51
|
Asadi Z, Fathi M, Rismani E, Bigdelou Z, Johari B. Application of decoy oligodeoxynucleotides strategy for inhibition of cell growth and reduction of metastatic properties in nonresistant and erlotinib-resistant SW480 cell line. Cell Biol Int 2021; 45:1001-1014. [PMID: 33377576 DOI: 10.1002/cbin.11543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/28/2020] [Accepted: 12/25/2020] [Indexed: 12/19/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a critical regulator for angiogenesis, cell cycle progression, apoptosis, and drug resistance. Resistance toward EGF receptor (EGFR) inhibitors is a significant clinical concern for metastatic colon cancer patients. The present study aimed to evaluate the blocking influences of STAT3 decoy oligodeoxynucleotides (ODNs) on the STAT3 survival signaling pathway in nonresistant and erlotinib-resistant SW480 colon cancer cells. First, STAT3 decoy and scramble ODNs were designed according to STAT3 elements in the promoter region of MYCT1 gene and tested for the interaction of STAT3 protein with designed ODNs via in silico molecular docking study. Then, the efficiency of transfection and subcellular localization of ODNs were assessed using flow cytometry and fluorescence microscopy, respectively. Cell viability, cell cycle, and apoptosis tests, scratch and colony formation assays, and real-time PCR were also used to study the cancerous properties of cells. A considerable decrease in proliferation of colon cancer cells was observed with blockade of STAT3 signaling due to cell cycle arrest and induced apoptosis via downregulation of cyclin D1 and Bcl-XL, respectively. Furthermore, upon transfecting STAT3 decoy ODNs, colony formation potential and migration activity in both SW480 colon cancer cell lines were decreased compared to the control groups. From this study, it could be concluded that STAT3 is critical for cell growth inhibition and metastatic properties reduction of resistant SW480 colon cancer cells; therefore, STAT3 decoy ODNs could be considered as potential therapeutics along with current remedies for treating drug-resistant colon cancer.
Collapse
Affiliation(s)
- Zoleykha Asadi
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mojtaba Fathi
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Rismani
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Bigdelou
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behrooz Johari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
52
|
Bu H, Li X, Hu L, Wang J, Li Y, Zhao T, Wang H, Wang S. The anti-inflammatory mechanism of the medicinal fungus puffball analysis based on network pharmacology. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
53
|
Eberhardt W, Haeussler K, Nasrullah U, Pfeilschifter J. Multifaceted Roles of TRIM Proteins in Colorectal Carcinoma. Int J Mol Sci 2020; 21:ijms21207532. [PMID: 33066016 PMCID: PMC7590211 DOI: 10.3390/ijms21207532] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed tumor in humans and one of the most common causes of cancer-related death worldwide. The pathogenesis of CRC follows a multistage process which together with somatic gene mutations is mainly attributed to the dysregulation of signaling pathways critically involved in the maintenance of homeostasis of epithelial integrity in the intestine. A growing number of studies has highlighted the critical impact of members of the tripartite motif (TRIM) protein family on most types of human malignancies including CRC. In accordance, abundant expression of many TRIM proteins has been observed in CRC tissues and is frequently correlating with poor survival of patients. Notably, some TRIM members can act as tumor suppressors depending on the context and the type of cancer which has been assessed. Mechanistically, most cancer-related TRIMs have a critical impact on cell cycle control, apoptosis, epithelial–mesenchymal transition (EMT), metastasis, and inflammation mainly through directly interfering with diverse oncogenic signaling pathways. In addition, some recent publications have emphasized the emerging role of some TRIM members to act as transcription factors and RNA-stabilizing factors thus adding a further level of complexity to the pleiotropic biological activities of TRIM proteins. The current review focuses on oncogenic signaling processes targeted by different TRIMs and their particular role in the development of CRC. A better understanding of the crosstalk of TRIMs with these signaling pathways relevant for CRC development is an important prerequisite for the validation of TRIM proteins as novel biomarkers and as potential targets of future therapies for CRC.
Collapse
|
54
|
NF-κB and STAT3 co-operation enhances high glucose induced aggressiveness of cholangiocarcinoma cells. Life Sci 2020; 262:118548. [PMID: 33038372 DOI: 10.1016/j.lfs.2020.118548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
AIMS The present report aimed to investigate the underlying genes and pathways of high glucose driving cholangiocarcinoma (CCA) aggressiveness. MAIN METHODS We screened and compared the gene expression profiles obtained by RNA sequencing, of CCA cells cultured in high and normal glucose. Results from the transcriptomic analysis were confirmed in additional cell lines using in vitro migration-invasion assay, Western blotting and immunocytofluorescence. KEY FINDINGS Data indicated that high glucose increased the expression of interleukin-1β (IL-1β), an upstream regulator of nuclear factor-κB (NF-κB) pathway, through the nuclear localization of NF-κB. High glucose-induced NF-κB increased the migration and invasion of CCA cells and the expression of downstream NF-κB targeted genes associated with aggressiveness, including interleukin-6, a potent triggering signal of the signal transducer and activator of transcription 3 (STAT3) pathway. Such effects were reversed by inhibiting NF-κB nuclear translocation which additionally reduced the phosphorylation of STAT3 at Y705. SIGNIFICANCE These results indicate that NF-κB is activated by high glucose and they suggest that NF-κB interaction with STAT3 enhances CCA aggressiveness. Therefore, targeting multiple pathways such as STAT3 and NF-κB might improve CCA treatment outcome especially in condition such as hyperglycemia.
Collapse
|
55
|
Ji Y, Tu X, Hu X, Wang Z, Gao S, Zhang Q, Zhang W, Zhang H, Chen W. The role and mechanism of action of RNF186 in colorectal cancer through negative regulation of NF-κB. Cell Signal 2020; 75:109764. [PMID: 32882406 DOI: 10.1016/j.cellsig.2020.109764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/25/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignant gastrointestinal cancers worldwide. RING finger protein 186 (RNF186) is a member of the RING finger protein family. RNF186 has been reported to be involved in the regulation of the intestinal homeostasis through the regulation of endoplasmic reticulum (ER) stress in colonic epithelial cells. However, its role in CRC remains unclear. In this study, we found that colorectal tumours from human patients had decreased levels of RNF186. We demonstrated that overexpression of RNF186 suppressed the growth and migration of CRC-derived cell lines in vitro and inhibited tumour proliferation in vivo. Further, our findings indicated that forced expression of RNF186 inhibited nuclear factor-κB (NF-κB) activation by reducing the phosphorylation of NF-κB. In addition, our results showed that RNF186-/- mice exhibited significantly increased tumour burden compared to the wild type (WT) mice following treatment with azoxymethane/dextran sulfate sodium (AOM/DSS). Compared to WT mice, the percentage of Ki67 positive cells was increased in the RNF186-/- mice, indicating that RNF186 is crucial for intestinal cell proliferation during tumorigenesis. Taken together, our data suggest that RNF186 inhibits the development of CRC, and that this effect is mediated through the suppression of NF-κB activity.
Collapse
Affiliation(s)
- Yizhong Ji
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Xucan Tu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Xiuqi Hu
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Zhenglin Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Sifan Gao
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Qifan Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Wei Zhang
- The Second Clinical Medical College of Anhui Medical University, Hefei 230032, China
| | - Huabing Zhang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
| | - Wei Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China.
| |
Collapse
|
56
|
Wang Q, Li XL, Mei Y, Ye JC, Fan W, Cheng GH, Zeng MS, Feng GK. The anti-inflammatory drug dimethyl itaconate protects against colitis-associated colorectal cancer. J Mol Med (Berl) 2020; 98:1457-1466. [PMID: 32840638 DOI: 10.1007/s00109-020-01963-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 07/05/2020] [Accepted: 08/11/2020] [Indexed: 01/15/2023]
Abstract
Colorectal cancer (CRC) is the third most common diagnosed cancer of which risk factors include unhealthy diet, smoking, and chronic inflammation. Weakening the inflammatory response emerges as an effective therapeutic strategy to prevent the progression of CRC. Inflammatory macrophages produce substantial amounts of immunoregulatory metabolite itaconate, which is synthesized by the immune response gene 1 (Irg1). In this study, we use a membrane-permeable itaconate derivative, dimethyl itaconate (DI), for the protection against CRC in mouse model. DI decreased the high inflammatory state of ulcerative colitis and reduced the colitis-associated cancer (CAC) risk. Mechanistically, DI inhibited the secretion of the cytokines IL-1β and CCL2 from intestinal epithelial cells, and therefore reduced the recruitment of macrophages into tumor microenvironment. Meanwhile, the decrease of macrophage infiltration was accompanied by a decrease of myeloid-derived suppressor cell (MDSC) infiltration and the differentiation of T cell subsets into cytotoxic T cells. We showed that itaconate derivative limits inflammatory response, indicating a negative feedback loop that involves an inflammatory agent and itaconate. Our findings demonstrate the potential application of DI for the prevention of colitis-associated CRC. KEY MESSAGES: Dimethyl itaconate (DI) suppresses ulcerative colitis and colitis-associated colorectal cancer DI decreases infiltration of macrophages and myeloid-derived suppressor cells into tumor DI weakens the inflammatory response via inhibiting the secretion of IL-1β and CCL2.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center/Cancer Hospital, 651 Dongfeng East Road, Guangzhou, 510060, China.,Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xin Ling Li
- Nuclear Medicine Department, Radiation Oncology Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yan Mei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center/Cancer Hospital, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Jia-Chong Ye
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center/Cancer Hospital, 651 Dongfeng East Road, Guangzhou, 510060, China
| | - Wei Fan
- Nuclear Medicine Department, Radiation Oncology Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Guang-Hui Cheng
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center/Cancer Hospital, 651 Dongfeng East Road, Guangzhou, 510060, China.
| | - Guo-Kai Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center/Cancer Hospital, 651 Dongfeng East Road, Guangzhou, 510060, China.
| |
Collapse
|
57
|
Niu M, Yi M, Dong B, Luo S, Wu K. Upregulation of STAT1-CCL5 axis is a biomarker of colon cancer and promotes the proliferation of colon cancer cells. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:951. [PMID: 32953751 PMCID: PMC7475405 DOI: 10.21037/atm-20-4428] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Colorectal cancer (CRC) is the third most commonly diagnosed cancer in men and women globally. Investigating genetic ground differences between normal and CRC tissues would be significant for identifying some key oncogenic pathways and developing anti-cancer agents. Methods Weighted gene co-expression network analysis (WGCNA) method was used to screen out core pathways related to the clinical traits of CRC patients. Then, multiple databases were utilized to further verify the hub genes obtained from data mining. Finally, to explore the role of hub genes in CRC, cell counting and EdU assays were performed. Results The results of the WGCNA analysis showed that a module (turquoise module) was highly related with CRC differentiation grade (R =0.53, P<0.0001). Enrichment analysis indicated that genes of the turquoise module were remarkably enriched in multiple inflammatory processes and pathways. Among all hub genes of the turquoise module, the mRNA levels of STAT1 and CCL5 were significantly higher in CRC than in normal colon tissues. STAT1 expression was highly positively correlated with the level of CCL5. The results of the cell counting, EdU, CCK-8, and CFSE staining assays showed that interfering with STAT1 and CCL5 could inhibit the proliferation of CRC cells. Conclusions Our study indicated that the STAT1-CCL5 axis is an important modulator in the development of CRC through promoting cell proliferation. Moreover, the levels of STAT1 and CCL5 might be valuable biomarkers for CRC screening.
