51
|
Gupta A, Dutta A, Sarkar J, Paul D, Panigrahi MK, Sar P. Metagenomic exploration of microbial community in mine tailings of Malanjkhand copper project, India. GENOMICS DATA 2017; 12:11-13. [PMID: 28239550 PMCID: PMC5315440 DOI: 10.1016/j.gdata.2017.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/03/2017] [Indexed: 11/25/2022]
Abstract
Mine tailings from copper mines are considered as one of the sources of highly hazardous acid mine drainage (AMD) due to bio-oxidation of its sulfidic constituents. This study was designed to understand microbial community composition and potential for acid generation using samples from mine tailings of Malanjkhand copper project (MCP), India through 16S rRNA gene based amplicon sequencing approach (targeting V4 region). Three tailings samples (T1, T2 and T3) with varied physiochemical properties selected for the study revealed distinct microbial assemblages. Sample (T3) with most extreme nature (pH < 2.0) harbored Proteobacteria, Actinobacteria, Chloroflexi while the samples (T1 and T3) with slightly moderate nature (pH < 4.0 and > 3.0) exhibited abundance of Proteobacteria, Fimicutes, Actinobacteria and/or Nitrospirae. Metagenomic sequences are available under the BioProject ID PRJNA361456.
Collapse
Affiliation(s)
- Abhishek Gupta
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Avishek Dutta
- School of Bioscience, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Jayeeta Sarkar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Dhiraj Paul
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Mruganka Kumar Panigrahi
- Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Pinaki Sar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| |
Collapse
|
52
|
Teoh WK, Salleh FM, Shahir S. Characterization of Thiomonas delicata arsenite oxidase expressed in Escherichia coli. 3 Biotech 2017; 7:97. [PMID: 28560637 DOI: 10.1007/s13205-017-0740-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/20/2017] [Indexed: 11/26/2022] Open
Abstract
Microbial arsenite oxidation is an essential biogeochemical process whereby more toxic arsenite is oxidized to the less toxic arsenate. Thiomonas strains represent an important arsenite oxidizer found ubiquitous in acid mine drainage. In the present study, the arsenite oxidase gene (aioBA) was cloned from Thiomonas delicata DSM 16361, expressed heterologously in E. coli and purified to homogeneity. The purified recombinant Aio consisted of two subunits with the respective molecular weights of 91 and 21 kDa according to SDS-PAGE. Aio catalysis was optimum at pH 5.5 and 50-55 °C. Aio exhibited stability under acidic conditions (pH 2.5-6). The V max and K m values of the enzyme were found to be 4 µmol min-1 mg-1 and 14.2 µM, respectively. SDS and Triton X-100 were found to inhibit the enzyme activity. The homology model of Aio showed correlation with the acidophilic adaptation of the enzyme. This is the first characterization studies of Aio from a species belonging to the Thiomonas genus. The arsenite oxidase was found to be among the acid-tolerant Aio reported to date and has the potential to be used for biosensor and bioremediation applications in acidic environments.
Collapse
Affiliation(s)
- Wei Kheng Teoh
- Department of Biosciences and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Faezah Mohd Salleh
- Department of Biosciences and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Shafinaz Shahir
- Department of Biosciences and Health Sciences, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
53
|
Oren A. A plea for linguistic accuracy - also for Candidatus taxa. Int J Syst Evol Microbiol 2017; 67:1085-1094. [PMID: 27926819 DOI: 10.1099/ijsem.0.001715] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
While all names of new taxa submitted to the International Journal of Systematic and Evolutionary Microbiology, either in direct submissions or in validation requests for names effectively published elsewhere, are subject to nomenclatural review to ensure that they are acceptable based on the rules of the International Code of Nomenclature of Prokaryotes, the names of Candidatus taxa have not been subjected to such a review. Formally, this was not necessary because the rank of Candidatus is not covered by the Code, and the names lack the priority afforded validly published names. However, many Candidatus taxa of different ranks are widely discussed in the scientific literature, and a proposal to incorporate the nomenclature of uncultured prokaryotes under the provisions of the Code is currently pending. Therefore, an evaluation of the names of Candidatus taxa published thus far is very timely. Out of the ~400 Candidatus names found in the literature, 120 contradict the current rules of the Code or are otherwise problematic. A list of those names of Candidatus taxa that need correction is presented here and alternative names that agree with the provisions of the Code are proposed.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 91904 Jerusalem, Israel
| |
Collapse
|
54
|
Kurth D, Amadio A, Ordoñez OF, Albarracín VH, Gärtner W, Farías ME. Arsenic metabolism in high altitude modern stromatolites revealed by metagenomic analysis. Sci Rep 2017; 7:1024. [PMID: 28432307 PMCID: PMC5430908 DOI: 10.1038/s41598-017-00896-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/16/2017] [Indexed: 11/09/2022] Open
Abstract
Modern stromatolites thrive only in selected locations in the world. Socompa Lake, located in the Andean plateau at 3570 masl, is one of the numerous extreme Andean microbial ecosystems described over recent years. Extreme environmental conditions include hypersalinity, high UV incidence, and high arsenic content, among others. After Socompa's stromatolite microbial communities were analysed by metagenomic DNA sequencing, taxonomic classification showed dominance of Proteobacteria, Bacteroidetes and Firmicutes, and a remarkably high number of unclassified sequences. A functional analysis indicated that carbon fixation might occur not only by the Calvin-Benson cycle, but also through alternative pathways such as the reverse TCA cycle, and the reductive acetyl-CoA pathway. Deltaproteobacteria were involved both in sulfate reduction and nitrogen fixation. Significant differences were found when comparing the Socompa stromatolite metagenome to the Shark Bay (Australia) smooth mat metagenome: namely, those involving stress related processes, particularly, arsenic resistance. An in-depth analysis revealed a surprisingly diverse metabolism comprising all known types of As resistance and energy generating pathways. While the ars operon was the main mechanism, an important abundance of arsM genes was observed in selected phyla. The data resulting from this work will prove a cornerstone for further studies on this rare microbial community.
Collapse
Affiliation(s)
- Daniel Kurth
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT Tucumán, CONICET, San Miguel de Tucumán, Argentina
| | - Ariel Amadio
- E.E.A. Rafaela, Instituto Nacional de Tecnología Agropecuaria (INTA), CCT Santa Fe, CONICET, Rafaela, Argentina
| | - Omar F Ordoñez
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT Tucumán, CONICET, San Miguel de Tucumán, Argentina
| | - Virginia H Albarracín
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT Tucumán, CONICET, San Miguel de Tucumán, Argentina
- Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Wolfgang Gärtner
- Max-Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - María E Farías
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT Tucumán, CONICET, San Miguel de Tucumán, Argentina.
| |
Collapse
|
55
|
González C, Lazcano M, Valdés J, Holmes DS. Bioinformatic Analyses of Unique (Orphan) Core Genes of the Genus Acidithiobacillus: Functional Inferences and Use As Molecular Probes for Genomic and Metagenomic/Transcriptomic Interrogation. Front Microbiol 2016; 7:2035. [PMID: 28082953 PMCID: PMC5186765 DOI: 10.3389/fmicb.2016.02035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/02/2016] [Indexed: 01/06/2023] Open
Abstract
Using phylogenomic and gene compositional analyses, five highly conserved gene families have been detected in the core genome of the phylogenetically coherent genus Acidithiobacillus of the class Acidithiobacillia. These core gene families are absent in the closest extant genus Thermithiobacillus tepidarius that subtends the Acidithiobacillus genus and roots the deepest in this class. The predicted proteins encoded by these core gene families are not detected by a BLAST search in the NCBI non-redundant database of more than 90 million proteins using a relaxed cut-off of 1.0e−5. None of the five families has a clear functional prediction. However, bioinformatic scrutiny, using pI prediction, motif/domain searches, cellular location predictions, genomic context analyses, and chromosome topology studies together with previously published transcriptomic and proteomic data, suggests that some may have functions associated with membrane remodeling during cell division perhaps in response to pH stress. Despite the high level of amino acid sequence conservation within each family, there is sufficient nucleotide variation of the respective genes to permit the use of the DNA sequences to distinguish different species of Acidithiobacillus, making them useful additions to the armamentarium of tools for phylogenetic analysis. Since the protein families are unique to the Acidithiobacillus genus, they can also be leveraged as probes to detect the genus in environmental metagenomes and metatranscriptomes, including industrial biomining operations, and acid mine drainage (AMD).
Collapse
Affiliation(s)
- Carolina González
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & VidaSantiago, Chile; Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile
| | - Marcelo Lazcano
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & VidaSantiago, Chile; Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile
| | - Jorge Valdés
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor Santiago, Chile
| | - David S Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & VidaSantiago, Chile; Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile
| |
Collapse
|
56
|
High-throughput strategies for the discovery and engineering of enzymes for biocatalysis. Bioprocess Biosyst Eng 2016; 40:161-180. [DOI: 10.1007/s00449-016-1690-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/05/2016] [Indexed: 12/16/2022]
|
57
|
Volant A, Héry M, Desoeuvre A, Casiot C, Morin G, Bertin PN, Bruneel O. Spatial Distribution of Eukaryotic Communities Using High-Throughput Sequencing Along a Pollution Gradient in the Arsenic-Rich Creek Sediments of Carnoulès Mine, France. MICROBIAL ECOLOGY 2016; 72:608-620. [PMID: 27535039 DOI: 10.1007/s00248-016-0826-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 07/22/2016] [Indexed: 06/06/2023]
Abstract
Microscopic eukaryotes play a key role in ecosystem functioning, but their diversity remains largely unexplored in most environments. To advance our knowledge of eukaryotic microorganisms and the factors that structure their communities, high-throughput sequencing was used to characterize their diversity and spatial distribution along the pollution gradient of the acid mine drainage at Carnoulès (France). A total of 16,510 reads were retrieved leading to the identification of 323 OTUs after normalization. Phylogenetic analysis revealed a quite diverse eukaryotic community characterized by a total of eight high-level lineages including 37 classes. The majority of sequences were clustered in four main groups: Fungi, Stramenopiles, Alveolata and Viridiplantae. The Reigous sediments formed a succession of distinct ecosystems hosting contrasted eukaryotic communities whose structure appeared to be at least partially correlated with sediment mineralogy. The concentration of arsenic in the sediment was shown to be a significant factor driving the eukaryotic community structure along this continuum.
Collapse
Affiliation(s)
- A Volant
- Laboratoire HydroSciences Montpellier, UMR 5569, Université de Montpellier, CC0057 (MSE), 163 rue Auguste Broussonet, 34090, Montpellier, France.
| | - M Héry
- Laboratoire HydroSciences Montpellier, UMR 5569, Université de Montpellier, CC0057 (MSE), 163 rue Auguste Broussonet, 34090, Montpellier, France
| | - A Desoeuvre
- Laboratoire HydroSciences Montpellier, UMR 5569, Université de Montpellier, CC0057 (MSE), 163 rue Auguste Broussonet, 34090, Montpellier, France
| | - C Casiot
- Laboratoire HydroSciences Montpellier, UMR 5569, Université de Montpellier, CC0057 (MSE), 163 rue Auguste Broussonet, 34090, Montpellier, France
| | - G Morin
- Institut de Minéralogie et de Physique des Milieux Condensés, IMPMC, UMR 7590 (CNRS, Université Pierre et Marie Curie/Paris 6), 4 place Jussieu, 75252, Paris, France
| | - P N Bertin
- Laboratoire de Génétique Moléculaire, Génomique, Microbiologie, GMGM, UMR 7156 (Université de Strasbourg, CNRS), Département Microorganismes, Génomes, Environnement, 28 Rue Goethe, 67083, Strasbourg, France
| | - O Bruneel
- Laboratoire HydroSciences Montpellier, UMR 5569, Université de Montpellier, CC0057 (MSE), 163 rue Auguste Broussonet, 34090, Montpellier, France
| |
Collapse
|
58
|
Ullrich SR, González C, Poehlein A, Tischler JS, Daniel R, Schlömann M, Holmes DS, Mühling M. Gene Loss and Horizontal Gene Transfer Contributed to the Genome Evolution of the Extreme Acidophile "Ferrovum". Front Microbiol 2016; 7:797. [PMID: 27303384 PMCID: PMC4886054 DOI: 10.3389/fmicb.2016.00797] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/11/2016] [Indexed: 01/07/2023] Open
Abstract
Acid mine drainage (AMD), associated with active and abandoned mining sites, is a habitat for acidophilic microorganisms that gain energy from the oxidation of reduced sulfur compounds and ferrous iron and that thrive at pH below 4. Members of the recently proposed genus “Ferrovum” are the first acidophilic iron oxidizers to be described within the Betaproteobacteria. Although they have been detected as typical community members in AMD habitats worldwide, knowledge of their phylogenetic and metabolic diversity is scarce. Genomics approaches appear to be most promising in addressing this lacuna since isolation and cultivation of “Ferrovum” has proven to be extremely difficult and has so far only been successful for the designated type strain “Ferrovum myxofaciens” P3G. In this study, the genomes of two novel strains of “Ferrovum” (PN-J185 and Z-31) derived from water samples of a mine water treatment plant were sequenced. These genomes were compared with those of “Ferrovum” sp. JA12 that also originated from the mine water treatment plant, and of the type strain (P3G). Phylogenomic scrutiny suggests that the four strains represent three “Ferrovum” species that cluster in two groups (1 and 2). Comprehensive analysis of their predicted metabolic pathways revealed that these groups harbor characteristic metabolic profiles, notably with respect to motility, chemotaxis, nitrogen metabolism, biofilm formation and their potential strategies to cope with the acidic environment. For example, while the “F. myxofaciens” strains (group 1) appear to be motile and diazotrophic, the non-motile group 2 strains have the predicted potential to use a greater variety of fixed nitrogen sources. Furthermore, analysis of their genome synteny provides first insights into their genome evolution, suggesting that horizontal gene transfer and genome reduction in the group 2 strains by loss of genes encoding complete metabolic pathways or physiological features contributed to the observed diversification.
