51
|
Early metabolic crisis-related brain atrophy and cognition in traumatic brain injury. Brain Imaging Behav 2014; 7:307-15. [PMID: 23636971 DOI: 10.1007/s11682-013-9231-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Traumatic brain injury often results in acute metabolic crisis. We recently demonstrated that this is associated with chronic brain atrophy, which is most prominent in the frontal and temporal lobes. Interestingly, the neuropsychological profile of traumatic brain injury is often characterized as 'frontal-temporal' in nature, suggesting a possible link between acute metabolic crisis-related brain atrophy and neurocognitive impairment in this population. While focal lesions and diffuse axonal injury have a well-established role in the neuropsychological deficits observed following traumatic brain injury, no studies to date have examined the possible contribution of acute metabolic crisis-related atrophy in the neuropsychological sequelae of traumatic brain injury. In the current study we employed positron emission tomography, magnetic resonance imaging, and neuropsychological assessments to ascertain the relationship between acute metabolic crisis-related brain atrophy and neurocognitive outcome in a sample of 14 right-handed traumatic brain injury survivors. We found that acute metabolic crisis-related atrophy in the frontal and temporal lobes was associated with poorer attention, executive functioning, and psychomotor abilities at 12 months post-injury. Furthermore, participants with gross frontal and/or temporal lobe atrophy exhibited numerous clinically significant neuropsychological deficits in contrast to participants with other patterns of brain atrophy. Our findings suggest that interventions that reduce acute metabolic crisis may lead to improved functional outcomes for traumatic brain injury survivors.
Collapse
|
52
|
Zhao J, Chen Z, Xi G, Keep RF, Hua Y. Deferoxamine attenuates acute hydrocephalus after traumatic brain injury in rats. Transl Stroke Res 2014; 5:586-94. [PMID: 24935175 DOI: 10.1007/s12975-014-0353-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 11/26/2022]
Abstract
Acute post-traumatic ventricular dilation and hydrocephalus are relatively frequent consequences of traumatic brain injury (TBI). Several recent studies have indicated that high iron levels in brain may relate to hydrocephalus development after intracranial hemorrhage. However, the role of iron in the development of post-traumatic hydrocephalus is still unclear. This study was to determine whether or not iron has a role in hydrocephalus development after TBI. TBI was induced by lateral fluid-percussion in male Sprague-Dawley rats. Some rats had intraventricular injection of iron. Acute hydrocephalus was measured by magnetic resonance T2-weighted imaging and brain hemorrhage was determined by T2* gradient-echo sequence imaging and brain hemoglobin levels. The effect of deferoxamine on TBI-induced hydrocephalus was examined. TBI resulted in acute hydrocephalus at 24 h (lateral ventricle volume: 24.1 ± 3.0 vs. 9.9 ± 0.2 mm(3) in sham group). Intraventricular injection of iron also caused hydrocephalus (25.7 ± 3.4 vs. 9.0 ± 0.6 mm(3) in saline group). Deferoxamine treatment attenuated TBI-induced hydrocephalus and heme oxygenase-1 upregulation. In conclusion, iron may contribute to acute hydrocephalus after TBI.
Collapse
Affiliation(s)
- Jinbing Zhao
- Department of Neurosurgery, University of Michigan, R5018 Biomedical Science Research Building, 109 Zina Pitcher Place, Ann Arbor, MI, 48109-2200, USA
| | | | | | | | | |
Collapse
|
53
|
|
54
|
Di Pietro V, Amorini AM, Tavazzi B, Vagnozzi R, Logan A, Lazzarino G, Signoretti S, Lazzarino G, Belli A. The molecular mechanisms affecting N-acetylaspartate homeostasis following experimental graded traumatic brain injury. Mol Med 2014; 20:147-57. [PMID: 24515258 DOI: 10.2119/molmed.2013.00153] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/03/2014] [Indexed: 11/06/2022] Open
Abstract
To characterize the molecular mechanisms of N-acetylaspartate (NAA) metabolism following traumatic brain injury (TBI), we measured the NAA, adenosine triphosphate (ATP) and adenosine diphosphate (ADP) concentrations and calculated the ATP/ADP ratio at different times from impact, concomitantly evaluating the gene and protein expressions controlling NAA homeostasis (the NAA synthesizing and degrading enzymes N-acetyltransferase 8-like and aspartoacylase, respectively) in rats receiving either mild or severe TBI. The reversible changes in NAA induced by mild TBI were due to a combination of transient mitochondrial malfunctioning with energy crisis (decrease in ATP and in the ATP/ADP ratio) and modulation in the gene and protein levels of N-acetyltransferase 8-like and increase of aspartoacylase levels. The irreversible decrease in NAA following severe TBI, was instead characterized by profound mitochondrial malfunctioning (constant 65% decrease of the ATP/ADP indicating permanent impairment of the mitochondrial phosphorylating capacity), dramatic repression of the N-acetyltransferase 8-like gene and concomitant remarkable increase in the aspartoacylase gene and protein levels. The mechanisms underlying changes in NAA homeostasis following graded TBI might be of note for possible new therapeutic approaches and will help in understanding the effects of repeat concussions occurring during particular periods of the complex NAA recovery process, coincident with the so called window of brain vulnerability.
Collapse
Affiliation(s)
- Valentina Di Pietro
- Neuropharmacology and Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Angela Maria Amorini
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Rome, Italy
| | - Barbara Tavazzi
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Rome, Italy
| | - Roberto Vagnozzi
- Department of Biomedicine and Prevention, Section of Neurosurgery, University of Rome Tor Vergata, Rome, Italy
| | - Ann Logan
- Neuropharmacology and Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Giacomo Lazzarino
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome, Rome, Italy
| | - Stefano Signoretti
- Division of Neurosurgery, Department of Neurosciences Head and Neck Surgery, San Camillo Hospital, Rome, Italy
| | - Giuseppe Lazzarino
- Department of Biology, Geology and Environmental Sciences, Division of Biochemistry and Molecular Biology, University of Catania, Catania, Italy
| | - Antonio Belli
- Neuropharmacology and Neurobiology Section, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
55
|
Talavage TM, Nauman EA, Breedlove EL, Yoruk U, Dye AE, Morigaki KE, Feuer H, Leverenz LJ. Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. J Neurotrauma 2014; 31:327-38. [PMID: 20883154 PMCID: PMC3922228 DOI: 10.1089/neu.2010.1512] [Citation(s) in RCA: 399] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Head trauma and concussion in football players have recently received considerable media attention. Postmortem evidence suggests that accrual of damage to the brain may occur with repeated blows to the head, even when the individual blows fail to produce clinical symptoms. There is an urgent need for improved detection and characterization of head trauma to reduce future injury risk and promote development of new therapies. In this study we examined neurological performance and health in the presence of head collision events in high school football players, using longitudinal measures of collision events (the HIT(™) System), neurocognitive testing (ImPACT(™)), and functional magnetic resonance imaging MRI (fMRI). Longitudinal assessment (including baseline) was conducted in 11 young men (ages 15-19 years) participating on the varsity and junior varsity football teams at a single high school. We expected and observed subjects in two previously described categories: (1) no clinically-diagnosed concussion and no changes in neurological behavior, and (2) clinically-diagnosed concussion with changes in neurological behavior. Additionally, we observed players in a previously undiscovered third category, who exhibited no clinically-observed symptoms associated with concussion, but who demonstrated measurable neurocognitive (primarily visual working memory) and neurophysiological (altered activation in the dorsolateral prefrontal cortex [DLPFC]) impairments. This new category was associated with significantly higher numbers of head collision events to the top-front of the head, directly above the DLPFC. The discovery of this new category suggests that more players are suffering neurological injury than are currently being detected using traditional concussion-assessment tools. These individuals are unlikely to undergo clinical evaluation, and thus may continue to participate in football-related activities, even when changes in brain physiology (and potential brain damage) are present, which will increase the risk of future neurological injury.
