insight is essential for the fundamental understanding of our immune system as well as for the rational design of future immunotherapies.
Collapse
Affiliation(s)
- Esti Toledo
- Department
of Materials Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
- Ilse
Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Muhammed Iraqi
- The
Shraga Segal Department of Microbiology, Immunology, and Genetics,
Faculty of Health Science, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
| | - Ashish Pandey
- Department
of Materials Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
- Ilse
Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sivan Tzadka
- Department
of Materials Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
- Ilse
Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Guillaume Le Saux
- Department
of Materials Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
- Ilse
Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Angel Porgador
- The
Shraga Segal Department of Microbiology, Immunology, and Genetics,
Faculty of Health Science, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
| | - Mark Schvartzman
- Department
of Materials Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
- Ilse
Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
81
|
Lems CM, Burger GA, Beltman JB. Tumor-mediated immunosuppression and cytokine spreading affects the relation between EMT and PD-L1 status. Front Immunol 2023; 14:1219669. [PMID: 37638024 PMCID: PMC10449452 DOI: 10.3389/fimmu.2023.1219669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/30/2023] [Indexed: 08/29/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) and immune resistance mediated by Programmed Death-Ligand 1 (PD-L1) upregulation are established drivers of tumor progression. Their bi-directional crosstalk has been proposed to facilitate tumor immunoevasion, yet the impact of immunosuppression and spatial heterogeneity on the interplay between these processes remains to be characterized. Here we study the role of these factors using mathematical and spatial models. We first designed models incorporating immunosuppressive effects on T cells mediated via PD-L1 and the EMT-inducing cytokine Transforming Growth Factor beta (TGFβ). Our models predict that PD-L1-mediated immunosuppression merely reduces the difference in PD-L1 levels between EMT states, while TGFβ-mediated suppression also causes PD-L1 expression to correlate negatively with TGFβ within each EMT phenotype. We subsequently embedded the models in multi-scale spatial simulations to explicitly describe heterogeneity in cytokine levels and intratumoral heterogeneity. Our multi-scale models show that Interferon gamma (IFNγ)-induced partial EMT of a tumor cell subpopulation can provide some, albeit limited protection to bystander tumor cells. Moreover, our simulations show that the true relationship between EMT status and PD-L1 expression may be hidden at the population level, highlighting the importance of studying EMT and PD-L1 status at the single-cell level. Our findings deepen the understanding of the interactions between EMT and the immune response, which is crucial for developing novel diagnostics and therapeutics for cancer patients.
Collapse
Affiliation(s)
| | | | - Joost B. Beltman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
82
|
Castiglioni A, Yang Y, Williams K, Gogineni A, Lane RS, Wang AW, Shyer JA, Zhang Z, Mittman S, Gutierrez A, Astarita JL, Thai M, Hung J, Yang YA, Pourmohamad T, Himmels P, De Simone M, Elstrott J, Capietto AH, Cubas R, Modrusan Z, Sandoval W, Ziai J, Gould SE, Fu W, Wang Y, Koerber JT, Sanjabi S, Mellman I, Turley SJ, Müller S. Combined PD-L1/TGFβ blockade allows expansion and differentiation of stem cell-like CD8 T cells in immune excluded tumors. Nat Commun 2023; 14:4703. [PMID: 37543621 PMCID: PMC10404279 DOI: 10.1038/s41467-023-40398-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
TGFβ signaling is associated with non-response to immune checkpoint blockade in patients with advanced cancers, particularly in the immune-excluded phenotype. While previous work demonstrates that converting tumors from excluded to inflamed phenotypes requires attenuation of PD-L1 and TGFβ signaling, the underlying cellular mechanisms remain unclear. Here, we show that TGFβ and PD-L1 restrain intratumoral stem cell-like CD8 T cell (TSCL) expansion and replacement of progenitor-exhausted and dysfunctional CD8 T cells with non-exhausted T effector cells in the EMT6 tumor model in female mice. Upon combined TGFβ/PD-L1 blockade IFNγhi CD8 T effector cells show enhanced motility and accumulate in the tumor. Ensuing IFNγ signaling transforms myeloid, stromal, and tumor niches to yield an immune-supportive ecosystem. Blocking IFNγ abolishes the anti-PD-L1/anti-TGFβ therapy efficacy. Our data suggest that TGFβ works with PD-L1 to prevent TSCL expansion and replacement of exhausted CD8 T cells, thereby maintaining the T cell compartment in a dysfunctional state.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhe Zhang
- Genentech, South San Francisco, CA, USA
| | | | | | | | - Minh Thai
- Genentech, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Kim S, Min H, Nah J, Jeong J, Park K, Kim W, Lee Y, Kim J, An J, Seong RH. Defective N-glycosylation in tumor-infiltrating CD8 + T cells impairs IFN-γ-mediated effector function. Immunol Cell Biol 2023; 101:610-624. [PMID: 37114567 DOI: 10.1111/imcb.12647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/23/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
T cell-mediated antitumor immunity is modulated, in part, by N-glycosylation. However, the interplay between N-glycosylation and the loss of effector function in exhausted T cells has not yet been fully investigated. Here, we delineated the impact of N-glycosylation on the exhaustion of tumor-infiltrating lymphocytes in a murine colon adenocarcinoma model, focusing on the IFN-γ-mediated immune response. We found that exhausted CD8+ T cells downregulated the oligosaccharyltransferase complex, which is indispensable for N-glycan transfer. Concordant N-glycosylation deficiency in tumor-infiltrating lymphocytes leads to loss of antitumor immunity. Complementing the oligosaccharyltransferase complex restored IFN-γ production and alleviated CD8+ T cell exhaustion, resulting in reduced tumor growth. Thus, aberrant glycosylation induced in the tumor microenvironment incapacitates effector CD8+ T cells. Our findings provide insights into CD8+ T cell exhaustion by incorporating N-glycosylation to understand the characteristic loss of IFN-γ, opening new opportunities to amend the glycosylation status in cancer immunotherapies.
