51
|
Abstract
CD4(+) T-helper subsets are lineages of T cells that have effector function in the lung and control critical aspects of lung immunity. Depletion of these cells experimentally or by drugs or human immunodeficiency virus (HIV) infection in humans leads to the development of opportunistic infections as well as increased rates of bacteremia with certain bacterial pneumonias. Recently, it has been proposed that CD4(+) T-cell subsets may also be excellent targets for mucosal vaccination to prevent pulmonary infections in susceptible hosts. Here, we review recent findings that increase our understanding of T-cell subsets and their effector cytokines in the context of pulmonary infection.
Collapse
Affiliation(s)
- Jay K Kolls
- Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
52
|
Furmanski AL, Saldana JI, Ono M, Sahni H, Paschalidis N, D'Acquisto F, Crompton T. Tissue-derived hedgehog proteins modulate Th differentiation and disease. THE JOURNAL OF IMMUNOLOGY 2013; 190:2641-9. [PMID: 23408837 DOI: 10.4049/jimmunol.1202541] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Genome-wide association studies of complex immune-mediated diseases have indicated that many genetic factors, each with individual low risk, contribute to overall disease. It is therefore timely and important to characterize how immune responses may be subtly modified by tissue context. In this article, we explore the role of tissue-derived molecules in influencing the function of T cells, which, owing to their migratory nature, come into contact with many different microenvironments through their lifespan. Hedgehog (Hh) proteins act as secreted morphogens, providing concentration-dependent positional and temporal cell-fate specification in solid tissues. Hh signaling is required for embryogenesis and is important in postnatal tissue renewal and in malignancy. However, the function of Hh in dynamic, fluid systems, such as in mammalian immunity, is largely unknown. In this article, we show that Hh-dependent transcription in T cells promoted Th2 transcriptional programs and differentiation, exacerbating allergic disease. Of interest, expression of Sonic Hh increased in lung epithelial cells following the induction of allergic disease, and lung T cells upregulated Hh target gene expression, indicating that T cells respond to locally secreted Hh ligands in vivo. We show that Il4, the key Th2 cytokine, is a novel transcriptional target of Hh signals in T cells, providing one mechanism for the role of Hh in Th differentiation. We propose that Hh, secreted from inflamed, remodeling, or malignant tissue, can modulate local T cell function. Our data present an unexpected and novel role for tissue-derived morphogens in the regulation of fluid immune responses, with implications for allergy and tumor responses, suggesting new uses for anti-Hh therapeutics.
Collapse
Affiliation(s)
- Anna L Furmanski
- Immunobiology Unit, Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
53
|
Grskovic I, Kutsch A, Frie C, Groma G, Stermann J, Schlötzer-Schrehardt U, Niehoff A, Moss SE, Rosenbaum S, Pöschl E, Chmielewski M, Rappl G, Abken H, Bateman JF, Cheah KS, Paulsson M, Brachvogel B. Depletion of annexin A5, annexin A6, and collagen X causes no gross changes in matrix vesicle-mediated mineralization, but lack of collagen X affects hematopoiesis and the Th1/Th2 response. J Bone Miner Res 2012; 27:2399-412. [PMID: 22692895 DOI: 10.1002/jbmr.1682] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Numerous biochemical studies have pointed to an essential role of annexin A5 (AnxA5), annexin A6 (AnxA6), and collagen X in matrix vesicle-mediated biomineralization during endochondral ossification and in osteoarthritis. By binding to the extracellular matrix protein collagen X and matrix vesicles, annexins were proposed to anchor matrix vesicles in the extracellular space of hypertrophic chondrocytes to initiate the calcification of cartilage. However, mineralization appears to be normal in mice lacking AnxA5 and AnxA6, whereas collagen X-deficient mice show only subtle alterations in the growth plate organization. We hypothesized that the simultaneous lack of AnxA5, AnxA6, and collagen X in vivo induces more pronounced changes in the growth plate development and the initiation of mineralization. In this study, we generated and analyzed mice deficient for AnxA5, AnxA6, and collagen X. Surprisingly, mice were viable, fertile, and showed no obvious abnormalities. Assessment of growth plate development indicated that the hypertrophic zone was expanded in Col10a1(-/-) and AnxA5(-/-) AnxA6(-/-) Col10a1(-/-) newborns, whereas endochondral ossification and mineralization were not affected in 13-day- and 1-month-old mutants. In peripheral quantitative computed tomography, no changes in the degree of biomineralization were found in femora of 1-month- and 1-year-old mutants even though the diaphyseal circumference was reduced in Col10a1(-/-) and AnxA5(-/-) AnxA6(-/-) Col10a1(-/-) mice. The percentage of naive immature IgM(+) /IgM(+) B cells and peripheral T-helper cells were increased in Col10a1(-/-) and AnxA5(-/-) AnxA6(-/-) Col10a1(-/-) mutants, and activated splenic T cells isolated from Col10a1(-/-) mice secreted elevated levels of IL-4 and GM-CSF. Hence, collagen X is needed for hematopoiesis during endochondral ossification and for the immune response, but the interaction of annexin A5, annexin A6, and collagen X is not essential for physiological calcification of growth plate cartilage. Therefore, annexins and collagen X may rather fulfill functions in growth plate cartilage not directly linked to the mineralization process.