Collapse
Affiliation(s)
- Thomas M. Talavage
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana
| | - Eric A. Nauman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana
| | - Evan L. Breedlove
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Umit Yoruk
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana
| | - Anne E. Dye
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| | | | - Henry Feuer
- Department of Neurosurgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Larry J. Leverenz
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana
| |
Collapse
|
56
|
Byrnes KR, Wilson CM, Brabazon F, von Leden R, Jurgens JS, Oakes TR, Selwyn RG. FDG-PET imaging in mild traumatic brain injury: a critical review. FRONTIERS IN NEUROENERGETICS 2014; 5:13. [PMID: 24409143 PMCID: PMC3885820 DOI: 10.3389/fnene.2013.00013] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/23/2013] [Indexed: 11/30/2022]
Abstract
Traumatic brain injury (TBI) affects an estimated 1.7 million people in the United States and is a contributing factor to one third of all injury related deaths annually. According to the CDC, approximately 75% of all reported TBIs are concussions or considered mild in form, although the number of unreported mild TBIs (mTBI) and patients not seeking medical attention is unknown. Currently, classification of mTBI or concussion is a clinical assessment since diagnostic imaging is typically inconclusive due to subtle, obscure, or absent changes in anatomical or physiological parameters measured using standard magnetic resonance (MR) or computed tomography (CT) imaging protocols. Molecular imaging techniques that examine functional processes within the brain, such as measurement of glucose uptake and metabolism using [18F]fluorodeoxyglucose and positron emission tomography (FDG-PET), have the ability to detect changes after mTBI. Recent technological improvements in the resolution of PET systems, the integration of PET with magnetic resonance imaging (MRI), and the availability of normal healthy human databases and commercial image analysis software contribute to the growing use of molecular imaging in basic science research and advances in clinical imaging. This review will discuss the technological considerations and limitations of FDG-PET, including differentiation between glucose uptake and glucose metabolism and the significance of these measurements. In addition, the current state of FDG-PET imaging in assessing mTBI in clinical and preclinical research will be considered. Finally, this review will provide insight into potential critical data elements and recommended standardization to improve the application of FDG-PET to mTBI research and clinical practice.
Collapse
Affiliation(s)
- Kimberly R Byrnes
- Department of Anatomy, Physiology and Genetics, Uniformed Services University Bethesda, MD, USA ; Neuroscience Program, Department of Neuroscience, Uniformed Services University Bethesda, MD, USA ; Center for Neuroscience and Regenerative Medicine Bethesda, MD, USA
| | - Colin M Wilson
- Center for Neuroscience and Regenerative Medicine Bethesda, MD, USA ; Department of Radiology and Radiological Sciences, Uniformed Services University Bethesda, MD, USA
| | - Fiona Brabazon
- Neuroscience Program, Department of Neuroscience, Uniformed Services University Bethesda, MD, USA
| | - Ramona von Leden
- Neuroscience Program, Department of Neuroscience, Uniformed Services University Bethesda, MD, USA
| | - Jennifer S Jurgens
- Nuclear Medicine Service, Walter Reed National Military Medical Center Bethesda, MD, USA ; Department of Neurology, Uniformed Services University Bethesda, MD, USA
| | | | - Reed G Selwyn
- Center for Neuroscience and Regenerative Medicine Bethesda, MD, USA ; Department of Radiology and Radiological Sciences, Uniformed Services University Bethesda, MD, USA
| |
Collapse
|
57
|
Carre E, Ogier M, Boret H, Montcriol A, Bourdon L, Jean-Jacques R. Metabolic crisis in severely head-injured patients: is ischemia just the tip of the iceberg? Front Neurol 2013; 4:146. [PMID: 24130548 PMCID: PMC3795329 DOI: 10.3389/fneur.2013.00146] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 09/16/2013] [Indexed: 01/05/2023] Open
Abstract
Ischemia and metabolic crisis are frequent post-traumatic secondary brain insults that negatively influence outcome. Clinicians commonly mix up these two types of insults, mainly because high lactate/pyruvate ratio (LPR) is the common marker for both ischemia and metabolic crisis. However, LPR elevations during ischemia and metabolic crisis reflect two different energetic imbalances: ischemia (Type 1 LPR elevations with low oxygenation) is characterized by a drastic deprivation of energetic substrates, whereas metabolic crisis (Type 2 LPR elevations with normal or high oxygenation) is associated with profound mitochondrial dysfunction but normal supply of energetic substrates. The discrimination between ischemia and metabolic crisis is crucial because conventional recommendations against ischemia may be detrimental for patients with metabolic crisis. Multimodal monitoring, including microdialysis and brain tissue oxygen monitoring, allows such discrimination, but these techniques are not easily accessible to all head-injured patients. Thus, a new “gold standard” and adapted medical education are required to optimize the management of patients with metabolic crisis.
