51
|
Edwards DN, Bix GJ. Roles of blood-brain barrier integrins and extracellular matrix in stroke. Am J Physiol Cell Physiol 2018; 316:C252-C263. [PMID: 30462535 DOI: 10.1152/ajpcell.00151.2018] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemicstroke is a leading cause of death and disability in the United States, but recent advances in treatments [i.e., endovascular thrombectomy and tissue plasminogen activator (t-PA)] that target the stroke-causing blood clot, while improving overall stroke mortality rates, have had much less of an impact on overall stroke morbidity. This may in part be attributed to the lack of therapeutics targeting reperfusion-induced injury after the blood clot has been removed, which, if left unchecked, can expand injury from its core into the surrounding at risk tissue (penumbra). This occurs in two phases of increased permeability of the blood-brain barrier, a physical barrier that under physiologic conditions regulates brain influx and efflux of substances and consists of tight junction forming endothelial cells (and transporter proteins), astrocytes, pericytes, extracellular matrix, and their integrin cellular receptors. During, embryonic development, maturity, and following stroke reperfusion, cerebral vasculature undergoes significant changes including changes in expression of integrins and degradation of surrounding extracellular matrix. Integrins, heterodimers with α and β subunits, and their extracellular matrix ligands, a collection of proteoglycans, glycoproteins, and collagens, have been modestly studied in the context of stroke compared with other diseases (e.g., cancer). In this review, we describe the effect that various integrins and extracellular matrix components have in embryonic brain development, and how this changes in both maturity and in the poststroke environment. Particular focus will be on how these changes in integrins and the extracellular matrix affect blood-brain barrier components and their potential as diagnostic and therapeutic targets for ischemic stroke.
Collapse
Affiliation(s)
- Danielle N Edwards
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, Kentucky.,Department of Neuroscience, University of Kentucky , Lexington, Kentucky
| | - Gregory J Bix
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, Kentucky.,Department of Neuroscience, University of Kentucky , Lexington, Kentucky.,Department of Neurology, University of Kentucky , Lexington, Kentucky.,Department of Neurosurgery, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
52
|
Labus J, Wöltje K, Stolte KN, Häckel S, Kim KS, Hildmann A, Danker K. IL-1β promotes transendothelial migration of PBMCs by upregulation of the FN/α 5β 1 signalling pathway in immortalised human brain microvascular endothelial cells. Exp Cell Res 2018; 373:99-111. [PMID: 30342992 DOI: 10.1016/j.yexcr.2018.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/29/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023]
Abstract
Neuroinflammation is often associated with pathological changes in the function of the blood-brain barrier (BBB) caused by disassembly of tight and adherens junctions that under physiological conditions are important for the maintenance of the BBB integrity. Consequently, in inflammation the BBB becomes dysfunctional, facilitating leukocyte traversal of the barrier and accumulation of immune cells within the brain. The extracellular matrix (ECM) also contributes to BBB integrity but the significance of the main ECM receptors, the β1 integrins also expressed on endothelial cells, is less well understood. To evaluate whether β1 integrin function is affected during inflammation and impacts barrier function, we used a transformed human brain microvascular endothelial cell (THBMEC)-based Interleukin 1β (IL-1β)-induced inflammatory in vitro BBB model. We demonstrate that IL-1β increases cell-matrix adhesion and induces a redistribution of active β1 integrins to the basal surface. In particular, binding of α5β1 integrin to its ligand fibronectin is enhanced and α5β1 integrin-dependent signalling is upregulated. Additionally, localisation of the tight junction protein claudin-5 is altered. Blockade of the α5β1 integrin reduces the IL-1β-induced transendothelial migration of peripheral blood mononuclear cells (PBMCs). These data imply that IL-1β-induced inflammation not only destabilizes tight junctions but also increases α5β1 integrin-dependent cell-matrix adhesion to fibronectin.