Collapse
Affiliation(s)
- Ivan Grskovic
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Sestero CM, McGuire DJ, De Sarno P, Brantley EC, Soldevila G, Axtell RC, Raman C. CD5-dependent CK2 activation pathway regulates threshold for T cell anergy. THE JOURNAL OF IMMUNOLOGY 2012; 189:2918-30. [PMID: 22904299 DOI: 10.4049/jimmunol.1200065] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD5 activates casein kinase 2 (CK2), a serine/threonine kinase that constitutively associates with the CK2-binding domain at the end of its cytoplasmic tail. To determine the physiological significance of CD5-dependent CK2 activation in T cells, we generated a knock-in mouse that expresses a CD5 protein containing a microdeletion with selective inability to interact with CK2 (CD5ΔCK2BD). The levels of CD5 on developing and mature T cell populations from CD5ΔCK2BD mice and CD5 wild-type (WT) mice were similar. The thymus of CD5ΔCK2BD mice contained fewer double-positive thymocytes than did that of both CD5WT and CD5 knockout (KO) mice, although the numbers of all other immature and mature T cell populations were unaltered. CD5ΔCK2BD T cells hypoproliferated and exhibited enhanced activation-induced cell death when stimulated with anti-CD3 or cognate peptide in comparison with CD5WT T cells. We also found that functional CD5-dependent CK2 signaling was necessary for efficient differentiation of naive CD4+ T cells into Th2 and Th17 cells, but not Th1 cells. We previously showed that experimental autoimmune encephalomyelitis (EAE) in CD5KO mice was less severe and delayed in onset than in CD5WT mice. Remarkably, CD5ΔCK2BD mice recapitulated both EAE severity and disease onset of CD5KO mice. Increasing the immunization dose of myelin oligodendrocyte glycoprotein 35-55 peptide, a model that mimics high-dose tolerance, led to decreased severity of EAE in CD5WT mice but not in CD5KO or CD5ΔCK2BD mice. This property was recapitulated in in vitro restimulation assays. These results demonstrate that CD5-CK2 signaling sets the threshold for T cell responsiveness and is necessary for efficient generation of Th2 and Th17 cells.
Collapse
Affiliation(s)
- Christine M Sestero
- Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Oda M, Kanoh Y, Watanabe Y, Masai H. Regulation of DNA replication timing on human chromosome by a cell-type specific DNA binding protein SATB1. PLoS One 2012; 7:e42375. [PMID: 22879953 PMCID: PMC3413666 DOI: 10.1371/journal.pone.0042375] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/04/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Replication timing of metazoan DNA during S-phase may be determined by many factors including chromosome structures, nuclear positioning, patterns of histone modifications, and transcriptional activity. It may be determined by Mb-domain structures, termed as "replication domains", and recent findings indicate that replication timing is under developmental and cell type-specific regulation. METHODOLOGY/PRINCIPAL FINDINGS We examined replication timing on the human 5q23/31 3.5-Mb segment in T cells and non-T cells. We used two independent methods to determine replication timing. One is quantification of nascent replicating DNA in cell cycle-fractionated stage-specific S phase populations. The other is FISH analyses of replication foci. Although the locations of early- and late-replicating domains were common between the two cell lines, the timing transition region (TTR) between early and late domains were offset by 200-kb. We show that Special AT-rich sequence Binding protein 1 (SATB1), specifically expressed in T-cells, binds to the early domain immediately adjacent to TTR and delays the replication timing of the TTR. Measurement of the chromosome copy number along the TTR during synchronized S phase suggests that the fork movement may be slowed down by SATB1. CONCLUSIONS Our results reveal a novel role of SATB1 in cell type-specific regulation of replication timing along the chromosome.