Collapse
Affiliation(s)
- Emilie Carre
- Unit of Traumatology, Institut de Recherche Biomedicale des Armees , Bretigny , France
| | | | | | | | | | | |
Collapse
|
58
|
Okubo S, Xi G, Keep RF, Muraszko KM, Hua Y. Cerebral hemorrhage, brain edema, and heme oxygenase-1 expression after experimental traumatic brain injury. ACTA NEUROCHIRURGICA. SUPPLEMENT 2013; 118:83-7. [PMID: 23564109 DOI: 10.1007/978-3-7091-1434-6_14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Intracranial bleeding is a common and serious consequence of traumatic brain injury (TBI). In the present study, we investigated cerebral hematoma occurrence, brain edema formation, blood-brain barrier (BBB) disruption, and heme oxygenase-1 (HO-1) expression after TBI. Moderate severity (1.8-2.2 atmospheres [ATM]) TBI was induced by lateral fluid percussion in male adult Sprague-Dawley rats. Sham rats underwent only a craniotomy. Rats were euthanized 24 h later for brain histology and immunoblotting analysis. We found TBI-induced cerebral hematomas and iron deposition in the ipsilateral hemisphere in all rats. TBI also caused marked BBB disruption (p < 0.05) and brain swelling (p < 0.05). HO-1, a key enzyme for heme degradation, was upregulated significantly after TBI (419 ± 89 vs 194 ± 59 pixels in the sham, p < 0.05). These results suggest that cerebral hematomas might play a role in brain injury after TBI. Future studies should determine the role of iron released from the cerebral hematoma in TBI.
Collapse
Affiliation(s)
- Shuichi Okubo
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | |
Collapse
|
59
|
Bigler ED. Traumatic brain injury, neuroimaging, and neurodegeneration. Front Hum Neurosci 2013; 7:395. [PMID: 23964217 PMCID: PMC3734373 DOI: 10.3389/fnhum.2013.00395] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 07/05/2013] [Indexed: 12/14/2022] Open
Abstract
Depending on severity, traumatic brain injury (TBI) induces immediate neuropathological effects that in the mildest form may be transient but as severity increases results in neural damage and degeneration. The first phase of neural degeneration is explainable by the primary acute and secondary neuropathological effects initiated by the injury; however, neuroimaging studies demonstrate a prolonged period of pathological changes that progressively occur even during the chronic phase. This review examines how neuroimaging may be used in TBI to understand (1) the dynamic changes that occur in brain development relevant to understanding the effects of TBI and how these relate to developmental stage when the brain is injured, (2) how TBI interferes with age-typical brain development and the effects of aging thereafter, and (3) how TBI results in greater frontotemporolimbic damage, results in cerebral atrophy, and is more disruptive to white matter neural connectivity. Neuroimaging quantification in TBI demonstrates degenerative effects from brain injury over time. An adverse synergistic influence of TBI with aging may predispose the brain injured individual for the development of neuropsychiatric and neurodegenerative disorders long after surviving the brain injury.
Collapse
Affiliation(s)
- Erin D Bigler
- Department of Psychology, Brigham Young University Provo, UT, USA ; Neuroscience Center, Brigham Young University Provo, UT, USA ; Department of Psychiatry, University of Utah Salt Lake City, UT, USA ; The Brain Institute of Utah, University of Utah Salt Lake City, UT, USA
| |
Collapse
|
60
|
Rogers ML, Feuerstein D, Leong CL, Takagaki M, Niu X, Graf R, Boutelle MG. Continuous online microdialysis using microfluidic sensors: dynamic neurometabolic changes during spreading depolarization. ACS Chem Neurosci 2013; 4:799-807. [PMID: 23574576 PMCID: PMC3656742 DOI: 10.1021/cn400047x] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/10/2013] [Indexed: 11/28/2022] Open
Abstract
Microfluidic glucose biosensors and potassium ion selective electrodes were used in an in vivo study to measure the neurochemical effects of spreading depolarizations (SD), which have been shown to be detrimental to the injured human brain. A microdialysis probe implanted in the cortex of rats was connected to a microfluidic PDMS chip containing the sensors. The dialysate was also analyzed using our gold standard, rapid sampling microdialysis (rsMD). The glucose biosensor performance was validated against rsMD with excellent results. The glucose biosensors successfully monitored concentration changes, in response to SD wave induction, in the range of 10-400 μM with a second time-resolution. The data show that during a SD wave, there is a time delay of 62 ± 24.8 s (n = 4) between the onset of the increase in potassium and the decrease in glucose. This delay can be for the first time demonstrated, thanks to the high-temporal resolution of the microfluidic sensors sampling from a single tissue site (the microdialysis probe), and it indicates that the decrease in glucose is due to the high demand of energy required for repolarization.
Collapse
Affiliation(s)
| | | | - Chi Leng Leong
- Department of Bioengineering, Imperial College, London, United Kingdom
| | | | - Xize Niu
- Engineering
and the Environment, University of Southampton, Southampton, United Kingdom
| | - Rudolf Graf
- Max Planck Institute for Neurological Research, Cologne, Germany
| | | |
Collapse
|
61
|
Álvarez XA, Figueroa J, Muresanu D. Peptidergic drugs for the treatment of traumatic brain injury. FUTURE NEUROLOGY 2013. [DOI: 10.2217/fnl.12.95] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Traumatic brain injury (TBI) is a devastating medical condition that has an enormous socioeconomic impact because it affects more than 10 million people annually worldwide and is associated with high rates of hospitalization, mortality and disability. Although TBI survival has improved continuously for decades, particularly in developing countries, implementation of an effective drug therapy for TBI represents an unmet clinical need. All confirmatory trials conducted to date with drugs targeting a single TBI pathological pathway failed to show clinical efficacy, probably because TBI pathophysiology involves multiple cellular and molecular mechanisms of secondary brain damage. According to current scientific evidence of the participation of peptide-mediated mechanisms in the processes of brain injury and repair after TBI, peptidergic drugs represent a multimodal therapy alternative to improve acute outcome and long-term recovery in TBI patients. Preliminary randomized-controlled clinical trials and open-label studies conducted to date with the peptidergic drug Cerebrolysin® (Ever Neuro Pharma GmbH, Unterach, Austria) and with the endogenous neuropeptides progesterone and erythropoietin, showed positive clinical results. Cerebrolysin-treated patients had a faster clinical recovery, a shorter hospitalization time and a better long-term outcome. Treatment with progesterone showed advantages over placebo regarding TBI mortality and clinical outcome, whereas erythropoietin only reduced mortality. Further validation of these promising findings in confirmatory randomized-controlled clinical trials is warranted. This article reviews the scientific basis and clinical evidence on the development of multimodal peptidergic drugs as a therapeutic option for the effective treatment of TBI patients.