Collapse
Affiliation(s)
- Sophie R Ullrich
- Institute of Biological Sciences, TU Bergakademie Freiberg Freiberg, Germany
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres BelloSantiago, Chile; Bio-Computing and Applied Genetics Division, Fraunhofer Chile Research Foundation, Center for Systems BiotechnologySantiago, Chile
| | - Anja Poehlein
- Göttingen Genomics Laboratory, Georg-August Universität Göttingen Göttingen, Germany
| | - Judith S Tischler
- Institute of Biological Sciences, TU Bergakademie Freiberg Freiberg, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Georg-August Universität Göttingen Göttingen, Germany
| | - Michael Schlömann
- Institute of Biological Sciences, TU Bergakademie Freiberg Freiberg, Germany
| | - David S Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello Santiago, Chile
| | - Martin Mühling
- Institute of Biological Sciences, TU Bergakademie Freiberg Freiberg, Germany
| |
Collapse
|
59
|
Huang LN, Kuang JL, Shu WS. Microbial Ecology and Evolution in the Acid Mine Drainage Model System. Trends Microbiol 2016; 24:581-593. [PMID: 27050827 DOI: 10.1016/j.tim.2016.03.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/19/2016] [Accepted: 03/08/2016] [Indexed: 10/22/2022]
Abstract
Acid mine drainage (AMD) is a unique ecological niche for acid- and toxic-metals-adapted microorganisms. These low-complexity systems offer a special opportunity for the ecological and evolutionary analyses of natural microbial assemblages. The last decade has witnessed an unprecedented interest in the study of AMD communities using 16S rRNA high-throughput sequencing and community genomic and postgenomic methodologies, significantly advancing our understanding of microbial diversity, community function, and evolution in acidic environments. This review describes new data on AMD microbial ecology and evolution, especially dynamics of microbial diversity, community functions, and population genomes, and further identifies gaps in our current knowledge that future research, with integrated applications of meta-omics technologies, will fill.
Collapse
Affiliation(s)
- Li-Nan Huang
- College of Ecology and Evolution, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jia-Liang Kuang
- College of Ecology and Evolution, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Wen-Sheng Shu
- College of Ecology and Evolution, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
60
|
Gillan DC. Metal resistance systems in cultivated bacteria: are they found in complex communities? Curr Opin Biotechnol 2016; 38:123-30. [DOI: 10.1016/j.copbio.2016.01.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 12/11/2022]
|
61
|
Chen LX, Huang LN, Méndez-García C, Kuang JL, Hua ZS, Liu J, Shu WS. Microbial communities, processes and functions in acid mine drainage ecosystems. Curr Opin Biotechnol 2016; 38:150-8. [DOI: 10.1016/j.copbio.2016.01.013] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
|
62
|
Desoeuvre A, Casiot C, Héry M. Diversity and Distribution of Arsenic-Related Genes Along a Pollution Gradient in a River Affected by Acid Mine Drainage. MICROBIAL ECOLOGY 2016; 71:672-685. [PMID: 26603631 DOI: 10.1007/s00248-015-0710-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/09/2015] [Indexed: 06/05/2023]
Abstract
Some microorganisms have the capacity to interact with arsenic through resistance or metabolic processes. Their activities contribute to the fate of arsenic in contaminated ecosystems. To investigate the genetic potential involved in these interactions in a zone of confluence between a pristine river and an arsenic-rich acid mine drainage, we explored the diversity of marker genes for arsenic resistance (arsB, acr3.1, acr3.2), methylation (arsM), and respiration (arrA) in waters characterized by contrasted concentrations of metallic elements (including arsenic) and pH. While arsB-carrying bacteria were representative of pristine waters, Acr3 proteins may confer to generalist bacteria the capacity to cope with an increase of contamination. arsM showed an unexpected wide distribution, suggesting biomethylation may impact arsenic fate in contaminated aquatic ecosystems. arrA gene survey suggested that only specialist microorganisms (adapted to moderately or extremely contaminated environments) have the capacity to respire arsenate. Their distribution, modulated by water chemistry, attested the specialist nature of the arsenate respirers. This is the first report of the impact of an acid mine drainage on the diversity and distribution of arsenic (As)-related genes in river waters. The fate of arsenic in this ecosystem is probably under the influence of the abundance and activity of specific microbial populations involved in different As biotransformations.
Collapse
Affiliation(s)
- Angélique Desoeuvre
- Laboratoire HydroSciences Montpellier, HSM, UMR 5569 IRD, CNRS, Université Montpellier, CC 57, 163 rue Auguste Broussonet, 34090, Montpellier, France
| | - Corinne Casiot
- Laboratoire HydroSciences Montpellier, HSM, UMR 5569 IRD, CNRS, Université Montpellier, CC 57, 163 rue Auguste Broussonet, 34090, Montpellier, France
| | - Marina Héry
- Laboratoire HydroSciences Montpellier, HSM, UMR 5569 IRD, CNRS, Université Montpellier, CC 57, 163 rue Auguste Broussonet, 34090, Montpellier, France.
| |
Collapse
|
63
|
Koechler S, Bertin PN, Plewniak F, Baltenweck R, Casiot C, Heipieper HJ, Bouchez O, Arsène-Ploetze F, Hugueney P, Halter D. Arsenite response in Coccomyxa sp. Carn explored by transcriptomic and non-targeted metabolomic approaches. Environ Microbiol 2016; 18:1289-300. [PMID: 26769162 DOI: 10.1111/1462-2920.13227] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/20/2015] [Accepted: 01/12/2016] [Indexed: 12/17/2022]
Abstract
Arsenic is a toxic metalloid known to generate an important oxidative stress in cells. In the present study, we focused our attention on an alga related to the genus Coccomyxa, exhibiting an extraordinary capacity to resist high concentrations of arsenite and arsenate. The integrated analysis of high-throughput transcriptomic data and non-targeted metabolomic approaches highlighted multiple levels of protection against arsenite. Indeed, Coccomyxa sp. Carn induced a set of transporters potentially preventing the accumulation of this metalloid in the cells and presented a distinct arsenic metabolism in comparison to another species more sensitive to that compound, i.e. Euglena gracilis, especially in regard to arsenic methylation. Interestingly, Coccomyxa sp. Carn was characterized by a remarkable accumulation of the strong antioxidant glutathione (GSH). Such observation could explain the apparent low oxidative stress in the intracellular compartment, as suggested by the transcriptomic analysis. In particular, the high amount of GSH in the cell could play an important role for the tolerance to arsenate, as suggested by its partial oxidation into oxidized glutathione in presence of this metalloid. Our results therefore reveal that this alga has acquired multiple and original defence mechanisms allowing the colonization of extreme ecosystems such as acid mine drainages.
Collapse
Affiliation(s)
- Sandrine Koechler
- Génétique Moléculaire, Génomique et Microbiologie, Département Microorganismes, Génomes, Environnement UMR7156 Université de Strasbourg/CNRS, 28 rue Goethe, 67083, Strasbourg Cedex, France
| | - Philippe N Bertin
- Génétique Moléculaire, Génomique et Microbiologie, Département Microorganismes, Génomes, Environnement UMR7156 Université de Strasbourg/CNRS, 28 rue Goethe, 67083, Strasbourg Cedex, France
| | - Frédéric Plewniak
- Génétique Moléculaire, Génomique et Microbiologie, Département Microorganismes, Génomes, Environnement UMR7156 Université de Strasbourg/CNRS, 28 rue Goethe, 67083, Strasbourg Cedex, France
| | - Raymonde Baltenweck
- Unité Mixte de Recherche Santé de la Vigne et Qualité du Vin, Equipe Métabolisme secondaire de la vigne INRA, 68021, Colmar, France
| | - Corinne Casiot
- Hydrosciences Montpellier, UMR 5569 (CNRS, IRD, UM1, UM2), Université Montpellier 2, Place E. Bataillon, 34095, Montpellier Cedex 05, France
| | - Hermann J Heipieper
- Helmholtz Centre for Environmental Research - UFZ, Department Environmental Biotechnology, Permoserstr. 15, Leipzig, Germany
| | - Olivier Bouchez
- GeT-PlaGe (Plateforme Génomique) Campus INRA, 24 Chemin de Borde Rouge - Auzeville CS 52627, 31326, Castanet-Tolosan, France
| | - Florence Arsène-Ploetze
- Génétique Moléculaire, Génomique et Microbiologie, Département Microorganismes, Génomes, Environnement UMR7156 Université de Strasbourg/CNRS, 28 rue Goethe, 67083, Strasbourg Cedex, France
| | - Philippe Hugueney
- Unité Mixte de Recherche Santé de la Vigne et Qualité du Vin, Equipe Métabolisme secondaire de la vigne INRA, 68021, Colmar, France
| | - David Halter
- Unité Mixte de Recherche Santé de la Vigne et Qualité du Vin, Equipe Métabolisme secondaire de la vigne INRA, 68021, Colmar, France
| |
Collapse
|
64
|
Hovasse A, Bruneel O, Casiot C, Desoeuvre A, Farasin J, Hery M, Van Dorsselaer A, Carapito C, Arsène-Ploetze F. Spatio-Temporal Detection of the Thiomonas Population and the Thiomonas Arsenite Oxidase Involved in Natural Arsenite Attenuation Processes in the Carnoulès Acid Mine Drainage. Front Cell Dev Biol 2016; 4:3. [PMID: 26870729 PMCID: PMC4734075 DOI: 10.3389/fcell.2016.00003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
The acid mine drainage (AMD) impacted creek of the Carnoulès mine (Southern France) is characterized by acid waters with a high heavy metal content. The microbial community inhabiting this AMD was extensively studied using isolation, metagenomic and metaproteomic methods, and the results showed that a natural arsenic (and iron) attenuation process involving the arsenite oxidase activity of several Thiomonas strains occurs at this site. A sensitive quantitative Selected Reaction Monitoring (SRM)-based proteomic approach was developed for detecting and quantifying the two subunits of the arsenite oxidase and RpoA of two different Thiomonas groups. Using this approach combined with FISH and pyrosequencing-based 16S rRNA gene sequence analysis, it was established here for the first time that these Thiomonas strains are ubiquitously present in minor proportions in this AMD and that they express the key enzymes involved in natural remediation processes at various locations and time points. In addition to these findings, this study also confirms that targeted proteomics applied at the community level can be used to detect weakly abundant proteins in situ.