Collapse
Affiliation(s)
- Soyeon Kim
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Hyungyu Min
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Jinwoo Nah
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Jinguk Jeong
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Kyungsoo Park
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Wooseob Kim
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Youngjin Lee
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Jieun Kim
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Jungeun An
- Department of Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Rho Hyun Seong
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
84
|
Terrabuio E, Zenaro E, Constantin G. The role of the CD8+ T cell compartment in ageing and neurodegenerative disorders. Front Immunol 2023; 14:1233870. [PMID: 37575227 PMCID: PMC10416633 DOI: 10.3389/fimmu.2023.1233870] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
CD8+ lymphocytes are adaptive immunity cells with the particular function to directly kill the target cell following antigen recognition in the context of MHC class I. In addition, CD8+ T cells may release pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), and a plethora of other cytokines and chemoattractants modulating immune and inflammatory responses. A role for CD8+ T cells has been suggested in aging and several diseases of the central nervous system (CNS), including Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, limbic encephalitis-induced temporal lobe epilepsy and Susac syndrome. Here we discuss the phenotypic and functional alterations of CD8+ T cell compartment during these conditions, highlighting similarities and differences between CNS disorders. Particularly, we describe the pathological changes in CD8+ T cell memory phenotypes emphasizing the role of senescence and exhaustion in promoting neuroinflammation and neurodegeneration. We also discuss the relevance of trafficking molecules such as selectins, mucins and integrins controlling the extravasation of CD8+ T cells into the CNS and promoting disease development. Finally, we discuss how CD8+ T cells may induce CNS tissue damage leading to neurodegeneration and suggest that targeting detrimental CD8+ T cells functions may have therapeutic effect in CNS disorders.
Collapse
Affiliation(s)
- Eleonora Terrabuio
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | | | | |
Collapse
|
85
|
Chen M, Venturi V, Munier CML. Dissecting the Protective Effect of CD8 + T Cells in Response to SARS-CoV-2 mRNA Vaccination and the Potential Link with Lymph Node CD8 + T Cells. BIOLOGY 2023; 12:1035. [PMID: 37508464 PMCID: PMC10376827 DOI: 10.3390/biology12071035] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
SARS-CoV-2 vaccines have played a crucial role in effectively reducing COVID-19 disease severity, with a new generation of vaccines that use messenger RNA (mRNA) technology being administered globally. Neutralizing antibodies have featured as the heroes of vaccine-induced immunity. However, vaccine-elicited CD8+ T cells may have a significant impact on the early protective effects of the mRNA vaccine, which are evident 12 days after initial vaccination. Vaccine-induced CD8+ T cells have been shown to respond to multiple epitopes of SARS-CoV-2 and exhibit polyfunctionality in the periphery at the early stage, even when neutralizing antibodies are scarce. Furthermore, SARS-CoV-2 mRNA vaccines induce diverse subsets of memory CD8+ T cells that persist for more than six months following vaccination. However, the protective role of CD8+ T cells in response to the SARS-CoV-2 mRNA vaccines remains a topic of debate. In addition, our understanding of CD8+ T cells in response to vaccination in the lymph nodes, where they first encounter antigen, is still limited. This review delves into the current knowledge regarding the protective role of polyfunctional CD8+ T cells in controlling the virus, the response to SARS-CoV-2 mRNA vaccines, and the contribution to supporting B cell activity and promoting immune protection in the lymph nodes.
Collapse
Affiliation(s)
- Mengfei Chen
- The Kirby Institute, UNSW, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
86
|
Ma L, Hostetler A, Morgan DM, Maiorino L, Sulkaj I, Whittaker CA, Neeser A, Pires IS, Yousefpour P, Gregory J, Qureshi K, Dye J, Abraham W, Suh H, Li N, Love JC, Irvine DJ. Vaccine-boosted CAR T crosstalk with host immunity to reject tumors with antigen heterogeneity. Cell 2023; 186:3148-3165.e20. [PMID: 37413990 PMCID: PMC10372881 DOI: 10.1016/j.cell.2023.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/30/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy effectively treats human cancer, but the loss of the antigen recognized by the CAR poses a major obstacle. We found that in vivo vaccine boosting of CAR T cells triggers the engagement of the endogenous immune system to circumvent antigen-negative tumor escape. Vaccine-boosted CAR T promoted dendritic cell (DC) recruitment to tumors, increased tumor antigen uptake by DCs, and elicited the priming of endogenous anti-tumor T cells. This process was accompanied by shifts in CAR T metabolism toward oxidative phosphorylation (OXPHOS) and was critically dependent on CAR-T-derived IFN-γ. Antigen spreading (AS) induced by vaccine-boosted CAR T enabled a proportion of complete responses even when the initial tumor was 50% CAR antigen negative, and heterogeneous tumor control was further enhanced by the genetic amplification of CAR T IFN-γ expression. Thus, CAR-T-cell-derived IFN-γ plays a critical role in promoting AS, and vaccine boosting provides a clinically translatable strategy to drive such responses against solid tumors.