Collapse
Affiliation(s)
| | - Jesús Figueroa
- Rehabilitation Department, Santiago University Hospital, Santiago de Compostela, Spain
| | - Dafin Muresanu
- Department of Neurology, University of Medicine & Pharmacy ‘Iuliu Hatieganu’, Cluj-Napoca, Romania
| |
Collapse
|
62
|
Kim J, Avants B, Whyte J, Gee JC. Methodological considerations in longitudinal morphometry of traumatic brain injury. Front Hum Neurosci 2013; 7:52. [PMID: 23549059 PMCID: PMC3581852 DOI: 10.3389/fnhum.2013.00052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 02/07/2013] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) has recently been reconceptualized as a chronic, evolving disease process. This new view necessitates quantitative assessment of post-injury changes in brain structure that may allow more accurate monitoring and prediction of recovery. In particular, TBI is known to trigger neurodegenerative processes and therefore quantifying progression of diffuse atrophy over time is currently of utmost interest. However, there are various methodological issues inherent to longitudinal morphometry in TBI. In this paper, we first overview several of these methodological challenges: lesion evolution, neurosurgical procedures, power, bias, and non-linearity. We then introduce a sensitive, reliable, and unbiased longitudinal multivariate analysis protocol that combines dimensionality reduction and region of interest approaches. This analysis pipeline is demonstrated using a small dataset consisting of four chronic TBI survivors.
Collapse
Affiliation(s)
- Junghoon Kim
- Moss Rehabilitation Research Institute Elkins Park, PA, USA
| | | | | | | |
Collapse
|
63
|
Mandal PK, Mahajan R, Dinov ID. Structural brain atlases: design, rationale, and applications in normal and pathological cohorts. J Alzheimers Dis 2013; 31 Suppl 3:S169-88. [PMID: 22647262 DOI: 10.3233/jad-2012-120412] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Structural magnetic resonance imaging (MRI) provides anatomical information about the brain in healthy as well as in diseased conditions. On the other hand, functional MRI (fMRI) provides information on the brain activity during performance of a specific task. Analysis of fMRI data requires the registration of the data to a reference brain template in order to identify the activated brain regions. Brain templates also find application in other neuroimaging modalities, such as diffusion tensor imaging and multi-voxel spectroscopy. Further, there are certain differences (e.g., brain shape and size) in the brains of populations of different origin and during diseased conditions like in Alzheimer's disease (AD), population and disease-specific brain templates may be considered crucial for accurate registration and subsequent analysis of fMRI as well as other neuroimaging data. This manuscript provides a comprehensive review of the history, construction and application of brain atlases. A chronological outline of the development of brain template design, starting from the Talairach and Tournoux atlas to the Chinese brain template (to date), along with their respective detailed construction protocols provides the backdrop to this manuscript. The manuscript also provides the automated workflow-based protocol for designing a population-specific brain atlas from structural MRI data using LONI Pipeline graphical workflow environment. We conclude by discussing the scope of brain templates as a research tool and their application in various neuroimaging modalities.
Collapse
Affiliation(s)
- Pravat K Mandal
- Neurospectroscopy and Neuroimaging Laboratory, National Brain Research Center, Gurgaon, India.
| | | | | |
Collapse
|
64
|
Abstract
Traumatic brain injury (TBI) is the most common cause of acquired disability in children. Metabolic defects, and in particular mitochondrial dysfunction, are important contributors to brain injury after TBI. Studies of metabolic dysfunction are limited, but magnetic resonance methods suitable for use in children are overcoming this limitation. We performed noninvasive measurements of cerebral blood flow and oxygen metabolic index (OMI) to assess metabolic dysfunction in children with severe TBI. Cerebral blood flow is variable after TBI but hypoperfusion and low OMI are predominant, supporting metabolic dysfunction. This finding is consistent with preclinical and adult clinical studies of brain metabolism and mitochondrial dysfunction after TBI.
Collapse
|
65
|
Review of the Evidence Supporting the Medical and Legal Use of NeuroQuant® in Patients with Traumatic Brain Injury. PSYCHOLOGICAL INJURY & LAW 2012. [DOI: 10.1007/s12207-012-9140-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
66
|
Stein NR, McArthur DL, Etchepare M, Vespa PM. Early cerebral metabolic crisis after TBI influences outcome despite adequate hemodynamic resuscitation. Neurocrit Care 2012; 17:49-57. [PMID: 22528283 DOI: 10.1007/s12028-012-9708-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Optimal resuscitation after traumatic brain injury (TBI) remains uncertain. We hypothesize that cerebral metabolic crisis is frequent despite adequate resuscitation of the TBI patient and that metabolic crisis negatively influences outcome. METHODS We assessed the effectiveness of a standardized trauma resuscitation protocol in 89 patients with moderate to severe TBI, and determined the frequency of adequate resuscitation. Prospective hourly values of heart rate, blood pressure, pulse oximetry, intracranial pressure (ICP), respiratory rate, jugular venous oximetry, and brain extracellular values of glucose, lactate, pyruvate, glycerol, and glutamate were obtained. The incidence during the initial 72 h after injury of low brain glucose <0.8 mmol/L, elevated lactate/pyruvate ratio (LPR) >25, and metabolic crisis, defined as the simultaneous occurrence of both low glucose and high LPR, were determined for the group. RESULTS 5 patients were inadequately resuscitated and eight patients had intractable ICP. In patients with successful resuscitation and controlled ICP (n = 76), within 72 h of trauma, 76% had low glucose, 93% had elevated LPR, and 74% were in metabolic crisis. The duration of metabolic crisis was longer in those patients with unfavorable (GOSe ≤ 6) versus favorable (GOSe ≥ 7) outcome at 6 months (P = 0.011). In four multivariate models the burden of metabolic crisis was a powerful independent predictor of poor outcome. CONCLUSIONS Metabolic crisis occurs frequently after TBI despite adequate resuscitation and controlled ICP, and is a strong independent predictor of poor outcome at 6 months.
Collapse
Affiliation(s)
- Nathan R Stein
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, 757 Westwood Blvd, RR 6236A, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
67
|
Carter E, Coles JP. Imaging in the diagnosis and prognosis of traumatic brain injury. EXPERT OPINION ON MEDICAL DIAGNOSTICS 2012; 6:541-554. [PMID: 23480836 DOI: 10.1517/17530059.2012.707188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
INTRODUCTION Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Improved understanding of the impact of head injury and the extent and development of neuronal loss and cognitive dysfunction could lead to improved therapy and outcome for patients. AREAS COVERED This paper reviews the currently available imaging techniques and defines their role in the diagnosis, management and prediction of outcome following traumatic brain injury. These imaging techniques provide delineation of the structural, physiological and functional derangements that result following acute injury, and map their development and association with late functional deficits. Imaging tools also have a role in defining the pathophysiological mechanisms responsible for further neuronal loss following the primary injury. Finally, this paper provides an overview of the role of functional imaging in classifying unresponsive coma and defining functional reorganisation of the brain following injury. EXPERT OPINION Brain imaging is of key importance in TBI management, enabling efficient and accurate diagnoses to be made, informing management decisions and contributing to prognostication. Developments in imaging techniques promise to improve understanding of the structural and functional derangements, improve management and guide the development and implementation of novel neuroprotective strategies following head injury.