Collapse
Affiliation(s)
- Masako Oda
- Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yutaka Kanoh
- Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshihisa Watanabe
- Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hisao Masai
- Genome Dynamics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- * E-mail:
| |
Collapse
|
56
|
Mehrotra P, Hollenbeck A, Riley JP, Li F, Patel RJ, Akhtar N, Goenka S. Poly (ADP-ribose) polymerase 14 and its enzyme activity regulates T(H)2 differentiation and allergic airway disease. J Allergy Clin Immunol 2012; 131:521-31.e1-12. [PMID: 22841009 DOI: 10.1016/j.jaci.2012.06.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 06/07/2012] [Accepted: 06/07/2012] [Indexed: 11/24/2022]
Abstract
BACKGROUND IL-4 and signal transducer and activator of transcription 6 (STAT6) play an important role in the progression of allergic airway disease (AAD) or asthma. IL-4 and STAT6 mediate T(H)2 responses in T cells and immunoglobulin class-switching to IgE in B cells. Both T(H)2 responses and IgE promote the asthmatic condition. We have previously demonstrated that poly (ADP-ribose) polymerase (PARP) 14, a member of the PARP family of proteins, regulates the transcription function of STAT6. However, the role of PARP-14 in AAD is not known. OBJECTIVE Here we investigate the role of PARP-14 and the enzyme activity associated with it in a model of AAD dependent on airway hyperresponsiveness and lung inflammation. We also elucidate the mechanism by which PARP-14 regulates AAD. METHODS The role of PARP-14 and its enzyme activity in AAD and T(H)2 differentiation were examined by using a murine model of AAD and in vitro T(H) cell differentiation. RESULTS PARP-14-deficient animals show reduced lung pathology and IgE levels when compared with control animals. Treating mice with a pharmacologic inhibitor for PARP activity reduced the severity of airway hyperresponsiveness and lung inflammation. Mechanistically, our data indicate that PARP-14 and its enzyme activity aid in the differentiation of T cells toward a T(H)2 phenotype by regulating the binding of STAT6 to the Gata3 promoter. CONCLUSION PARP-14 and the catalytic activity associated with it promote T(H)2 differentiation and AAD in a murine model, and targeting PARP-14 might be a potential new therapy for allergic asthma.
Collapse
Affiliation(s)
- Purvi Mehrotra
- HB Wells Center for Pediatric Research and the Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Ind, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
O'Shea JJ, Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity 2012; 36:542-50. [PMID: 22520847 DOI: 10.1016/j.immuni.2012.03.014] [Citation(s) in RCA: 826] [Impact Index Per Article: 68.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Indexed: 12/12/2022]
Abstract
The discovery of the Janus kinase (JAK)-signal transducer and activator of transcripton (STAT) signaling pathway, a landmark in cell biology, provided a simple mechanism for gene regulation that dramatically advanced our understanding of the action of hormones, interferons, colony-stimulating factors, and interleukins. As we learn more about the complexities of immune responses, new insights into the functions of this pathway continue to be revealed, aided by technology that permits genome-wide views. As we celebrate the 20(th) anniversary of the discovery of this paradigm in cell signaling, it is particularly edifying to see how this knowledge has rapidly been translated to human immune disease. Not only have genome-wide association studies demonstrated that this pathway is highly relevant to human autoimmunity, but targeting JAKs is now a reality in immune-mediated disease.
Collapse
Affiliation(s)
- John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
58
|
Maes T, Joos GF, Brusselle GG. Targeting interleukin-4 in asthma: lost in translation? Am J Respir Cell Mol Biol 2012; 47:261-70. [PMID: 22538865 DOI: 10.1165/rcmb.2012-0080tr] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The first discovery that interleukin-4 (IL-4) is crucial in the development of allergic airway inflammation originates from the early 1990s. Whereas initial studies in experimental animal models provided the community with the optimistic view that targeting IL-4 would be the ultimate solution for treating asthma, the translation of these findings to the clinic has not been evident and has not yet fulfilled the expectations. Many technical challenges have been encountered in the attempts to modulate IL-4 expression or activity and in transferring knowledge of preclinical studies to clinical trials. Moreover, biological redundancies between IL-4 and IL-13 have compelled a simultaneous blockade of both cytokines. A number of phase I/II studies are now providing us with clinical evidence that targeting IL-4/IL-13 may provide some clinical benefit. However, the initial view that asthma is a purely Th2-mediated disease had to be revised. Currently, different asthma phenotypes have been described, implying that blocking specifically Th2 cytokines, such as IL-4, IL-5, and IL-13, should be targeted to only a specific subset of patients. Taking this into consideration, IL-4 (together with IL-13) deserves attention as subject of further investigations to treat asthma. In this review, we will address the role of IL-4 in asthma, describe IL-4 signaling, and give an overview of preclinical and clinical studies targeting the IL-4 Receptor pathway.
