51
|
Confined placental origin of the circulating cell free fetal DNA revealed by a discordant non-invasive prenatal test result in a trisomy 18 pregnancy. Clin Chim Acta 2014; 433:190-3. [DOI: 10.1016/j.cca.2014.03.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/11/2014] [Accepted: 03/13/2014] [Indexed: 11/23/2022]
|
52
|
Gregg AR, Van den Veyver IB, Gross SJ, Madankumar R, Rink BD, Norton ME. Noninvasive prenatal screening by next-generation sequencing. Annu Rev Genomics Hum Genet 2014; 15:327-47. [PMID: 24849140 DOI: 10.1146/annurev-genom-090413-025341] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Noninvasive prenatal screening (NIPS) has emerged as a highly accurate method of screening for fetal Down syndrome, with a detection rate and specificity approaching 100%. Challenging the widespread use of this technology are cost and the paradigm shift in counseling that accompanies any emerging technology. The expense of the test is expected to decrease with increased utilization, and well beyond the current NIPS technology, its components (fetal genome measurements, sequencing technology, and bioinformatics) will be utilized alone or in combinations to interrogate the fetal genome. The end goal is simple: to offer patients information early in pregnancy about fetal genomes without incurring procedural risks. This will allow patients an opportunity to make informed reproductive and pregnancy management decisions based on precise fetal genomic information.
Collapse
Affiliation(s)
- Anthony R Gregg
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Florida College of Medicine, Gainesville, Florida 32610;
| | | | | | | | | | | |
Collapse
|
53
|
Bianchi DW, Parker RL, Wentworth J, Madankumar R, Saffer C, Das AF, Craig JA, Chudova DI, Devers PL, Jones KW, Oliver K, Rava RP, Sehnert AJ. DNA sequencing versus standard prenatal aneuploidy screening. N Engl J Med 2014; 370:799-808. [PMID: 24571752 DOI: 10.1056/nejmoa1311037] [Citation(s) in RCA: 434] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND In high-risk pregnant women, noninvasive prenatal testing with the use of massively parallel sequencing of maternal plasma cell-free DNA (cfDNA testing) accurately detects fetal autosomal aneuploidy. Its performance in low-risk women is unclear. METHODS At 21 centers in the United States, we collected blood samples from women with singleton pregnancies who were undergoing standard aneuploidy screening (serum biochemical assays with or without nuchal translucency measurement). We performed massively parallel sequencing in a blinded fashion to determine the chromosome dosage for each sample. The primary end point was a comparison of the false positive rates of detection of fetal trisomies 21 and 18 with the use of standard screening and cfDNA testing. Birth outcomes or karyotypes were the reference standard. RESULTS The primary series included 1914 women (mean age, 29.6 years) with an eligible sample, a singleton fetus without aneuploidy, results from cfDNA testing, and a risk classification based on standard screening. For trisomies 21 and 18, the false positive rates with cfDNA testing were significantly lower than those with standard screening (0.3% vs. 3.6% for trisomy 21, P<0.001; and 0.2% vs. 0.6% for trisomy 18, P=0.03). The use of cfDNA testing detected all cases of aneuploidy (5 for trisomy 21, 2 for trisomy 18, and 1 for trisomy 13; negative predictive value, 100% [95% confidence interval, 99.8 to 100]). The positive predictive values for cfDNA testing versus standard screening were 45.5% versus 4.2% for trisomy 21 and 40.0% versus 8.3% for trisomy 18. CONCLUSIONS In a general obstetrical population, prenatal testing with the use of cfDNA had significantly lower false positive rates and higher positive predictive values for detection of trisomies 21 and 18 than standard screening. (Funded by Illumina; ClinicalTrials.gov number, NCT01663350.).