Collapse
Affiliation(s)
- Josephine Labus
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany
| | - Kerstin Wöltje
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany
| | - Kim Natalie Stolte
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany
| | - Sonja Häckel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany
| | - Kwang Sik Kim
- Division of Pediatric Infectious Diseases, Johns Hopkins University School of Medicine, 200 North Wolfe Street, 21287 Baltimore, USA
| | - Annette Hildmann
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany
| | - Kerstin Danker
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Biochemistry, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
53
|
Halder SK, Kant R, Milner R. Hypoxic pre-conditioning suppresses experimental autoimmune encephalomyelitis by modifying multiple properties of blood vessels. Acta Neuropathol Commun 2018; 6:86. [PMID: 30176931 PMCID: PMC6122733 DOI: 10.1186/s40478-018-0590-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
While hypoxic pre-conditioning protects against neurological disease the underlying mechanisms have yet to be fully defined. As chronic mild hypoxia (CMH, 10% O2) triggers profound vascular remodeling in the central nervous system (CNS), the goal of this study was to examine the protective potential of hypoxic pre-conditioning in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS) and then determine how CMH influences vascular integrity and the underlying cellular and molecular mechanisms during EAE. We found that mice exposed to CMH at the same time as EAE induction were strongly protected against the development of EAE progression, as assessed both at the clinical level and at the histopathological level by reduced levels of inflammatory leukocyte infiltration, vascular breakdown and demyelination. Mechanistically, our studies indicate that CMH protects, at least in part, by enhancing several properties of blood vessels that contribute to vascular integrity, including reduced expression of the endothelial activation molecules VCAM-1 and ICAM-1, maintained expression of endothelial tight junction proteins ZO-1 and occludin, and upregulated expression of the leukocyte inhibitory protein laminin-111 in the vascular basement membrane. Taken together, these data suggest that optimization of BBB integrity is an important mechanism underlying the protective effect of hypoxic pre-conditioning.
Collapse
|
54
|
Noumbissi ME, Galasso B, Stins MF. Brain vascular heterogeneity: implications for disease pathogenesis and design of in vitro blood-brain barrier models. Fluids Barriers CNS 2018; 15:12. [PMID: 29688865 PMCID: PMC5911972 DOI: 10.1186/s12987-018-0097-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022] Open
Abstract
The vertebrate blood–brain barrier (BBB) is composed of cerebral microvascular endothelial cells (CEC). The BBB acts as a semi-permeable cellular interface that tightly regulates bidirectional molecular transport between blood and the brain parenchyma in order to maintain cerebral homeostasis. The CEC phenotype is regulated by a variety of factors, including cells in its immediate environment and within functional neurovascular units. The cellular composition of the brain parenchyma surrounding the CEC varies between different brain regions; this difference is clearly visible in grey versus white matter. In this review, we discuss evidence for the existence of brain vascular heterogeneity, focusing on differences between the vessels of the grey and white matter. The region-specific differences in the vasculature of the brain are reflective of specific functions of those particular brain areas. This BBB-endothelial heterogeneity may have implications for the course of pathogenesis of cerebrovascular diseases and neurological disorders involving vascular activation and dysfunction. This heterogeneity should be taken into account when developing BBB-neuro-disease models representative of specific brain areas.
Collapse
Affiliation(s)
- Midrelle E Noumbissi
- Malaria Research Institute, Dept. Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, SPH East 4135, Baltimore, MD, 21205, USA
| | - Bianca Galasso
- Malaria Research Institute, Dept. Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, SPH East 4135, Baltimore, MD, 21205, USA
| | - Monique F Stins
- Malaria Research Institute, Dept. Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, SPH East 4135, Baltimore, MD, 21205, USA.
| |
Collapse
|
55
|
de Queiroz KB, dos Santos Fontes Pereira T, Araújo MSS, Gomez RS, Coimbra RS. Resveratrol Acts Anti-Inflammatory and Neuroprotective in an Infant Rat Model of Pneumococcal Meningitis by Modulating the Hippocampal miRNome. Mol Neurobiol 2018; 55:8869-8884. [DOI: 10.1007/s12035-018-1037-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/23/2018] [Indexed: 12/21/2022]
|
56
|
Erickson MA, Banks WA. Neuroimmune Axes of the Blood-Brain Barriers and Blood-Brain Interfaces: Bases for Physiological Regulation, Disease States, and Pharmacological Interventions. Pharmacol Rev 2018; 70:278-314. [PMID: 29496890 PMCID: PMC5833009 DOI: 10.1124/pr.117.014647] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Central nervous system (CNS) barriers predominantly mediate the immune-privileged status of the brain, and are also important regulators of neuroimmune communication. It is increasingly appreciated that communication between the brain and immune system contributes to physiologic processes, adaptive responses, and disease states. In this review, we discuss the highly specialized features of brain barriers that regulate neuroimmune communication in health and disease. In section I, we discuss the concept of immune privilege, provide working definitions of brain barriers, and outline the historical work that contributed to the understanding of CNS barrier functions. In section II, we discuss the unique anatomic, cellular, and molecular characteristics of the vascular blood-brain barrier (BBB), blood-cerebrospinal fluid barrier, and tanycytic barriers that confer their functions as neuroimmune interfaces. In section III, we consider BBB-mediated neuroimmune functions and interactions categorized as five neuroimmune axes: disruption, responses to immune stimuli, uptake and transport of immunoactive substances, immune cell trafficking, and secretions of immunoactive substances. In section IV, we discuss neuroimmune functions of CNS barriers in physiologic and disease states, as well as pharmacological interventions for CNS diseases. Throughout this review, we highlight many recent advances that have contributed to the modern understanding of CNS barriers and their interface functions.