Collapse
Affiliation(s)
- Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | | | | |
Collapse
|
59
|
Liang G, Barker T, Xie Z, Charles N, Rivera J, Druey KM. Naive T cells sense the cysteine protease allergen papain through protease-activated receptor 2 and propel TH2 immunity. J Allergy Clin Immunol 2012; 129:1377-1386.e13. [PMID: 22460072 DOI: 10.1016/j.jaci.2012.02.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 02/16/2012] [Accepted: 02/22/2012] [Indexed: 12/24/2022]
Abstract
BACKGROUND Sensitization to protease allergens, such as papain, or helminth infection is associated with basophil recruitment to draining lymph nodes (LNs). Basophils have the capacity to present antigen to naive T cells and promote T(H)2 differentiation directly or indirectly through IL-4 production. OBJECTIVE We studied how papain induces basophil migration to LNs and the contribution of various leukocytes to papain-induced immune responses. METHODS We immunized mice in the footpad with papain and studied leukocyte recruitment and inflammatory cytokine and chemokine production in the draining popliteal LNs. RESULTS Papain directly activated naive T cells through protease-activated receptor (PAR) 2 to initiate a chemokine/cytokine program that includes CCL17, CCL22, and IL-4. Papain-triggered innate immune responses were dependent on both CD4 T cells and PAR2 and were strongly reduced in the absence of CCR4, the primary receptor for CCL17/CCL22. CONCLUSION These results elucidate a novel innate allergen-recognition pathway mediated by naive T cells through PAR2, which provide an immediate source of chemokines and IL-4 upstream of basophils and antigen-restricted T(H)2 differentiation. PAR2 antagonism might thus hold promise for the treatment of allergic disease.
Collapse
Affiliation(s)
- Genqing Liang
- Molecular Signal Transduction Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
60
|
Williams CMM, Rahman S, Hubeau C, Ma HL. Cytokine pathways in allergic disease. Toxicol Pathol 2012; 40:205-15. [PMID: 22301949 DOI: 10.1177/0192623311430694] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cytokines are critical in allergic intercellular communication networks, and they contribute to disease pathology through the recruitment and activation of pro-inflammatory leukocytes and in chronic disease to pro-fibrotic/remodeling events. Th2 cytokines predominate primarily in mild to moderate allergic asthma, although clinical trials with inhibitors of IL-4 and IL-5 have not provided the robust efficacy observed in animal models of allergy. These results not only highlight the complexity of allergic disease, but they also point to the importance of other cytokine networks in driving pathology. The heterogeneous nature of the disease is emphasized by the fact that the Th2/Th1/Th17 cytokine balance can be influenced by the initiating allergic trigger. For example, the house dust mite allergen Der p 2 mimics the activity of MD-2 by presenting lipopolysaccharide to Toll-like receptor-4 for the activation of inflammatory genes including innate-type cytokines. Here we discuss the functions of the novel cytokine players, thymic stromal lymphopoetin (TSLP), IL-33, IL-25, and IL-9 and delineate nonredundant roles for IL-4 and IL-13 in allergic disease. Persistent efforts in the characterization of these and other cytokine networks will be essential for understanding the complex pathogenic mechanisms that underpin allergic disease and for guiding targeted therapeutic interventions.
Collapse
|
61
|
Th17 cell cytokine secretion profile in host defense and autoimmunity. Inflamm Res 2011; 61:87-96. [DOI: 10.1007/s00011-011-0419-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 11/10/2011] [Accepted: 12/10/2011] [Indexed: 01/13/2023] Open
|
62
|
Luchansky MS, Bailey RC. Rapid, multiparameter profiling of cellular secretion using silicon photonic microring resonator arrays. J Am Chem Soc 2011; 133:20500-6. [PMID: 22040005 DOI: 10.1021/ja2087618] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We have developed a silicon photonic biosensing chip capable of multiplexed protein measurements in a biomolecularly complex cell culture matrix. Using this multiplexed platform combined with fast one-step sandwich immunoassays, we perform a variety of T cell cytokine secretion studies with excellent time-to-result. Using 32-element arrays of silicon photonic microring resonators, the cytokines interleukin-2 (IL-2), interleukin-4 (IL-4), interleukin-5 (IL-5), and tumor necrosis factor alpha (TNFα) were simultaneously quantified with high accuracy in serum-containing cell media. Utilizing this cytokine panel, secretion profiles were obtained for primary human Th0, Th1, and Th2 subsets differentiated from naïve CD4+ T cells, and we show the ability to discriminate between lineage commitments at early stages of culture differentiation. We also utilize this approach to probe the temporal secretion patterns of each T cell type using real-time binding analyses for direct cytokine quantitation down to ∼100 pM with just a 5 min-analysis.