Collapse
Affiliation(s)
- Leyuan Ma
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Alexander Hostetler
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Duncan M Morgan
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Chemical Engineering, MIT, Cambridge, MA, USA
| | - Laura Maiorino
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Ina Sulkaj
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Charles A Whittaker
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Alexandra Neeser
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ivan Susin Pires
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Parisa Yousefpour
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Justin Gregory
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Kashif Qureshi
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Jonathan Dye
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Wuhbet Abraham
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Heikyung Suh
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - Na Li
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
| | - J Christopher Love
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Chemical Engineering, MIT, Cambridge, MA, USA; Ragon Institute of Massachusetts General Hospital, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Darrell J Irvine
- David H. Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Ragon Institute of Massachusetts General Hospital, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
87
|
Kamensek U, Cemazar M, Kranjc Brezar S, Jesenko T, Kos S, Znidar K, Markelc B, Modic Z, Komel T, Gorse T, Rebersek E, Jakopic H, Sersa G. What We Learned about the Feasibility of Gene Electrotransfer for Vaccination on a Model of COVID-19 Vaccine. Pharmaceutics 2023; 15:1981. [PMID: 37514166 PMCID: PMC10385748 DOI: 10.3390/pharmaceutics15071981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
DNA vaccination is one of the emerging approaches for a wide range of applications, including prophylactic vaccination against infectious diseases and therapeutic vaccination against cancer. The aim of this study was to evaluate the feasibility of our previously optimized protocols for gene electrotransfer (GET)-mediated delivery of plasmid DNA into skin and muscle tissues on a model of COVID-19 vaccine. Plasmids encoding the SARS-CoV-2 proteins spike (S) and nucleocapsid (N) were used as the antigen source, and a plasmid encoding interleukin 12 (IL-12) was used as an adjuvant. Vaccination was performed in the skin or muscle tissue of C57BL/6J mice on days 0 and 14 (boost). Two weeks after the boost, blood, spleen, and transfected tissues were collected to determine the expression of S, N, IL-12, serum interferon-γ, the induction of antigen-specific IgG antibodies, and cytotoxic T-cells. In accordance with prior in vitro experiments that indicated problems with proper expression of the S protein, vaccination with S did not induce S-specific antibodies, whereas significant induction of N-specific antibodies was detected after vaccination with N. Intramuscular vaccination outperformed skin vaccination and resulted in significant induction of humoral and cell-mediated immunity. Moreover, both boost and adjuvant were found to be redundant for the induction of an immune response. Overall, the study confirmed the feasibility of the GET for DNA vaccination and provided valuable insights into this approach.
Collapse
Affiliation(s)
- Urska Kamensek
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, SI-1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia
| | | | - Tanja Jesenko
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, SI-1000 Ljubljana, Slovenia
| | - Spela Kos
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
| | - Katarina Znidar
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
| | - Bostjan Markelc
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena Pot 5, SI-1000 Ljubljana, Slovenia
| | - Ziva Modic
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, SI-1000 Ljubljana, Slovenia
| | - Tilen Komel
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov Trg 2, SI-1000 Ljubljana, Slovenia
| | - Tim Gorse
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, SI-1000 Ljubljana, Slovenia
| | - Eva Rebersek
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, SI-1000 Ljubljana, Slovenia
| | - Helena Jakopic
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva Ulica 101, SI-1000 Ljubljana, Slovenia
| | - Gregor Sersa
- Institute of Oncology Ljubljana, Zaloska Cesta 2, SI-1000 Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena Pot 5, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
88
|
Wang B, Wang K, Jiang P, Ruppin E. Decoupling the correlation between cytotoxic and exhausted T lymphocyte transcriptomic signatures enhances melanoma immunotherapy response prediction from tumor expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524482. [PMID: 36789444 PMCID: PMC9928024 DOI: 10.1101/2023.01.17.524482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background Cytotoxic T lymphocytes (CTL) play a crucial role in anti-cancer immunity. Progression of CTL to terminal exhausted T lymphocytes (ETL) that overexpress inhibitory receptors can substantially decrease effector cytokines production and diminish cytolytic activity and terminal exhausted T cell cannot be reprogrammed by ICIs in tumor microenvironment (TME). However, while the activity levels of CTL and ETL are considered important determinants of immune checkpoint inhibitors (ICIs) response, it has been repeatedly observed that their predictive power of the latter is quite limited. Studying this conundrum on a large scale across the TCGA cohort, we find that ETL and CTL activity (estimated based on conventional gene signatures in the bulk tumor expression) is strongly positively correlated in most cancer types. We hypothesized that the limited predictive power of CTL activity might result from the high concordance of CTL and ETL activities, which mutually cancels out their individual antagonistic effects on ICI response. Methods Consequently, we have set out to identify a set of genes whose expression identifies a subset of patients where the CTL and ETL correlation is diminished, such that the association between these CD8+ T cell states and ICIs response is enhanced. Results Analyzing TCGA melanoma bulk gene expression, we identified a set of genes whose over-expression markedly diminishes the CTL and ETL correlation, termed a decoupling signature (DS). Reassuringly, we first find that the correlation between ETL and CTL activities is indeed markedly lower across high scoring DS patients than that observed across low scoring DS patients in numerous independent melanoma ICIs cohorts. Second, indeed, this successful decoupling increases the power of CTL activity in predicting ICIs response in high DS scoring patients. We show that the resulting prediction accuracy is superior to other state-of-art ICI predictive transcriptomic signatures. Conclusion The new decoupling score boosts the power of CTL activity in predicting ICIs response in melanoma from the tumor bulk expression. Its use enables a two-step stratification approach, where the response of high scoring DS patient can be predicted more accurately that with extant transcriptomic signatures.