Collapse
Affiliation(s)
- Agnès Hovasse
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, UMR7178, Centre National de la Recherche Scientifique, Université de Strasbourg Strasbourg, France
| | - Odile Bruneel
- Laboratoire HydroSciences Montpellier, UMR HSM 5569, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Université Montpellier Montpellier, France
| | - Corinne Casiot
- Laboratoire HydroSciences Montpellier, UMR HSM 5569, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Université Montpellier Montpellier, France
| | - Angélique Desoeuvre
- Laboratoire HydroSciences Montpellier, UMR HSM 5569, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Université Montpellier Montpellier, France
| | - Julien Farasin
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Centre National de la Recherche Scientifique-Université de Strasbourg, Département Microorganismes, Génomes, Environnement, Equipe Ecophysiologie Moléculaire des Microorganismes Strasbourg, France
| | - Marina Hery
- Laboratoire HydroSciences Montpellier, UMR HSM 5569, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, Université Montpellier Montpellier, France
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, UMR7178, Centre National de la Recherche Scientifique, Université de Strasbourg Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, Institut Pluridisciplinaire Hubert Curien, UMR7178, Centre National de la Recherche Scientifique, Université de Strasbourg Strasbourg, France
| | - Florence Arsène-Ploetze
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Centre National de la Recherche Scientifique-Université de Strasbourg, Département Microorganismes, Génomes, Environnement, Equipe Ecophysiologie Moléculaire des Microorganismes Strasbourg, France
| |
Collapse
|
65
|
Ullrich SR, Poehlein A, Tischler JS, González C, Ossandon FJ, Daniel R, Holmes DS, Schlömann M, Mühling M. Genome Analysis of the Biotechnologically Relevant Acidophilic Iron Oxidising Strain JA12 Indicates Phylogenetic and Metabolic Diversity within the Novel Genus "Ferrovum". PLoS One 2016; 11:e0146832. [PMID: 26808278 PMCID: PMC4725956 DOI: 10.1371/journal.pone.0146832] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/22/2015] [Indexed: 02/07/2023] Open
Abstract
Background Members of the genus “Ferrovum” are ubiquitously distributed in acid mine drainage (AMD) waters which are characterised by their high metal and sulfate loads. So far isolation and microbiological characterisation have only been successful for the designated type strain “Ferrovum myxofaciens” P3G. Thus, knowledge about physiological characteristics and the phylogeny of the genus “Ferrovum” is extremely scarce. Objective In order to access the wider genetic pool of the genus “Ferrovum” we sequenced the genome of a “Ferrovum”-containing mixed culture and successfully assembled the almost complete genome sequence of the novel “Ferrovum” strain JA12. Phylogeny and Lifestyle The genome-based phylogenetic analysis indicates that strain JA12 and the type strain represent two distinct “Ferrovum” species. “Ferrovum” strain JA12 is characterised by an unusually small genome in comparison to the type strain and other iron oxidising bacteria. The prediction of nutrient assimilation pathways suggests that “Ferrovum” strain JA12 maintains a chemolithoautotrophic lifestyle utilising carbon dioxide and bicarbonate, ammonium and urea, sulfate, phosphate and ferrous iron as carbon, nitrogen, sulfur, phosphorous and energy sources, respectively. Unique Metabolic Features The potential utilisation of urea by “Ferrovum” strain JA12 is moreover remarkable since it may furthermore represent a strategy among extreme acidophiles to cope with the acidic environment. Unlike other acidophilic chemolithoautotrophs “Ferrovum” strain JA12 exhibits a complete tricarboxylic acid cycle, a metabolic feature shared with the closer related neutrophilic iron oxidisers among the Betaproteobacteria including Sideroxydans lithotrophicus and Thiobacillus denitrificans. Furthermore, the absence of characteristic redox proteins involved in iron oxidation in the well-studied acidophiles Acidithiobacillus ferrooxidans (rusticyanin) and Acidithiobacillus ferrivorans (iron oxidase) indicates the existence of a modified pathway in “Ferrovum” strain JA12. Therefore, the results of the present study extend our understanding of the genus “Ferrovum” and provide a comprehensive framework for future comparative genome and metagenome studies.
Collapse
Affiliation(s)
- Sophie R. Ullrich
- Institute of Biological Sciences, TU Bergakademie Freiberg, Leipziger Straße 29, Freiberg, Germany
- * E-mail: (SRU); (MM)
| | - Anja Poehlein
- Georg-August-University Göttingen, Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Grisebachstraße 8, Göttingen, Germany
| | - Judith S. Tischler
- Institute of Biological Sciences, TU Bergakademie Freiberg, Leipziger Straße 29, Freiberg, Germany
| | - Carolina González
- Center for System Biotechnology, Bio-Computing Division and Applied Genetics Division, Fraunhofer Chile Research Foundation, Avenida Mariano Sánchez Fontecilla 310, Santiago, Chile, and Center for Bioinformatics and Genome Biology, Fundación Ciencia y Vida, Zañartu 1482, and Facultad de Ciencias Biologicas, Universidad Andres Bello, Avenida Los Leones 745, Santiago, Chile
| | - Francisco J. Ossandon
- Center for Bioinformatics and Genome Biology, Fundación Ciencia y Vida, Zañartu 1482 and Facultad de Ciencias Biologicas, Universidad Andres Bello, Avenida Los Leones 745, Santiago, Chile
| | - Rolf Daniel
- Georg-August-University Göttingen, Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Grisebachstraße 8, Göttingen, Germany
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia y Vida, Zañartu 1482 and Facultad de Ciencias Biologicas, Universidad Andres Bello, Avenida Los Leones 745, Santiago, Chile
| | - Michael Schlömann
- Institute of Biological Sciences, TU Bergakademie Freiberg, Leipziger Straße 29, Freiberg, Germany
| | - Martin Mühling
- Institute of Biological Sciences, TU Bergakademie Freiberg, Leipziger Straße 29, Freiberg, Germany
- * E-mail: (SRU); (MM)
| |
Collapse
|
66
|
Andres J, Bertin PN. The microbial genomics of arsenic. FEMS Microbiol Rev 2016; 40:299-322. [DOI: 10.1093/femsre/fuv050] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2015] [Indexed: 12/17/2022] Open
|
67
|
Zhang X, Niu J, Liang Y, Liu X, Yin H. Metagenome-scale analysis yields insights into the structure and function of microbial communities in a copper bioleaching heap. BMC Genet 2016; 17:21. [PMID: 26781463 PMCID: PMC4717592 DOI: 10.1186/s12863-016-0330-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/13/2016] [Indexed: 01/18/2023] Open
Abstract
Background Metagenomics allows us to acquire the potential resources from both cultivatable and uncultivable microorganisms in the environment. Here, shotgun metagenome sequencing was used to investigate microbial communities from the surface layer of low grade copper tailings that were industrially bioleached at the Dexing Copper Mine, China. A bioinformatics analysis was further performed to elucidate structural and functional properties of the microbial communities in a copper bioleaching heap. Results Taxonomic analysis revealed unexpectedly high microbial biodiversity of this extremely acidic environment, as most sequences were phylogenetically assigned to Proteobacteria, while Euryarchaeota-related sequences occupied little proportion in this system, assuming that Archaea probably played little role in the bioleaching systems. At the genus level, the microbial community in mineral surface-layer was dominated by the sulfur- and iron-oxidizing acidophiles such as Acidithiobacillus-like populations, most of which were A. ferrivorans-like and A. ferrooxidans-like groups. In addition, Caudovirales were the dominant viral type observed in this extremely environment. Functional analysis illustrated that the principal participants related to the key metabolic pathways (carbon fixation, nitrogen metabolism, Fe(II) oxidation and sulfur metabolism) were mainly identified to be Acidithiobacillus-like, Thiobacillus-like and Leptospirillum-like microorganisms, indicating their vital roles. Also, microbial community harbored certain adaptive mechanisms (heavy metal resistance, low pH adaption, organic solvents tolerance and detoxification of hydroxyl radicals) as they performed their functions in the bioleaching system. Conclusion Our study provides several valuable datasets for understanding the microbial community composition and function in the surface-layer of copper bioleaching heap. Electronic supplementary material The online version of this article (doi:10.1186/s12863-016-0330-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xian Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China. .,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China.
| | - Jiaojiao Niu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China. .,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China.
| | - Yili Liang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China. .,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China.
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China. .,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China.
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China. .,Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China.
| |
Collapse
|
68
|
Garris HW, Baldwin SA, Van Hamme JD, Gardner WC, Fraser LH. Genomics to assist mine reclamation: a review. Restor Ecol 2016. [DOI: 10.1111/rec.12322] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Heath W. Garris
- Department of Natural Resource Sciences; Thompson Rivers University; 900 McGill Road Kamloops BC V2E 0N1 Canada
- Department of Biological Sciences; Thompson Rivers University; 900 McGill Road Kamloops BC V2E 0N1 Canada
| | - Susan A. Baldwin
- Department of Chemical and Biological Engineering; University of British Columbia, Vancouver; 2360 East Mall Vancouver BC V6T 1Z3 Canada
| | - Jonathan D. Van Hamme
- Department of Natural Resource Sciences; Thompson Rivers University; 900 McGill Road Kamloops BC V2E 0N1 Canada
- Department of Biological Sciences; Thompson Rivers University; 900 McGill Road Kamloops BC V2E 0N1 Canada
| | - Wendy C. Gardner
- Department of Natural Resource Sciences; Thompson Rivers University; 900 McGill Road Kamloops BC V2E 0N1 Canada
- Department of Biological Sciences; Thompson Rivers University; 900 McGill Road Kamloops BC V2E 0N1 Canada
| | - Lauchlan H. Fraser
- Department of Natural Resource Sciences; Thompson Rivers University; 900 McGill Road Kamloops BC V2E 0N1 Canada
- Department of Biological Sciences; Thompson Rivers University; 900 McGill Road Kamloops BC V2E 0N1 Canada
| |
Collapse
|
69
|
Novel and Unexpected Microbial Diversity in Acid Mine Drainage in Svalbard (78° N), Revealed by Culture-Independent Approaches. Microorganisms 2015; 3:667-94. [PMID: 27682111 PMCID: PMC5023264 DOI: 10.3390/microorganisms3040667] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/02/2015] [Accepted: 09/29/2015] [Indexed: 11/17/2022] Open
Abstract
Svalbard, situated in the high Arctic, is an important past and present coal mining area. Dozens of abandoned waste rock piles can be found in the proximity of Longyearbyen. This environment offers a unique opportunity for studying the biological control over the weathering of sulphide rocks at low temperatures. Although the extension and impact of acid mine drainage (AMD) in this area is known, the native microbial communities involved in this process are still scarcely studied and uncharacterized. Several abandoned mining areas were explored in the search for active AMD and a culture-independent approach was applied with samples from two different runoffs for the identification and quantification of the native microbial communities. The results obtained revealed two distinct microbial communities. One of the runoffs was more extreme with regards to pH and higher concentration of soluble iron and heavy metals. These conditions favored the development of algal-dominated microbial mats. Typical AMD microorganisms related to known iron-oxidizing bacteria (Acidithiobacillus ferrivorans, Acidobacteria and Actinobacteria) dominated the bacterial community although some unexpected populations related to Chloroflexi were also significant. No microbial mats were found in the second area. The geochemistry here showed less extreme drainage, most likely in direct contact with the ore under the waste pile. Large deposits of secondary minerals were found and the presence of iron stalks was revealed by microscopy analysis. Although typical AMD microorganisms were also detected here, the microbial community was dominated by other populations, some of them new to this type of system (Saccharibacteria, Gallionellaceae). These were absent or lowered in numbers the farther from the spring source and they could represent native populations involved in the oxidation of sulphide rocks within the waste rock pile. This environment appears thus as a highly interesting field of potential novelty in terms of both phylogenetic/taxonomic and functional diversity.
Collapse
|
70
|
Gonzalez E, Brereton NJB, Marleau J, Guidi Nissim W, Labrecque M, Pitre FE, Joly S. Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil. BMC PLANT BIOLOGY 2015; 15:246. [PMID: 26459343 PMCID: PMC4603587 DOI: 10.1186/s12870-015-0636-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/30/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. However, the genetic mechanisms which allow these fast-growing trees to tolerate PHCs are as yet unclear. METHODS Salix purpurea 'Fish Creek' trees were pot-grown in soil from a former petroleum refinery, either lacking or enriched with C10-C50 PHCs. De novo assembled transcriptomes were compared between tree organs and impartially annotated without a priori constraint to any organism. RESULTS Over 45% of differentially expressed genes originated from foreign organisms, the majority from the two-spotted spidermite, Tetranychus urticae. Over 99% of T. urticae transcripts were differentially expressed with greater abundance in non-contaminated trees. Plant transcripts involved in the polypropanoid pathway, including phenylalanine ammonia-lyase (PAL), had greater expression in contaminated trees whereas most resistance genes showed higher expression in non-contaminated trees. CONCLUSIONS The impartial approach to annotation of the de novo transcriptomes, allowing for the possibility for multiple species identification, was essential for interpretation of the crop's response treatment. The meta-transcriptomic pattern of expression suggests a cross-tolerance mechanism whereby abiotic stress resistance systems provide improved biotic resistance. These findings highlight a valuable but complex biotic and abiotic stress response to real-world, multidimensional contamination which could, in part, help explain why crops such as willow can produce uniquely high biomass yields on challenging marginal land.
Collapse
Affiliation(s)
- Emmanuel Gonzalez
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | - Nicholas J B Brereton
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | - Julie Marleau
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | | | - Michel Labrecque
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
- Montreal Botanical Gardens, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | - Frederic E Pitre
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
- Montreal Botanical Gardens, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | - Simon Joly
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
- Montreal Botanical Gardens, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| |
Collapse
|
71
|
Duran R, Bielen A, Paradžik T, Gassie C, Pustijanac E, Cagnon C, Hamer B, Vujaklija D. Exploring Actinobacteria assemblages in coastal marine sediments under contrasted Human influences in the West Istria Sea, Croatia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15215-29. [PMID: 25712885 DOI: 10.1007/s11356-015-4240-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 02/13/2015] [Indexed: 05/27/2023]
Abstract
The exploration of marine Actinobacteria has as major challenge to answer basic questions of microbial ecology that, in turn, will provide useful information to exploit Actinobacteria metabolisms in biotechnological processes. The ecological functions performed by Actinobacteria in marine sediments are still unclear and belongs to the most burning basic questions. The comparison of Actinobacteria communities inhabiting marine sediments that are under the influence of different contamination types will provide valuable information in the adaptation capacities of Actinobacteria to colonize specific ecological niche. In the present study, the characterization of different Actinobacteria assemblages according to contamination type revealed the ecological importance of Actinobacteria for maintaining both general biogeochemical functions through a "core" Actinobacteria community and specific roles associated with the presence of contaminants. Indeed, the results allowed to distinguish Actinobacteria genera and species operational taxonomic units (OTUs) able to cope with the presence of either (i) As, (ii) metals Ni, Fe, V, Cr, and Mn, or (iii) polycyclic aromatic hydrocarbons (PAHs) and toxic metals (Hg, Cd, Cu, Pb, and Zn). Such observations highlighted the metabolic capacities of Actinobacteria and their potential that should be taken into consideration and advantage during the implementation of bioremediation processes in marine ecosystems.