Collapse
Affiliation(s)
- Matthew S Luchansky
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | |
Collapse
|
63
|
Li BH, Xu SB, Li F, Zou XG, Saimaiti A, Simayi D, Wang YH, Zhang Y, Yuan J, Zhang WJ. Stat6 activity-related Th2 cytokine profile and tumor growth advantage of human colorectal cancer cells in vitro and in vivo. Cell Signal 2011; 24:718-25. [PMID: 22108090 DOI: 10.1016/j.cellsig.2011.11.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 10/21/2011] [Accepted: 11/04/2011] [Indexed: 01/18/2023]
Abstract
Signal transducer and activator of transcription 6 (Stat6) is critical in Th2 polarization of immune cells and active Stat6 activity has been suggested in anti-tumor immunity in animal models. The present study aims at investigating the impact of natural Stat6 activity on tumor microenvironment in human colorectal cancer cells in vitro and in vivo. Using colorectal cancer cell lines HT-29 and Caco-2 whose IL-4/Stat6 activities were known and nude mice as a model, we examined correlative relationships between Stat6 activities and gene expression profiles together with cellular behaviors in vitro and in vivo. HT-29 cells carrying active Stat6 signaling displayed spontaneous expression profiles favoring Th2 cytokines, cell cycle promotion, anti-apoptosis and pro-metastasis with increased mRNA levels of IL-4, IL-13, GATA-3, CDK4, CD44v6 and S100A4 using RT-PCR. In contrast, Caco-2 cells carrying defective Stat6 signaling exhibited spontaneous expression profiles favoring Th1 and Th17 cytokines, cell cycle inhibition, pro-apoptosis and anti-metastasis with elevated mRNA expression of IFNγ, TNFα, IL-12A, IL-17, IL-23, T-bet, CDKN1A, CDKNIB, CDKN2A and NM23-H1. Xenograft tumors of Stat6-active HT-29 cells showed a growth advantage over those of Stat6-defective Caco-2 cells. Furthermore, mice bearing HT-29 tumors expressed increased levels of Th2 cytokines IL-4 and IL-5 in the blood and pro-growth and/or pro-metastasis proteins CDK4 and CD44v6 in the tumor. To the contrary, mice bearing Caco-2 tumors expressed heightened levels of Th1 cytokines IFNγ and TNF in the blood and pro-apoptosis and anti-metastatic proteins p53 and p27(kip1) in the tumor. Colorectal cancer cells carrying active Stat6 signaling may create a microenvironment favoring Th2 cytokines and promoting expression of genes related to pro-growth, pro-metastasis and anti-apoptosis, which leads to a tumor growth advantage in vivo. These findings may imply why Stat6 pathway is constitutively activated in a number of human malignancies.
Collapse
Affiliation(s)
- Ben Hui Li
- Department of Pathology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Dasgupta P, Chapoval SP, Smith EP, Keegan AD. Transfer of in vivo primed transgenic T cells supports allergic lung inflammation and FIZZ1 and Ym1 production in an IL-4Rα and STAT6 dependent manner. BMC Immunol 2011; 12:60. [PMID: 22014099 PMCID: PMC3212823 DOI: 10.1186/1471-2172-12-60] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/20/2011] [Indexed: 01/13/2023] Open
Abstract
Background CD4+ T helper type 2 (TH2) cells, their cytokines IL-4, IL-5 and IL-13 and the transcription factor STAT6 are known to regulate various features of asthma including lung inflammation, mucus production and airway hyperreactivity and also drive alternative activation of macrophages (AAM). However, the precise roles played by the IL-4/IL-13 receptors and STAT6 in inducing AAM protein expression and modulating specific features of airway inflammation are still unclear. Since TH2 differentiation and activation plays a pivotal role in this disease, we explored the possibility of developing an asthma model in mice using T cells that were differentiated in vivo. Results In this study, we monitored the activation and proliferation status of adoptively transferred allergen-specific naïve or in vivo primed CD4+ T cells. We found that both the naïve and in vivo primed T cells expressed similar levels of CD44 and IL-4. However, in vivo primed T cells underwent reduced proliferation in a lymphopenic environment when compared to naïve T cells. We then used these in vivo generated effector T cells in an asthma model. Although there was reduced inflammation in mice lacking IL-4Rα or STAT6, significant amounts of eosinophils were still present in the BAL and lung tissue. Moreover, specific AAM proteins YM1 and FIZZ1 were expressed by epithelial cells, while macrophages expressed only YM1 in RAG2-/- mice. We further show that FIZZ1 and YM1 protein expression in the lung was completely dependent on signaling through the IL-4Rα and STAT6. Consistent with the enhanced inflammation and AAM protein expression, there was a significant increase in collagen deposition and smooth muscle thickening in RAG2-/- mice compared to mice deficient in IL-4Rα or STAT6. Conclusions These results establish that transfer of in vivo primed CD4+ T cells can induce allergic lung inflammation. Furthermore, while IL-4/IL-13 signaling through IL-4Rα and STAT6 is essential for AAM protein expression, lung inflammation and eosinophilia are only partially dependent on this pathway. Further studies are required to identify other proteins and signaling pathways involved in airway inflammation.