Collapse
Affiliation(s)
- Binbin Wang
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Kun Wang
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Peng Jiang
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Eytan Ruppin
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
89
|
Xu X, Yi C, Feng T, Ge Y, Liu M, Wu C, Yu H, Chen X, Gopinath SCB, Zhang W, Zhao L, Zou J. Regulating tumor microenvironments by a lymph node-targeting adjuvant via tumor-specific CTL-derived IFNγ. Clin Immunol 2023:109685. [PMID: 37406980 DOI: 10.1016/j.clim.2023.109685] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 04/29/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Inducing tumor-specific T cell responses and regulating suppressive tumor microenvironments have been a challenge for effective tumor therapy. CpG (ODN), the Toll-like receptor 9 agonist, has been widely used as adjuvants of cancer vaccines to induce T cell responses. We developed a novel adjuvant to improve the targeting of lymph nodes. CpG were modified with lipid and glycopolymers by the combination of photo-induced RAFT polymerization and click chemistry, and the novel adjuvant was termed as lipid-glycoadjuvant@AuNPs (LCpG). OVA protein was used as model antigen and melanoma model was established to test the immunotherapy effect of the adjuvant. In tumor model, the antitumor effect and mechanism of LCpG on the response of CTLs were examined by flow cytometry and cell cytotoxicity assay. The effects of LCpG on macrophage polarization and Tregs differentiation in tumor microenvironment were also studied by cell depletion assay and cytokine neutralization assay. We also tested the therapeutic effect of the combination of the adjuvant and anti-PD-1 treatment. LCpG could be rapidly transported to and retained longer in the lymphoid nodes than unmodified CpG. In melanoma model, LCpG controlled both primary tumor and its metastasis, and established long-term memory. In spleen and tumor draining lymphoid nodes, LCpG activated tumor-specific Tc1 responses, with increased CD8+ T-cell proliferation, antigen-specific Tc1 cytokine production and specific-tumor killing capacity. In tumor microenvironments, antigen-specific Tc1 induced by the LCpG promoted CTL infiltration, skewed tumor associated macrophages to M1 phenotype, regulated Treg and induced proinflammatory cytokines production in a CTL-derived IFN-γ-dependent manner. In vivo cell depletion and adoptive transfer experiments confirmed that antitumor activity of LCpG included vaccine was mainly dependent on CTL-derived IFN-γ. The anti-tumor efficacy of LCpG was dramatically enhanced when combined with anti-PD1 immunotherapy. LCpG was a promising adjuvant for vaccine formulation which could augment tumor-specific Tc1 activity, and regulate tumor microenvironments.
Collapse
Affiliation(s)
- Xiaojing Xu
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, Suzhou 215123, Jiangsu, China
| | - Cheng Yi
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, Suzhou 215123, Jiangsu, China; Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Tianyun Feng
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, Suzhou 215123, Jiangsu, China; Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Youzhen Ge
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, Suzhou 215123, Jiangsu, China; Institute of Blood and Marrow Transplantation, Department of Hematology, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Mengjie Liu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, Jiangsu, China
| | - Cenhao Wu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Hao Yu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Xiang Chen
- Jiangsu Key Lab of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Subash C B Gopinath
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Perlis, Malaysia; Micro System Technology, Centre of Excellence (CoE), Universiti Malaysia Perlis, Perlis, Malaysia; Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia
| | - Weidong Zhang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Lixiang Zhao
- College of Basic Medicine and Biological Sciences, Medical Department, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Jun Zou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
90
|
Xiong Y, Taleb M, Misawa K, Hou Z, Banerjee S, Amador-Molina A, Jones DR, Chintala NK, Adusumilli PS. c-Kit signaling potentiates CAR T cell efficacy in solid tumors by CD28- and IL-2-independent co-stimulation. NATURE CANCER 2023; 4:1001-1015. [PMID: 37336986 PMCID: PMC10765546 DOI: 10.1038/s43018-023-00573-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 05/08/2023] [Indexed: 06/21/2023]
Abstract
The limited efficacy of chimeric antigen receptor (CAR) T cell therapy for solid tumors necessitates engineering strategies that promote functional persistence in an immunosuppressive environment. Herein, we use c-Kit signaling, a physiological pathway associated with stemness in hematopoietic progenitor cells (T cells lose expression of c-Kit during differentiation). CAR T cells with intracellular expression, but no cell-surface receptor expression, of the c-Kit D816V mutation (KITv) have upregulated STAT phosphorylation, antigen activation-dependent proliferation and CD28- and interleukin-2-independent and interferon-γ-mediated co-stimulation, augmenting the cytotoxicity of first-generation CAR T cells. This translates to enhanced survival, including in transforming growth factor-β-rich and low-antigen-expressing solid tumor models. KITv CAR T cells have equivalent or better in vivo efficacy than second-generation CAR T cells and are susceptible to tyrosine kinase inhibitors (safety switch). When combined with CD28 co-stimulation, KITv co-stimulation functions as a third signal, enhancing efficacy and providing a potent approach to treat solid tumors.