Collapse
Affiliation(s)
- Mengke Niu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Dong
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Kongming Wu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China.,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
58
|
Zeb2 drives invasive and microbiota-dependent colon carcinoma. ACTA ACUST UNITED AC 2020; 1:620-634. [DOI: 10.1038/s43018-020-0070-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/28/2020] [Indexed: 12/18/2022]
|
59
|
Cheng C, Shou Q, Lang J, Jin L, Liu X, Tang D, Yang Z, Fu H. Gehua Jiecheng Decoction Inhibits Diethylnitrosamine-Induced Hepatocellular Carcinoma in Mice by Improving Tumor Immunosuppression Microenvironment. Front Pharmacol 2020; 11:809. [PMID: 32547401 PMCID: PMC7272686 DOI: 10.3389/fphar.2020.00809] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Gehua Jiecheng Decoction (GHJCD), a famous traditional Chinese medicine, has been used in the prevention and treatment of precancerous lesion of liver cancer, but its active mechanism has not been reported. This study aimed to evaluate the therapeutic effect of GHJCD on diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC) in mice and the mechanism of this effect. We found that GHJCD effectively inhibited the occurrence of liver cancer and reduced the tumor area. The ratio of regulatory cells (Tregs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) in HCC microenvironment was down-regulated, whereas that of CD8 T and effective CD8 T cells was up-regulated. In addition, the expression levels of inflammatory factors IL-6, IL-10, TNF-α, and CCL-2 in the liver were inhibited, whereas those of the angiogenesis related molecules CD31 and VEGF were decreased. Moreover, WNT1, β-catenin, NF-kB, p-MAPK, p-AKT, and p-SRC content in the liver decreased, whereas APC content increased. These results suggested that GHJCD exerted a good inhibitory effect on liver cancer induced by DEN and thus may have a multi-target effect; GHJCD not only antagonized the immunosuppressive effect of the microenvironment of liver cancer but also exerted strong anti-inflammatory and antiangiogenesis effects.
Collapse
Affiliation(s)
- Changpei Cheng
- Affiliated First Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiyang Shou
- Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiali Lang
- Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lu Jin
- Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xia Liu
- Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dongxin Tang
- Affiliated First Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhu Yang
- Affiliated First Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Huiying Fu
- Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
60
|
Kang N, Cao S, Jiang B, Zhang Q, Donkor PO, Zhu Y, Qiu F, Gao X. Cetuximab enhances oridonin-induced apoptosis through mitochondrial pathway and endoplasmic reticulum stress in laryngeal squamous cell carcinoma cells. Toxicol In Vitro 2020; 67:104885. [PMID: 32407876 DOI: 10.1016/j.tiv.2020.104885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/24/2022]
Abstract
Cetuximab plus oridonin showed a synergistic way to kill laryngeal squamous cell carcinoma (LSCC), as been reported previously. The present work further mechanistically extended action of the synergistic effects of combination treatment. Firstly, two LSCC cells displayed higher sensitivity to oridonin, whereas both low EGFR expression tumor cells and EGFR knockdown LSCC cells were less sensitive to oridonin. Next, cetuximab/oridonin significantly enhanced the mitochondrial apoptosis through NF-κB. Meanwhile, PI3K/Akt and JAK2/STAT3 pathways are associated with the nucleus translocation of NF-κB by combination treatment. Additionally, cetuximab enhanced oridonin-promoted ER stress-related apoptosis. Interestingly, both ER stress and mitochondrial apoptosis by combination treatment are abrogated by ROS scavenger. Furthermore, oridonin/cetuximab induced ROS production after 1.5 h, followed by G2/M arrest and apoptosis, indicating that ROS generation might be an early and key event. Taken together, cetuximab enhances oridonin-induced ER stress and mitochondrial apoptotic pathway, which contributes to the synergistic antitumor effects of cetuximab/oridonin.
Collapse
Affiliation(s)
- Ning Kang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Shijie Cao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Benke Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Faculty of Life Sciences and Biological Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Qiang Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Paul Owusu Donkor
- School of Pharmacy, University of Ghana, Korle Bu, Accra, P.O. Box 52, Ghana
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
61
|
Walter CEJ, Durairajan S, Periyandavan K, C GPD, G DJD, A HRV, Johnson T, Zayed H. Bladder neoplasms and NF-κB: an unfathomed association. Expert Rev Mol Diagn 2020; 20:497-508. [PMID: 32228251 DOI: 10.1080/14737159.2020.1743688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Bladder cancer is the second most common genitourinary tract cancer and is often recurrent and/or chemoresistant after tumor resection. Cigarette smoking, exposure to aromatic amines, and chronic infection/inflammation are bladder cancer risk factors. NF-κB is a transcription factor that plays a critical role in normal physiology and bladder cancer. Bladder cancer patients have constitutively active NF-κB triggered by pro-inflammatory cytokines, chemokines, and hypoxia, augmenting carcinogenesis and progression.Areas covered: NF-κB orchestrates protein interactions (PTEN, survivin, VEGF), regulation (CYLD, USP13) and gene expression (Trp 53) resulting in bladder cancer progression, recurrence and resistance to therapy. This review focuses on NF-κB in bladder inflammation, cancer and resistance to therapy.Expert opinion: NF-κB and bladder cancer necessitate further research to develop better diagnostic and treatment regimens that address progression, recurrence and resistance to therapy. NF-κB is a master regulator that can act with or on minimally one cancer hallmark gene or protein, leading to bladder cancer progression (Tp53, PTEN, VEGF, HMGB1, CYLD, USP13), recurrence (PCNA, BcL-2, JUN) and resistance to therapy (P-gp, twist, SETD6). Thus, an understanding of bladder cancer in relation to NF-κB will offer improved strategies and efficacious targeted therapies resulting in minimal progression, recurrence and resistance to therapy.
Collapse
Affiliation(s)
- Charles Emmanuel Jebaraj Walter
- Department of Biotechnology, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Sankari Durairajan
- Department of Biotechnology, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Kalaiselvi Periyandavan
- Department of Medical Biochemistry, Dr. ALM PG Institute of Basic Medical Science, University of Madras, Chennai, India
| | - George Priya Doss C
- Department of Integrative Biology, School of Biosciences and Technology, VIT University, Vellore, India
| | - Dicky John Davis G
- Department of Biotechnology, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Hannah Rachel Vasanthi A
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Thanka Johnson
- Department of Biotechnology, Faculty of Biomedical Sciences, Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
62
|
Wu JY, Chen YJ, Bai L, Liu YX, Fu XQ, Zhu PL, Li JK, Chou JY, Yin CL, Wang YP, Bai JX, Wu Y, Wu ZZ, Yu ZL. Chrysoeriol ameliorates TPA-induced acute skin inflammation in mice and inhibits NF-κB and STAT3 pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 68:153173. [PMID: 31999977 DOI: 10.1016/j.phymed.2020.153173] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Chrysoeriol is a flavone found in diverse dietary and medicinal herbs such as Lonicerae Japonicae Flos (the dried flower bud or newly bloomed flower of Lonicera japonica Thunb.). These herbs are commonly used for treating inflammatory diseases. Herbal extracts containing chrysoeriol have been shown to have anti-inflammatory effects and inhibit nuclear factor-kappa B (NF-κB) signaling. Some of these extracts can inhibit signal transducers and activators of transcription 3 (STAT3) signaling in cancer cells. PURPOSE This study aimed to determine whether chrysoeriol has anti-inflammatory effects and whether NF-κB and STAT3 pathways are involved in the effects. STUDY DESIGN AND METHODS A TPA (12-O-tetradecanoylphorbol-13-acetate)-induced ear edema mouse model and LPS-stimulated RAW264.7 cells were used to evaluate the effects of chrysoeriol. Griess reagent was used to measure the production of nitric oxide (NO). Western blot and enzyme-linked immunosorbent assays were employed to detect protein levels. RT-qPCR analyses were used to detect mRNA levels. Haematoxylin and eosin (H&E) staining was employed to examine the pathological conditions in animal tissues. RESULTS In the mouse model, chrysoeriol ameliorated acute skin inflammation, evidenced by reduced ear thickness, ear weight and number of inflammatory cells in inflamed ear tissues. The compound lowered protein levels of phospho-p65 (Ser536), phospho-STAT3 (Tyr705), inducible nitric oxide synthases (iNOS), cyclooxygenase-2 (COX-2), interleukin 6 (IL-6), IL-1β and tumor necrosis factor α (TNF-α) in mouse swollen ears. In LPS-stimulated RAW264.7 cells, chrysoeriol also lowered levels of these proteins. In addition, chrysoeriol decreased the production of NO and prostaglandin E2; inhibited the phosphorylation of inhibitor of κB (Ser32), p65 (Ser536) and Janus kinase 2 (Tyr1007/1008); decreased nuclear localization of p50, p65 and STAT3; and down-regulated mRNA levels of pro-inflammatory cytokines IL-6, IL-1β and TNF-α that are transcriptionally regulated by NF-κB and STAT3 in the cell model. CONCLUSION We for the first time demonstrated that chrysoeriol ameliorates TPA-induced ear edema in mice, and that inhibition of JAK2/STAT3 and IκB/p65 NF-κB pathways are involved in the anti-inflammatory effects of chrysoeriol. This study provides chemical and pharmacological justifications for the use of chrysoeriol-containing herbs in treating inflammatory diseases, and provides pharmacological groundwork for developing chrysoeriol as a novel anti-inflammatory agent.
Collapse
Affiliation(s)
- Jia-Ying Wu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ying-Jie Chen
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Lu Bai
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Yu-Xi Liu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Xiu-Qiong Fu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Pei-Li Zhu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Jun-Kui Li
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ji-Yao Chou
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Cheng-Le Yin
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ya-Ping Wang
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Jing-Xuan Bai
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Ying Wu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Zheng-Zhi Wu
- Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Zhi-Ling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China; JaneClare Transdermal TCM Therapy Laboratory, Hong Kong Baptist University, Kowloon Tong, Hong Kong.
| |
Collapse
|
63
|
Ming J, Ye J, Zhang Y, Xu Q, Yang X, Shao X, Qiang J, Xu P. Optimal dietary curcumin improved growth performance, and modulated innate immunity, antioxidant capacity and related genes expression of NF-κB and Nrf2 signaling pathways in grass carp (Ctenopharyngodon idella) after infection with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2020; 97:540-553. [PMID: 31881329 DOI: 10.1016/j.fsi.2019.12.074] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 05/27/2023]
Abstract
This study investigated the effects of dietary curcumin on growth performance, non-specific immunity, antioxidant capacity and related genes expression of NF-κB and Nrf2 signaling pathways in grass carp (Ctenopharyngodon idella). A total of 525 juvenile grass carps with mean initial body weight of (5.30 ± 0.10) g were randomly distributed into five groups with three replicates each, fed five diets containing graded levels of curcumin (0, 196.11, 393.67, 591.46 and 788.52 mg/kg diet) for 60 days. After feeding trial, fifteen fish per tank were challenged with Aeromonas hydrophila and the mortalities were recorded for 7 days. The results showed that optimal dietary curcumin (393.67 mg/kg diet) improved the weight gain (WG) and specific growth rate (SGR) of juvenile grass carp, reduced feed conversion ratio (FCR) and the mortalities after challenge (P < 0.05). Moreover, optimal dietary curcumin increased the activities of lysozyme (LYZ) and acid phosphatase (ACP), and complement 3 (C3) and C4 levels, decreased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in serum of grass carp after injection with A. hydrophila (P < 0.05). Meanwhile, optimal dietary curcumin up-regulated the mRNA levels of LYZ, C3 and antimicrobial peptides [hepcidin, liver-expressed antimicrobial peptide-2 (LEAP-2), β-defensin], and anti-inflammatory cytokines of interleukin-10 (IL-10) and transforming growth factor β1 (TGF-β1), and inhibitor of κBα (IκBα), whereas down-regulated pro-inflammatory cytokines of tumor necrosis factor-α (TNF-α), IL-1β, IL-6 and IL-8, and nuclear factor kappa B p65 (NF-κB p65), IκB kinases (IKKα, IKKβ and IKKγ) mRNA levels in the liver and blood of grass carp after injection with A. hydrophila (P < 0.05). In addition, optimal dietary curcumin increased the reduced glutathione (GSH) content and activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione reductase (GR), reduced reactive oxygen species (ROS) and malondialdehyde (MDA) levels in the liver of grass carp after injection with A. hydrophila (P < 0.05). Meanwhile, optimal dietary curcumin up-regulated the mRNA levels of these antioxidant enzymes and nuclear factor erythroid 2-related factor 2 (Nrf2), whereas down-regulated Kelch-like ECH-associated protein (Keap) 1a and Keap 1b mRNA levels (P < 0.05) in the liver and blood of grass carp after injection with A. hydrophila. Thus, optimal dietary curcumin supplementation could promote growth of juvenile grass carp, reduce FCR, and enhance disease resistance, innate immunity and antioxidant capacity of fish, attenuating inflammatory response. However, dietary excessive curcumin had negative effect on fish. Based on second-order regression analysis between dietary curcumin contents and weight gain, the optimum requirement of dietary curcumin in juvenile grass carp was determined to be 438.20 mg/kg diet.