Collapse
Affiliation(s)
- Eleanor Carter
- Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital , Cambridge, CB2 0AA , UK +01223 217889 ; +01223 217887 ;
| | | |
Collapse
|
68
|
Chen SF, Tsai HJ, Hung TH, Chen CC, Lee CY, Wu CH, Wang PY, Liao NC. Salidroside improves behavioral and histological outcomes and reduces apoptosis via PI3K/Akt signaling after experimental traumatic brain injury. PLoS One 2012; 7:e45763. [PMID: 23029230 PMCID: PMC3454376 DOI: 10.1371/journal.pone.0045763] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 08/24/2012] [Indexed: 11/18/2022] Open
Abstract
Background Traumatic brain injury (TBI) induces a complex sequence of apopototic cascades that contribute to secondary tissue damage. The aim of this study was to investigate the effects of salidroside, a phenolic glycoside with potent anti-apoptotic properties, on behavioral and histological outcomes, brain edema, and apoptosis following experimental TBI and the possible involvement of the phosphoinositide 3-kinase/protein kinase B (PI3K)/Akt signaling pathway. Methodology/Principal Findings Mice subjected to controlled cortical impact injury received intraperitoneal salidroside (20, or 50 mg/kg) or vehicle injection 10 min after injury. Behavioral studies, histology analysis and brain water content assessment were performed. Levels of PI3K/Akt signaling-related molecules, apoptosis-related proteins, cytochrome C (CytoC), and Smac/DIABLO were also analyzed. LY294002, a PI3K inhibitor, was administered to examine the mechanism of protection. The protective effect of salidroside was also investigated in primary cultured neurons subjected to stretch injury. Treatment with 20 mg/kg salidroside_significantly improved functional recovery and reduced brain tissue damage up to post-injury day 28. Salidroside_also significantly reduced neuronal death, apoptosis, and brain edema at day 1. These changes were associated with significant decreases in cleaved caspase-3, CytoC, and Smac/DIABLO at days 1 and 3. Salidroside increased phosphorylation of Akt on Ser473 and the mitochondrial Bcl-2/Bax ratio at day 1, and enhanced phosphorylation of Akt on Thr308 at day 3. This beneficial effect was abolished by pre-injection of LY294002. Moreover, delayed administration of salidroside at 3 or 6 h post-injury reduced neuronal damage at day 1. Salidroside treatment also decreased neuronal vulnerability to stretch-induced injury in vitro. Conclusions/Significance Post-injury salidroside improved long-term behavioral and histological outcomes and reduced brain edema and apoptosis following TBI, at least partially via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Szu-Fu Chen
- Departments of Physiology and Biophysics, National Defense Medical Center, Taipei, Taiwan, Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Kaloostian P, Robertson C, Gopinath SP, Stippler M, King CC, Qualls C, Yonas H, Nemoto EM. Outcome prediction within twelve hours after severe traumatic brain injury by quantitative cerebral blood flow. J Neurotrauma 2012; 29:727-34. [PMID: 22111910 DOI: 10.1089/neu.2011.2147] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We measured quantitative cortical mantle cerebral blood flow (CBF) by stable xenon computed tomography (CT) within the first 12 h after severe traumatic brain injury (TBI) to determine whether neurologic outcome can be predicted by CBF stratification early after injury. Stable xenon CT was used for quantitative measurement of CBF (mL/100 g/min) in 22 cortical mantle regions stratified as follows: low (0-8), intermediate (9-30), normal (31-70), and hyperemic (>70) in 120 patients suffering severe (Glasgow Coma Scale [GCS] score ≤8) TBI. For each of these CBF strata, percentages of total cortical mantle volume were calculated. Outcomes were assessed by Glasgow Outcome Scale (GOS) score at discharge (DC), and 1, 3, and 6 months after discharge. Quantitative cortical mantle CBF differentiated GOS 1 and GOS 2 (dead or vegetative state) from GOS 3-5 (severely disabled to good recovery; p<0.001). Receiver operating characteristic (ROC) curve analysis for percent total normal plus hyperemic flow volume (TNHV) predicting GOS 3-5 outcome at 6 months for CBF measured <6 and <12 h after injury showed ROC area under the curve (AUC) cut-scores of 0.92 and 0.77, respectively. In multivariate analysis, percent TNHV is an independent predictor of GOS 3-5, with an odds ratio of 1.460 per 10 percentage point increase, as is initial GCS score (OR=1.090). The binary version of the Marshall CT score was an independent predictor of 6-month outcome, whereas age was not. These results suggest that quantitative cerebral cortical CBF measured within the first 6 and 12 h after TBI predicts 6-month outcome, which may be useful in guiding patient care and identifying patients for randomized clinical trials. A larger multicenter randomized clinical trial is indicated.
Collapse
Affiliation(s)
- Paul Kaloostian
- Department of Neurosurgery, University of New Mexico, Albuquerque, New Mexico 87131-0001, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Tight glycemic control increases metabolic distress in traumatic brain injury: a randomized controlled within-subjects trial. Crit Care Med 2012; 40:1923-9. [PMID: 22610193 DOI: 10.1097/ccm.0b013e31824e0fcc] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To determine the effects of tight glycemic control on brain metabolism after traumatic brain injury using brain positron emission tomography and microdialysis. DESIGN Single-center, randomized controlled within-subject crossover observational trial. SETTING Academic intensive care unit. METHODS We performed a prospective, unblinded randomized controlled within-subject crossover trial of tight (80-110 mg/dL) vs. loose (120-150 mg/dL) glycemic control in patients with severe traumatic brain injury to determine the effects of glycemic control on brain glucose metabolism, as measured by [18F] deoxy-D-glucose brain positron emission tomography. Brain microdialysis was done simultaneously. MEASUREMENTS AND MAIN RESULTS Thirteen severely injured traumatic brain injury patients underwent the study between 3 and 8 days (mean 4.8 days) after traumatic brain injury. In ten of these subjects, global brain and gray matter tissues demonstrated higher glucose metabolic rates while glucose was under tight control as compared with loose control (3.2 ± 0.6 vs. 2.4 + 0.4, p = .02 [whole brain] and 3.8 ± 1.4 vs. 2.9 ± 0.8, p = .05 [gray matter]). However, the responses were heterogeneous with pericontusional tissue demonstrating the least state-dependent change. Cerebral microdialysis demonstrated more frequent critical reductions in glucose (p = .02) and elevations of lactate/pyruvate ratio (p = .03) during tight glycemic control. CONCLUSION Tight glycemic control results in increased global glucose uptake and an increased cerebral metabolic crisis after traumatic brain injury. The mechanisms leading to the enhancement of metabolic crisis are unclear, but delivery of more glucose through mild hyperglycemia may be necessary after traumatic brain injury.