Collapse
Affiliation(s)
- Robert Duran
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France.
- Université de Pau et des Pays de l'Adour, Bâtiment IBEAS, BP1155, 64013, Pau Cedex, France.
| | - Ana Bielen
- Division of Molecular Biology, Institute Ruđer Bošković, Bijenička 54, 10000, Zagreb, Croatia
| | - Tina Paradžik
- Division of Molecular Biology, Institute Ruđer Bošković, Bijenička 54, 10000, Zagreb, Croatia
| | - Claire Gassie
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| | - Emina Pustijanac
- Juraj Dobrila University of Pula, Zagrebačka 30, 52100, Pula, Croatia
| | - Christine Cagnon
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau Cedex, France
| | - Bojan Hamer
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210, Rovinj, Croatia
| | - Dušica Vujaklija
- Division of Molecular Biology, Institute Ruđer Bošković, Bijenička 54, 10000, Zagreb, Croatia
| |
Collapse
|
72
|
Freel KC, Krueger MC, Farasin J, Brochier-Armanet C, Barbe V, Andrès J, Cholley PE, Dillies MA, Jagla B, Koechler S, Leva Y, Magdelenat G, Plewniak F, Proux C, Coppée JY, Bertin PN, Heipieper HJ, Arsène-Ploetze F. Adaptation in Toxic Environments: Arsenic Genomic Islands in the Bacterial Genus Thiomonas. PLoS One 2015; 10:e0139011. [PMID: 26422469 PMCID: PMC4589449 DOI: 10.1371/journal.pone.0139011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/07/2015] [Indexed: 11/19/2022] Open
Abstract
Acid mine drainage (AMD) is a highly toxic environment for most living organisms due to the presence of many lethal elements including arsenic (As). Thiomonas (Tm.) bacteria are found ubiquitously in AMD and can withstand these extreme conditions, in part because they are able to oxidize arsenite. In order to further improve our knowledge concerning the adaptive capacities of these bacteria, we sequenced and assembled the genome of six isolates derived from the Carnoulès AMD, and compared them to the genomes of Tm. arsenitoxydans 3As (isolated from the same site) and Tm. intermedia K12 (isolated from a sewage pipe). A detailed analysis of the Tm. sp. CB2 genome revealed various rearrangements had occurred in comparison to what was observed in 3As and K12 and over 20 genomic islands (GEIs) were found in each of these three genomes. We performed a detailed comparison of the two arsenic-related islands found in CB2, carrying the genes required for arsenite oxidation and As resistance, with those found in K12, 3As, and five other Thiomonas strains also isolated from Carnoulès (CB1, CB3, CB6, ACO3 and ACO7). Our results suggest that these arsenic-related islands have evolved differentially in these closely related Thiomonas strains, leading to divergent capacities to survive in As rich environments.
Collapse
Affiliation(s)
- Kelle C. Freel
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, CNRS-Université de Strasbourg, Département Microorganismes, Génomes, Environnement, Equipe Ecophysiologie Moléculaire des Microorganismes, Institut de Botanique, Strasbourg, France
| | - Martin C. Krueger
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Julien Farasin
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, CNRS-Université de Strasbourg, Département Microorganismes, Génomes, Environnement, Equipe Ecophysiologie Moléculaire des Microorganismes, Institut de Botanique, Strasbourg, France
| | - Céline Brochier-Armanet
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, Villeurbanne, France
| | - Valérie Barbe
- Laboratoire de Biologie Moléculaire pour l’Etude des Génomes, (LBioMEG), CEA-IG-Genoscope, Evry, France
| | - Jeremy Andrès
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, CNRS-Université de Strasbourg, Département Microorganismes, Génomes, Environnement, Equipe Ecophysiologie Moléculaire des Microorganismes, Institut de Botanique, Strasbourg, France
| | - Pierre-Etienne Cholley
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, CNRS-Université de Strasbourg, Département Microorganismes, Génomes, Environnement, Equipe Ecophysiologie Moléculaire des Microorganismes, Institut de Botanique, Strasbourg, France
| | - Marie-Agnès Dillies
- Plate-Forme Transcriptome et Epigénome, Centre d'Innovation et de Recherche Technologique—Département Génomes et Génétique, Institut Pasteur, Paris, France
| | - Bernd Jagla
- Plate-Forme Transcriptome et Epigénome, Centre d'Innovation et de Recherche Technologique—Département Génomes et Génétique, Institut Pasteur, Paris, France
| | - Sandrine Koechler
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, CNRS-Université de Strasbourg, Département Microorganismes, Génomes, Environnement, Equipe Ecophysiologie Moléculaire des Microorganismes, Institut de Botanique, Strasbourg, France
| | - Yann Leva
- Université de Haute-Alsace, Biopôle–LVBE, Colmar, France
| | - Ghislaine Magdelenat
- Laboratoire de Biologie Moléculaire pour l’Etude des Génomes, (LBioMEG), CEA-IG-Genoscope, Evry, France
| | - Frédéric Plewniak
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, CNRS-Université de Strasbourg, Département Microorganismes, Génomes, Environnement, Equipe Ecophysiologie Moléculaire des Microorganismes, Institut de Botanique, Strasbourg, France
| | - Caroline Proux
- Plate-Forme Transcriptome et Epigénome, Centre d'Innovation et de Recherche Technologique—Département Génomes et Génétique, Institut Pasteur, Paris, France
| | - Jean-Yves Coppée
- Plate-Forme Transcriptome et Epigénome, Centre d'Innovation et de Recherche Technologique—Département Génomes et Génétique, Institut Pasteur, Paris, France
| | - Philippe N. Bertin
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, CNRS-Université de Strasbourg, Département Microorganismes, Génomes, Environnement, Equipe Ecophysiologie Moléculaire des Microorganismes, Institut de Botanique, Strasbourg, France
| | - Hermann J. Heipieper
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Florence Arsène-Ploetze
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, CNRS-Université de Strasbourg, Département Microorganismes, Génomes, Environnement, Equipe Ecophysiologie Moléculaire des Microorganismes, Institut de Botanique, Strasbourg, France
- * E-mail:
| |
Collapse
|
73
|
Farasin J, Andres J, Casiot C, Barbe V, Faerber J, Halter D, Heintz D, Koechler S, Lièvremont D, Lugan R, Marchal M, Plewniak F, Seby F, Bertin PN, Arsène-Ploetze F. Thiomonas sp. CB2 is able to degrade urea and promote toxic metal precipitation in acid mine drainage waters supplemented with urea. Front Microbiol 2015; 6:993. [PMID: 26441922 PMCID: PMC4585258 DOI: 10.3389/fmicb.2015.00993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
The acid mine drainage (AMD) in Carnoulès (France) is characterized by the presence of toxic metals such as arsenic. Several bacterial strains belonging to the Thiomonas genus, which were isolated from this AMD, are able to withstand these conditions. Their genomes carry several genomic islands (GEIs), which are known to be potentially advantageous in some particular ecological niches. This study focused on the role of the “urea island” present in the Thiomonas CB2 strain, which carry the genes involved in urea degradation processes. First, genomic comparisons showed that the genome of Thiomonas sp. CB2, which is able to degrade urea, contains a urea genomic island which is incomplete in the genome of other strains showing no urease activity. The urease activity of Thiomonas sp. CB2 enabled this bacterium to maintain a neutral pH in cell cultures in vitro and prevented the occurrence of cell death during the growth of the bacterium in a chemically defined medium. In AMD water supplemented with urea, the degradation of urea promotes iron, aluminum and arsenic precipitation. Our data show that ureC was expressed in situ, which suggests that the ability to degrade urea may be expressed in some Thiomonas strains in AMD, and that this urease activity may contribute to their survival in contaminated environments.
Collapse
Affiliation(s)
- Julien Farasin
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Université de Strasbourg - Centre National de la Recherche Scientifique, Institut de Botanique Strasbourg, France
| | - Jérémy Andres
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Université de Strasbourg - Centre National de la Recherche Scientifique, Institut de Botanique Strasbourg, France
| | - Corinne Casiot
- Laboratoire Hydrosciences Montpellier, UMR 5569, Centre National de la Recherche Scientifique-UM I, UM II, IRD, Université Montpellier 2, CCMSE Montpellier, France
| | - Valérie Barbe
- Laboratoire de Biologie Moléculaire Pour l'Etude des Génomes, CEA-IG-Genoscope Evry, France
| | - Jacques Faerber
- Institut de Physique et de Chimie des Matériaux de Strasbourg, Université de Strasbourg, CNRS UMR 7504 Strasbourg, France
| | - David Halter
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Université de Strasbourg - Centre National de la Recherche Scientifique, Institut de Botanique Strasbourg, France
| | - Dimitri Heintz
- Plateforme Métabolomique, UPR2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Institut de Botanique Strasbourg, France
| | - Sandrine Koechler
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Université de Strasbourg - Centre National de la Recherche Scientifique, Institut de Botanique Strasbourg, France
| | - Didier Lièvremont
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Université de Strasbourg - Centre National de la Recherche Scientifique, Institut de Botanique Strasbourg, France
| | - Raphael Lugan
- Plateforme Métabolomique, UPR2357, Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Institut de Botanique Strasbourg, France
| | - Marie Marchal
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Université de Strasbourg - Centre National de la Recherche Scientifique, Institut de Botanique Strasbourg, France
| | - Frédéric Plewniak
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Université de Strasbourg - Centre National de la Recherche Scientifique, Institut de Botanique Strasbourg, France
| | | | - Philippe N Bertin
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Université de Strasbourg - Centre National de la Recherche Scientifique, Institut de Botanique Strasbourg, France
| | - Florence Arsène-Ploetze
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156, Université de Strasbourg - Centre National de la Recherche Scientifique, Institut de Botanique Strasbourg, France
| |
Collapse
|
74
|
Arsène-Ploetze F, Bertin PN, Carapito C. Proteomic tools to decipher microbial community structure and functioning. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13599-13612. [PMID: 25475614 PMCID: PMC4560766 DOI: 10.1007/s11356-014-3898-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
Recent advances in microbial ecology allow studying microorganisms in their environment, without laboratory cultivation, in order to get access to the large uncultivable microbial community. With this aim, environmental proteomics has emerged as an appropriate complementary approach to metagenomics providing information on key players that carry out main metabolic functions and addressing the adaptation capacities of living organisms in situ. In this review, a wide range of proteomic approaches applied to investigate the structure and functioning of microbial communities as well as recent examples of such studies are presented.
Collapse
Affiliation(s)
- Florence Arsène-Ploetze
- Génétique moléculaire, Génomique et Microbiologie, Université de Strasbourg, UMR7156 CNRS, Strasbourg, France,
| | | | | |
Collapse
|
75
|
Corsini A, Colombo M, Muyzer G, Cavalca L. Characterization of the arsenite oxidizer Aliihoeflea sp. strain 2WW and its potential application in the removal of arsenic from groundwater in combination with Pf-ferritin. Antonie van Leeuwenhoek 2015; 108:673-84. [PMID: 26149126 DOI: 10.1007/s10482-015-0523-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
Abstract
A heterotrophic arsenite-oxidizing bacterium, strain 2WW, was isolated from a biofilter treating arsenic-rich groundwater. Comparative analysis of 16S rRNA gene sequences showed that it was closely related (98.7 %) to the alphaproteobacterium Aliihoeflea aesturari strain N8(T). However, it was physiologically different by its ability to grow at relatively low substrate concentrations, low temperatures and by its ability to oxidize arsenite. Here we describe the physiological features of strain 2WW and compare these to its most closely related relative, A. aestuari strain N8(T). In addition, we tested its efficiency to remove arsenic from groundwater in combination with Pf-ferritin. Strain 2WW oxidized arsenite to arsenate between pH 5.0 and 8.0, and from 4 to 30 °C. When the strain was used in combination with a Pf-ferritin-based material for arsenic removal from natural groundwater, the removal efficiency was significantly higher (73 %) than for Pf-ferritin alone (64 %). These results showed that arsenite oxidation by strain 2WW combined with Pf-ferritin-based material has a potential in arsenic removal from contaminated groundwater.