Collapse
Affiliation(s)
- Jianhua Ming
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou, 313000, China; Huzhou Central Hospital, Huzhou University, Huzhou, 313000, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Jinyun Ye
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou, 313000, China; Huzhou Central Hospital, Huzhou University, Huzhou, 313000, China.
| | - Yixiang Zhang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou, 313000, China
| | - Qiyou Xu
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou, 313000, China
| | - Xia Yang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou, 313000, China
| | - Xianping Shao
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, College of Life Sciences, Huzhou University, Huzhou, 313000, China
| | - Jun Qiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
64
|
Koh SJ, Kim JW, Kim BG, Lee KL, Kim DW, Kim JS. Matricellular protein periostin promotes colitis-associated colon tumorigenesis in mice. Carcinogenesis 2019; 40:102-111. [PMID: 30204842 DOI: 10.1093/carcin/bgy120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/27/2018] [Accepted: 09/07/2018] [Indexed: 12/28/2022] Open
Abstract
Periostin is expressed in inflamed colonic mucosa and colon cancer tissue; however, its role in the development of colitis-associated colon cancer (CAC) remains unclear. Wild-type and periostin-deficient (Postn-/-) mice were given a single intraperitoneal injection of azoxymethane at 12.5 mg/kg on day 0. Seven days later, 2% dextran sulfate sodium (DSS) was administered via drinking water for 5 days, followed by untreated, free water consumption for 16 days. This cycle was repeated three times. In vitro assays were performed using COLO205 and HCT116 cells. Small interfering RNA was used to inhibit Postn gene translation. Periostin expression was determined using colon samples from patients with CAC. Postn-/- mice exhibited lower tumor burden compared with wild-type mice. Exposure to azoxymethane/DSS resulted in extensive epithelial apoptosis in Postn-/- mice compared with that in wild-type mice. In addition, immunoreactivity for IκB kinase, β-catenin and COX2 was markedly reduced in Postn-/- mice. Expression of interleukin (IL)-1β and tumor necrosis factor α (TNF-α) significantly decreased, whereas that of IL-10 and transforming growth factor β (TGF-β) increased in peritoneal macrophages isolated from Postn-/- mice. Silencing of the Postn gene resulted in reduced cell viability, which was associated with caspase-3 activation, and this was reversed by treatment with recombinant periostin. Knockdown of Postn downregulated bcl-2, cIAP1, cFLIP-L, VEGF, Axin 2 and cyclin D1, and upregulated bak expression. Periostin expression was significantly increased in patients with CAC. Periostin aggravates CAC development, which suggests that periostin is a potential therapeutic target for the prevention of CAC in patients with inflammatory bowel disease.
Collapse
Affiliation(s)
- Seong-Joon Koh
- Department of Internal Medicine, Division of Gastroenteology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Won Kim
- Department of Internal Medicine, Division of Gastroenteology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Byeong Gwan Kim
- Department of Internal Medicine, Division of Gastroenteology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Kook Lae Lee
- Department of Internal Medicine, Division of Gastroenteology, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dae Woo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Boramae Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Joo Sung Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea.,Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
65
|
Lu J, Bu X, Xiao S, Lin Z, Wang X, Jia Y, Wang X, Qin JG, Chen L. Effect of single and combined immunostimulants on growth, anti-oxidation activity, non-specific immunity and resistance to Aeromonas hydrophila in Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2019; 93:732-742. [PMID: 31415901 DOI: 10.1016/j.fsi.2019.08.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
This study evaluates the effect of dietary supplementation of immunostimulants on the Chinese mitten crab (Eriocheir sinensis) with a single administration of mannan oligosaccharide (MOS), or its combination with either β-glucan or with inulin for 8 weeks. Four diets included an untreated control diet (C), MOS alone (3 g kg-1, M), MOS with β-glucan (3 g kg -1 MOS + 1.5 g kg -1 β-glucan, MB), and MOS with inulin (3 g kg -1 MOS + 10 g kg -1 inulin, MI). The weight gain and specific growth rate of the crabs fed M, MB, and MI diets were improved by lowing feed conversion ratio. The growth and feed utilization of the crabs fed the MB diet were improved compared with the other three groups. The crabs fed the M, MB and MI diets showed a higher intestinal trypsin activity than that in the M and control groups. The highest trypsin activity in the hepatopancreas was observed in the MB group. Crabs fed M, MB and MI diets increased antioxidant system-related enzyme activities, but reduced malondialdehyde. The highest activities of alkaline phosphatase, acid phosphatase, lysozyme and phenol oxidase in the gut and the respiratory burst of the crabs were found in the MB group. The MB diet promoted the mRNA expression of E. sinensis immune genes (ES-PT, ES-Relish, ES-LITAF, p38MAPK and Crustin) compared with the control. After 3 days of infection with Aeromonas hydrophila, the highest survival of crabs was also found in the MB group. This study indicates that the combination of MOS with β-glucan or with inulin can improve growth, antioxidant capacity, non-specific immunity and disease resistance in E. sinensis.
Collapse
Affiliation(s)
- Jianting Lu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Xianyong Bu
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Shusheng Xiao
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Zhideng Lin
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Xinyue Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Yongyi Jia
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China; Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China.
| | - Jian G Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China.
| |
Collapse
|
66
|
Guo YL, Feng L, Jiang WD, Wu P, Liu Y, Kuang SY, Tang L, Tang WN, Zhou XQ. Dietary iron deficiency impaired intestinal immune function of on-growing grass carp under the infection of Aeromonas hydrophila: Regulation of NF-κB and TOR signaling. FISH & SHELLFISH IMMUNOLOGY 2019; 93:669-682. [PMID: 31408728 DOI: 10.1016/j.fsi.2019.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Iron is an important mineral element for fish. In this study, we investigated the influences of dietary iron deficiency on intestinal immune function as well as underlying signaling of on-growing grass carp (Ctenopharyngodon idella). Fish were fed with six graded level of dietary iron for sixty days, and a fourteen days' challenge test under infection of Aeromonas hydrophila thereafter. Results showed that compared with optimal iron level, iron deficiency increased enteritis morbidity, decreased lysozyme (LZ) and acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M (IgM) concentrations and down-regulated mRNA levels of hepcidin, liver expressed antimicrobial peptide 2A (LEAP-2A), LEAP-2B, Mucin2, β-defensin-1, anti-inflammatory cytokines transforming growth factor β1 (TGF-β1), TGF-β2, interleukin 4/13A (IL-4/13A), IL-4/13B, IL-10, IL-11 and IL-15, inhibitor of κBα (IκBα), target of rapamycin (TOR) and ribosomal protein S6 kinase 1 (S6K1), whereas up-regulated mRNA levels of pro-inflammatory cytokines IL-1β, interferon γ2 (IFN-γ2), IL-8, IL-12p35, IL-12p40 and IL-17D, nuclear factor kappa B (NF-κB) p65, IκB kinases α (IKKα), IKKβ and eIF4E-binding protein (4E-BP) in intestine of on-growing grass carp, indicating that iron deficiency impaired intestinal immune function of fish under infection of A. hydrophila. Besides, iron excess also increased enteritis morbidity and impaired immune function of fish under infection of A. hydrophila. In addition, the effect of ferrous fumarate on intestinal immune function of on-growing grass carp is more efficient than ferrous sulfate. Finally, based on ability against enteritis, LZ activities in mid intestine and distal intestine, we recommended adding 83.37, 86.71 and 85.39 mg iron/kg into diet, respectively.
Collapse
Affiliation(s)
- Yan-Lin Guo
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 6111.0930, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 6111.0930, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 6111.0930, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 6111.0930, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 6111.0930, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 6111.0930, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 6111.0930, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 6111.0930, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 6111.0930, China; Key Laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 6111.0930, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 6111.0930, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China.
| |
Collapse
|
67
|
Nanovectors Design for Theranostic Applications in Colorectal Cancer. JOURNAL OF ONCOLOGY 2019; 2019:2740923. [PMID: 31662751 PMCID: PMC6791220 DOI: 10.1155/2019/2740923] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is a diffused disease with limited therapeutic options, none of which are often curative. Based on the molecular markers and targets expressed by the affected tissues, numerous novel approaches have been developed to study and treat this disease. In particular, the field of nanotechnology offers an astonishingly wide array of innovative nanovectors with high versatility and adaptability for both diagnosis and therapy (the so called “theranostic platforms”). However, such complexity can make the selection of a specific nanocarrier model to study a perplexing endeavour for the biomedical scientist or clinician not familiar with this field of inquiry. This review offers a comprehensive overview of this wide body of knowledge, in order to outline the essential requirements for the clinical viability evaluation of a nanovector model in CRC. In particular, the differences among the foremost designs, their specific advantages, and technological caveats will be treated, never forgetting the ultimate endpoint for these systems development: the clinical practice.
Collapse
|
68
|
Choo SM, Park SM, Cho KH. Minimal intervening control of biomolecular networks leading to a desired cellular state. Sci Rep 2019; 9:13124. [PMID: 31511585 PMCID: PMC6739335 DOI: 10.1038/s41598-019-49571-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
A cell phenotype can be represented by an attractor state of the underlying molecular regulatory network, to which other network states eventually converge. Here, the set of states converging to each attractor is called its basin of attraction. A central question is how to drive a particular cell state toward a desired attractor with minimal interventions on the network system. We develop a general control framework of complex Boolean networks to provide an answer to this question by identifying control targets on which one-time temporary perturbation can induce a state transition to the boundary of a desired attractor basin. Examples are shown to illustrate the proposed control framework which is also applicable to other types of complex Boolean networks.
Collapse
Affiliation(s)
- Sang-Mok Choo
- Department of Mathematics, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Sang-Min Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
69
|
Peng XR, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Zhou XQ. Supplementation exogenous bile acid improved growth and intestinal immune function associated with NF-κB and TOR signalling pathways in on-growing grass carp (Ctenopharyngodon idella): Enhancement the effect of protein-sparing by dietary lipid. FISH & SHELLFISH IMMUNOLOGY 2019; 92:552-569. [PMID: 31252043 DOI: 10.1016/j.fsi.2019.06.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/14/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the effects of bile acid (BA) supplementation on growth performance, intestinal immune function and the mRNA expression of the related signalling molecules in on-growing grass carp (Ctenopharyngodon idella). A total of 540 healthy grass carp (mean weight 179.85 ± 1.34 g) were fed a normal protein and lipid (NPNL) diet containing 29% crude protein (CP) and 5% ether extract (EE), and five low-protein and high-lipid (LPHL) diets (26% CP, 6% EE) with graded levels of BA (0-320 mg/kg diet) for 50 days. The fish were then challenged with Aeromonas hydrophila for 14 days. The results indicated that compared with the NPNL diet, the LPHL diet (unsupplemented BA) suppressed the growth performance, intestinal development and enteritis resistance capability and impaired the partial intestinal immune function of on-growing grass carp. Whereas in the LPHL diet, optimal BA supplementation significantly improved fish growth performance (percent weight gain, specific growth rate, feed intake and feed efficiency) and intestinal growth and function (intestine weight, intestine length and intestosomatic index), increased beneficial bacteria Lactobacillus and Bifidobacterium amounts, decreased harmful bacteria Aeromonas and Escherichia coli amounts, elevated lysozyme and acid phosphatase activities, increased complement (C3 and C4) and immunoglobulin M contents, and upregulated β-defensin-1, hepcidin, liver expressed antimicrobial peptide 2A (LEAP-2A), LEAP-2B, Mucin2, interleukin 10 (IL-10), IL-11, transforming growth factor (TGF)-β1, TGF-β2, IL-4/13A (not IL-4/13B), TOR, S6K1 and inhibitor of κBα (IκBα) mRNA levels. In addition, optimal BA supplementation in the LPHL diet downregulated tumour necrosis factor α (TNF-α), interferon γ2 (IFN-γ2), IL-1β, IL-6, IL-8, IL-15, IL-17D, IL-12p35, IL-12p40 (rather than proximal intestine (PI) or mid intestine (MI), nuclear factor kappa B p65 (NF-κB p65) (except NF-κB p52), c-Rel, IκB kinase β (IKKβ), IKKγ (except IKKα), eIF4E-binding proteins (4E-BP)1 and 4E-BP2 mRNA levels in all three intestinal segments of on-growing grass carp (P < 0.05). These findings suggest that BA supplementation in the LPHL diet improves growth and intestinal immune function of fish. Furthermore, 240 mg/kg BA supplementation in the LPHL diet was superior to the NPNL diet in improving growth and enhancing intestinal immune function of fish. Finally, based on percent weight gain, feed intake, protecting fish against enteritis, lysozyme activity in MI and acid phosphatase activity in distal intestine (DI), the optimal BA supplementation for on-growing grass carp were estimated to be 168.98, 170.23, 166.67, 176.50 and 191.97 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Xiu-Rong Peng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition and Feed, Ministry of Agriculture and Rural Affairs, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-resistant Nutrition, Sichuan Province, China.