Collapse
Affiliation(s)
- Preeta Dasgupta
- Center for Vascular and Inflammatory Diseases, and Department of Microbiology and Immunology, University of Maryland School of Medicine, 800 W, Baltimore St, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
65
|
Migita K, Miyashita T, Izumi Y, Koga T, Komori A, Maeda Y, Jiuchi Y, Aiba Y, Yamasaki S, Kawakami A, Nakamura M, Ishibashi H. Inhibitory effects of the JAK inhibitor CP690,550 on human CD4(+) T lymphocyte cytokine production. BMC Immunol 2011; 12:51. [PMID: 21884580 PMCID: PMC3179939 DOI: 10.1186/1471-2172-12-51] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 08/31/2011] [Indexed: 12/24/2022] Open
Abstract
Background The new JAK3 inhibitor, CP690,550, has shown efficacy in the treatment of rheumatoid arthritis. The present study was undertaken to assess the effects of CP690,550 on cytokine production and cellular signaling in human CD4+ T cells. Results CD4+ T cells produced IL-2, IL-4, IL-17, IL-22 and IFN-γ in following stimulation with a CD3 antibody. At the optimal concentration, CP690,550 almost completely inhibited the production of IL-4, IL-17, IL-22 and IFN-γ from these activated CD4+ T cells, but only had marginal effects on IL-2 production. Moreover CP690,550 inhibited anti-CD3-induced phosphorylation of STAT1, STAT3, STAT4, STAT5, and STAT6, but not the TCR-associated phosphorylation of ZAP-70. Conclusions Therefore, CP690,550-mediated modification of the JAK/STAT pathway may be a new immunosuppressive strategy in the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Kiyoshi Migita
- Department of Rheumatology and Clinical Research Center, NHO Nagasaki Medical Center, Kubara 2-1001-1, Omura 856-8652, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Barlow JL, McKenzie ANJ. Nuocytes: expanding the innate cell repertoire in type-2 immunity. J Leukoc Biol 2011; 90:867-74. [PMID: 21712394 DOI: 10.1189/jlb.0311160] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Activation and differentiation of the Th1 cell population lead to their production of the classical type-1 cytokines IFN-γ, IL-2, and TNF-β, thus promoting type-1 immunity. This is thought to occur via the ligation of TLRs by bacterial and viral products, which in turn, drive production of the essential Th1 cell differentiation factor, IL-12, by dendritic cells (DCs). Concurrent studies have been able to identify the effector cytokines produced by Th2 cells (IL-4, IL-5, IL-9, and IL-13) as being essential for parasitic immunity and also as essential factors in allergic asthma. However, the factors that are critical for initiation of the type-2 response remained obscure. Recently however, two critical observations have led to a more detailed understanding of the innate type-2 response. First, two novel, type-2-inducing cytokines-IL-25 and IL-33-were identified as being necessary for the up-regulation of the type-2 effector cytokines, mirroring the role of IL-12 in the type-1 response. Second, studies focused on target cell populations of IL-25 and IL-33 have identified novel, innate cell populations, which potentially bridge the gap between presentation of the type-2-inducing cytokine and the later adaptive Th2 cell response. In this review, we will discuss these new type-2 innate cell populations, in particular, the recently discovered nuocyte population, which are required for type-2 responses against helminthic parasites.
Collapse
|
67
|
Piehler D, Stenzel W, Grahnert A, Held J, Richter L, Köhler G, Richter T, Eschke M, Alber G, Müller U. Eosinophils contribute to IL-4 production and shape the T-helper cytokine profile and inflammatory response in pulmonary cryptococcosis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:733-44. [PMID: 21699881 DOI: 10.1016/j.ajpath.2011.04.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/14/2011] [Accepted: 04/05/2011] [Indexed: 12/15/2022]
Abstract
Susceptibility to infection with Cryptococcus neoformans is tightly determined by production of IL-4. In this study, we investigated the time course of IL-4 production and its innate cellular source in mice infected intranasally with C. neoformans. We show that pulmonary IL-4 production starts surprisingly late after 6 weeks of infection. Interestingly, in the lungs of infected mice, pulmonary T helper (Th) cells and eosinophils produce significant amounts of IL-4. In eosinophil-deficient ΔdblGATA mice, IL-33 receptor-expressing Th2s are significantly reduced, albeit not absent, whereas protective Th1 and Th17 responses are enhanced. In addition, recruitment of pulmonary inflammatory cells during infection with C. neoformans is reduced in the absence of eosinophils. These data expand previous findings emphasizing an exclusively destructive effector function by eosinophilic granulocytes. Moreover, in ΔdblGATA mice, fungal control is slightly enhanced in the lung; however, dissemination of Cryptococcus is not prevented. Therefore, eosinophils play an immunoregulatory role that contributes to Th2-dependent susceptibility in allergic inflammation during bronchopulmonary mycosis.