Collapse
Affiliation(s)
- Yuquan Xiong
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meriem Taleb
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kyohei Misawa
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Zhaohua Hou
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Srijita Banerjee
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alfredo Amador-Molina
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David R Jones
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Navin K Chintala
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prasad S Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
91
|
Jou E. Type 1 and type 2 cytokine-mediated immune orchestration in the tumour microenvironment and their therapeutic potential. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:474-497. [PMID: 37455828 PMCID: PMC10345208 DOI: 10.37349/etat.2023.00146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 07/18/2023] Open
Abstract
Cancer remains the second leading cause of death worldwide despite modern breakthroughs in medicine, and novel treatments are urgently needed. The revolutionary success of immune checkpoint inhibitors in the past decade serves as proof of concept that the immune system can be effectively harnessed to treat cancer. Cytokines are small signalling proteins with critical roles in orchestrating the immune response and have become an attractive target for immunotherapy. Type 1 immune cytokines, including interferon γ (IFNγ), interleukin-12 (IL-12), and tumour necrosis factor α (TNFα), have been shown to have largely tumour suppressive roles in part through orchestrating anti-tumour immune responses mediated by natural killer (NK) cells, CD8+ T cells and T helper 1 (Th1) cells. Conversely, type 2 immunity involving group 2 innate lymphoid cells (ILC2s) and Th2 cells are involved in tissue regeneration and wound repair and are traditionally thought to have pro-tumoural effects. However, it is found that the classical type 2 immune cytokines IL-4, IL-5, IL-9, and IL-13 may have conflicting roles in cancer. Similarly, type 2 immunity-related cytokines IL-25 and IL-33 with recently characterised roles in cancer may either promote or suppress tumorigenesis in a context-dependent manner. Furthermore, type 1 cytokines IFNγ and TNFα have also been found to have pro-tumoural effects under certain circumstances, further complicating the overall picture. Therefore, the dichotomy of type 1 and type 2 cytokines inhibiting and promoting tumours respectively is not concrete, and attempts of utilising these for cancer immunotherapy must take into account all available evidence. This review provides an overview summarising the current understanding of type 1 and type 2 cytokines in tumour immunity and discusses the prospects of harnessing these for immunotherapy in light of previous and ongoing clinical trials.
Collapse
Affiliation(s)
- Eric Jou
- Queens’ College, University of Cambridge, CB3 9ET Cambridge, UK
- MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK
| |
Collapse
|
92
|
Pandya A, Shah Y, Kothari N, Postwala H, Shah A, Parekh P, Chorawala MR. The future of cancer immunotherapy: DNA vaccines leading the way. Med Oncol 2023; 40:200. [PMID: 37294501 PMCID: PMC10251337 DOI: 10.1007/s12032-023-02060-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Immuno-oncology has revolutionized cancer treatment and has opened up new opportunities for developing vaccination methods. DNA-based cancer vaccines have emerged as a promising approach to activating the bodily immune system against cancer. Plasmid DNA immunizations have shown a favorable safety profile and there occurs induction of generalized as well as tailored immune responses in preclinical and early-phase clinical experiments. However, these vaccines have notable limitations in immunogenicity and heterogeneity and these require refinements. DNA vaccine technology has been focusing on improving vaccine efficacy and delivery, with parallel developments in nanoparticle-based delivery systems and gene-editing technologies such as CRISPR/Cas9. This approach has showcased great promise in enhancing and tailoring the immune response to vaccination. Strategies to enhance the efficacy of DNA vaccines include the selection of appropriate antigens, optimizing insertion in a plasmid, and studying combinations of vaccines with conventional strategies and targeted therapies. Combination therapies have attenuated immunosuppressive activities in the tumor microenvironment and enhanced the capability of immune cells. This review provides an overview of the current framework of DNA vaccines in oncology and focuses on novel strategies, including established combination therapies and those still under development.The challenges that oncologists, scientists, and researchers need to overcome to establish DNA vaccines as an avant-garde approach to defeating cancer, are also emphasized. The clinical implications of the immunotherapeutic approaches and the need for predictive biomarkers have also been reviewed upon. We have also tried to extend the role of Neutrophil extracellular traps (NETs) to the DNA vaccines. The clinical implications of the immunotherapeutic approaches have also been reviewed upon. Ultimately, refining and optimizing DNA vaccines will enable harnessing the immune system's natural ability to recognize and eliminate cancer cells, leading the world towards a revolution in cancer cure.