| |
Collapse
|
70
|
Chen M, Kong C, Zheng Z, Li Y. Identification of Biomarkers Associated with Septic Cardiomyopathy Based on Bioinformatics Analyses. J Comput Biol 2019; 27:69-80. [PMID: 31424269 DOI: 10.1089/cmb.2019.0181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
This study intended to identify biomarkers for septic cardiomyopathy (SC). Microarray data GSE79962 including 20 SC samples and 11 normal samples were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between SC and control groups were identified, followed with functional enrichment analyses. In addition, the protein-protein interaction (PPI) network and modules were constructed. Finally, a transcription factors (TFs)-microRNA (miRNA)-target gene network was constructed and the potential drugs targeting key DEGs were searched. There were 119 upregulated and 80 downregulated genes in the SC group compared with the control group. The upregulated DEGs were significantly enriched tumor necrosis factor signaling pathway, Jak-signal transducer and activator of transcription (STAT) signaling pathway, hypoxia-inducible transcription factor-1 signaling pathway, chemokine signaling pathway, and cytokine-cytokine receptor interaction. The downregulated genes involved in biological processes of negative regulation of DNA biosynthetic process, and skeletal muscle cell differentiation. CCL2, STAT3, MYC, and SERPINE1 were hub nodes in the PPI network and modules. miR-29 family and miR-30 family were considered as key miRNAs, and TATA, MEF2, and STAT5B were considered as key TFs. SERPINE1 and MYC were also drug target genes. The identified DEGs and pathways may be implicated in the progression of human SC, which may lead to a better understanding of SC pathogenesis.
Collapse
Affiliation(s)
- Mengwei Chen
- Department of Cardiovascular and Huadong Hospital, Fudan University, Shanghai, China
| | - Chengqi Kong
- Department of Cardiovascular and Huadong Hospital, Fudan University, Shanghai, China
| | - Zhiyuan Zheng
- Department of Cardiovascular and Huadong Hospital, Fudan University, Shanghai, China
| | - Yin Li
- Department of Emergency, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
71
|
Dovitinib Triggers Apoptosis and Autophagic Cell Death by Targeting SHP-1/ p-STAT3 Signaling in Human Breast Cancers. JOURNAL OF ONCOLOGY 2019; 2019:2024648. [PMID: 31485222 PMCID: PMC6710795 DOI: 10.1155/2019/2024648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/29/2019] [Indexed: 01/13/2023]
Abstract
Breast cancer is the most common cancer and the leading cause of cancer deaths in women worldwide. The rising incidence rate and female mortality make it a significant public health concern in recent years. Dovitinib is a novel multitarget receptor tyrosine kinase inhibitor, which has been enrolled in several clinical trials in different cancers. However, its antitumor efficacy has not been well determined in breast cancers. Our results demonstrated that dovitinib showed significant antitumor activity in human breast cancer cell lines with dose- and time-dependent manners. Downregulation of phosphor-(p)-STAT3 and its subsequent effectors Mcl-1 and cyclin D1 was responsible for this drug effect. Ectopic expression of STAT3 rescued the breast cancer cells from cell apoptosis induced by dovitinib. Moreover, SHP-1 inhibitor reversed the downregulation of p-STAT3 induced by dovitinib, indicating that SHP-1 mediated the STAT3 inhibition effect of dovitinib. In addition to apoptosis, we found for the first time that dovitinib also activated autophagy to promote cell death in breast cancer cells. In conclusion, dovitinib induced both apoptosis and autophagy to block the growth of breast cancer cells by regulating the SHP-1-dependent STAT3 inhibition.
Collapse
|
72
|
Erdman VV, Nasibullin TR, Tuktarova IA, Somova RS, Mustafina OE. Association Analysis of Polymorphic Gene Variants in the JAK/STAT Signaling Pathway with Aging and Longevity. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419050077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
73
|
Xiong Y, Wang Y, Tiruthani K. Tumor immune microenvironment and nano-immunotherapeutics in colorectal cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102034. [PMID: 31207314 DOI: 10.1016/j.nano.2019.102034] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 05/08/2019] [Accepted: 05/23/2019] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is predicted to be the second leading cause of cancer-related death in United States in 2019. Immunotherapies such as checkpoint inhibitors have proven efficacy in patients with high level of microsatellite instability and refractory to routine chemotherapy. Despite this, immunotherapy-based treatment is seriously limited by cancer immunogenicity which has evolved to evade immune surveillance in many circumstances. Efforts are made by researchers using nanoparticles (NPs) to override cancer-mediated immunosuppression, induce immune response against cancer cells or even generate memory immune cells for long-term disease control. These engineered NPs offer great opportunities in delivering cancer immunotherapy due to their unique properties, such as a high drug/antigen loading capacity, adjustable particle size, and versatile surface modification. In this review, we will highlight recent researches on the initiation and development of CRC, the immune microenvironment of CRC, and recent trends in engineering novel NPs-based immunotherapies in the treatment of CRC.
Collapse
Affiliation(s)
- Yang Xiong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China..
| | - Ying Wang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.; Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karthik Tiruthani
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
74
|
You Y, Wang Q, Li H, Ma Y, Deng Y, Ye Z, Bai F. Zoledronic acid exhibits radio-sensitizing activity in human pancreatic cancer cells via inactivation of STAT3/NF-κB signaling. Onco Targets Ther 2019; 12:4323-4330. [PMID: 31239706 PMCID: PMC6556542 DOI: 10.2147/ott.s202516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/09/2019] [Indexed: 01/28/2023] Open
Abstract
Background: Although pancreatic cancer is typically radio-sensitive, local treatment failure and metastasis are commonly caused by the development of resistance to radiotherapy. In the current study, the radio-sensitizing actions of zoledronic acid (ZOL) on pancreatic cancer cells were investigated. Materials and methods: Three human pancreatic cancer cell lines were exposed to ZOL, ionizing radiation (IR), or a combination of both, and the effects of the respective drug regimens on cell proliferation and invasion were examined. Results: Combined treatment with low doses of ZOL plus IR efficiently increased cell death and attenuated cell invasion compared with the individual use of ZOL or IR. These effects of ZOL were associated with inactivation of signal transducer and activator of transcription 3 (STAT3) and nuclear factor-κB (NF-κB). Conclusion: Collectively, these data suggest that ZOL in combination with IR is a promising therapeutic strategy for enhancing radio-sensitivity in pancreatic cancer cells via downregulation of the STAT3/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yanjie You
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, People's Republic of China
| | - Qiang Wang
- Department of Science and Education, Ningxia Hui Autonomous Region People's Hospital, Yinchuan 750021, People's Republic of China
| | - Haijun Li
- Department of Radiation Oncology, The Second People's Hospital of Neijiang, Neijiang, Sichuan 641003, People's Republic of China
| | - Yuhong Ma
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, People's Republic of China
| | - Yanhong Deng
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, People's Republic of China
| | - Zhengcai Ye
- Endoscopy Center, Ningxia Hui Autonomous Region People's Hospital, Yinchuan 750021, People's Republic of China
| | - Feihu Bai
- Department of Gastroenterology, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750021, People's Republic of China
| |
Collapse
|
75
|
Banik K, Ranaware AM, Deshpande V, Nalawade SP, Padmavathi G, Bordoloi D, Sailo BL, Shanmugam MK, Fan L, Arfuso F, Sethi G, Kunnumakkara AB. Honokiol for cancer therapeutics: A traditional medicine that can modulate multiple oncogenic targets. Pharmacol Res 2019; 144:192-209. [DOI: 10.1016/j.phrs.2019.04.004] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
|
76
|
Al-Ismaeel Q, Neal CP, Al-Mahmoodi H, Almutairi Z, Al-Shamarti I, Straatman K, Jaunbocus N, Irvine A, Issa E, Moreman C, Dennison AR, Emre Sayan A, McDearmid J, Greaves P, Tulchinsky E, Kriajevska M. ZEB1 and IL-6/11-STAT3 signalling cooperate to define invasive potential of pancreatic cancer cells via differential regulation of the expression of S100 proteins. Br J Cancer 2019; 121:65-75. [PMID: 31123345 PMCID: PMC6738112 DOI: 10.1038/s41416-019-0483-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
Background S100 proteins have been implicated in various aspects of cancer, including epithelial-mesenchymal transitions (EMT), invasion and metastasis, and also in inflammatory disorders. Here we examined the impact of individual members of this family on the invasion of pancreatic ductal adenocarcinoma (PDAC) cells, and their regulation by EMT and inflammation. Methods Invasion of PDAC cells was analysed in zebrafish embryo xenografts and in transwell invasion assays. Expression and regulation of S100 proteins was studied in vitro by immunoblotting, quantitative PCR and immunofluorescence, and in pancreatic lesions by immunohistochemistry. Results Whereas the expression of most S100 proteins is characteristic for epithelial PDAC cell lines, S100A4 and S100A6 are strongly expressed in mesenchymal cells and upregulated by ZEB1. S100A4/A6 and epithelial protein S100A14 respectively promote and represses cell invasion. IL-6/11-STAT3 pathway stimulates expression of most S100 proteins. ZEB1 synergises with IL-6/11-STAT3 to upregulate S100A4/A6, but nullifies the effect of inflammation on S100A14 expression. Conclusion EMT/ZEB1 and IL-6/11-STAT3 signalling act independently and congregate to establish the expression pattern of S100 proteins, which drives invasion. Although ZEB1 regulates expression of S100 family members, these effects are masked by IL-6/11-STAT3 signalling, and S100 proteins cannot be considered as bona fide EMT markers in PDAC.