Collapse
Affiliation(s)
- Diana W Bianchi
- From the Mother Infant Research Institute, Tufts Medical Center and Tufts University School of Medicine, Boston (D.W.B.); Lyndhurst Clinical Research, Winston-Salem, NC (R.L.P.); the Group for Women, Norfolk, VA (J.W.); Long Island Jewish Medical Center, North Shore-LIJ Health Systems, New Hyde Park, NY (R.M.); West Coast OB/GYN, San Diego (C.S.), InClin, San Mateo (A.F.D.), and Illumina, Redwood City (D.I.C., P.L.D., K.W.J., K.O., R.P.R., A.J.S.) - all in California; and Colorado Permanente Medical Group, Denver (J.A.C.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Placental mosaicism for Trisomy 13: a challenge in providing the cell-free fetal DNA testing. J Assist Reprod Genet 2014; 31:589-94. [PMID: 24497298 DOI: 10.1007/s10815-014-0182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/22/2014] [Indexed: 10/25/2022] Open
Abstract
PURPOSE We investigated the disagreement between the positive cell-free fetal DNA test for trisomy 13 and the standard cytogenetic diagnosis of one case. METHODS Cell-free fetal DNA testing was performed by massively parallel sequencing. We used conventional cytogenetic analysis to confirm the commercial cell-free fetal DNA testing. Additionally, postnatal fluorescent in situ hybridization (FISH) testing was performed on placental tissues. RESULTS The cell-free fetal DNA testing result was positive for trisomy 13. G-banded analysis of amniotic fluid was normal, 46, XY. FISH testing of tissues from four quadrants of the placenta demonstrated mosaicism for trisomy 13. CONCLUSIONS A positive cell-free fetal DNA testing result may not be representative of the fetal karyotype because of placental mosaicism. Cytogenetic analysis should be performed when abnormal cell-free fetal DNA test results are obtained.
Collapse
|
55
|
Rava RP, Srinivasan A, Sehnert AJ, Bianchi DW. Circulating Fetal Cell-Free DNA Fractions Differ in Autosomal Aneuploidies and Monosomy X. Clin Chem 2014; 60:243-50. [DOI: 10.1373/clinchem.2013.207951] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
BACKGROUND
Noninvasive prenatal testing based on massively parallel sequencing (MPS) of cell-free DNA in maternal plasma has become rapidly integrated into clinical practice for detecting fetal chromosomal aneuploidy. We directly determined the fetal fraction (FF) from results obtained with MPS tag counting and examined the relationships of FF to such biological parameters as fetal karyotype and maternal demographics.
METHODS
FF was determined from samples previously collected for the MELISSA (Maternal Blood Is Source to Accurately Diagnose Fetal Aneuploidy) study. Samples were resequenced, analyzed blindly, and aligned to the human genome (assembly hg19). FF was calculated in pregnancies with male or aneuploid fetuses by means of an equation that incorporated the ratio of the tags in these samples to those of a euploid training set.
RESULTS
The mean (SD) FF from euploid male pregnancies was 0.126 (0.052) (n = 160). Weak but statistically significant correlations were found between FF and the maternal body mass index (r2 = 0.18; P = 2.3 × 10−8) and between FF and gestational age (r2 = 0.02; P = 0.047). No relationship with maternal ethnicity or age was observed. Mean FF values for trisomies 21 (n = 90), 18 (n = 38), and 13 (n = 16) and for monosomy X (n = 20) were 0.135 (0.051), 0.089 (0.039), 0.090 (0.062), and 0.106 (0.045), respectively.
CONCLUSIONS
MPS tag-count data can be used to determine FF directly and accurately. Compared with male euploid fetuses, the FF is higher in maternal plasma when the fetus has trisomy 21 and is lower when the fetus has trisomy 18, 13, or monosomy X. The different biologies of these aneuploidies have practical implications for the determination of cutoff values, which in turn will affect the diagnostic sensitivity and specificity of the test.