Collapse
Affiliation(s)
- Daniel Piehler
- Institute of Immunology, College of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Stellato C, Gubin MM, Magee JD, Fang X, Fan J, Tartar DM, Chen J, Dahm GM, Calaluce R, Mori F, Jackson GA, Casolaro V, Franklin CL, Atasoy U. Coordinate regulation of GATA-3 and Th2 cytokine gene expression by the RNA-binding protein HuR. THE JOURNAL OF IMMUNOLOGY 2011; 187:441-9. [PMID: 21613615 DOI: 10.4049/jimmunol.1001881] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The posttranscriptional mechanisms whereby RNA-binding proteins (RBPs) regulate T cell differentiation remain unclear. RBPs can coordinately regulate the expression of functionally related genes via binding to shared regulatory sequences, such as the adenylate-uridylate-rich elements (AREs) present in the 3' untranslated region (UTR) of mRNA. The RBP HuR posttranscriptionally regulates IL-4, IL-13, and other Th2 cell-restricted transcripts. We hypothesized that the ARE-bearing GATA-3 gene, a critical regulator of Th2 polarization, is under HuR control as part of its coordinate posttranscriptional regulation of the Th2 program. We report that in parallel with stimulus-induced increase in GATA-3 mRNA and protein levels, GATA-3 mRNA half-life is increased after restimulation in the human T cell line Jurkat, in human memory and Th2 cells, and in murine Th2-skewed cells. We demonstrate by immunoprecipitation of ribonucleoprotein complexes that HuR associates with the GATA-3 endogenous transcript in human T cells and found, using biotin pulldown assay, that HuR specifically interacts with its 3'UTR. Using both loss-of-function and gain-of-function approaches in vitro and in animal models, we show that HuR is a critical mediator of stimulus-induced increase in GATA-3 mRNA and protein expression and that it positively influences GATA-3 mRNA turnover, in parallel with selective promotion of Th2 cytokine overexpression. These results suggest that HuR-driven posttranscriptional control plays a significant role in T cell development and effector function in both murine and human systems. A better understanding of HuR-mediated control of Th2 polarization may have utility in altering allergic airway inflammation in human asthmatic patients.
Collapse
Affiliation(s)
- Cristiana Stellato
- Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Abstract
Despite that basophils represent less than 0.5% of circulating leukocytes, recent studies have begun to unveil their potent immunoregulatory functions, i.e., induction of Th2 immunity. It is believed that basophils are capable of doing so primarily by secreting key Th2-inducing cytokines, namely IL-4 and Thymic Stromal Lymphopoietin (TSLP), and by functioning as professional antigen presenting cells. However, we have recently demonstrated that Th2 immunity can develop in the absence of basophils or IL-4 during helminth infection. In this review, how basophils may (and may not) contribute to the development of Th2 immunity in vivo is discussed.
Collapse
Affiliation(s)
- Booki Min
- Department of Immunology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| |
Collapse
|
70
|
The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 2011; 12:295-303. [PMID: 21358638 PMCID: PMC3077821 DOI: 10.1038/ni.2005] [Citation(s) in RCA: 882] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 02/04/2011] [Indexed: 01/02/2023]
Abstract
The kinase mTOR has emerged as an important regulator of the differentiation of helper T cells. Here we demonstrate that differentiation into the T(H)1 and T(H)17 subsets of helper T cells was selectively regulated by signaling from mTOR complex 1 (mTORC1) that was dependent on the small GTPase Rheb. Rheb-deficient T cells failed to generate T(H)1 and T(H)17 responses in vitro and in vivo and did not induce classical experimental autoimmune encephalomyelitis (EAE). However, they retained their ability to become T(H)2 cells. Alternatively, when mTORC2 signaling was deleted from T cells, they failed to generate T(H)2 cells in vitro and in vivo but preserved their ability to become T(H)1 and T(H)17 cells. Our data identify mechanisms by which two distinct signaling pathways downstream of mTOR regulate helper cell fate in different ways. These findings define a previously unknown paradigm that links T cell differentiation with selective metabolic signaling pathways.