Collapse
Affiliation(s)
- Qais Al-Ismaeel
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK.,College of Medicine, University of Duhokl, Kurdistan region, Duhok, Iraq
| | - Christopher P Neal
- University Hospitals of Leicester NHS Trust Hepato-Pancreato-Biliary Unit, Leicester, UK
| | - Hanaa Al-Mahmoodi
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Zamzam Almutairi
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | | | - Kees Straatman
- Centre for Core Biotechnology Services, University of Leicester, Leicester, UK
| | - Nabil Jaunbocus
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Andrew Irvine
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Eyad Issa
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Catherine Moreman
- Department of Cellular Pathology, Leicester Royal Infirmary, Leicester, UK
| | - Ashley R Dennison
- University Hospitals of Leicester NHS Trust Hepato-Pancreato-Biliary Unit, Leicester, UK
| | - A Emre Sayan
- Cancer Sciences Division, University of Southampton, Southampton, UK
| | - Jonathan McDearmid
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Peter Greaves
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK
| | - Eugene Tulchinsky
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK. .,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region, Russia. .,Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan.
| | - Marina Kriajevska
- Leicester Cancer Research Centre, University of Leicester, Leicester, UK.
| |
Collapse
|
77
|
Bai H, Wang C, Qi Y, Xu J, Li N, Chen L, Jiang B, Zhu X, Zhang H, Li X, Yang Q, Ma J, Xu Y, Ben J, Chen Q. Major vault protein suppresses lung cancer cell proliferation by inhibiting STAT3 signaling pathway. BMC Cancer 2019; 19:454. [PMID: 31092229 PMCID: PMC6521381 DOI: 10.1186/s12885-019-5665-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/30/2019] [Indexed: 01/07/2023] Open
Abstract
Background Major vault protein (MVP) is the major component of vault, a eukaryotic organelle involved in multiple cellular processes, and is important in multiple cellular processes and diseases including the drug resistance in cancer chemotherapies. However, the role of MVP in lung cancer remains unclear. Methods We examined MVP expression in 120 non-small cell lung cancer (NSCLC) tumors and matched normal tissues by immunohistochemistry. Its relationship with NSCLC prognosis was determined by investigating the patient cohort and analyzing the data from a published dataset consisting with more than 1900 lung cancer patients. We further performed shRNA-introduced knockdown of MVP in Lewis lung carcinoma (LLC) cells and examined its effects on the tumor formation in a xenograft mouse model and the tumor cell proliferation, apoptosis, and signal transduction in vitro. Results We found that MVP was up-regulated significantly in tumor tissues compared with the matched tumor-adjacent normal tissues. The increased expression of MVP in lung adenocarcinoma was associated with a better prognosis. Knockdown of MVP in LLC cells promoted xenografted lung cancer formation in mice, which was accompanied with accelerated tumor cell proliferation and suppressed cell apoptosis in vitro. Knockdown of MVP stimulated STAT3 phosphorylation, nuclear localization, and activation of JAK2 and RAF/MEK/ERK pathways in LLC cells. Administration of STAT3 inhibitor WP1066 could prevent MVP knockdown induced tumorigenesis. Conclusions Our findings demonstrate that MVP may act as a lung tumor suppressor via inhibiting STAT3 pathway. MVP would be a potential target for novel therapies of lung adenocarcinoma. Electronic supplementary material The online version of this article (10.1186/s12885-019-5665-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Bai
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Chenchen Wang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yu Qi
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Jin Xu
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology, Nanjing Medical University, Nanjing, China
| | - Nan Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.,Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu Medical College, Bengbu, China
| | - Lili Chen
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Bin Jiang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xudong Zhu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Hanwen Zhang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Qing Yang
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Junqing Ma
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Jingjing Ben
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| | - Qi Chen
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
78
|
Ponziani FR, Nicoletti A, Gasbarrini A, Pompili M. Diagnostic and therapeutic potential of the gut microbiota in patients with early hepatocellular carcinoma. Ther Adv Med Oncol 2019; 11:1758835919848184. [PMID: 31205505 PMCID: PMC6535703 DOI: 10.1177/1758835919848184] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/12/2019] [Indexed: 12/16/2022] Open
Abstract
The gut microbiota is involved in the maintenance of the homeostasis of the human body and its alterations are associated with the development of different pathological conditions. The liver is the organ most exposed to the influence of the gut microbiota, and recently important connections between the intestinal flora and hepatocellular carcinoma (HCC) have been described. In fact, HCC is commonly associated with liver cirrhosis and develops in a microenvironment where inflammation, immunological alterations, and cellular aberrations are dramatically evident. Prevention and diagnosis in the earliest stages are still the most effective weapons in fighting this tumor. Animal models show that the gut microbiota can be involved in the promotion and progression of HCC directly or through different pathogenic mechanisms. Recent data in humans have confirmed these preclinical findings, shedding new light on HCC pathogenesis. Limitations due to the different experimental design, the ethnic and hepatological setting make it difficult to compare the results and draw definitive conclusions, but these studies lay the foundations for a pathogenetic redefinition of HCC. Therefore, it is evident that the characterization of the gut microbiota and its modulation can have an enormous diagnostic, preventive, and therapeutic potential, especially in patients with early stage HCC.
Collapse
Affiliation(s)
- Francesca Romana Ponziani
- Division of Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Agostino Gemelli IRCCS, Largo Agostino Gemelli 8, Rome, 00168, Italy
| | - Alberto Nicoletti
- Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| | - Maurizio Pompili
- Internal Medicine, Gastroenterology and Hepatology, Fondazione Policlinico Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
79
|
Han J, Ye S, Zou C, Chen T, Wang J, Li J, Jiang L, Xu J, Huang W, Wang Y, Liang G. Angiotensin II Causes Biphasic STAT3 Activation Through TLR4 to Initiate Cardiac Remodeling. Hypertension 2019; 72:1301-1311. [PMID: 30571233 DOI: 10.1161/hypertensionaha.118.11860] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Evidence indicates that Ang II (angiotensin II) activates STAT3 (signal transducer and activator of transcription 3) in cardiomyocytes. However, the mechanisms underlying STAT3 activation and downstream responses are not fully known. In this study, we show that Ang II caused biphasic STAT3 activation in cardiomyocytes. A rapid and early activation was mediated by direct association between TLR4 (toll-like receptor-4) and STAT3. This early activation increased IL-6 (interleukin-6) production, which in turn, induced the second STAT3 activation through the IL-6/gp130 (glycoprotein 130)/JAK2 (Janus-family tyrosine kinases 2) pathway, resulting in unregulated expression of genes for cardiac remodeling. Moreover, STAT3 inhibition or TLR4 knockout in mice protected against Ang II-induced hypertrophy, fibrosis, and cardiac functional deficits. Thus, Ang II-induced STAT3 activation in cardiomyocytes was biphasic, providing a sequential induction of IL-6 and myocardial remodeling genes, respectively. This work supports a novel mechanism on STAT3 activation in Ang II-induced cardiac dysfunction and remodeling.
Collapse
Affiliation(s)
- Jibo Han
- From the Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (J.H., S.Y., T.C., J.W., J.L., Y.W., G.L.).,Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (J.H., S.Y., T.C., W.H.).,Department of Cardiology, the Second Affiliated Hospital of Jiaxing University, Zhejiang, China (J.H., L.J., J.X.)
| | - Shiju Ye
- From the Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (J.H., S.Y., T.C., J.W., J.L., Y.W., G.L.).,Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (J.H., S.Y., T.C., W.H.)
| | - Chunpeng Zou
- Department of Ultrasonography, the Second Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (C.Z.)
| | - Taiwei Chen
- From the Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (J.H., S.Y., T.C., J.W., J.L., Y.W., G.L.).,Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (J.H., S.Y., T.C., W.H.)
| | - Jingying Wang
- From the Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (J.H., S.Y., T.C., J.W., J.L., Y.W., G.L.)
| | - Jieli Li
- From the Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (J.H., S.Y., T.C., J.W., J.L., Y.W., G.L.)
| | - Liqin Jiang
- Department of Cardiology, the Second Affiliated Hospital of Jiaxing University, Zhejiang, China (J.H., L.J., J.X.)
| | - Jianjiang Xu
- Department of Cardiology, the Second Affiliated Hospital of Jiaxing University, Zhejiang, China (J.H., L.J., J.X.)
| | - Weijian Huang
- Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Zhejiang, China (J.H., S.Y., T.C., W.H.)
| | - Yi Wang
- From the Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (J.H., S.Y., T.C., J.W., J.L., Y.W., G.L.)
| | - Guang Liang
- From the Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, China (J.H., S.Y., T.C., J.W., J.L., Y.W., G.L.)
| |
Collapse
|
80
|
Liu M, Xiao CQ, Sun MW, Tan MJ, Hu LH, Yu Q. Xanthatin inhibits STAT3 and NF-κB signalling by covalently binding to JAK and IKK kinases. J Cell Mol Med 2019; 23:4301-4312. [PMID: 30993883 PMCID: PMC6533482 DOI: 10.1111/jcmm.14322] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/28/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
Aberrant activation of the signal transducer and activator of transcription 3 (STAT3) and the nuclear factor‐κB (NF‐κB) signalling pathways is associated with the development of cancer and inflammatory diseases. JAKs and IKKs are the key regulators in the STAT3 and NF‐κB signalling respectively. Therefore, the two families of kinases have been the major targets for developing drugs to regulate the two signalling pathways. Here, we report a natural compound xanthatin from the traditional Chinese medicinal herb Xanthium L. as a potent inhibitor of both STAT3 and NF‐κB signalling pathways. Our data demonstrated that xanthatin was a covalent inhibitor and its activities depended on its α‐methylene‐γ‐butyrolactone group. It preferentially interacted with the Cys243 of JAK2 and the Cys412 and Cys464 of IKKβ to inactivate their activities. In doing so, xanthatin preferentially inhibited the growth of cancer cell lines that have constitutively activated STAT3 and p65. These data suggest that xanthatin may be a promising anticancer and anti‐inflammation drug candidate.
Collapse
Affiliation(s)
- Man Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Cheng-Qian Xiao
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Ming-Wei Sun
- University of Chinese Academy of Sciences, Beijing, PR China.,The Chemical Proteomics Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Min-Jia Tan
- University of Chinese Academy of Sciences, Beijing, PR China.,The Chemical Proteomics Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China
| | - Li-Hong Hu
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Qiang Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, PR China.,University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
81
|
Guo L, Cheng X, Chen H, Chen C, Xie S, Zhao M, Liu D, Deng Q, Liu Y, Wang X, Chen X, Wang J, Yin Z, Qi S, Gao J, Ma Y, Guo N, Shi M. Induction of breast cancer stem cells by M1 macrophages through Lin-28B-let-7-HMGA2 axis. Cancer Lett 2019; 452:213-225. [PMID: 30917918 DOI: 10.1016/j.canlet.2019.03.032] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 12/24/2022]
Abstract
Proinflammatory macrophage (M1) is now being suggested as a potential therapeutic strategy for cancer because of its tumoricidal capacity. However, few studies have been focused directly on the effects of M1 macrophages on cancer cells. Here, we found that M1 induced a subpopulation of CD44high/CD24-/low or ALDH1+ cells with CSC-like phenotypes from different types of breast cancer cells (BCCs) in a paracrine manner. Stat3/NF-κB pathways in BCCs were activated by proinflammatory cytokines, igniting Lin-28B-let-7-HMGA2 axis to induce CSC through epithelial-mesenchymal transition (EMT). Previously, we reported that Stat3-coordinated Lin-28B-let-7-HMGA2 axis initiated EMT in BCCs. Here, inhibition of Stat3/NF-κB pathways or Lin-28B-let-7-HMGA2 axis suppressed EMT/CSCs program. Notably, HMGA2 knockdown directly repressed M1-induced CSC formation and expression of Klf-4 and Nanog. Meanwhile, prolonged coculture with BCCs endowed M1 with M2 properties. M1 supernatant induced CSC from non-stem cancer cells, while M2 supernatant sustained a higher proportion of ALDH1+ cells. Our data suggest that macrophages might modulate CSC formation and maintenance by transferring between M1/M2 phenotype. Given that M1 are being considered as a promising immunotherapy tool, it is important to inhibit their CSC-inducing potential by targeting key molecules and pathways.