Collapse
Affiliation(s)
- Michelle A Erickson
- Geriatric Research and Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington; and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - William A Banks
- Geriatric Research and Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, Washington; and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
57
|
Izawa Y, Gu YH, Osada T, Kanazawa M, Hawkins BT, Koziol JA, Papayannopoulou T, Spatz M, Del Zoppo GJ. β1-integrin-matrix interactions modulate cerebral microvessel endothelial cell tight junction expression and permeability. J Cereb Blood Flow Metab 2018; 38:641-658. [PMID: 28787238 PMCID: PMC5888854 DOI: 10.1177/0271678x17722108] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Acutely following focal cerebral ischemia disruption of the microvessel blood-brain barrier allows transit of plasma proteins into the neuropil as edema formation that coincides with loss of microvessel endothelial β1-integrins. We extend previous findings to show that interference with endothelial β1-integrin-matrix adhesion by the monoclonal IgM Ha2/5 increases the permeability of primary cerebral microvascular endothelial cell monolayers through reorganization of claudin-5, occludin, and zonula occludens-1 (ZO-1) from inter-endothelial borders. Interference with β1-integrin-matrix adhesion initiates F-actin conformational changes that coincide with claudin-5 redistribution. β1-integrin-matrix interference simultaneously increases phosphorylation of myosin light chain (MLC), while inhibition of MLC kinase (MLCK) and Rho kinase (ROCK) abolishes the Ha2/5-dependent increased endothelial permeability by 6 h after β1-integrin-matrix interference. These observations are supported by concordant observations in the cortex of a high-quality murine conditional β1-integrin deletion construct. Together they support the hypothesis that detachment of β1-integrins from abluminal matrix ligands increases vascular endothelial permeability through reorganization of tight junction (TJ) proteins via altered F-actin conformation, and indicate that the β1-integrin-MLC signaling pathway is engaged when β1-integrin detachment occurs. These findings provide a novel approach to the research and treatment of cerebral disorders where the breakdown of the blood-brain barrier accounts for their progression and complication.
Collapse
Affiliation(s)
- Yoshikane Izawa
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,2 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Yu-Huan Gu
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Takashi Osada
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,2 Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Masato Kanazawa
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,3 Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Brian T Hawkins
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,4 Discovery, Science, & Technology, RTI International, Research Triangle Park, NC, USA
| | - James A Koziol
- 5 Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Thalia Papayannopoulou
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Maria Spatz
- 6 Stroke Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Gregory J Del Zoppo
- 1 Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,7 Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
58
|
Katt ME, Linville RM, Mayo LN, Xu ZS, Searson PC. Functional brain-specific microvessels from iPSC-derived human brain microvascular endothelial cells: the role of matrix composition on monolayer formation. Fluids Barriers CNS 2018; 15:7. [PMID: 29463314 PMCID: PMC5819713 DOI: 10.1186/s12987-018-0092-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/12/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Transwell-based models of the blood-brain barrier (BBB) incorporating monolayers of human brain microvascular endothelial cells (dhBMECs) derived from induced pluripotent stem cells show many of the key features of the BBB, including expression of transporters and efflux pumps, expression of tight junction proteins, and physiological values of transendothelial electrical resistance. The fabrication of 3D BBB models using dhBMECs has so far been unsuccessful due to the poor adhesion and survival of these cells on matrix materials commonly used in tissue engineering. METHODS To address this issue, we systematically screened a wide range of matrix materials (collagen I, hyaluronic acid, and fibrin), compositions (laminin/entactin), protein coatings (fibronectin, laminin, collagen IV, perlecan, and agrin), and soluble factors (ROCK inhibitor and cyclic adenosine monophosphate) in 2D culture to assess cell adhesion, spreading, and barrier function. RESULTS Cell coverage increased with stiffness of collagen I gels coated with collagen IV and fibronectin. On 7 mg mL-1 collagen I gels coated with basement membrane proteins (fibronectin, collagen IV, and laminin), cell coverage was high but did not reliably reach confluence. The transendothelial electrical resistance (TEER) on collagen I gels coated with basement membrane proteins was lower than on coated transwell membranes. Agrin, a heparin sulfate proteoglycan found in basement membranes of the brain, promoted monolayer formation but resulted in a significant decrease in transendothelial electrical resistance (TEER). However, the addition of ROCK inhibitor, cAMP, or cross-linking the gels to increase stiffness, resulted in a significant improvement of TEER values and enabled the formation of confluent monolayers. CONCLUSIONS Having identified matrix compositions that promote monolayer formation and barrier function, we successfully fabricated dhBMEC microvessels in cross-linked collagen I gels coated with fibronectin and collagen IV, and treated with ROCK inhibitor and cAMP. We measured apparent permeability values for Lucifer yellow, comparable to values obtained in the transwell assay. During these experiments we observed no focal leaks, suggesting the formation of tight junctions that effectively block paracellular transport.