Collapse
|
71
|
Ross DE, Ochs AL, Seabaugh JM, Demark MF, Shrader CR, Marwitz JH, Havranek MD. Progressive brain atrophy in patients with chronic neuropsychiatric symptoms after mild traumatic brain injury: a preliminary study. Brain Inj 2012; 26:1500-9. [PMID: 22721509 DOI: 10.3109/02699052.2012.694570] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION NeuroQuant® is a recently developed, FDA-approved software program for measuring brain MRI volume in clinical settings. The aims of this study were as follows: (1) to examine the test-retest reliability of NeuroQuant®; (2) to test the hypothesis that patients with mild traumatic brain injury (TBI) would have abnormally rapid progressive brain atrophy; and (3) to test the hypothesis that progressive brain atrophy in patients with mild TBI would be associated with vocational outcome. METHODS Sixteen patients with mild TBI were compared to 20 normal controls. Vocational outcome was assessed with the Glasgow Outcome Scale-Extended (GOSE) and Disability Rating Scale (DRS). RESULTS NeuroQuant® showed high test-re-test reliability. Patients had abnormally rapid progressive atrophy in several brain regions and the rate of atrophy was associated with inability to return to work. CONCLUSIONS NeuroQuant®, is a reliable and valid method for assessing the anatomic effects of TBI. Progression of atrophy may continue for years after injury, even in patients with mild TBI.
Collapse
Affiliation(s)
- David E Ross
- Virginia Institute of Neuropsychiatry, Midlothian, VA 23114, USA.
| | | | | | | | | | | | | |
Collapse
|
72
|
Ross DE. Review of longitudinal studies of MRI brain volumetry in patients with traumatic brain injury. Brain Inj 2011; 25:1271-8. [DOI: 10.3109/02699052.2011.624568] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
73
|
Wright MJ, Schmitter-Edgecombe M. The impact of verbal memory encoding and consolidation deficits during recovery from moderate-to-severe traumatic brain injury. J Head Trauma Rehabil 2011; 26:182-91. [PMID: 21552067 DOI: 10.1097/htr.0b013e318218dcf9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Encoding and consolidation deficits appear to account for verbal memory impairment following traumatic brain injury (TBI). It is unknown whether these abilities vary during TBI recovery. We sought to determine the pattern and impact of verbal encoding and consolidation deficits following TBI. METHODS Twenty-three participants with moderate-to-severe TBI and 25 age- and education-matched control participants' verbal memory abilities were assessed at 2 time points approximately 1 year apart; assessments occurred at acute and chronic visits for TBI survivors. MAIN OUTCOME MEASURES Rey Auditory Verbal Learning Test and Item Specific Deficit Approach indices of encoding, consolidation, and retrieval deficits. RESULTS In contrast to the controls, participants with TBI showed impaired verbal memory characterized by encoding and consolidation deficits at both time points. The TBI group's short-delayed recall and consolidation scores improved between the acute and chronic assessments. Encoding (primary) and consolidation (secondary) deficits emerged as predictors of acute and chronic recall in the TBI group. Also, acute visit encoding deficits predicted chronic visit delayed recall in TBI survivors, but acute consolidation deficits did not. CONCLUSIONS These findings suggest that memory rehabilitation efforts focused on improving encoding of verbal material may be useful during both the acute and chronic phases of recovery following TBI.
Collapse
Affiliation(s)
- Matthew J Wright
- Department of Psychiatry/Psychology Division, Harbor-UCLA Medical Center, Torrance, California 90502, USA.
| | | |
Collapse
|
74
|
Kwako LE, Glass N, Campbell J, Melvin KC, Barr T, Gill JM. Traumatic brain injury in intimate partner violence: a critical review of outcomes and mechanisms. TRAUMA, VIOLENCE & ABUSE 2011; 12:115-126. [PMID: 21511686 DOI: 10.1177/1524838011404251] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The prevalence of intimate partner violence (IPV) is striking, as are its consequences to the lives of women. The IPV often includes physical assault, which can include injuries to the head and attempted strangulation injuries. Both types of injuries can result in traumatic brain injury (TBI). The TBI sustained during IPV often occurs over time, which can increase the risk for health declines and postconcussive syndrome (PCS). Current studies have identified sequelae of cognitive dysfunction, posttraumatic stress disorder, and depression in women experiencing IPV, yet, most fail to determine the role of TBI in the onset and propagation of these disorders. Although imaging studies indicate functional differences in neuronal activation in IPV, they also have not considered the possibility of TBI contributing to these outcomes. This review highlights the significant gaps in current findings related to neuropsychological complications and medical and psychosocial symptoms that likely result in greater morbidity, as well as the societal costs of failing to acknowledge the association of IPV and TBI in women.
Collapse
Affiliation(s)
- Laura E Kwako
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
75
|
Current world literature. Curr Opin Anaesthesiol 2011; 24:224-33. [PMID: 21386670 DOI: 10.1097/aco.0b013e32834585d6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
76
|
Li L, Jiang Q, Qu CS, Ding GL, Li QJ, Wang SY, Lee JH, Lu M, Mahmood A, Chopp M. Transplantation of marrow stromal cells restores cerebral blood flow and reduces cerebral atrophy in rats with traumatic brain injury: in vivo MRI study. J Neurotrauma 2011; 28:535-45. [PMID: 21275806 DOI: 10.1089/neu.2010.1619] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cell therapy promotes brain remodeling and improves functional recovery after various central nervous system disorders, including traumatic brain injury (TBI). We tested the hypothesis that treatment of TBI with intravenous administration of human marrow stromal cells (hMSCs) provides therapeutic benefit in modifying hemodynamic and structural abnormalities, which are detectable by in vivo MRI. hMSCs were labeled with superparamagnetic iron oxide (SPIO) nanoparticles. Male Wistar rats (300-350 g, n=18) subjected to controlled cortical impact TBI were intravenously injected with 1 mL of saline (n=9) or hMSCs in suspension (n=9, approximately 3 × 10(6) SPIO-labeled hMSCs) 5 days post-TBI. In vivo MRI measurements consisting of cerebral blood flow (CBF), T2-weighted imaging, and 3D gradient echo imaging were performed for all animals 2 days post-TBI and weekly for 6 weeks. Functional outcome was evaluated with modified neurological severity score and Morris water maze test. Cell engraftment was detected in vivo by 3D MRI and confirmed by double staining. Ventricle and lesion volumetric alterations were measured using T2 maps, and hemodynamic abnormality was tracked by MRI CBF measurements. Our data demonstrate that treatment with hMSCs following TBI diminishes hemodynamic abnormalities by early restoration and preservation of CBF in the brain regions adjacent to and remote from the impact site, and reduces generalized cerebral atrophy, all of which may contribute to the observed improvement of functional outcome.