Collapse
Affiliation(s)
- Liang Guo
- Institute of Basic Medical Sciences, Beijing, 100850, PR China.
| | - Xiang Cheng
- Institute of Basic Medical Sciences, Beijing, 100850, PR China
| | - Hongyu Chen
- Institute of Basic Medical Sciences, Beijing, 100850, PR China
| | - Changguo Chen
- Department of Clinical Laboratory, The Navy General Hospital, Beijing, 100048, PR China
| | - Shuai Xie
- Laboratory of Cellular and Molecular Immunology, Medical School of Henan University, Kaifeng, 475004, PR China
| | - Min Zhao
- Institute of Basic Medical Sciences, Beijing, 100850, PR China
| | - Dan Liu
- Institute of Basic Medical Sciences, Beijing, 100850, PR China
| | - Que Deng
- Institute of Basic Medical Sciences, Beijing, 100850, PR China
| | - Yanjun Liu
- Laboratory of Cellular and Molecular Immunology, Medical School of Henan University, Kaifeng, 475004, PR China
| | - Xiaomeng Wang
- Institute of Basic Medical Sciences, Beijing, 100850, PR China
| | - Xintian Chen
- Department of Cancer Biotherapy, Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, PR China
| | - Jiangong Wang
- Department of Cancer Biotherapy, Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, PR China
| | - Zhaoyang Yin
- Department of Urology, The First Affiliated Hospital, General Hospital of PLA, Beijing, 100048, PR China
| | - Siyong Qi
- Department of Urology, The First Affiliated Hospital, General Hospital of PLA, Beijing, 100048, PR China
| | - Jiangping Gao
- Department of Urology, The First Affiliated Hospital, General Hospital of PLA, Beijing, 100048, PR China
| | - Yuanfang Ma
- Laboratory of Cellular and Molecular Immunology, Medical School of Henan University, Kaifeng, 475004, PR China
| | - Ning Guo
- Institute of Basic Medical Sciences, Beijing, 100850, PR China
| | - Ming Shi
- Institute of Basic Medical Sciences, Beijing, 100850, PR China.
| |
Collapse
|
82
|
Ni PJ, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Tang WN, Zhou XQ. Impairing of gill health through decreasing immune function and structural integrity of grass carp (Ctenopharyngodon idella) fed graded levels dietary lipids after challenged with Flavobacterium columnare. FISH & SHELLFISH IMMUNOLOGY 2019; 86:922-933. [PMID: 30590156 DOI: 10.1016/j.fsi.2018.12.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 11/22/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
The current study conducted to investigate the hypothesis that low or excess levels of lipids increased the gill rot morbidity through impairing the immune function and structural integrity in the gill of grass carp (Ctenopharyngodon idella). A total of 540 young grass carp with an average initial weight of 261.41 ± 0.53 g were fed diets containing six graded levels of lipids at 0.59%, 2.14%, 3.60%, 5.02%, 6.66% and 8.01% diets for 8 weeks. After the growth trial, fish were challenged with Flavobacterium columnare for 3 days. The results indicated that compared with optimal lipids supplementation (2.14%-8.01% lipids diets), low or excess levels of lipids impaired fish immune function through declining the activities of humoral compounds, down-regulated the mRNA levels of anti-inflammatory cytokines, inhibitor of κBα (IκBα) and ribosomal p70S6 kinase (S6K1), and up-regulated pro-inflammatory cytokines, nuclear factor κB p65 (NF-κB p65) (not p52), IκB kinase α (IKKα) (not IKKβ), IKKγ and eIF4E-binding protein (4EBP) in the gill of young grass carp. In addition, low or excess levels of lipids decreased young grass carp physical barrier function through down-regulating the mRNA levels of ZO-1 (rather than ZO-2b), Claudin b, c, 3, 12, 15a, 15b, 7b, 7a and Occludin through MAPKK 6/p38 MAPK/MLCK signaling molecules, decreasing antioxidant ability via Kelch-like ECH-associating protein 1a (Keap1a)/NF-E2-related factor 2 (Nrf2) signaling molecules, and down-regulating the mRNA levels of B-cell lymphoma-2 (Bcl-2) and inhibitor of apoptosis protein (IAP) and up-regulating the mRNA levels of apoptotic protease activating factor-1 (Apaf-1), Caspase-3, -8 and -9 and Fas ligand (FasL) in the gill of grass carp. Based on the quadratic regression analysis for the gill rot morbidity, C3 and MDA contents, the dietary lipids requirements for young grass carp have been estimated to be 5.60%, 6.01% and 4.58% diets.
Collapse
Affiliation(s)
- Pei-Jun Ni
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.
| |
Collapse
|
83
|
Wang KZ, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Zhang YA, Zhou XQ. Dietary gossypol reduced intestinal immunity and aggravated inflammation in on-growing grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2019; 86:814-831. [PMID: 30543935 DOI: 10.1016/j.fsi.2018.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/25/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
The present study explored the effects of dietary gossypol on the gut health of on-growing grass carp. The fish were fed six diets containing different levels of free gossypol (0, 121.38, 243.94, 363.89, 759.93 and 1162.06 mg/kg diet) from gossypol-acetic acid for 60 days and then challenged with Aeromonas hydrophila for 14 days. The results showed that dietary gossypol (1) could aggravate enteritis and damage the structure of intestinal epithelial cells, (2) decreased the lysozyme (LZ) and Acid phosphatase (ACP) activities, complement 3 (C3), C4 and immunoglobulin M (IgM) contents, and it down-regulated the Hepcidin (rather than distal intestine (DI)), immunoglobulin Z (IgZ), liver-expressed antimicrobial peptide (LEAP)-2B, Mucin2 and β-defensin-1 mRNA levels in the proximal intestine (PI), mid intestine (MI) and DI, (3) up-regulated intestinal pro-inflammatory cytokines tumor necrosis factor α (TNF-α), interferon γ2 (IFN-γ2), interleukin 1β (IL-1β), IL-6 (only in PI), IL-8 and IL-12p35 mRNA levels partly related to nuclear factor kappa B (NF-κB) signalling, and (4) down-regulated the mRNA levels of anti-inflammatory cytokines such as transforming growth factor (TGF)-β1, TGF-β2, interleukin 4/13A (IL-4/13A) (except IL-4/13B), IL-10 and IL-11 partly relating to target of rapamycin (TOR) signalling in the intestines of on-growing grass carp. Moreover, the dietary gossypol had no impact on the LEAP-2A, IL-12P40, IL-17D, IL-10, NF-κBp52, IKKα and eIF4E-binding proteins 2 (4E-BP2) mRNA levels in the intestines. Finally, based on the intestinal histopathological results, enteritis morbidity, LZ activity and IgM content, the safe dose of gossypol in the diets for on-growing grass carp should be less than 103.42 mg/kg diet.
Collapse
Affiliation(s)
- Kai-Zhuo Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan, Agricultural University, Sichuan, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan, Agricultural University, Sichuan, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan, Agricultural University, Sichuan, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan, Agricultural University, Sichuan, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan, Agricultural University, Sichuan, Chengdu, 611130, China.
| |
Collapse
|
84
|
A novel miR-365-3p/EHF/keratin 16 axis promotes oral squamous cell carcinoma metastasis, cancer stemness and drug resistance via enhancing β5-integrin/c-met signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:89. [PMID: 30782177 PMCID: PMC6381632 DOI: 10.1186/s13046-019-1091-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/06/2019] [Indexed: 01/17/2023]
Abstract
Background Targeting the c-Met signaling pathway has become a therapeutic strategy in multiple types of cancer. We unveiled a novel c-Met regulating mechanism that could be applied as a modality for oral squamous cell carcinoma (OSCC) therapy. Methods Upregulation of keratin 16 (KRT16) was found by comparing isogenic pairs of low and high invasive human OSCC lines via microarray analysis. OSCC cells with ectopic expression or silencing of KRT16 were used to scrutinize functional roles and associated molecular mechanisms. Results We observed that high KRT16 expression significantly correlated with poorer pathological differentiation, advanced stages, increased lymph nodes metastasis, and decreased survival rate from several Taiwanese OSCC patient cohorts. We further revealed that miR-365-3p could target ETS homologous factor (EHF), a KRT16 transcription factor, to decrease migration, invasion, metastasis and chemoresistance in OSCC cells via inhibition of KRT16. Under confocal microscopic examination, c-Met was found possibly partially associates with KRT16 through β5-integrin. Colocalization of these three proteins may facilitate c-Met and β5-integrin–mediated signaling in OSCC cells. Depletion of KRT16 led to increased protein degradation of β5-integrin and c-Met through a lysosomal pathway leading to inhibition of their downstream Src/STAT3/FAK/ERK signaling in OSCC cells. Knockdown of KRT16 enhanced chemosensitivity of OSCC towards 5-fluorouracil (5-FU). Various combination of c-Met inhibitor (foretinib), protein tyrosine kinase inhibitor (genistein), β5-integrin antibody, and 5-FU markedly augmented cytotoxic effects in OSCC cells as well as tumor killing effects in vitro and in vivo. Conclusions Our data indicate that targeting a novel miR-365-3p/EHF/KRT16/β5-integrin/c-Met signaling pathway could improve treatment efficacy in OSCC. Electronic supplementary material The online version of this article (10.1186/s13046-019-1091-5) contains supplementary material, which is available to authorized users.
Collapse
|
85
|
Sun Y, Li X, Zhang L, Liu X, Jiang B, Long Z, Jiang Y. Cell Permeable NBD Peptide-Modified Liposomes by Hyaluronic Acid Coating for the Synergistic Targeted Therapy of Metastatic Inflammatory Breast Cancer. Mol Pharm 2019; 16:1140-1155. [PMID: 30668131 DOI: 10.1021/acs.molpharmaceut.8b01123] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chronic inflammation is closely related to the development, deterioration, and metastasis of tumors. Recently, many studies have shown that down-regulating the expression of inflammation by blocking nuclear factor-κB (NF-κB) and signal transducer and activator of transcription 3 (STAT3) pathways could significantly inhibit tumor growth and metastasis. The combined application of curcumin (CUR) and celecoxib (CXB) has been proven to exert a synergistic antitumor effect via inhibiting the activation of NF-κB and STAT3. TAT-NBD (TN) peptide, a fusion peptide of NF-κB essential modulator (NEMO)-binding domain peptide (NBD) and cell-penetrating peptide (TAT), can selectively block NF-κB activating pathway resulting in tumor growth inhibition. In the present study, a novel TN-modified liposome coloading both CXB and CUR (TN-CCLP) at a synergistic ratio was first constructed with the property of synchronous release, then hyaluronic acid (HA) as CD44 targeting moiety was coated on the surface of the cationic liposome via electrostatic interaction to prepare the anionic HA/TN-CCLP. In vitro results of cytotoxicity, macrophage migration inhibition, and anti-inflammation efficacy revealed that TN-CCLP and HA/TN-CCLP were significantly superior to TN-LP and CCLP, while TN-CCLP exhibited better effects than HA/TN-CCLP due to higher cellular uptake ability. Different from in vitro data, after systematically treating 4T1 breast tumor-bearing mice, HA/TN-CCLP exerted the most striking effects on anti-inflammation, inhibition of macrophage recruitment, and antitumor because of the longest circulation time and maximum tumor accumulation. In particular, HA/TN-CCLP could availably block the lung metastasis of breast cancer. Taken together, the novel CD44 targeted TN-CCLP exhibited the potential for inhibiting tumor development and metastasis through improving inflammatory infiltration of tumor tissue.
Collapse
Affiliation(s)
- Yuqing Sun
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai 200032 , China
| | - Xuqian Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai 200032 , China
| | - Lili Zhang
- School of Pharmacy , Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
| | - Xiao Liu
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai 200032 , China
| | - Baohong Jiang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203 , China
| | - Zhiguo Long
- Department of Hematology, Shanghai Pudong Hospital , Fudan University , Shanghai 201399 , China
| | - Yanyan Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education (Fudan University), Department of Pharmaceutics, School of Pharmacy , Fudan University , Shanghai 200032 , China
| |
Collapse
|
86
|
Huang C, Feng L, Jiang WD, Wu P, Liu Y, Zeng YY, Jiang J, Kuang SY, Tang L, Zhou XQ. Deoxynivalenol decreased intestinal immune function related to NF-κB and TOR signalling in juvenile grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2019; 84:470-484. [PMID: 30339843 DOI: 10.1016/j.fsi.2018.10.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/04/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Deoxynivalenol (DON) is one of the most common mycotoxins in animal feed worldwide and causes significant threats to the animal production. The intestine is an important mucosal immune organ in teleost, and it is also the first target for feed-borne toxicants in animal. However, studies concerning the effect of DON on fish intestine are scarce. This study explored the effects of DON on intestinal immune function in juvenile grass carp (Ctenopharyngodon idella). A total of 1440 juvenile grass carp (12.17 ± 0.01 g) were fed six diets containing graded levels of DON (27, 318, 636, 922, 1243 and 1515 μg/kg diet) for 60 days. After the growth trial, fish were challenged with Aeromonas hydrophila. The results were analysed by the Duncan's multiple-range test (P < 0.05), indicating that compared with the control group (27 μg/kg diet), dietary DON levels up to 318 μg/kg diet: (1) decreased lysozyme (LZ) and acid phosphatase (ACP) activities, as well as complement 3 (C3), C4 and immunoglobulin M (IgM) content in the proximal intestine (PI), middle intestine (MI) and distal intestine (DI) of juvenile grass carp (P < 0.05); (2) down-regulated the mRNA levels of anti-microbial substance: liver expressed antimicrobial peptide (LEAP) -2A, LEAP-2B, hepcidin, β-defensin-1 and mucin2 in the PI, MI and DI of juvenile grass carp (P < 0.05); (3) up-regulated the mRNA levels of pro-inflammatory cytokines [interleukin 1β (IL-1β), tumour necrosis factor α (TNF-α), interferon γ2 (INF-γ2), IL-6 (only in PI), IL-8, IL-12p35, IL-12p40, IL-15 and IL-17D] in the PI, MI and DI of juvenile grass carp (P < 0.05), which might be partly related to nuclear factor kappa B (NF-κB) signalling [IκB kinase β (IKKβ) and IKKγ/inhibitor of κBα (IκBα)/NF-κB (p65 and c-Rel)]; and (4) down-regulated the mRNA levels of anti-inflammatory cytokines [IL-10, IL-11, IL-4/13A (not IL-4/13B), transforming growth factor β1 (TGF-β1) (not TGF-β2)] in the PI, MI and DI of juvenile grass carp (P < 0.05), which might be partly related to target of rapamycin (TOR) signalling [TOR/ribosomal protein S6 kinases 1 (S6K1) and eIF4E-binding proteins (4E-BP)]. All data indicated that DON could impair the intestinal immune function, and its potential regulation mechanisms were partly associated with NF-κB and TOR signalling pathways. Finally, based on the enteritis morbidity, and the LZ and ACP activities as well as IgM content in the PI, the reasonable dose of DON for grass carp were estimated to be 251.66, 305.83, 252.34 and 309.94 μg/kg diet, respectively.