Collapse
Affiliation(s)
| | | | - Amy J Sehnert
- Verinata Health, an Illumina Company, Redwood City, CA
| | - Diana W Bianchi
- Mother Infant Research Institute at Tufts Medical Center and Tufts University School of Medicine, Boston, MA
| |
Collapse
|
56
|
Taglauer ES, Wilkins-Haug L, Bianchi DW. Review: cell-free fetal DNA in the maternal circulation as an indication of placental health and disease. Placenta 2013; 35 Suppl:S64-8. [PMID: 24388429 DOI: 10.1016/j.placenta.2013.11.014] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/20/2013] [Accepted: 11/21/2013] [Indexed: 01/13/2023]
Abstract
In human pregnancy, the constant turnover of villous trophoblast results in extrusion of apoptotic material into the maternal circulation. This material includes cell-free (cf) DNA, which is commonly referred to as "fetal", but is actually derived from the placenta. As the release of cf DNA is closely tied to placental morphogenesis, conditions associated with abnormal placentation, such as preeclampsia, are associated with high DNA levels in the blood of pregnant women. Over the past five years, the development and commercial availability of techniques of massively parallel DNA sequencing have facilitated noninvasive prenatal testing (NIPT) for fetal trisomies 13, 18, and 21. Clinical experience accrued over the past two years has highlighted the importance of the fetal fraction (ff) in cf DNA analysis. The ff is the amount of cell-free fetal DNA in a given sample divided by the total amount of cell-free DNA. At any gestational age, ff has a bell-shaped distribution that peaks between 10 and 20% at 10-21 weeks. ff is affected by maternal body mass index, gestational age, fetal aneuploidy, and whether the gestation is a singleton or multiple. In approximately 0.1% of clinical cases, the NIPT result and a subsequent diagnostic karyotype are discordant; confined placental mosaicism has been increasingly reported as an underlying biologic explanation. Cell-free fetal DNA is a new biomarker that can provide information about the placenta and potentially be used to predict clinical problems. Knowledge gaps still exist with regard to what affects production, metabolism, and clearance of feto-placental DNA.
Collapse
Affiliation(s)
- E S Taglauer
- Department of Pediatrics, Floating Hospital for Children, Boston, MA, USA
| | - L Wilkins-Haug
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Brigham and Womens' Hospital, Boston, MA, USA
| | - D W Bianchi
- Mother Infant Research Institute at Tufts Medical Center and Floating Hospital for Children, 800 Washington Street, Box 394, Boston, MA 02111, USA.
| |
Collapse
|
57
|
Bianchi DW, Wilkins-Haug L. Integration of noninvasive DNA testing for aneuploidy into prenatal care: what has happened since the rubber met the road? Clin Chem 2013; 60:78-87. [PMID: 24255077 DOI: 10.1373/clinchem.2013.202663] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Over the past 2 years, noninvasive prenatal testing (NIPT), which uses massively parallel sequencing to align and count DNA fragments floating in the plasma of pregnant women, has become integrated into prenatal care. Professional societies currently recommend offering NIPT as an advanced screen to pregnant women at high risk for fetal aneuploidy, reserving invasive diagnostic procedures for those at the very highest risk. CONTENT In this review, we summarize the available information on autosomal and sex chromosome aneuploidy detection. Clinical performance in CLIA-certified, College of American Pathology-accredited laboratories appears to be equivalent to prior clinical validation studies, with high sensitivities and specificities and very high negative predictive values. The main impact on clinical care has been a reduction in invasive procedures. Test accuracy is affected by the fetal fraction, the percentage of fetal DNA in the total amount of circulating cell-free DNA. Fetal fraction is in turn affected by maternal body mass index, gestational age, type of aneuploidy, singleton vs multiples, and mosaicism. Three studies comparing NIPT to serum or combined screening for autosomal aneuploidy all show that NIPT has significantly lower false-positive rates (approximately 0.1%), even in all-risk populations. A significant number of the discordant positive cases have underlying biological reasons, including confined placental mosaicism, maternal mosaicism, cotwin demise, or maternal malignancy. SUMMARY NIPT performs well as an advanced screen for whole chromosome aneuploidy. Economic considerations will likely dictate whether its use can be expanded to all risk populations and whether it can be applied routinely for the detection of subchromosome abnormalities.