Collapse
Affiliation(s)
- Lian Li
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Newcombe VFJ, Outtrim JG, Chatfield DA, Manktelow A, Hutchinson PJ, Coles JP, Williams GB, Sahakian BJ, Menon DK. Parcellating the neuroanatomical basis of impaired decision-making in traumatic brain injury. Brain 2011; 134:759-68. [PMID: 21310727 PMCID: PMC3044832 DOI: 10.1093/brain/awq388] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cognitive dysfunction is a devastating consequence of traumatic brain injury that affects the majority of those who survive with moderate-to-severe injury, and many patients with mild head injury. Disruption of key monoaminergic neurotransmitter systems, such as the dopaminergic system, may play a key role in the widespread cognitive dysfunction seen after traumatic axonal injury. Manifestations of injury to this system may include impaired decision-making and impulsivity. We used the Cambridge Gambling Task to characterize decision-making and risk-taking behaviour, outside of a learning context, in a cohort of 44 patients at least six months post-traumatic brain injury. These patients were found to have broadly intact processing of risk adjustment and probability judgement, and to bet similar amounts to controls. However, a patient preference for consistently early bets indicated a higher level of impulsiveness. These behavioural measures were compared with imaging findings on diffusion tensor magnetic resonance imaging. Performance in specific domains of the Cambridge Gambling Task correlated inversely and specifically with the severity of diffusion tensor imaging abnormalities in regions that have been implicated in these cognitive processes. Thus, impulsivity was associated with increased apparent diffusion coefficient bilaterally in the orbitofrontal gyrus, insula and caudate; abnormal risk adjustment with increased apparent diffusion coefficient in the right thalamus and dorsal striatum and left caudate; and impaired performance on rational choice with increased apparent diffusion coefficient in the bilateral dorsolateral prefrontal cortices, and the superior frontal gyri, right ventrolateral prefrontal cortex, the dorsal and ventral striatum, and left hippocampus. Importantly, performance in specific cognitive domains of the task did not correlate with diffusion tensor imaging abnormalities in areas not implicated in their performance. The ability to dissociate the location and extent of damage with performance on the various task components using diffusion tensor imaging allows important insights into the neuroanatomical basis of impulsivity following traumatic brain injury. The ability to detect such damage in vivo may have important implications for patient management, patient selection for trials, and to help understand complex neurocognitive pathways.
Collapse
Affiliation(s)
- Virginia F. J. Newcombe
- 1 Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, CB2 2QQ, UK,2 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, CB2 2QQ, UK
| | - Joanne G. Outtrim
- 1 Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, CB2 2QQ, UK,2 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, CB2 2QQ, UK
| | - Doris A. Chatfield
- 1 Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, CB2 2QQ, UK,2 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, CB2 2QQ, UK
| | - Anne Manktelow
- 1 Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, CB2 2QQ, UK,2 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, CB2 2QQ, UK
| | - Peter J. Hutchinson
- 2 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, CB2 2QQ, UK,3 Academic Neurosurgery Unit, Department of Clinical Neurosciences, University of Cambridge, CB2 2QQ, UK
| | - Jonathan P. Coles
- 1 Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, CB2 2QQ, UK,2 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, CB2 2QQ, UK
| | - Guy B. Williams
- 1 Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, CB2 2QQ, UK
| | - Barbara J. Sahakian
- 4 Department of Psychiatry, School of Clinical Medicine, University of Cambridge, CB2 2QQ UK,5 MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, CB2 3EB, UK
| | - David K. Menon
- 1 Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, CB2 2QQ, UK,2 Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, CB2 2QQ, UK
| |
Collapse
|
78
|
Cerebral volume loss, cognitive deficit, and neuropsychological performance: comparative measures of brain atrophy: II. Traumatic brain injury. J Int Neuropsychol Soc 2011; 17:308-16. [PMID: 21352625 DOI: 10.1017/s1355617710001670] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Traumatic brain injury (TBI) results in a variable degree of cerebral atrophy that is not always related to cognitive measures across studies. However, the use of different methods for examining atrophy may be a reason why differences exist. The purpose of this manuscript was to examine the predictive utility of seven magnetic resonance imaging (MRI)-derived brain volume or indices of atrophy for a large cohort of TBI patients (n = 65). The seven quantitative MRI (qMRI) measures included uncorrected whole brain volume, brain volume corrected by total intracranial volume, brain volume corrected by the ratio of the individual TICV by group TICV, a ventricle to brain ratio, total ventricular volume, ventricular volume corrected by TICV, and a direct measure of parenchymal volume loss. Results demonstrated that the various qMRI measures were highly interrelated and that corrected measures proved to be the most robust measures related to neuropsychological performance. Similar to an earlier study that examined cerebral atrophy in aging and dementia, these results suggest that a single corrected brain volume measure is all that is necessary in studies examining global MRI indicators of cerebral atrophy in relationship to cognitive function making additional measures of global atrophy redundant and unnecessary.