Collapse
Affiliation(s)
- Chen Huang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Yun-Yun Zeng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.
| |
Collapse
|
87
|
Han F, Wang X, Guo J, Qi C, Xu C, Luo Y, Li E, Qin JG, Chen L. Effects of glycinin and β-conglycinin on growth performance and intestinal health in juvenile Chinese mitten crabs (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2019; 84:269-279. [PMID: 30300740 DOI: 10.1016/j.fsi.2018.10.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
This study investigates the effects of two soybean antigens (glycinin and β-conglycinin) as an antinutritional substance in the diet on the growth, digestive ability, intestinal health and microbiota of juvenile Chinese mitten crabs (Eriocheir sinensis). The isonitrogenous and isolipidic diets contained two soybean antigens at two levels each (70 and 140 g/kg β-conglycinin, 80 and 160 g/kg glycinin) and a control diet without β-conglycinin or glycinin supplementation, and were used respectively to feed juvenile E. sinensis for seven weeks. Dietary inclusion of either glycinin or β-conglycinin significantly reduced crab survival and weight gain. The crabs fed diets containing soybean antigens had higher malondialdehyde concentrations and lower catalase activities in the intestine than those in the control. The activities of trypsin and amylase in the intestine were suppressed by dietary β-conglycinin and glycinin. Dietary glycinin or β-conglycinin impaired the immunity and morphological structure of intestine, especially the peritrophic membrane. The mRNA expression of constitutive and inducible immune responsive genes (lipopolysaccharide-induced TNF-α factor and interleukin-2 enhancer-binding factor 2) increased while the mRNA expression of the main genes related to the structural integrity peritrophic membrane (peritrophin-like gene and peritrophic 2) significantly decreased in the groups with soybean antigen addition. Soybean antigen could also change the intestinal microbial community. The abundance of pathogenic bacteria (Ochrobactrum, Burkholderia and Pseudomonas) increased significantly in both soybean antigen groups. Although pathogenic bacteria Vibrio were up-regulated in the glycinin group, the abundance of Dysgonomonas that degraded lignocellulose and ameliorated the gut environment decreased in the glycinin group. This study indicates that existence of soybean antigens (glycinin or β-conglycinin) could induce gut inflammation, reshape the community of gut microbiota, and cause digestive dysfunction, ultimately leading to impaired growth in crabs.
Collapse
Affiliation(s)
- Fenglu Han
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Xiaodan Wang
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Jianlin Guo
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Changle Qi
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Chang Xu
- Department of Aquaculture College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Yuan Luo
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China
| | - Erchao Li
- Department of Aquaculture College of Marine Sciences, Hainan University, Haikou, Hainan, 570228, China
| | - Jian G Qin
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Liqiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, 500 Dongchuan Rd, Shanghai, 200241, China.
| |
Collapse
|
88
|
Park M, Lim JW, Kim H. Docoxahexaenoic Acid Induces Apoptosis of Pancreatic Cancer Cells by Suppressing Activation of STAT3 and NF-κB. Nutrients 2018; 10:nu10111621. [PMID: 30400136 PMCID: PMC6267441 DOI: 10.3390/nu10111621] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022] Open
Abstract
The ω3-polyunsaturated fatty acid docosahexenoic acid (DHA) is known to induce apoptosis of cancer cells. In this study, DHA was shown to reduce viability of pancreatic cancer cells (PANC-1) by inducing DNA fragmentation, activating caspase-3, and increasing the ratio of Bax/Bcl-2. To determine the DHA mechanism of action, the impact of DHA on the activation of the key signaling proteins epidermal growth factor receptor (EGFR), signal transducer and activator of transcription factor 3 (STAT3), nuclear transcription factor-κB (NF-κB), and IκBα in PANC-1 cells was probed. The observed DHA suppression of NF-κB DNA-binding activity was found to result from reduced IκBα phosphorylation. The observed DHA-induced suppression of STAT3 activation was found to be the result of suppressed EGFR activation, which derives from the inhibitory effect of DHA on the integrity of localization of EGFR to cell membrane lipid rafts. Since the activation of STAT3 and NF-κB mediates the expression of survival genes cyclin D1 and survivin, DHA induced apoptosis by suppressing the STAT3/NF-κB-cyclin D1/survivin axis. These results support the proposal that DHA-induced apoptosis of pancreatic cells occurs via disruption of key pro-cell survival signaling pathways. We suggest that the consumption of DHA-enriched foods could decrease the incidence of pancreatic cancer.
Collapse
Affiliation(s)
- Mirae Park
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Joo Weon Lim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| | - Hyeyoung Kim
- Department of Food and Nutrition, Brain Korea 21 PLUS Project, College of Human Ecology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
89
|
|
90
|
Chang R, Song L, Xu Y, Wu Y, Dai C, Wang X, Sun X, Hou Y, Li W, Zhan X, Zhan L. Loss of Wwox drives metastasis in triple-negative breast cancer by JAK2/STAT3 axis. Nat Commun 2018; 9:3486. [PMID: 30154439 PMCID: PMC6113304 DOI: 10.1038/s41467-018-05852-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/11/2018] [Indexed: 12/19/2022] Open
Abstract
Loss of WW domain-containing oxidoreductase (Wwox) expression has been observed in breast cancer (BC). However, its regulatory effects are largely unknown, especially in triple-negative breast cancer (TNBC). Herein, gene expression profiling revealed that JAK/STAT3 pathway was one of the most differentially modulated pathways in basal-like BC cells. The lower expression of Wwox was significantly correlated with high activation of STAT3 in basal-like cells and TNBC tissues. Overexpression of Wwox markedly inhibited proliferation and metastasis of BC cells by suppressing STAT3 activation, which is to interact with JAK2 to inhibit JAK2 and STAT3 phosphorylation. Furthermore, Wwox limited STAT3 binding to the interleukin-6 promoter, repressing expression of the IL-6 cytokine. Altogether, our data established that Wwox suppresses BC cell metastasis and proliferation by JAK2/STAT3 pathway. Targeting of Wwox with STAT3 could offer a promising therapeutic strategy for TNBC. In breast cancer, the loss of expression of WW domain-containing oxireductase (Wwox) has been observed. Here, the authors illustrate that in triple negative breast cancer models Wwox suppresses metastasis and proliferation via the JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Renxu Chang
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lele Song
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yi Xu
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yanjun Wu
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cheng Dai
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xinyu Wang
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xia Sun
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Li
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Zhejiang, 310020, China
| | - Xianbao Zhan
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Lixing Zhan
- Key Laboratory of Nutrition, Metabolism, and Food Safety, Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of the Chinese Academy of Sciences, Shanghai, 200031, China. .,Department of Cellular and Genetic Medicine, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
91
|
Song Y, Gao L, Tang Z, Li H, Sun B, Chu P, Qaed E, Ma X, Peng J, Wang S, Hu M, Tang Z. Anticancer effect of SZC015 on pancreatic cancer via mitochondria-dependent apoptosis and the constitutive suppression of activated nuclear factor κB and STAT3 in vitro and in vivo. J Cell Physiol 2018; 234:777-788. [PMID: 30078206 DOI: 10.1002/jcp.26892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related death worldwide. Advances in therapeutic strategies such as chemotherapy have improved the clinical outcomes for pancreatic cancer patients. However, developing new therapeutic compounds against pancreatic cancer is still urgent due to the poor prognosis. Here, we show that SZC015, an oleanolic acid derivative, exhibits potent inhibitory effect on both pancreatic cancer cells in vitro and the corresponding xenograft tumors in vivo. Mechanistically, the activation of intrinsic apoptosis and G1 phase arrest resulting from mitochondria damage caused by SZC015 contribute significantly to the anticancer effects of SZC015. SZC015 also has remarkably inhibitory effects on the transcription factors that are extensively activated in pancreatic cancer tissues. As a constitutively activated transcription factor in pancreatic cancer, the nuclear factor κB is highly suppressed after SZC015 treatment in vitro or administration in vivo. Based on the bioinformatics analysis of microarray data, we validate that JAK2/STAT3 signaling is indeed activated in the human pancreatic cancer tissues and SZC015 also shows inhibitory effect on this signaling both in vitro and in vivo. These data suggest the potent effects of SZC015 on pancreatic cancer and also provided novel insights into the mechanisms of SZC015 as a new potent candidate for treating pancreatic cancer.
Collapse
Affiliation(s)
- Yanlin Song
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Lei Gao
- Research Institute of Heart Failure, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongyuan Tang
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, China
| | - Hailong Li
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Bin Sun
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Peng Chu
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Eskandar Qaed
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Xiaodong Ma
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Jinyong Peng
- Pharmacology Department, Dalian Medical University, Dalian, China
| | - Shisheng Wang
- Pharmaceutical Engineering Department, College of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian, China
| | - Min Hu
- Department of Orthodontics, School of Stomatology, Jilin University, Changchun, China
| | - Zeyao Tang
- Pharmacology Department, Dalian Medical University, Dalian, China
| |
Collapse
|
92
|
Tao JH, Duan JA, Zhang W, Jiang S, Guo JM, Wei DD. Polysaccharides From Chrysanthemum morifolium Ramat Ameliorate Colitis Rats via Regulation of the Metabolic Profiling and NF-κ B/TLR4 and IL-6/JAK2/STAT3 Signaling Pathways. Front Pharmacol 2018; 9:746. [PMID: 30042683 PMCID: PMC6049019 DOI: 10.3389/fphar.2018.00746] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 06/19/2018] [Indexed: 12/22/2022] Open
Abstract
Studies have indicated that Chrysanthemum polysaccharides (CP) could prominently ameliorate colitis rats, but its possible mechanism remains unclear. In this study, the underlying mechanism of CP was explored by the metabolic profiling analysis and correlated signaling pathways. TNBS/ethanol induced colitis was used to investigate the intervention efficacy following oral administration of CP. The levels of cytokines such as TNF-α, IL-6, IFN-γ and IL-1β, and the activities of SOD, MPO, and MDA were determined. We also performed western-blot for p65, TLR4, p-JAK2, and STAT3 protein expression in the colon tissue to probe their mechanisms of correlated signaling pathways. What’s more, the metabolic changes in plasma and urine from colitis rats were investigated based on UPLC-Q-TOF/MS combined with MetabolynxTM software. The potential biomarkers and metabolic pathways were also tentatively confirmed. The metabolic profiles of plasma and urine were clearly improved in model rats after oral administration of CP. Thirty-two (17 in serum and 15 in urine) potential biomarkers were identified. The endogenous metabolites were mainly involved in linoleic acid, retinol, arachidonic acid, glycerophospholipid and primary bile acid metabolism in plasma, and nicotinate and nicotinamide, ascorbate and aldarate, histidine and β-alanine metabolism in urine. After polysaccharides intervention, these markers turned back to normal level at some extent. Meanwhile, the elevated expression levels of pp65, TLR4, p-STAT3, and p-JAK2 were significantly decreased after treatment. Results suggested that CP would be a potential prebiotics for alleviation of TNBS-induced colitis. The study paved the way for the further exploration of the pathogenesis, early diagnosis and curative drug development of the colitis.