Collapse
Affiliation(s)
- Anna Corsini
- DeFENS - Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, via Celoria 2, 20133, Milan, Italy
| | | | | | | |
Collapse
|
76
|
Fahy A, Giloteaux L, Bertin P, Le Paslier D, Médigue C, Weissenbach J, Duran R, Lauga B. 16S rRNA and As-Related Functional Diversity: Contrasting Fingerprints in Arsenic-Rich Sediments from an Acid Mine Drainage. MICROBIAL ECOLOGY 2015; 70:154-167. [PMID: 25592635 DOI: 10.1007/s00248-014-0558-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 12/16/2014] [Indexed: 06/04/2023]
Abstract
To gain an in-depth insight into the diversity and the distribution of genes under the particular evolutionary pressure of an arsenic-rich acid mine drainage (AMD), the genes involved in bacterial arsenic detoxification (arsB, ACR3) and arsenite oxidation (aioA) were investigated in sediment from Carnoulès (France), in parallel to the diversity and global distribution of the metabolically active bacteria. The metabolically active bacteria were affiliated mainly to AMD specialists, i.e., organisms detected in or isolated from AMDs throughout the world. They included mainly Acidobacteria and the non-affiliated "Candidatus Fodinabacter communificans," as well as Thiomonas and Acidithiobacillus spp., Actinobacteria, and unclassified Gammaproteobacteria. The distribution range of these organisms suggested that they show niche conservatism. Sixteen types of deduced protein sequences of arsenite transporters (5 ArsB and 11 Acr3p) were detected, whereas a single type of arsenite oxidase (AioA) was found. Our data suggested that at Carnoulès, the aioA gene was more recent than those encoding arsenite transporters and subjected to a different molecular evolution. In contrast to the 16S ribosomal RNA (16S rRNA) genes associated with AMD environments worldwide, the functional genes aioA, ACR3, and to a lesser extent arsB, were either novel or specific to Carnoulès, raising the question as to whether these functional genes are specific to high concentrations of arsenic, AMD-specific, or site-specific.
Collapse
Affiliation(s)
- Anne Fahy
- Équipe Environnement et Microbiologie, EEM, UMR 5254 (IPREM, CNRS), Université de Pau et des Pays de l'Adour, IBEAS, BP 1155, 64013, Pau Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Gasc C, Ribière C, Parisot N, Beugnot R, Defois C, Petit-Biderre C, Boucher D, Peyretaillade E, Peyret P. Capturing prokaryotic dark matter genomes. Res Microbiol 2015; 166:814-30. [PMID: 26100932 DOI: 10.1016/j.resmic.2015.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 11/18/2022]
Abstract
Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches.
Collapse
Affiliation(s)
- Cyrielle Gasc
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Céline Ribière
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Nicolas Parisot
- Biologie Fonctionnelle Insectes et Interactions, UMR203 BF2I, INRA, INSA-Lyon, Université de Lyon, Villeurbanne, France.
| | - Réjane Beugnot
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Clémence Defois
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Corinne Petit-Biderre
- Université Blaise Pascal, Laboratoire Microorganismes, Génome et Environnement, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 6023, F-63171 Aubière, France.
| | - Delphine Boucher
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Eric Peyretaillade
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Pierre Peyret
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| |
Collapse
|
78
|
Hua ZS, Han YJ, Chen LX, Liu J, Hu M, Li SJ, Kuang JL, Chain PSG, Huang LN, Shu WS. Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics. THE ISME JOURNAL 2015; 9:1280-94. [PMID: 25361395 PMCID: PMC4438317 DOI: 10.1038/ismej.2014.212] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 07/21/2014] [Accepted: 09/21/2014] [Indexed: 12/22/2022]
Abstract
High-throughput sequencing is expanding our knowledge of microbial diversity in the environment. Still, understanding the metabolic potentials and ecological roles of rare and uncultured microbes in natural communities remains a major challenge. To this end, we applied a 'divide and conquer' strategy that partitioned a massive metagenomic data set (>100 Gbp) into subsets based on K-mer frequency in sequence assembly to a low-diversity acid mine drainage (AMD) microbial community and, by integrating with an additional metatranscriptomic assembly, successfully obtained 11 draft genomes most of which represent yet uncultured and/or rare taxa (relative abundance <1%). We report the first genome of a naturally occurring Ferrovum population (relative abundance >90%) and its metabolic potentials and gene expression profile, providing initial molecular insights into the ecological role of these lesser known, but potentially important, microorganisms in the AMD environment. Gene transcriptional analysis of the active taxa revealed major metabolic capabilities executed in situ, including carbon- and nitrogen-related metabolisms associated with syntrophic interactions, iron and sulfur oxidation, which are key in energy conservation and AMD generation, and the mechanisms of adaptation and response to the environmental stresses (heavy metals, low pH and oxidative stress). Remarkably, nitrogen fixation and sulfur oxidation were performed by the rare taxa, indicating their critical roles in the overall functioning and assembly of the AMD community. Our study demonstrates the potential of the 'divide and conquer' strategy in high-throughput sequencing data assembly for genome reconstruction and functional partitioning analysis of both dominant and rare species in natural microbial assemblages.
Collapse
Affiliation(s)
- Zheng-Shuang Hua
- State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou, PR China
| | - Yu-Jiao Han
- State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou, PR China
| | - Lin-Xing Chen
- State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou, PR China
| | - Jun Liu
- State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou, PR China
| | - Min Hu
- State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou, PR China
| | - Sheng-Jin Li
- State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou, PR China
| | - Jia-Liang Kuang
- State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou, PR China
| | - Patrick SG Chain
- Metagenomics Applications Team, Genome Science Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Li-Nan Huang
- State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou, PR China
| | - Wen-Sheng Shu
- State Key Laboratory of Biocontrol, Key Laboratory of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes, College of Ecology and Evolution, Sun Yat-sen University, Guangzhou, PR China
| |
Collapse
|
79
|
Méndez-García C, Peláez AI, Mesa V, Sánchez J, Golyshina OV, Ferrer M. Microbial diversity and metabolic networks in acid mine drainage habitats. Front Microbiol 2015; 6:475. [PMID: 26074887 PMCID: PMC4448039 DOI: 10.3389/fmicb.2015.00475] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/29/2015] [Indexed: 11/13/2022] Open
Abstract
Acid mine drainage (AMD) emplacements are low-complexity natural systems. Low-pH conditions appear to be the main factor underlying the limited diversity of the microbial populations thriving in these environments, although temperature, ionic composition, total organic carbon, and dissolved oxygen are also considered to significantly influence their microbial life. This natural reduction in diversity driven by extreme conditions was reflected in several studies on the microbial populations inhabiting the various micro-environments present in such ecosystems. Early studies based on the physiology of the autochthonous microbiota and the growing success of omics-based methodologies have enabled a better understanding of microbial ecology and function in low-pH mine outflows; however, complementary omics-derived data should be included to completely describe their microbial ecology. Furthermore, recent updates on the distribution of eukaryotes and archaea recovered through sterile filtering (herein referred to as filterable fraction) in these environments demand their inclusion in the microbial characterization of AMD systems. In this review, we present a complete overview of the bacterial, archaeal (including filterable fraction), and eukaryotic diversity in these ecosystems, and include a thorough depiction of the metabolism and element cycling in AMD habitats. We also review different metabolic network structures at the organismal level, which is necessary to disentangle the role of each member of the AMD communities described thus far.
Collapse
Affiliation(s)
| | - Ana I. Peláez
- Department of Functional Biology-IUBA, Universidad de OviedoOviedo, Spain
| | - Victoria Mesa
- Department of Functional Biology-IUBA, Universidad de OviedoOviedo, Spain
| | - Jesús Sánchez
- Department of Functional Biology-IUBA, Universidad de OviedoOviedo, Spain
| | | | - Manuel Ferrer
- Department of Applied Biocatalysis, Consejo Superior de Investigaciones Científicas, Institute of CatalysisMadrid, Spain
| |
Collapse
|
80
|
Zhang SY, Zhao FJ, Sun GX, Su JQ, Yang XR, Li H, Zhu YG. Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:4138-4146. [PMID: 25738639 DOI: 10.1021/acs.est.5b00028] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Microbe-mediated arsenic (As) biotransformation in paddy soils determines the fate of As in soils and its availability to rice plants, yet little is known about the microbial communities involved in As biotransformation. Here, we revealed wide distribution, high diversity, and abundance of arsenite (As(III)) oxidase genes (aioA), respiratory arsenate (As(V)) reductase genes (arrA), As(V) reductase genes (arsC), and As(III) S-adenosylmethionine methyltransferase genes (arsM) in 13 paddy soils collected across Southern China. Sequences grouped with As biotransformation genes are mainly from rice rhizosphere bacteria, such as some Proteobacteria, Gemmatimonadales, and Firmicutes. A significant correlation of gene abundance between arsC and arsM suggests that the two genes coexist well in the microbial As resistance system. Redundancy analysis (RDA) indicated that soil pH, EC, total C, N, As, and Fe, C/N ratio, SO4(2-)-S, NO3(-)-N, and NH4(+)-N were the key factors driving diverse microbial community compositions. This study for the first time provides an overall picture of microbial communities involved in As biotransformation in paddy soils, and considering the wide distribution of paddy fields in the world, it also provides insights into the critical role of paddy fields in the As biogeochemical cycle.
Collapse
Affiliation(s)
- Si-Yu Zhang
- †State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- ‡University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Fang-Jie Zhao
- §Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- ∥Sustainable Soil and Grassland Systems Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, U.K
| | - Guo-Xin Sun
- †State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Jian-Qiang Su
- #Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Xiao-Ru Yang
- #Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Hu Li
- #Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Yong-Guan Zhu
- †State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
- #Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| |
Collapse
|
81
|
Koechler S, Arsène-Ploetze F, Brochier-Armanet C, Goulhen-Chollet F, Heinrich-Salmeron A, Jost B, Lièvremont D, Philipps M, Plewniak F, Bertin PN, Lett MC. Constitutive arsenite oxidase expression detected in arsenic-hypertolerant Pseudomonas xanthomarina S11. Res Microbiol 2015; 166:205-14. [PMID: 25753102 DOI: 10.1016/j.resmic.2015.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/05/2015] [Accepted: 02/20/2015] [Indexed: 02/06/2023]
Abstract
Pseudomonas xanthomarina S11 is an arsenite-oxidizing bacterium isolated from an arsenic-contaminated former gold mine in Salsigne, France. This bacterium showed high resistance to arsenite and was able to oxidize arsenite to arsenate at concentrations up to 42.72 mM As[III]. The genome of this strain was sequenced and revealed the presence of three ars clusters. One of them is located on a plasmid and is organized as an "arsenic island" harbouring an aio operon and genes involved in phosphorous metabolism, in addition to the ars genes. Neither the aioXRS genes nor a specific sigma-54-dependent promoter located upstream of aioBA genes, both involved in regulation of arsenite oxidase expression in other arsenite-oxidizing bacteria, could be identified in the genome. This observation is in accordance with the fact that no difference was observed in expression of arsenite oxidase in P. xanthomarina S11, whether or not the strain was grown in the presence of As[III].
Collapse
Affiliation(s)
- Sandrine Koechler
- UMR7156 Université de Strasbourg/CNRS Génétique Moléculaire, Génomique, Microbiologie, Département Micro-organismes, Génomes, Environnement, 28 rue Goethe, 67083 Strasbourg Cedex, France.
| | - Florence Arsène-Ploetze
- UMR7156 Université de Strasbourg/CNRS Génétique Moléculaire, Génomique, Microbiologie, Département Micro-organismes, Génomes, Environnement, 28 rue Goethe, 67083 Strasbourg Cedex, France.
| | - Céline Brochier-Armanet
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France.
| | - Florence Goulhen-Chollet
- UMR7156 Université de Strasbourg/CNRS Génétique Moléculaire, Génomique, Microbiologie, Département Micro-organismes, Génomes, Environnement, 28 rue Goethe, 67083 Strasbourg Cedex, France.
| | - Audrey Heinrich-Salmeron
- UMR7156 Université de Strasbourg/CNRS Génétique Moléculaire, Génomique, Microbiologie, Département Micro-organismes, Génomes, Environnement, 28 rue Goethe, 67083 Strasbourg Cedex, France.
| | - Bernard Jost
- Plateforme Biopuces et séquençage, IGBMC, 1 rue Laurent Fries Parc d'Innovation, 67400 Illkirch, France.
| | - Didier Lièvremont
- UMR7156 Université de Strasbourg/CNRS Génétique Moléculaire, Génomique, Microbiologie, Département Micro-organismes, Génomes, Environnement, 28 rue Goethe, 67083 Strasbourg Cedex, France.
| | - Muriel Philipps
- Plateforme Biopuces et séquençage, IGBMC, 1 rue Laurent Fries Parc d'Innovation, 67400 Illkirch, France.
| | - Frédéric Plewniak
- UMR7156 Université de Strasbourg/CNRS Génétique Moléculaire, Génomique, Microbiologie, Département Micro-organismes, Génomes, Environnement, 28 rue Goethe, 67083 Strasbourg Cedex, France.
| | - Philippe N Bertin
- UMR7156 Université de Strasbourg/CNRS Génétique Moléculaire, Génomique, Microbiologie, Département Micro-organismes, Génomes, Environnement, 28 rue Goethe, 67083 Strasbourg Cedex, France.