Collapse
Affiliation(s)
- Aanshi Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Yesha Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nirjari Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Humzah Postwala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Aayushi Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Priyajeet Parekh
- AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
93
|
Han SJ, Jain P, Gilad Y, Xia Y, Sung N, Park MJ, Dean AM, Lanz RB, Xu J, Dacso CC, Lonard DM, O'Malley BW. Steroid receptor coactivator 3 is a key modulator of regulatory T cell-mediated tumor evasion. Proc Natl Acad Sci U S A 2023; 120:e2221707120. [PMID: 37253006 PMCID: PMC10266015 DOI: 10.1073/pnas.2221707120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/01/2023] [Indexed: 06/01/2023] Open
Abstract
Steroid receptor coactivator 3 (SRC-3) is most strongly expressed in regulatory T cells (Tregs) and B cells, suggesting that it plays an important role in the regulation of Treg function. Using an aggressive E0771 mouse breast cell line syngeneic immune-intact murine model, we observed that breast tumors were "permanently eradicated" in a genetically engineered tamoxifen-inducible Treg-cell-specific SRC-3 knockout (KO) female mouse that does not possess a systemic autoimmune pathological phenotype. A similar eradication of tumor was noted in a syngeneic model of prostate cancer. A subsequent injection of additional E0771 cancer cells into these mice showed continued resistance to tumor development without the need for tamoxifen induction to produce additional SRC-3 KO Tregs. SRC-3 KO Tregs were highly proliferative and preferentially infiltrated into breast tumors by activating the chemokine (C-C motif) ligand (Ccl) 19/Ccl21/chemokine (C-C motif) receptor (Ccr)7 signaling axis, generating antitumor immunity by enhancing the interferon-γ/C-X-C motif chemokine ligand (Cxcl) 9 signaling axis to facilitate the entrance and function of effector T cells and natural killer cells. SRC-3 KO Tregs also show a dominant effect by blocking the immune suppressive function of WT Tregs. Importantly, a single adoptive transfer of SRC-3 KO Tregs into wild-type E0771 tumor-bearing mice can completely abolish preestablished breast tumors by generating potent antitumor immunity with a durable effect that prevents tumor reoccurrence. Therefore, treatment with SRC-3-deleted Tregs represents an approach to completely block tumor growth and recurrence without the autoimmune side effects that typically accompany immune checkpoint modulators.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX77030
| | - Prashi Jain
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Yosef Gilad
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Yan Xia
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Nuri Sung
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Mi Jin Park
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Adam M. Dean
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Rainer B. Lanz
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - Jianming Xu
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX77030
| | - Clifford C. Dacso
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX77030
- Department of Medicine, Baylor College of Medicine, Houston, TX77030
| | - David M. Lonard
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX77030
| | - Bert W. O'Malley
- Department of Molecular Cellular Biology, Baylor College of Medicine, Houston, TX77030
- Nuclear Receptor, Transcription and Chromatin Biology Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX77030
| |
Collapse
|
94
|
Ji T, Shi Q, Mei S, Xu J, Liang H, Xie L, Ren T, Sun K, Li D, Tang X, Zhang P, Guo W. Integrated analysis of single-cell and bulk RNA sequencing data reveals an immunostimulatory microenvironment in tumor thrombus of osteosarcoma. Oncogenesis 2023; 12:31. [PMID: 37244923 DOI: 10.1038/s41389-023-00474-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/29/2023] Open
Abstract
Tumor thrombus of bone sarcomas represents a unique reservoir for various types of cancer and immune cells, however, the investigation of tumor thrombus at a single-cell level is very limited. And it is still an open question to identify the thrombus-specific tumor microenvironment that is associated with the tumor-adaptive immune response. Here, by analyzing bulk tissue and single-cell level transcriptome from the paired thrombus and primary tumor samples of osteosarcoma (OS) patients, we define the immunostimulatory microenvironment in tumor thrombus of OS with a higher proportion of tumor-associated macrophages with M1-like states (TAM-M1) and TAM-M1 with high expression of CCL4. OS tumor thrombus is found to have upregulated IFN-γ and TGF-β signalings that are related to immune surveillance of circulating tumor cells in blood circulation. Further multiplexed immunofluorescence staining of the CD3/CD4/CD8A/CD68/CCL4 markers validates the immune-activated state in the tumor thrombus samples. Our study first reports the transcriptome differences at a single-cell level between tumor thrombus and primary tumor in sarcoma.
Collapse
Affiliation(s)
- Tao Ji
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Qianyu Shi
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Song Mei
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiuhui Xu
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Haijie Liang
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Lu Xie
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Tingting Ren
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Kunkun Sun
- Department of Pathology, People's Hospital, Peking University, Beijing, 100044, China
| | - Dasen Li
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Wei Guo
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China.