Collapse
Affiliation(s)
- Diana W Bianchi
- Mother Infant Research Institute at Tufts Medical Center and Floating Hospital for Children and Departments of Pediatrics and Obstetrics and Gynecology, Tufts University School of Medicine, Boston, MA
| | | |
Collapse
|
58
|
Wang Y, Chen Y, Tian F, Zhang J, Song Z, Wu Y, Han X, Hu W, Ma D, Cram D, Cheng W. Maternal mosaicism is a significant contributor to discordant sex chromosomal aneuploidies associated with noninvasive prenatal testing. Clin Chem 2013; 60:251-9. [PMID: 24193117 DOI: 10.1373/clinchem.2013.215145] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND In the human fetus, sex chromosome aneuploidies (SCAs) are as prevalent as the common autosomal trisomies 21, 18, and 13. Currently, most noninvasive prenatal tests (NIPTs) offer screening only for chromosomes 21, 18, and 13, because the sensitivity and specificity are markedly higher than for the sex chromosomes. Limited studies suggest that the reduced accuracy associated with detecting SCAs is due to confined placental, placental, or true fetal mosaicism. We hypothesized that an altered maternal karyotype may also be an important contributor to discordant SCA NIPT results. METHODS We developed a rapid karyotyping method that uses massively parallel sequencing to measure the degree of chromosome mosaicism. The method was validated with DNA models mimicking XXX and XO mosaicism and then applied to maternal white blood cell (WBC) DNA from patients with discordant SCA NIPT results. RESULTS Sequencing karyotyping detected chromosome X (ChrX) mosaicism as low as 5%, allowing an accurate assignment of the maternal X karyotype. In a prospective NIPT study, we showed that 16 (8.6%) of 181 positive SCAs were due to an abnormal maternal ChrX karyotype that masked the true contribution of the fetal ChrX DNA fraction. CONCLUSIONS The accuracy of NIPT for ChrX and ChrY can be improved substantially by integrating the results of maternal-plasma sequencing with those for maternal-WBC sequencing. The relatively high frequency of maternal mosaicism warrants mandatory WBC testing in both shotgun sequencing- and single-nucleotide polymorphism-based clinical NIPT after the finding of a potential fetal SCA.
Collapse
Affiliation(s)
- Yanlin Wang
- Key Laboratory of Molecular Medicine, Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Wang Y, Zhu J, Chen Y, Lu S, Chen B, Zhao X, Wu Y, Han X, Ma D, Liu Z, Cram D, Cheng W. Two cases of placental T21 mosaicism: challenging the detection limits of non-invasive prenatal testing. Prenat Diagn 2013; 33:1207-10. [PMID: 23929588 DOI: 10.1002/pd.4212] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/23/2013] [Accepted: 08/01/2013] [Indexed: 12/23/2022]
Affiliation(s)
- Yanlin Wang
- Key Laboratory of Molecular Medicine, Ministry of Education, Shanghai Medical College, Fudan University, Shanghai, China; Prenatal Diagnostic Center, International Peace Maternal and Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Benn P, Cuckle H, Pergament E. Non-invasive prenatal testing for aneuploidy: current status and future prospects. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2013; 42:15-33. [PMID: 23765643 DOI: 10.1002/uog.12513] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 05/09/2023]
Abstract
Non-invasive prenatal testing (NIPT) for aneuploidy using cell-free DNA in maternal plasma is revolutionizing prenatal screening and diagnosis. We review NIPT in the context of established screening and invasive technologies, the range of cytogenetic abnormalities detectable, cost, counseling and ethical issues. Current NIPT approaches involve whole-genome sequencing, targeted sequencing and assessment of single nucleotide polymorphism (SNP) differences between mother and fetus. Clinical trials have demonstrated the efficacy of NIPT for Down and Edwards syndromes, and possibly Patau syndrome, in high-risk women. Universal NIPT is not cost-effective, but using NIPT contingently in women found at moderate or high risk by conventional screening is cost-effective. Positive NIPT results must be confirmed using invasive techniques. Established screening, fetal ultrasound and invasive procedures with microarray testing allow the detection of a broad range of additional abnormalities not yet detectable by NIPT. NIPT approaches that take advantage of SNP information potentially allow the identification of parent of origin for imbalances, triploidy, uniparental disomy and consanguinity, and separate evaluation of dizygotic twins. Fetal fraction enrichment, improved sequencing and selected analysis of the most informative sequences should result in tests for additional chromosomal abnormalities. Providing adequate prenatal counseling poses a substantial challenge given the broad range of prenatal testing options now available.
Collapse
Affiliation(s)
- P Benn
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT, USA.
| | | | | |
Collapse
|