| | - Marie-Claire Lett
- UMR7156 Université de Strasbourg/CNRS Génétique Moléculaire, Génomique, Microbiologie, Département Micro-organismes, Génomes, Environnement, 28 rue Goethe, 67083 Strasbourg Cedex, France.
| |
Collapse
|
82
|
Roy M, Giri AK, Dutta S, Mukherjee P. Integrated phytobial remediation for sustainable management of arsenic in soil and water. ENVIRONMENT INTERNATIONAL 2015; 75:180-98. [PMID: 25481297 DOI: 10.1016/j.envint.2014.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 11/10/2014] [Accepted: 11/15/2014] [Indexed: 05/08/2023]
Abstract
Arsenic (As), cited as the most hazardous substance by the U.S. Agency for Toxic Substance and Disease Registry (ATSDR, 2005), is an ubiquitous metalloid which when ingested for prolonged periods cause extensive health effects leading to ultimate untimely death. Plants and microbes can help mitigate soil and groundwater As problem since they have evolved elaborate detoxification machineries against this toxic metalloid as a result of their coexistence with this since the origin of life on earth. Utilization of the phytoremediation and bioremediation potential of the plants and microbes, respectively, is now regarded as two innovative tools that encompass biology, geology, biotechnology and allied sciences with cutting edge applications for sustainable mitigation of As epidemic. Discovery of As hyperaccumulating plants that uptake and concentrate large amounts of this toxic metalloid in their shoots or roots offered new hope to As phytoremediation, solar power based nature's own green remediation. This review focuses on how phytoremediation and bioremediation can be merged together to form an integrated phytobial remediation which could synergistically achieve the goal of large scale removal of As from soil, sediment and groundwater and overcome the drawbacks of the either processes alone. The review also points to the feasibility of the introduction of transgenic plants and microbes that bring new hope for more efficient treatment of As. The review identifies one critical research gap on the importance of remediation of As contaminated groundwater not only for drinking purpose but also for irrigation purpose and stresses that more research should be conducted on the use of constructed wetland, one of the most suitable areas of application of phytobial remediation. Finally the review has narrowed down on different phytoinvestigation and phytodisposal methods, which constitute the most essential and the most difficult part of pilot scale and field scale applications of phytoremediation programs.
Collapse
Affiliation(s)
- Madhumita Roy
- Techno India University, Salt Lake, Kolkata 700091, India
| | - Ashok K Giri
- Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, 4Raja S.C. Mallick Road, Kolkata 700032, West Bengal, India
| | - Sourav Dutta
- Techno India University, Salt Lake, Kolkata 700091, India
| | | |
Collapse
|
83
|
Liljeqvist M, Ossandon FJ, González C, Rajan S, Stell A, Valdes J, Holmes DS, Dopson M. Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream. FEMS Microbiol Ecol 2015; 91:fiv011. [PMID: 25764459 DOI: 10.1093/femsec/fiv011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 11/13/2022] Open
Abstract
An acid mine drainage (pH 2.5-2.7) stream biofilm situated 250 m below ground in the low-temperature (6-10°C) Kristineberg mine, northern Sweden, contained a microbial community equipped for growth at low temperature and acidic pH. Metagenomic sequencing of the biofilm and planktonic fractions identified the most abundant microorganism to be similar to the psychrotolerant acidophile, Acidithiobacillus ferrivorans. In addition, metagenome contigs were most similar to other Acidithiobacillus species, an Acidobacteria-like species, and a Gallionellaceae-like species. Analyses of the metagenomes indicated functional characteristics previously characterized as related to growth at low temperature including cold-shock proteins, several pathways for the production of compatible solutes and an anti-freeze protein. In addition, genes were predicted to encode functions related to pH homeostasis and metal resistance related to growth in the acidic metal-containing mine water. Metagenome analyses identified microorganisms capable of nitrogen fixation and exhibiting a primarily autotrophic lifestyle driven by the oxidation of the ferrous iron and inorganic sulfur compounds contained in the sulfidic mine waters. The study identified a low diversity of abundant microorganisms adapted to a low-temperature acidic environment as well as identifying some of the strategies the microorganisms employ to grow in this extreme environment.
Collapse
Affiliation(s)
- Maria Liljeqvist
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | - Francisco J Ossandon
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago 7780272, Chile
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago 7780272, Chile Bio-Computing and Applied Genetics Division, Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Santiago, Piso 14, 7550296, Chile
| | - Sukithar Rajan
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 392 31 Kalmar, Sweden
| | - Adam Stell
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 392 31 Kalmar, Sweden
| | - Jorge Valdes
- Bio-Computing and Applied Genetics Division, Fraunhofer Chile Research Foundation, Center for Systems Biotechnology, Santiago, Piso 14, 7550296, Chile
| | - David S Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida and Depto. de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago 7780272, Chile
| | - Mark Dopson
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, 392 31 Kalmar, Sweden
| |
Collapse
|
84
|
Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. ISME JOURNAL 2014; 9:1579-92. [PMID: 25535937 PMCID: PMC4478699 DOI: 10.1038/ismej.2014.245] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/16/2014] [Indexed: 01/17/2023]
Abstract
The microbial communities in acid mine drainage have been extensively studied to reveal their roles in acid generation and adaption to this environment. Lacking, however, are integrated community- and organism-wide comparative gene transcriptional analyses that could reveal the response and adaptation mechanisms of these extraordinary microorganisms to different environmental conditions. In this study, comparative metagenomics and metatranscriptomics were performed on microbial assemblages collected from four geochemically distinct acid mine drainage (AMD) sites. Taxonomic analysis uncovered unexpectedly high microbial biodiversity of these extremely acidophilic communities, and the abundant taxa of Acidithiobacillus, Leptospirillum and Acidiphilium exhibited high transcriptional activities. Community-wide comparative analyses clearly showed that the AMD microorganisms adapted to the different environmental conditions via regulating the expression of genes involved in multiple in situ functional activities, including low-pH adaptation, carbon, nitrogen and phosphate assimilation, energy generation, environmental stress resistance, and other functions. Organism-wide comparative analyses of the active taxa revealed environment-dependent gene transcriptional profiles, especially the distinct strategies used by Acidithiobacillus ferrivorans and Leptospirillum ferrodiazotrophum in nutrients assimilation and energy generation for survival under different conditions. Overall, these findings demonstrate that the gene transcriptional profiles of AMD microorganisms are closely related to the site physiochemical characteristics, providing clues into the microbial response and adaptation mechanisms in the oligotrophic, extremely acidic environments.
Collapse
|
85
|
Gillan DC, Roosa S, Kunath B, Billon G, Wattiez R. The long-term adaptation of bacterial communities in metal-contaminated sediments: a metaproteogenomic study. Environ Microbiol 2014; 17:1991-2005. [DOI: 10.1111/1462-2920.12627] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 09/05/2014] [Indexed: 11/29/2022]
Affiliation(s)
- David C. Gillan
- Proteomics and Microbiology Lab; Research Institute for Biosciences; Université de Mons; 20 place du Parc Mons B-7000 Belgium
| | - Stéphanie Roosa
- Proteomics and Microbiology Lab; Research Institute for Biosciences; Université de Mons; 20 place du Parc Mons B-7000 Belgium
| | - Benoit Kunath
- Proteomics and Microbiology Lab; Research Institute for Biosciences; Université de Mons; 20 place du Parc Mons B-7000 Belgium
| | - Gabriel Billon
- Géosystèmes Lab; UFR de Chimie; Lille-1 University, Sciences and Technologies; Villeneuve d'Ascq 59655 France
| | - Ruddy Wattiez
- Proteomics and Microbiology Lab; Research Institute for Biosciences; Université de Mons; 20 place du Parc Mons B-7000 Belgium
| |
Collapse
|
86
|
Luo J, Bai Y, Liang J, Qu J. Metagenomic approach reveals variation of microbes with arsenic and antimony metabolism genes from highly contaminated soil. PLoS One 2014; 9:e108185. [PMID: 25299175 PMCID: PMC4191978 DOI: 10.1371/journal.pone.0108185] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/18/2014] [Indexed: 11/18/2022] Open
Abstract
Microbes have great potential for arsenic (As) and antimony (Sb) bioremediation in heavily contaminated soil because they have the ability to biotransform As and Sb to species that have less toxicity or are more easily removed. In this study, we integrated a metagenomic method with physicochemical characterization to elucidate the composition of microbial community and functional genes (related to As and Sb) in a high As (range from 34.11 to 821.23 mg kg−1) and Sb (range from 226.67 to 3923.07 mg kg−1) contaminated mine field. Metagenomic analysis revealed that microbes from 18 phyla were present in the 5 samples of soil contaminated with high As and Sb. Moreover, redundancy analysis (RDA) of the relationship between the 18 phyla and the concentration of As and Sb demonstrated that 5 phyla of microbes, i.e. Actinobacteria, Firmicutes, Nitrospirae, Tenericutes and Gemmatimonadetes were positively correlated with As and Sb concentration. The distribution, diversity and abundance of functional genes (including arsC, arrA, aioA, arsB and ACR3) were much higher for the samples containing higher As and Sb concentrations. Based on correlation analysis, the results showed a positive relationship between arsC-like (R2 = 0.871) and aioA-like (R2 = 0.675) gene abundance and As concentration, and indicated that intracellular As(V) reduction and As(III) oxidation could be the dominant As detoxification mechanism enabling the microbes to survive in the environment. This study provides a direct and reliable reference on the diversity of microbial community and functional genes in an extremely high concentration As- and Sb-contaminated environment.
Collapse
Affiliation(s)
- Jinming Luo
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jinsong Liang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
87
|
Camanocha A, Dewhirst FE. Host-associated bacterial taxa from Chlorobi, Chloroflexi, GN02, Synergistetes, SR1, TM7, and WPS-2 Phyla/candidate divisions. J Oral Microbiol 2014; 6:25468. [PMID: 25317252 PMCID: PMC4192840 DOI: 10.3402/jom.v6.25468] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 12/31/2022] Open
Abstract
Background and objective In addition to the well-known phyla Firmicutes, Proteobacteria, Bacteroidetes, Actinobacteria, Spirochaetes, Fusobacteria, Tenericutes, and Chylamydiae, the oral microbiomes of mammals contain species from the lesser-known phyla or candidate divisions, including Synergistetes, TM7, Chlorobi, Chloroflexi, GN02, SR1, and WPS-2. The objectives of this study were to create phyla-selective 16S rDNA PCR primer pairs, create selective 16S rDNA clone libraries, identify novel oral taxa, and update canine and human oral microbiome databases. Design 16S rRNA gene sequences for members of the lesser-known phyla were downloaded from GenBank and Greengenes databases and aligned with sequences in our RNA databases. Primers with potential phylum level selectivity were designed heuristically with the goal of producing nearly full-length 16S rDNA amplicons. The specificity of primer pairs was examined by making clone libraries from PCR amplicons and determining phyla identity by BLASTN analysis. Results Phylum-selective primer pairs were identified that allowed construction of clone libraries with 96–100% specificity for each of the lesser-known phyla. From these clone libraries, seven human and two canine novel oral taxa were identified and added to their respective taxonomic databases. For each phylum, genome sequences closest to human oral taxa were identified and added to the Human Oral Microbiome Database to facilitate metagenomic, transcriptomic, and proteomic studies that involve tiling sequences to the most closely related taxon. While examining ribosomal operons in lesser-known phyla from single-cell genomes and metagenomes, we identified a novel rRNA operon order (23S-5S-16S) in three SR1 genomes and the splitting of the 23S rRNA gene by an I-CeuI-like homing endonuclease in a WPS-2 genome. Conclusions This study developed useful primer pairs for making phylum-selective 16S rRNA clone libraries. Phylum-specific libraries were shown to be useful for identifying previously unrecognized taxa in lesser-known phyla and would be useful for future environmental and host-associated studies.
Collapse
Affiliation(s)
- Anuj Camanocha
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Floyd E Dewhirst
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA ; Department of Microbiology, The Forsyth Institute, Cambridge, MA, USA
| |
Collapse
|
88
|
Volant A, Bruneel O, Desoeuvre A, Héry M, Casiot C, Bru N, Delpoux S, Fahy A, Javerliat F, Bouchez O, Duran R, Bertin PN, Elbaz-Poulichet F, Lauga B. Diversity and spatiotemporal dynamics of bacterial communities: physicochemical and other drivers along an acid mine drainage. FEMS Microbiol Ecol 2014; 90:247-63. [PMID: 25070063 DOI: 10.1111/1574-6941.12394] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/10/2014] [Accepted: 07/16/2014] [Indexed: 11/30/2022] Open
Abstract
Deciphering the biotic and abiotic factors that control microbial community structure over time and along an environmental gradient is a pivotal question in microbial ecology. Carnoulès mine (France), which is characterized by acid waters and very high concentrations of arsenic, iron, and sulfate, provides an excellent opportunity to study these factors along the pollution gradient of Reigous Creek. To this end, biodiversity and spatiotemporal distribution of bacterial communities were characterized using T-RFLP fingerprinting and high-throughput sequencing. Patterns of spatial and temporal variations in bacterial community composition linked to changes in the physicochemical conditions suggested that species-sorting processes were at work in the acid mine drainage. Arsenic, temperature, and sulfate appeared to be the most important factors that drove the composition of bacterial communities along this continuum. Time series investigation along the pollution gradient also highlighted habitat specialization for some major members of the community (Acidithiobacillus and Thiomonas), dispersal for Acidithiobacillus, and evidence of extinction/re-thriving processes for Gallionella. Finally, pyrosequencing revealed a broader phylogenetic range of taxa than previous clone library-based diversity. Overall, our findings suggest that in addition to environmental filtering processes, additional forces (dispersal, birth/death events) could operate in AMD community.