| |
Collapse
|
95
|
Foster JB, Alonso MM, Sayour E, Davidson TB, Persson ML, Dun MD, Kline C, Mueller S, Vitanza NA, van der Lugt J. Translational considerations for immunotherapy clinical trials in pediatric neuro-oncology. Neoplasia 2023; 42:100909. [PMID: 37244226 DOI: 10.1016/j.neo.2023.100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/20/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
While immunotherapy for pediatric cancer has made great strides in recent decades, including the FDA approval of agents such as dinutuximab and tisgenlecleucel, these successes have rarely impacted children with pediatric central nervous system (CNS) tumors. As our understanding of the biological underpinnings of these tumors evolves, new immunotherapeutics are undergoing rapid clinical translation specifically designed for children with CNS tumors. Most recently, there have been notable clinical successes with oncolytic viruses, vaccines, adoptive cellular therapy, and immune checkpoint inhibition. In this article, the immunotherapy working group of the Pacific Pediatric Neuro-Oncology Consortium (PNOC) reviews the current and future state of immunotherapeutic CNS clinical trials with a focus on clinical trial development. Based on recent therapeutic trials, we discuss unique immunotherapy clinical trial challenges, including toxicity considerations, disease assessment, and correlative studies. Combinatorial strategies and future directions will be addressed. Through internationally collaborative efforts and consortia, we aim to direct this promising field of immuno-oncology to the next frontier of successful application against pediatric CNS tumors.
Collapse
Affiliation(s)
- Jessica B Foster
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA.
| | - Marta M Alonso
- Department of Pediatrics, Program of Solid Tumors, University Clinic of Navarra, Center for the Applied Medical Research (CIMA), Pamplona, Spain
| | - Elias Sayour
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, FL USA
| | - Tom B Davidson
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Mika L Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia; Mark Hughes Foundation Centre for Brain Cancer Research, Paediatric Program, College of Health, Medicine & Wellbeing, University of Newcastle, Callaghan, NSW, Australia
| | - Cassie Kline
- Division of Oncology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Sabine Mueller
- Department of Neurology, Department of Neurosurgery and Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Nicholas A Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
96
|
Han J, Wu M, Liu Z. Dysregulation in IFN-γ signaling and response: the barricade to tumor immunotherapy. Front Immunol 2023; 14:1190333. [PMID: 37275859 PMCID: PMC10233742 DOI: 10.3389/fimmu.2023.1190333] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 06/07/2023] Open
Abstract
Interferon-gamma (IFN-γ) has been identified as a crucial factor in determining the responsiveness to immunotherapy. Produced primarily by natural killer (NK) and T cells, IFN-γ promotes activation, maturation, proliferation, cytokine expression, and effector function in immune cells, while simultaneously inducing antigen presentation, growth arrest, and apoptosis in tumor cells. However, tumor cells can hijack the IFN-γ signaling pathway to mount IFN-γ resistance: rather than increasing antigenicity and succumbing to death, tumor cells acquire stemness characteristics and express immunosuppressive molecules to defend against antitumor immunity. In this review, we summarize the potential mechanisms of IFN-γ resistance occurring at two critical stages: disrupted signal transduction along the IFNG/IFNGR/JAK/STAT pathway, or preferential expression of specific interferon-stimulated genes (ISGs). Elucidating the molecular mechanisms through which tumor cells develop IFN-γ resistance help identify promising therapeutic targets to improve immunotherapy, with broad application value in conjugation with targeted, antibody or cellular therapies.
Collapse
Affiliation(s)
- Jiashu Han
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| |
Collapse
|
97
|
Liang Z, Chen W, Guo Y, Ren Y, Tian Y, Cai W, Bao Y, Liu Q, Ding P, Li Y. Soluble monomeric human programmed cell death-ligand 1 inhibits the functions of activated T cells. Front Immunol 2023; 14:1133883. [PMID: 37266424 PMCID: PMC10229872 DOI: 10.3389/fimmu.2023.1133883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/05/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction The presence of soluble human programmed cell death-ligand 1 (shPD-L1) in the blood of patients with cancer has been reported to be negatively correlated with disease prognosis. However, little information exists about the mechanisms underlying high levels of shPD-L1 for promoting disease progression. Methods In this study, we first analyzed the correlations between shPD-L1 and apoptosis of T cells in patients with cancer, then tested the effect of shPD-L1 on T-cell functions and the production of regulatory T cells. Results We found that the apoptosis of human peripheral PD-1+CD4+ T cells was significantly elevated in patients with cancer compared with healthy donors and was positively correlated with circulating PD-L1 levels in patients with cancer. In vitro, monomeric shPD-L1 significantly inhibited the proliferation, cytokine secretion, and cancer cell-killing activity of peripheral blood mononuclear cells (PBMCs) activated by either agonist antibodies or HATac (high-affinity T cell activation core)-NYE (NY-ESO-1 antigen). It also promoted CD4+ T cells to express forkhead family transcription factor 3 (FoxP3) for the conversion of induced T regulatory cells, which was more significant than that mediated by soluble human PD-L1 fusion protein (shPD-L1-Fc). Discussion These results confirm that soluble PD-L1 could be a candidate for inhibiting the functions of activated T cells, promoting peripheral tolerance to tumor cells, and implicating in system tumor immune escape in addition to the tumor microenvironment. This is an important mechanism explaining the negative correlation between peripheral blood PD-L1 levels and cancer prognosis. Therefore, understanding the roles of hPD-L1 in peripheral blood will be helpful for the development of precision immunotherapy programs in treating various tumors.