Collapse
Affiliation(s)
- Jin-Hua Tao
- School of Pharmacy, Nantong University, Nantong, China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Zhang
- School of Pharmacy, Nantong University, Nantong, China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Ming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dan-Dan Wei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
93
|
Repression of human and mouse brain inflammaging transcriptome by broad gene-body histone hyperacetylation. Proc Natl Acad Sci U S A 2018; 115:7611-7616. [PMID: 29967166 DOI: 10.1073/pnas.1800656115] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Brain "inflammaging," a low-grade and chronic inflammation, is a major hallmark for aging-related neurodegenerative diseases. Here, by profiling H3K27ac and gene expression patterns in human and mouse brains, we found that age-related up-regulated (Age-Up) and down-regulated (Age-Down) genes have distinct H3K27ac patterns. Although both groups show promoter H3K27ac, the Age-Up genes, enriched for inflammation-related functions, are additionally marked by broad H3K27ac distribution over their gene bodies, which is progressively reduced during aging. Age-related gene expression changes can be predicted by gene-body H3K27ac level. Contrary to the presumed transcription activation function of promoter H3K27ac, we found that broad gene-body hyper H3K27ac suppresses overexpression of inflammaging genes. Altogether, our findings revealed opposite regulations by H3K27ac of Age-Up and Age-Down genes and a mode of broad gene-body H3K27ac in repressing transcription.
Collapse
|
94
|
NF-κB pathways in the development and progression of colorectal cancer. Transl Res 2018; 197:43-56. [PMID: 29550444 DOI: 10.1016/j.trsl.2018.02.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 12/12/2022]
Abstract
Nuclear factor-κB (NF-κB) has been widely implicated in the development and progression of cancer. In colorectal cancer (CRC), NF-κB has a key role in cancer-related processes such as cell proliferation, apoptosis, angiogenesis, and metastasis. The role of NF-κB in CRC is complex, owed to the cross talk with other signaling pathways. Although there is sufficient evidence gained from cell lines and animal models that NF-κB is involved in cancer-related processes, because of a lack of studies in human tissue, the clinical evidence of its importance is limited in patients with CRC. This review summarizes evidence relating to how NF-κB is involved in the development and progression of CRC and comments on future work to be carried out.
Collapse
|
95
|
Imai-Matsushima A, Martin-Sancho L, Karlas A, Imai S, Zoranovic T, Hocke AC, Mollenkopf HJ, Berger H, Meyer TF. Long-Term Culture of Distal Airway Epithelial Cells Allows Differentiation Towards Alveolar Epithelial Cells Suited for Influenza Virus Studies. EBioMedicine 2018; 33:230-241. [PMID: 29937069 PMCID: PMC6085545 DOI: 10.1016/j.ebiom.2018.05.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/24/2022] Open
Abstract
As the target organ for numerous pathogens, the lung epithelium exerts critical functions in health and disease. However, research in this area has been hampered by the quiescence of the alveolar epithelium under standard culture conditions. Here, we used human distal airway epithelial cells (DAECs) to generate alveolar epithelial cells. Long-term, robust growth of human DAECs was achieved using co-culture with feeder cells and supplementation with epidermal growth factor (EGF), Rho-associated protein kinase inhibitor Y27632, and the Notch pathway inhibitor dibenzazepine (DBZ). Removal of feeders and priming with DBZ and a cocktail of lung maturation factors prevented the spontaneous differentiation into airway club cells and instead induced differentiation to alveolar epithelial cells. We successfully transferred this approach to chicken distal airway cells, thus generating a zoonotic infection model that enables studies on influenza A virus replication. These cells are also amenable for gene knockdown using RNAi technology, indicating the suitability of the model for mechanistic studies into lung function and disease.
Collapse
Affiliation(s)
- Aki Imai-Matsushima
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Laura Martin-Sancho
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Alexander Karlas
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Seiichiro Imai
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Tamara Zoranovic
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Andreas C Hocke
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité University Medicine, Berlin, Germany
| | - Hans-Joachim Mollenkopf
- Max Planck Institute for Infection Biology, Core Facility Microarray/Genomics, Berlin, Germany
| | - Hilmar Berger
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany.
| |
Collapse
|
96
|
Mitophagy in Intestinal Epithelial Cells Triggers Adaptive Immunity during Tumorigenesis. Cell 2018; 174:88-101.e16. [PMID: 29909986 DOI: 10.1016/j.cell.2018.05.028] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/03/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022]
Abstract
In colorectal cancer patients, a high density of cytotoxic CD8+ T cells in tumors is associated with better prognosis. Using a Stat3 loss-of-function approach in two wnt/β-catenin-dependent autochthonous models of sporadic intestinal tumorigenesis, we unravel a complex intracellular process in intestinal epithelial cells (IECs) that controls the induction of a CD8+ T cell based adaptive immune response. Elevated mitophagy in IECs causes iron(II)-accumulation in epithelial lysosomes, in turn, triggering lysosomal membrane permeabilization. Subsequent release of proteases into the cytoplasm augments MHC class I presentation and activation of CD8+ T cells via cross-dressing of dendritic cells. Thus, our findings highlight a so-far-unrecognized link between mitochondrial function, lysosomal integrity, and MHC class I presentation in IECs and suggest that therapies triggering mitophagy or inducing LMP in IECs may prove successful in shifting the balance toward anti-tumor immunity in colorectal cancer.
Collapse
|
97
|
Suppression of Elp2 prevents renal fibrosis and inflammation induced by unilateral ureter obstruction (UUO) via inactivating Stat3-regulated TGF-β1 and NF-κB pathways. Biochem Biophys Res Commun 2018; 501:400-407. [DOI: 10.1016/j.bbrc.2018.04.227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 04/29/2018] [Indexed: 01/02/2023]
|
98
|
Song J, Zhang W, Wang S, Liu K, Song F, Ran L. A panel of 7 prognosis-related long non-coding RNAs to improve platinum-based chemoresistance prediction in ovarian cancer. Int J Oncol 2018; 53:866-876. [PMID: 29749482 DOI: 10.3892/ijo.2018.4403] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/02/2018] [Indexed: 11/06/2022] Open
Abstract
In order to study the role of long non-coding RNAs (lncRNAs) in predicting platinum-based chemoresistance in patients with high-grade serous ovarian carcinoma (HGS-OvCa), a=7-lncRNA signature was developed by analyzing 561 microarrays and 136 specimens from RNA-sequencing (RNA-seq) obtained from online databases [odds ratio (OR), 2.859; P<0.0001]. The upregulated lncRNAs (RP11-126K1.6, ZBED3-AS1, RP11-439E19.10 and RP11‑348N5.7) and downregulated lncRNAs [RNF144A-AS1, growth arrest specific 5 (GAS5) and F11-AS1] exhibited high sensitivity and specificity in predicting chemoresistance in the Gene Expression Omnibus and the Cancer Genome Atlas (area under curve >0.8). The lncRNA signature was independent of clinical characteristics and 4 HGS-OvCa molecular subtypes. This signature was negatively associated with disease-free survival (n=47; log-rank, P<0.01). Furthermore, the expression of the 7 lncRNAs was consistent with microarray (GSE63885, GSE51373, GSE15372 and GSE9891) and RNA-seq data. In in vitro experiments, ZBED3-AS1, F11-AS1 and GAS5 were differentially expressed in cell lines that are known to be resistant and non-resistant to platinum-based drugs, which was consistent with the results in the present study. This lncRNA signature may be used as a prognostic marker for predicting resistance to platinum-based chemotherapeutics in HGS-OvCa. These findings may contribute to individualized therapies in patients with HGS-OvCa in the future.
Collapse
Affiliation(s)
- Jing Song
- Department of Bioinformatics, The Basic Medical School of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wanfeng Zhang
- Department of Bioinformatics, The Basic Medical School of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Sen Wang
- Department of Bioinformatics, The Basic Medical School of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Kun Liu
- Department of Bioinformatics, The Basic Medical School of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Fangzhou Song
- Molecular and Tumor Research Center, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Longke Ran
- Department of Bioinformatics, The Basic Medical School of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
99
|
Sahan AZ, Hazra TK, Das S. The Pivotal Role of DNA Repair in Infection Mediated-Inflammation and Cancer. Front Microbiol 2018; 9:663. [PMID: 29696001 PMCID: PMC5904280 DOI: 10.3389/fmicb.2018.00663] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/21/2018] [Indexed: 12/19/2022] Open
Abstract
Pathogenic and commensal microbes induce various levels of inflammation and metabolic disease in the host. Inflammation caused by infection leads to increased production of reactive oxygen species (ROS) and subsequent oxidative DNA damage. These in turn cause further inflammation and exacerbation of DNA damage, and pose a risk for cancer development. Helicobacter pylori-mediated inflammation has been implicated in gastric cancer in many previously established studies, and Fusobacterium nucleatum presence has been observed with greater intensity in colorectal cancer patients. Despite ambiguity in the exact mechanism, infection-mediated inflammation may have a link to cancer development through an accumulation of potentially mutagenic DNA damage in surrounding cells. The multiple DNA repair pathways such as base excision, nucleotide excision, and mismatch repair that are employed by cells are vital in the abatement of accumulated mutations that can lead to carcinogenesis. For this reason, understanding the role of DNA repair as an important cellular mechanism in combatting the development of cancer will be essential to characterizing the effect of infection on DNA repair proteins and to identifying early cancer biomarkers that may be targeted for cancer therapies and treatments.
Collapse
Affiliation(s)
- Ayse Z Sahan
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Tapas K Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Soumita Das
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
100
|
Egusquiaguirre SP, Yeh JE, Walker SR, Liu S, Frank DA. The STAT3 Target Gene TNFRSF1A Modulates the NF-κB Pathway in Breast Cancer Cells. Neoplasia 2018; 20:489-498. [PMID: 29621649 PMCID: PMC5916089 DOI: 10.1016/j.neo.2018.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 01/24/2023] Open
Abstract
The transcription factor STAT3 is activated inappropriately in 70% of breast cancers, most commonly in triple negative breast cancer (TNBC). Although the transcriptional function of STAT3 is essential for tumorigenesis, the key target genes regulated by STAT3 in driving tumor pathogenesis have remained unclear. To identify critical STAT3 target genes, we treated TNBC cell lines with two different compounds that block STAT3 transcriptional function, pyrimethamine and PMPTP. We then performed gene expression analysis to identify genes whose expression is strongly down-regulated by both STAT3 inhibitors. Foremost among the down-regulated genes was TNFRSF1A, which encodes a transmembrane receptor for TNFα. We showed that STAT3 binds directly to a regulatory region within the TNFRSF1A gene, and that TNFRSF1A levels are dependent on STAT3 function in both constitutive and cytokine-induced models of STAT3 activation. Furthermore, TNFRSF1A is a major mediator of both basal and TNFα-induced NF-κB activity in breast cancer cells. We extended these findings to primary human breast cancers, in which we found that high TNFRSF1A transcript levels correlated with STAT3 activation. In addition, and consistent with a causal role, increased TNFRSF1A expression was associated with an NF-κB gene expression in signature in breast cancers. Thus, TNFRSF1A is a STAT3 target gene that regulates the NF-κB pathway. These findings reveal a novel functional crosstalk between STAT3 and NF-κB signaling in breast cancer. Furthermore, elevated TNFRSF1A levels may predict a subset of breast tumors that are sensitive to STAT3 transcriptional inhibitors, and may be a biomarker for response to inhibition of this pathway.
Collapse
Affiliation(s)
- Susana P Egusquiaguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115; Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Jennifer E Yeh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115; Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Sarah R Walker
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115; Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Suhu Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115; Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - David A Frank
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115; Departments of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115.
| |
Collapse
|