Collapse
Affiliation(s)
- Aurélie Volant
- Laboratoire HydroSciences Montpellier, HSM, UMR 5569 (IRD, CNRS, Universités Montpellier 1 et 2), Université Montpellier 2, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Travisany D, Cortés MP, Latorre M, Di Genova A, Budinich M, Bobadilla-Fazzini RA, Parada P, González M, Maass A. A new genome of Acidithiobacillus thiooxidans provides insights into adaptation to a bioleaching environment. Res Microbiol 2014; 165:743-52. [PMID: 25148779 DOI: 10.1016/j.resmic.2014.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 11/25/2022]
Abstract
Acidithiobacillus thiooxidans is a sulfur oxidizing acidophilic bacterium found in many sulfur-rich environments. It is particularly interesting due to its role in bioleaching of sulphide minerals. In this work, we report the genome sequence of At. thiooxidans Licanantay, the first strain from a copper mine to be sequenced and currently used in bioleaching industrial processes. Through comparative genomic analysis with two other At. thiooxidans non-metal mining strains (ATCC 19377 and A01) we determined that these strains share a large core genome of 2109 coding sequences and a high average nucleotide identity over 98%. Nevertheless, the presence of 841 strain-specific genes (absent in other At. thiooxidans strains) suggests a particular adaptation of Licanantay to its specific biomining environment. Among this group, we highlight genes encoding for proteins involved in heavy metal tolerance, mineral cell attachment and cysteine biosynthesis. Several of these genes were located near genetic motility genes (e.g. transposases and integrases) in genomic regions of over 10 kbp absent in the other strains, suggesting the presence of genomic islands in the Licanantay genome probably produced by horizontal gene transfer in mining environments.
Collapse
Affiliation(s)
- Dante Travisany
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - María Paz Cortés
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Mauricio Latorre
- Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Alex Di Genova
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Marko Budinich
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | | | - Pilar Parada
- BioSigma S.A., Loteo Los Libertadores, Lote 106, Colina, Chile
| | - Mauricio González
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, El Líbano 5524, Macul, Santiago, Chile
| | - Alejandro Maass
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile; Department of Mathematical Engineering, Universidad de Chile, Beauchef 851, 5th Floor, Santiago, Chile.
| |
Collapse
|
90
|
Morgante V, Mirete S, de Figueras CG, Postigo Cacho M, González-Pastor JE. Exploring the diversity of arsenic resistance genes from acid mine drainage microorganisms. Environ Microbiol 2014; 17:1910-25. [PMID: 24801164 DOI: 10.1111/1462-2920.12505] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 04/28/2014] [Accepted: 05/01/2014] [Indexed: 11/30/2022]
Abstract
The microbial communities from the Tinto River, a natural acid mine drainage environment, were explored to search for novel genes involved in arsenic resistance using a functional metagenomic approach. Seven pentavalent arsenate resistance clones were selected and analysed to find the genes responsible for this phenotype. Insights about their possible mechanisms of resistance were obtained from sequence similarities and cellular arsenic concentration. A total of 19 individual open reading frames were analysed, and each one was individually cloned and assayed for its ability to confer arsenic resistance in Escherichia coli cells. A total of 13 functionally active genes involved in arsenic resistance were identified, and they could be classified into different global processes: transport, stress response, DNA damage repair, phospholipids biosynthesis, amino acid biosynthesis and RNA-modifying enzymes. Most genes (11) encode proteins not previously related to heavy metal resistance or hypothetical or unknown proteins. On the other hand, two genes were previously related to heavy metal resistance in microorganisms. In addition, the ClpB chaperone and the RNA-modifying enzymes retrieved in this work were shown to increase the cell survival under different stress conditions (heat shock, acid pH and UV radiation). Thus, these results reveal novel insights about unidentified mechanisms of arsenic resistance.
Collapse
Affiliation(s)
- Verónica Morgante
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Salvador Mirete
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Carolina G de Figueras
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Marina Postigo Cacho
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - José E González-Pastor
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| |
Collapse
|
91
|
Halter D, Andres J, Plewniak F, Poulain J, Da Silva C, Arsène-Ploetze F, Bertin PN. Arsenic hypertolerance in the protist Euglena mutabilis is mediated by specific transporters and functional integrity maintenance mechanisms. Environ Microbiol 2014; 17:1941-9. [PMID: 24698441 DOI: 10.1111/1462-2920.12474] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/06/2013] [Accepted: 12/20/2013] [Indexed: 02/05/2023]
Abstract
Arsenic is a toxic metalloid known to cause multiple and severe cellular damages, including lipid peroxidation, protein misfolding, mutagenesis and double and single-stranded DNA breaks. Thus, exposure to this compound is lethal for most organisms but some species such as the photosynthetic protist Euglena mutabilis are able to cope with very high concentrations of this metalloid. Our comparative transcriptomic approaches performed on both an arsenic hypertolerant protist, i.e. E. mutabilis, and a more sensitive one, i.e. E. gracilis, revealed multiple mechanisms involved in arsenic tolerance. Indeed, E. mutabilis prevents efficiently the accumulation of arsenic in the cell through the expression of several transporters. More surprisingly, this protist induced the expression of active DNA reparation and protein turnover mechanisms, which allow E. mutabilis to maintain functional integrity of the cell under challenging conditions. Our observations suggest that this protist has acquired specific functions regarding arsenic and has developed an original metabolism to cope with acid mine drainages-related stresses.
Collapse
Affiliation(s)
- David Halter
- Génétique Moléculaire, Génomique et Microbiologie, Département Micro-organismes, Génomes, Environnement, UMR7156 Université de Strasbourg/CNRS, Strasbourg, France
| | - Jérémy Andres
- Génétique Moléculaire, Génomique et Microbiologie, Département Micro-organismes, Génomes, Environnement, UMR7156 Université de Strasbourg/CNRS, Strasbourg, France
| | - Frédéric Plewniak
- Génétique Moléculaire, Génomique et Microbiologie, Département Micro-organismes, Génomes, Environnement, UMR7156 Université de Strasbourg/CNRS, Strasbourg, France
| | - Julie Poulain
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Evry, France
| | - Corinne Da Silva
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Evry, France
| | - Florence Arsène-Ploetze
- Génétique Moléculaire, Génomique et Microbiologie, Département Micro-organismes, Génomes, Environnement, UMR7156 Université de Strasbourg/CNRS, Strasbourg, France
| | - Philippe N Bertin
- Génétique Moléculaire, Génomique et Microbiologie, Département Micro-organismes, Génomes, Environnement, UMR7156 Université de Strasbourg/CNRS, Strasbourg, France
| |
Collapse
|
92
|
Li X, Zhang L, Wang G. Genomic evidence reveals the extreme diversity and wide distribution of the arsenic-related genes in Burkholderiales. PLoS One 2014; 9:e92236. [PMID: 24632831 PMCID: PMC3954881 DOI: 10.1371/journal.pone.0092236] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/19/2014] [Indexed: 11/18/2022] Open
Abstract
So far, numerous genes have been found to associate with various strategies to resist and transform the toxic metalloid arsenic (here, we denote these genes as "arsenic-related genes"). However, our knowledge of the distribution, redundancies and organization of these genes in bacteria is still limited. In this study, we analyzed the 188 Burkholderiales genomes and found that 95% genomes harbored arsenic-related genes, with an average of 6.6 genes per genome. The results indicated: a) compared to a low frequency of distribution for aio (arsenite oxidase) (12 strains), arr (arsenate respiratory reductase) (1 strain) and arsM (arsenite methytransferase)-like genes (4 strains), the ars (arsenic resistance system)-like genes were identified in 174 strains including 1,051 genes; b) 2/3 ars-like genes were clustered as ars operon and displayed a high diversity of gene organizations (68 forms) which may suggest the rapid movement and evolution for ars-like genes in bacterial genomes; c) the arsenite efflux system was dominant with ACR3 form rather than ArsB in Burkholderiales; d) only a few numbers of arsM and arrAB are found indicating neither As III biomethylation nor AsV respiration is the primary mechanism in Burkholderiales members; (e) the aio-like gene is mostly flanked with ars-like genes and phosphate transport system, implying the close functional relatedness between arsenic and phosphorus metabolisms. On average, the number of arsenic-related genes per genome of strains isolated from arsenic-rich environments is more than four times higher than the strains from other environments. Compared with human, plant and animal pathogens, the environmental strains possess a larger average number of arsenic-related genes, which indicates that habitat is likely a key driver for bacterial arsenic resistance.
Collapse
Affiliation(s)
- Xiangyang Li
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Linshuang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| |
Collapse
|
93
|
α-fur, an antisense RNA gene to fur in the extreme acidophile Acidithiobacillus ferrooxidans. Microbiology (Reading) 2014; 160:514-524. [DOI: 10.1099/mic.0.073171-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A large non-coding RNA, termed α-Fur, of ~1000 nt has been detected in the extreme acidophile Acidithiobacillus ferrooxidans encoded on the antisense strand to the iron-responsive master regulator fur (ferric uptake regulator) gene. A promoter for α-fur was predicted bioinformatically and validated using gene fusion experiments. The promoter is situated within the coding region and in the same sense as proB, potentially encoding a glutamate 5-kinase. The 3′ termination site of the α-fur transcript was determined by 3′ rapid amplification of cDNA ends to lie 7 nt downstream of the start of transcription of fur. Thus, α-fur is antisense to the complete coding region of fur, including its predicted ribosome-binding site. The genetic context of α-fur is conserved in several members of the genus Acidithiobacillus but not in all acidophiles, indicating that it is monophyletic but not niche specific. It is hypothesized that α-Fur regulates the cellular level of Fur. This is the fourth example of an antisense RNA to fur, although it is the first in an extreme acidophile, and underscores the growing importance of cis-encoded non-coding RNAs as potential regulators involved in the microbial iron-responsive stimulon.
Collapse
|
94
|
Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage. ISME JOURNAL 2014; 8:1259-74. [PMID: 24430486 PMCID: PMC4030236 DOI: 10.1038/ismej.2013.242] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/27/2013] [Accepted: 12/04/2013] [Indexed: 01/07/2023]
Abstract
Macroscopic growths at geographically separated acid mine drainages (AMDs) exhibit distinct populations. Yet, local heterogeneities are poorly understood. To gain novel mechanistic insights into this, we used OMICs tools to profile microbial populations coexisting in a single pyrite gallery AMD (pH ∼2) in three distinct compartments: two from a stratified streamer (uppermost oxic and lowermost anoxic sediment-attached strata) and one from a submerged anoxic non-stratified mat biofilm. The communities colonising pyrite and those in the mature formations appear to be populated by the greatest diversity of bacteria and archaea (including ‘ARMAN' (archaeal Richmond Mine acidophilic nano-organisms)-related), as compared with the known AMD, with ∼44.9% unclassified sequences. We propose that the thick polymeric matrix may provide a safety shield against the prevailing extreme condition and also a massive carbon source, enabling non-typical acidophiles to develop more easily. Only 1 of 39 species were shared, suggesting a high metabolic heterogeneity in local microenvironments, defined by the O2 concentration, spatial location and biofilm architecture. The suboxic mats, compositionally most similar to each other, are more diverse and active for S, CO2, CH4, fatty acid and lipopolysaccharide metabolism. The oxic stratum of the streamer, displaying a higher diversity of the so-called ‘ARMAN'-related Euryarchaeota, shows a higher expression level of proteins involved in signal transduction, cell growth and N, H2, Fe, aromatic amino acids, sphingolipid and peptidoglycan metabolism. Our study is the first to highlight profound taxonomic and functional shifts in single AMD formations, as well as new microbial species and the importance of H2 in acidic suboxic macroscopic growths.