Collapse
|
79
|
Scafidi S, Racz J, Hazelton J, McKenna MC, Fiskum G. Neuroprotection by acetyl-L-carnitine after traumatic injury to the immature rat brain. Dev Neurosci 2011; 32:480-7. [PMID: 21228558 DOI: 10.1159/000323178] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 11/25/2010] [Indexed: 01/05/2023] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of mortality and morbidity in children and is characterized by reduced aerobic cerebral energy metabolism early after injury, possibly due to impaired activity of the pyruvate dehydrogenase complex. Exogenous acetyl-L-carnitine (ALCAR) is metabolized in the brain to acetyl coenzyme A and subsequently enters the tricarboxylic acid cycle. ALCAR administration is neuroprotective in animal models of cerebral ischemia and spinal cord injury, but has not been tested for TBI. This study tested the hypothesis that treatment with ALCAR during the first 24 h following TBI in immature rats improves neurologic outcome and reduces cortical lesion volume. Postnatal day 21-22 male rats were isoflurane anesthetized and used in a controlled cortical impact model of TBI to the left parietal cortex. At 1, 4, 12 and 23 h after injury, rats received ALCAR (100 mg/kg, intraperitoneally) or drug vehicle (normal saline). On days 3-7 after surgery, behavior was assessed using beam walking and novel object recognition tests. On day 7, rats were transcardially perfused and brains were harvested for histological assessment of cortical lesion volume, using stereology. Injured animals displayed a significant increase in foot slips compared to sham-operated rats (6 ± 1 SEM vs. 2 ± 0.2 on day 3 after trauma; n = 7; p < 0.05). The ALCAR-treated rats were not different from shams and had fewer foot slips compared to vehicle-treated animals (2 ± 0.4; n = 7; p< 0.05). The frequency of investigating a novel object for saline-treated TBI animals was reduced compared to shams (45 ± 5% vs. 65 ± 10%; n = 7; p < 0.05), whereas the frequency of investigation for TBI rats treated with ALCAR was not significantly different from that of shams but significantly higher than that of saline-treated TBI rats (68 ± 7; p < 0.05). The left parietal cortical lesion volume, expressed as a percentage of the volume of tissue in the right hemisphere, was significantly smaller in ALCAR-treated than in vehicle-treated TBI rats (14 ± 5% vs. 28 ± 6%; p < 0.05). We conclude that treatment with ALCAR during the first 24 h after TBI improves behavioral outcomes and reduces brain lesion volume in immature rats within the first 7 days after injury.
Collapse
Affiliation(s)
- Susanna Scafidi
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
80
|
Hill J, Zhao J, Dash PK. High blood glucose does not adversely affect outcome in moderately brain-injured rodents. J Neurotrauma 2010; 27:1439-48. [PMID: 20504157 DOI: 10.1089/neu.2010.1328] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In a number of clinical studies researchers have reported that acute hyperglycemia is associated with increased mortality and worsened neurological outcome in patients with traumatic brain injury (TBI). In contrast, it has been demonstrated that intensive insulin therapy to lower blood glucose can lead to an increased frequency of hypoglycemic episodes and poor outcome. Consistent with this, experimental and clinical studies have shown that TBI causes a "metabolic crisis" in the injured brain, suggesting that a reduction in glucose availability may exacerbate brain damage. We therefore examined the consequences of hyperglycemia on cognitive and pathological measures. Using a rodent model of TBI, we find that when acute hyperglycemia is induced in animals prior to injury, there is little to no change in motor and cognitive performance, contusion volume, or cerebral edema. To examine the consequences of persistent hyperglycemia (as seen in diabetic patients), animals were treated with streptozotocin (STZ) to induce type 1 diabetes. We find that the presence of persistent STZ-induced hyperglycemia results in a reduction of brain edema. Insulin therapy to reduce blood glucose reverses this beneficial effect of hyperglycemia. Taken together, our results indicate that an acute increase in blood glucose levels may not be harmful, and that intervention with insulin therapy to lower blood glucose levels in TBI patients may increase secondary brain damage.
Collapse
Affiliation(s)
- Julia Hill
- Department of Neurobiology and Anatomy, The University of Texas Medical School, Houston, Texas 77225, USA
| | | | | |
Collapse
|
81
|
Warner MA, Marquez de la Plata C, Spence J, Wang JY, Harper C, Moore C, Devous M, Diaz-Arrastia R. Assessing spatial relationships between axonal integrity, regional brain volumes, and neuropsychological outcomes after traumatic axonal injury. J Neurotrauma 2010; 27:2121-30. [PMID: 20874032 DOI: 10.1089/neu.2010.1429] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Diffuse traumatic axonal injury (TAI) is a type of traumatic brain injury (TBI) characterized predominantly by white matter damage. While TAI is associated with cerebral atrophy, the relationship between gray matter volumes and TAI of afferent or efferent axonal pathways remains unknown. Moreover, it is unclear if deficits in cognition are associated with post-traumatic brain volumes in particular regions. The goal of this study was to determine the relationship between markers of TAI and volumes of cortical and subcortical structures, while also assessing the relationship between cognitive outcomes and regional brain volumes. High-resolution magnetic resonance imaging scans were performed in 24 patients with TAI within 1 week of injury and were repeated 8 months later. Diffusion tensor imaging (DTI) tractography was used to reconstruct prominent white matter tracts and calculate their fractional anisotropy (FA) and mean diffusivity (MD) values. Regional brain volumes were computed using semi-automated morphometric analysis. Pearson's correlation coefficients were used to assess associations between brain volumes, white matter integrity (i.e., FA and MD), and neuropsychological outcomes. Post-traumatic volumes of many gray matter structures were associated with chronic damage to related white matter tracts, and less strongly associated with measures of white matter integrity in the acute scans. For example, left and right hippocampal volumes correlated with FA in the fornix body (r = 0.600, p = 0.001; r = 0.714, p < 0.001, respectively). In addition, regional brain volumes were associated with deficits in corresponding neuropsychological domains. Our results suggest that TAI may be a primary mechanism of post-traumatic atrophy, and provide support for regional morphometry as a biomarker for cognitive outcome after injury.
Collapse
Affiliation(s)
- Matthew A Warner
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9036, USA
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Powers WJ. Intracerebral hemorrhage and head trauma: common effects and common mechanisms of injury. Stroke 2010; 41:S107-10. [PMID: 20876480 DOI: 10.1161/strokeaha.110.595058] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nontraumatic intracerebral hemorrhage (ICH) remains a devastating condition with 30-day mortality rates of 35% to 52%. Until the pathophysiology of this condition is better understood, it will not be possible to develop effective therapies. Studies of cerebral blood flow and metabolism in patients with acute ICH show similar abnormalities to those that occur in patients with traumatic brain injury, thus raising the question of whether there are common mechanisms of injury shared by the 2 conditions. In both ICH and traumatic brain injury, there is an early reduction in the cerebral metabolic rate of oxygen without ischemia, mitochondrial dysfunction, and transient focal increases in regional glucose metabolism that occur after a few days. ICH and traumatic brain injury share barotrauma from pressure waves that propagate through the intracranial contents as a common mechanism of brain injury. Recent data demonstrating contralateral hemispheric damage in patients with acute ICH provide further support for this theory of common injury mechanisms.
Collapse
Affiliation(s)
- William J Powers
- Department of Neurology, University of North Carolina, Chapel Hill, NC 27599-7025, USA.
| |
Collapse
|