Collapse
Affiliation(s)
- Zhaoduan Liang
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health GuangDong Laboratory, Guangzhou, Guangdong, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Wenfang Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yunzhuo Guo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuefei Ren
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ye Tian
- T-cell Immunity Optimized Cure (TIOC) Therapeutics Limited, Hangzhou, Zhejiang, China
| | - Wenxuan Cai
- T-cell Immunity Optimized Cure (TIOC) Therapeutics Limited, Hangzhou, Zhejiang, China
| | - Yifeng Bao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qi Liu
- T-cell Immunity Optimized Cure (TIOC) Therapeutics Limited, Hangzhou, Zhejiang, China
| | - Peng Ding
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yi Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- T-cell Immunity Optimized Cure (TIOC) Therapeutics Limited, Hangzhou, Zhejiang, China
| |
Collapse
|
98
|
Hu Y, Becker ML, Willits RK. Quantification of cell migration: metrics selection to model application. Front Cell Dev Biol 2023; 11:1155882. [PMID: 37255596 PMCID: PMC10225508 DOI: 10.3389/fcell.2023.1155882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023] Open
Abstract
Cell migration plays an essential role in physiological and pathological states, such as immune response, tissue generation and tumor development. This phenomenon can occur spontaneously or it can be triggered by an external stimuli, including biochemical, mechanical, or electrical cues that induce or direct cells to migrate. The migratory response to these cues is foundational to several fields including neuroscience, cancer and regenerative medicine. Various platforms are available to qualitatively and quantitatively measure cell migration, making the measurements of cell motility straight-forward. Migratory behavior must be analyzed by multiple metrics and then models to connect the measurements to physiological meaning. This review will focus on describing and quantifying cell movement for individual cell migration.
Collapse
Affiliation(s)
- Yang Hu
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, United States
| | - Matthew L. Becker
- Departments of Chemistry, Mechanical Engineering and Materials Science, Biomedical Engineering and Orthopedic Surgery, Duke University, Durham, NC, United States
| | - Rebecca Kuntz Willits
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, United States
- Department of Bioengineering, College of Engineering, Northeastern University, Boston, MA, United States
| |
Collapse
|
99
|
Masenga SK, Mweene BC, Luwaya E, Muchaili L, Chona M, Kirabo A. HIV-Host Cell Interactions. Cells 2023; 12:1351. [PMID: 37408185 DOI: 10.3390/cells12101351] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The development of antiretroviral drugs (ARVs) was a great milestone in the management of HIV infection. ARVs suppress viral activity in the host cell, thus minimizing injury to the cells and prolonging life. However, an effective treatment has remained elusive for four decades due to the successful immune evasion mechanisms of the virus. A thorough understanding of the molecular interaction of HIV with the host cell is essential in the development of both preventive and curative therapies for HIV infection. This review highlights several inherent mechanisms of HIV that promote its survival and propagation, such as the targeting of CD4+ lymphocytes, the downregulation of MHC class I and II, antigenic variation and an envelope complex that minimizes antibody access, and how they collaboratively render the immune system unable to mount an effective response.
Collapse
Affiliation(s)
- Sepiso K Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
- Vanderbilt University Medical Center, Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| | - Bislom C Mweene
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Emmanuel Luwaya
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Lweendo Muchaili
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Makondo Chona
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Campus, Livingstone 10101, Zambia
| | - Annet Kirabo
- Vanderbilt University Medical Center, Department of Medicine, Division of Clinical Pharmacology, Room 536 Robinson Research Building, Nashville, TN 37232-6602, USA
| |
Collapse
|
100
|
Li W, Moorlag SJCFM, Koeken VACM, Röring RJ, de Bree LCJ, Mourits VP, Gupta MK, Zhang B, Fu J, Zhang Z, Grondman I, van Meijgaarden KE, Zhou L, Alaswad A, Joosten LAB, van Crevel R, Xu CJ, Netea MG, Li Y. A single-cell view on host immune transcriptional response to in vivo BCG-induced trained immunity. Cell Rep 2023; 42:112487. [PMID: 37155329 DOI: 10.1016/j.celrep.2023.112487] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/22/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Bacillus Calmette-Guérin (BCG) vaccination is a prototype model for the study of trained immunity (TI) in humans, and results in a more effective response of innate immune cells upon stimulation with heterologous stimuli. Here, we investigate the heterogeneity of TI induction by single-cell RNA sequencing of immune cells collected from 156 samples. We observe that both monocytes and CD8+ T cells show heterologous transcriptional responses to lipopolysaccharide, with an active crosstalk between these two cell types. Furthermore, the interferon-γ pathway is crucial in BCG-induced TI, and it is upregulated in functional high responders. Data-driven analyses and functional experiments reveal STAT1 to be one of the important transcription factors for TI shared in all identified monocyte subpopulations. Finally, we report the role of type I interferon-related and neutrophil-related TI transcriptional programs in patients with sepsis. These findings provide comprehensive insights into the importance of monocyte heterogeneity during TI in humans.
Collapse
Affiliation(s)
- Wenchao Li
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany
| | - Simone J C F M Moorlag
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Valerie A C M Koeken
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Rutger J Röring
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - L Charlotte J de Bree
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Vera P Mourits
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Manoj K Gupta
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany
| | - Bowen Zhang
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany
| | - Jianbo Fu
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany
| | - Zhenhua Zhang
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany
| | - Inge Grondman
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | | | - Liang Zhou
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany
| | - Ahmed Alaswad
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Cheng-Jian Xu
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Yang Li
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Lower Saxony, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|