Collapse
|
95
|
Cébron A, Arsène-Ploetze F, Bauda P, Bertin PN, Billard P, Carapito C, Devin S, Goulhen-Chollet F, Poirel J, Leyval C. Rapid impact of phenanthrene and arsenic on bacterial community structure and activities in sand batches. MICROBIAL ECOLOGY 2014; 67:129-44. [PMID: 24189653 DOI: 10.1007/s00248-013-0313-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 10/10/2013] [Indexed: 05/08/2023]
Abstract
The impact of both organic and inorganic pollution on the structure of soil microbial communities is poorly documented. A short-time batch experiment (6 days) was conducted to study the impact of both types of pollutants on the taxonomic, metabolic and functional diversity of soil bacteria. For this purpose sand spiked with phenanthrene (500 mg kg(-1) sand) or arsenic (arsenite 0.66 mM and arsenate 12.5 mM) was supplemented with artificial root exudates and was inoculated with bacteria originated from an aged PAH and heavy-metal-polluted soil. The bacterial community was characterised using bacterial strain isolation, TTGE fingerprinting and proteomics. Without pollutant, or with phenanthrene or arsenic, there were no significant differences in the abundance of bacteria and the communities were dominated by Pseudomonas and Paenibacillus genera. However, at the concentrations used, both phenanthrene or arsenic were toxic as shown by the decrease in mineralisation activities. Using community-level physiological profiles (Biolog Ecoplates™) or differential proteomics, we observed that the pollutants had an impact on the community physiology, in particular phenanthrene induced a general cellular stress response with changes in the central metabolism and membrane protein synthesis. Real-time PCR quantification of functional genes and transcripts revealed that arsenic induced the transcription of functional arsenic resistance and speciation genes (arsB, ACR3 and aioA), while no transcription of PAH-degradation genes (PAH-dioxygenase and catechol-dioxygenase) was detected with phenanthrene. Altogether, in our tested conditions, pollutants do not have a major effect on community abundance or taxonomic composition but rather have an impact on metabolic and functional bacterial properties.
Collapse
Affiliation(s)
- A Cébron
- LIEC UMR7360, CNRS-Université de Lorraine, Faculté des Sciences et Technologies, BP 70239, 54506, Vandoeuvre-lès-Nancy Cedex, France,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Andres J, Arsène-Ploetze F, Barbe V, Brochier-Armanet C, Cleiss-Arnold J, Coppée JY, Dillies MA, Geist L, Joublin A, Koechler S, Lassalle F, Marchal M, Médigue C, Muller D, Nesme X, Plewniak F, Proux C, Ramírez-Bahena MH, Schenowitz C, Sismeiro O, Vallenet D, Santini JM, Bertin PN. Life in an arsenic-containing gold mine: genome and physiology of the autotrophic arsenite-oxidizing bacterium rhizobium sp. NT-26. Genome Biol Evol 2013; 5:934-53. [PMID: 23589360 PMCID: PMC3673622 DOI: 10.1093/gbe/evt061] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Arsenic is widespread in the environment and its presence is a result of natural or anthropogenic activities. Microbes have developed different mechanisms to deal with toxic compounds such as arsenic and this is to resist or metabolize the compound. Here, we present the first reference set of genomic, transcriptomic and proteomic data of an Alphaproteobacterium isolated from an arsenic-containing goldmine: Rhizobium sp. NT-26. Although phylogenetically related to the plant-associated bacteria, this organism has lost the major colonizing capabilities needed for symbiosis with legumes. In contrast, the genome of Rhizobium sp. NT-26 comprises a megaplasmid containing the various genes, which enable it to metabolize arsenite. Remarkably, although the genes required for arsenite oxidation and flagellar motility/biofilm formation are carried by the megaplasmid and the chromosome, respectively, a coordinate regulation of these two mechanisms was observed. Taken together, these processes illustrate the impact environmental pressure can have on the evolution of bacterial genomes, improving the fitness of bacterial strains by the acquisition of novel functions.
Collapse
Affiliation(s)
- Jérémy Andres
- Laboratoire Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS Université de Strasbourg, Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Delavat F, Lett MC, Lièvremont D. Yeast and bacterial diversity along a transect in an acidic, As-Fe rich environment revealed by cultural approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 463-464:823-828. [PMID: 23859900 DOI: 10.1016/j.scitotenv.2013.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/29/2013] [Accepted: 06/05/2013] [Indexed: 06/02/2023]
Abstract
Acid mine drainages (AMDs) are often thought to harbour low biodiversity, yet little is known about the diversity distribution along the drainages. Using culture-dependent approaches, the microbial diversity from the Carnoulès AMD sediment was investigated for the first time along a transect showing progressive environmental stringency decrease. In total, 20 bacterial genera were detected, highlighting a higher bacterial diversity than previously thought. Moreover, this approach led to the discovery of 16 yeast species, demonstrating for the first time the presence of this important phylogenetic group in this AMD. All in all, the location of the microbes along the transect helps to better understand their distribution in a pollution gradient.
Collapse
Affiliation(s)
- François Delavat
- UMR7156 Université de Strasbourg/CNRS, Génétique Moléculaire, Génomique, Microbiologie, Institut de Botanique, 28 rue Goethe, Strasbourg 67000, France.
| | | | | |
Collapse
|
98
|
Plewniak F, Koechler S, Navet B, Dugat-Bony É, Bouchez O, Peyret P, Séby F, Battaglia-Brunet F, Bertin PN. Metagenomic insights into microbial metabolism affecting arsenic dispersion in Mediterranean marine sediments. Mol Ecol 2013; 22:4870-83. [DOI: 10.1111/mec.12432] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/13/2013] [Accepted: 06/25/2013] [Indexed: 02/04/2023]
Affiliation(s)
- Frédéric Plewniak
- Département Microorganismes, Génomes, Environnement; Génétique Moléculaire, Génomique et Microbiologie; UMR7156 Université de Strasbourg/CNRS; 28 rue Goethe 67083 Strasbourg Cedex France
| | - Sandrine Koechler
- Département Microorganismes, Génomes, Environnement; Génétique Moléculaire, Génomique et Microbiologie; UMR7156 Université de Strasbourg/CNRS; 28 rue Goethe 67083 Strasbourg Cedex France
| | - Benjamin Navet
- Département Microorganismes, Génomes, Environnement; Génétique Moléculaire, Génomique et Microbiologie; UMR7156 Université de Strasbourg/CNRS; 28 rue Goethe 67083 Strasbourg Cedex France
| | - Éric Dugat-Bony
- Laboratoire Microorganismes: Génome et Environnement; UMR 6023 Université Blaise Pascal Clermont-Ferrand/CNRS; Bât de Biologie A, Les Cézeaux, 24, Avenue des Landais BP 80026 63171 Aubière Cedex France
| | - Olivier Bouchez
- Plateforme génomique (PlaGe); Génopole Toulouse-Midi-Pyrénées; INRA; 31326 Castanet-Tolosan France
- INRA; UMR444 Laboratoire de Génétique Cellulaire; INRA Auzeville; 31326 Castanet-Tolosan France
| | - Pierre Peyret
- Laboratoire Microorganismes: Génome et Environnement; UMR 6023 Université Blaise Pascal Clermont-Ferrand/CNRS; Bât de Biologie A, Les Cézeaux, 24, Avenue des Landais BP 80026 63171 Aubière Cedex France
| | - Fabienne Séby
- Ultra Traces Analyses Aquitaine (UT2A); Hélioparc Pau-Pyrénées; 2, avenue du Président Angot 64053 Pau Cedex 9 France
| | - Fabienne Battaglia-Brunet
- BRGM; Environnement et Procédés; Unité Biogéochimie Environnementale; Avenue Claude Guillemin 45060 Orléans France
| | - Philippe N. Bertin
- Département Microorganismes, Génomes, Environnement; Génétique Moléculaire, Génomique et Microbiologie; UMR7156 Université de Strasbourg/CNRS; 28 rue Goethe 67083 Strasbourg Cedex France
| |
Collapse
|
99
|
McNulty NP, Wu M, Erickson AR, Pan C, Erickson BK, Martens EC, Pudlo NA, Muegge BD, Henrissat B, Hettich RL, Gordon JI. Effects of diet on resource utilization by a model human gut microbiota containing Bacteroides cellulosilyticus WH2, a symbiont with an extensive glycobiome. PLoS Biol 2013; 11:e1001637. [PMID: 23976882 PMCID: PMC3747994 DOI: 10.1371/journal.pbio.1001637] [Citation(s) in RCA: 207] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/12/2013] [Indexed: 02/07/2023] Open
Abstract
Artificial human gut microbial communities implanted into germ-free mice provide insights into how species-level responses to changes in diet give rise to community-level structural and functional reconfiguration and how types of bacteria prioritize use of available nutrients in vivo. The human gut microbiota is an important metabolic organ, yet little is known about how its individual species interact, establish dominant positions, and respond to changes in environmental factors such as diet. In this study, gnotobiotic mice were colonized with an artificial microbiota comprising 12 sequenced human gut bacterial species and fed oscillating diets of disparate composition. Rapid, reproducible, and reversible changes in the structure of this assemblage were observed. Time-series microbial RNA-Seq analyses revealed staggered functional responses to diet shifts throughout the assemblage that were heavily focused on carbohydrate and amino acid metabolism. High-resolution shotgun metaproteomics confirmed many of these responses at a protein level. One member, Bacteroides cellulosilyticus WH2, proved exceptionally fit regardless of diet. Its genome encoded more carbohydrate active enzymes than any previously sequenced member of the Bacteroidetes. Transcriptional profiling indicated that B. cellulosilyticus WH2 is an adaptive forager that tailors its versatile carbohydrate utilization strategy to available dietary polysaccharides, with a strong emphasis on plant-derived xylans abundant in dietary staples like cereal grains. Two highly expressed, diet-specific polysaccharide utilization loci (PULs) in B. cellulosilyticus WH2 were identified, one with characteristics of xylan utilization systems. Introduction of a B. cellulosilyticus WH2 library comprising >90,000 isogenic transposon mutants into gnotobiotic mice, along with the other artificial community members, confirmed that these loci represent critical diet-specific fitness determinants. Carbohydrates that trigger dramatic increases in expression of these two loci and many of the organism's 111 other predicted PULs were identified by RNA-Seq during in vitro growth on 31 distinct carbohydrate substrates, allowing us to better interpret in vivo RNA-Seq and proteomics data. These results offer insight into how gut microbes adapt to dietary perturbations at both a community level and from the perspective of a well-adapted symbiont with exceptional saccharolytic capabilities, and illustrate the value of artificial communities. Our intestines are populated by an almost unimaginably large number of microbial cells, most of which are bacteria. This species assemblage operates as a microbial metabolic organ, performing myriad tasks that contribute to our well-being, including processing components of our diet. The way this incredible machine assembles itself and operates remains mysterious. One approach to understanding its properties is to create artificial communities composed of a limited number of sequenced human gut bacterial species and to install them in the guts of germ-free mice that are then fed different diets. In this report, we adopt this approach. We describe the genome sequence of a new gut bacterial isolate, Bacteroides cellulosilyticus WH2, which is equipped with an unprecedented number of carbohydrate active enzymes. Deploying four different “omics” technologies, we characterize the response to diet, the relative stability, and the temporal dynamics of a 12-species artificial bacterial assemblage (including B. cellulosilyticus WH2) implanted in germ-free mouse guts. We also combine high-throughput substrate utilization screens and RNA-Seq to generate reference data analogous to a “Rosetta stone” in order to decipher what types of carbohydrates B. cellulosilyticus encounters and uses within the gut, and how it interacts with other organisms that have similar and/or distinct “professions.” This work sets the stage for future ecological and metabolic studies of more complex assemblages that more fully emulate the properties of our native gut communities.
Collapse
Affiliation(s)
- Nathan P. McNulty
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Meng Wu
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Alison R. Erickson
- Graduate School of Genome Science and Technology, University of Tennessee–Oak Ridge National Laboratory, Knoxville, Tennessee, United States of America
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Chongle Pan
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Brian K. Erickson
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Eric C. Martens
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Nicholas A. Pudlo
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Brian D. Muegge
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS and Aix-Marseille University, Marseille, France
| | - Robert L. Hettich
- Graduate School of Genome Science and Technology, University of Tennessee–Oak Ridge National Laboratory, Knoxville, Tennessee, United States of America
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| | - Jeffrey I. Gordon
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
100
|
Seifert J, Herbst FA, Halkjaer Nielsen P, Planes FJ, Jehmlich N, Ferrer M, von Bergen M. Bioinformatic progress and applications in metaproteogenomics for bridging the gap between genomic sequences and metabolic functions in microbial communities. Proteomics 2013; 13:2786-804. [PMID: 23625762 DOI: 10.1002/pmic.201200566] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/07/2013] [Accepted: 03/28/2013] [Indexed: 11/06/2022]
Abstract
Metaproteomics of microbial communities promises to add functional information to the blueprint of genes derived from metagenomics. Right from its beginning, the achievements and developments in metaproteomics were closely interlinked with metagenomics. In addition, the evaluation, visualization, and interpretation of metaproteome data demanded for the developments in bioinformatics. This review will give an overview about recent strategies to use genomic data either from public databases or organismal specific genomes/metagenomes to increase the number of identified proteins obtained by mass spectrometric measurements. We will review different published metaproteogenomic approaches in respect to the used MS pipeline and to the used protein identification workflow. Furthermore, different approaches of data visualization and strategies for phylogenetic interpretation of metaproteome data are discussed as well as approaches for functional mapping of the results to the investigated biological systems. This information will in the end allow a comprehensive analysis of interactions and interdependencies within microbial communities.
Collapse
Affiliation(s)
- Jana Seifert
- Department of Proteomics, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany; Institute of Animal Nutrition, University of Hohenheim, Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|