Collapse
|
71
|
Higgins PDR, Johnson LA, Sauder K, Moons D, Blanco L, Taube S, Wobus CE. Transient or persistent norovirus infection does not alter the pathology of Salmonella typhimurium induced intestinal inflammation and fibrosis in mice. Comp Immunol Microbiol Infect Dis 2011; 34:247-57. [PMID: 21237511 DOI: 10.1016/j.cimid.2010.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/29/2010] [Accepted: 11/29/2010] [Indexed: 11/25/2022]
Abstract
Murine noroviruses (MNV) are currently the most prevalent viruses infecting mouse research colonies. Concurrent infection of research mice with these viruses can dramatically alter the experimental outcome in some research models, but not others. In this report, we investigated the effect of MNV1 and MNV4 on a murine model of intestinal inflammation and fibrosis induced by Salmonella typhimurium infection in C57BL/6 mice. Subsequent co-infection of these mice with MNV1 or MNV4 did not lead to major changes in histopathology, the inflammatory response, or the fibrotic response. Thus, MNV does not substantially alter all gastrointestinal research models, highlighting the importance of investigating potential alterations in the research outcome by MNV on an individual basis. We hypothesize that this is particularly important in cases of research models that use immunocompromised mice, which could be more sensitive to MNV infection-induced changes.
Collapse
Affiliation(s)
- Peter D R Higgins
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical Center, Medical Science Research Building One, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5682, United States.
| | | | | | | | | | | | | |
Collapse
|
72
|
Lewis DK, Bake S, Thomas K, Jezierski MK, Sohrabji F. A high cholesterol diet elevates hippocampal cytokine expression in an age and estrogen-dependent manner in female rats. J Neuroimmunol 2010; 223:31-8. [PMID: 20435353 DOI: 10.1016/j.jneuroim.2010.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 03/05/2010] [Accepted: 03/31/2010] [Indexed: 02/07/2023]
Abstract
BACKGROUND While the effects of a proatherogenic diet have been widely studied in the context of systemic inflammation, much less is known about its effects on central or brain inflammation and its modulation with age. In this study, we examined the effect of a high cholesterol/choline diet in adult and older acyclic females to assess its impact on systemic and central inflammatory markers. Moreover, since the loss of ovarian hormones at menopause may predispose women to increased production of pro-inflammatory cytokines, we also tested the impact of estrogen replacement to adult and older females in diet-induced inflammation. METHODS Ovariectomized adult female rats and older (reproductive senescent) female rats were replaced with estrogen or a control pellet and maintained thereafter on a diet containing either 4% cholesterol/1% choline or control chow for 10 weeks. Interleukin 1beta (IL-1beta) expression in the liver was used as a marker of systemic inflammation, while a panel of cytokine/chemokines were used to examine the effects of diet on the hippocampus. RESULTS IL-1beta expression was elevated in the liver of adult and reproductive senescent females fed with the high cholesterol diet, although this was restricted to groups that were ovariectomized and not replaced with estrogen. Estrogen-treated animals of both ages did not have elevated IL-1beta levels when fed the high cholesterol diet. Diet-induced changes in cytokine/chemokine expression in the hippocampus however were critically age dependent and restricted to the reproductive senescent females. In this group, the high cholesterol diet led to an increase in interleukin (IL)-4, IL-6, IL-12p70, IL-13, RANTES (Regulated on Activation, Normal T Expressed and Secreted) and VEGF (vascular endothelial growth factor). Moreover, estrogen treatment to reproductive senescent females suppressed diet-induced expression of specific cytokines (RANTES, VEGF, IL-6) and attenuated the expression of others (IL-4, IL-12p70, and IL-13). CONCLUSIONS These data indicate that a proatherogenic diet presents a significant risk for central inflammation in older females that are deprived of estrogen treatment.
Collapse
Affiliation(s)
- Danielle K Lewis
- Department of Neuroscience and Experimental Therapeutics and Women's Health in Neuroscience Program, TAM Health Science Center, College Station, TX 77843-1114, USA.
| | | | | | | | | |
Collapse
|
73
|
Abstract
Recent studies have revealed a role for basophils as antigen-presenting cells that preferentially induce T(h)2 cells in response to complexes of antigen plus antigen-specific IgE, to protease allergens or to helminthic parasites in vitro and in vivo through the production of 'early IL-4' and the presentation to CD4(+) T cells of complexes of peptide plus MHC class II. These findings have revealed previously unknown functions of basophils and will potentially aid the design of novel therapeutic strategies for T(h)2-IgE-mediated diseases such as bronchial asthma.
Collapse
Affiliation(s)
- Tomohiro Yoshimoto
- Laboratory of Allergic Diseases, Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan.
| |
Collapse
|