Collapse
Affiliation(s)
- Moriah E Katt
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA. .,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Raleigh M Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Lakyn N Mayo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Zinnia S Xu
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
59
|
Lv J, Hu W, Yang Z, Li T, Jiang S, Ma Z, Chen F, Yang Y. Focusing on claudin-5: A promising candidate in the regulation of BBB to treat ischemic stroke. Prog Neurobiol 2017; 161:79-96. [PMID: 29217457 DOI: 10.1016/j.pneurobio.2017.12.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/20/2017] [Accepted: 12/03/2017] [Indexed: 12/11/2022]
Abstract
Claudin-5 is a tight junction (TJ) protein in the blood-brain barrier (BBB) that has recently attracted increased attention. Numerous studies have demonstrated that claudin-5 regulates the integrity and permeability of the BBB. Increased claudin-5 expression plays a neuroprotective role in neurological diseases, particularly in cerebral ischemic stroke. Moreover, claudin-5 might be a potential marker for early hemorrhagic transformation detection in ischemic stroke. In light of the distinctive effects of claudin-5 on the nervous system, we present the elaborate network of roles that claudin-5 plays in ischemic stroke. In this review, we first introduce basic knowledge regarding the BBB and the claudin family, the characterization and regulation of claudin-5, and association between claudin-5 and other TJ proteins. Subsequently, we describe BBB dysfunction and neuron-specific drivers of pathogenesis of ischemic stroke, including inflammatory disequilibrium and oxidative stress. Furthermore, we summarize promising ischemic stroke treatments that target the BBB via claudin-5, including modified rt-PA therapy, pharmacotherapy, hormone treatment, receptor-targeted therapy, gene therapy, and physical therapy. This review highlights recent advances and provides a comprehensive summary of claudin-5 in the regulation of the BBB and may be helpful for drug design and clinical therapy for treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jianjun Lv
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China; Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| |
Collapse
|
60
|
Welser JV, Halder SK, Kant R, Boroujerdi A, Milner R. Endothelial α6β4 integrin protects during experimental autoimmune encephalomyelitis-induced neuroinflammation by maintaining vascular integrity and tight junction protein expression. J Neuroinflammation 2017; 14:217. [PMID: 29121970 PMCID: PMC5679365 DOI: 10.1186/s12974-017-0987-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/24/2017] [Indexed: 12/23/2022] Open
Abstract
Background Extracellular matrix (ECM) proteins play critical functions regulating vascular formation and function. Laminin is a major component of the vascular basal lamina, and transgenic mice deficient in astrocyte or pericyte laminin show defective blood-brain barrier (BBB) integrity, indicating an important instructive role for laminin in cerebral blood vessels. As previous work shows that in the normal brain, vascular expression of the laminin receptor α6β4 integrin is predominantly restricted to arterioles, but induced on all vessels during neuroinflammation, it is important to define the role of this integrin in the maintenance of BBB integrity. Methods α6β4 integrin expression was analyzed using dual immunofluorescence (dual-IF) of brain sections taken from the mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). To investigate the role of endothelial α6β4 integrin, transgenic mice lacking β4 integrin in endothelial cells (β4-EC-KO) and wild-type (WT) littermates were subject to EAE, and clinical score and various neuropathological parameters were examined by immunofluorescence. In addition, β4 integrin null brain endothelial cells (BECs) were examined in culture for expression of tight junction proteins using immunocytochemistry and flow cytometry. Results Cerebrovascular expression of β4 integrin was markedly upregulated during EAE progression, such that by the acute stage of EAE (day 21), the vast majority of blood vessels expressed β4 integrin. In the EAE model, while the β4-EC-KO mice showed the same time of disease onset as the WT littermates, they developed significantly worse clinical disease over time, resulting in increased clinical score at the peak of disease and maintained elevated thereafter. Consistent with this, the β4-EC-KO mice showed enhanced levels of leukocyte infiltration and BBB breakdown and also displayed increased loss of the endothelial tight junction proteins claudin-5 and ZO-1. Under pro-inflammatory conditions, primary cultures of β4KO BECs also showed increased loss of claudin-5 and ZO-1 expression. Conclusions Taken together, our data suggest that α6β4 integrin upregulation is an inducible protective mechanism that stabilizes the BBB during neuroinflammatory conditions.
Collapse
Affiliation(s)
- Jennifer V Welser
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MEM-132, La Jolla, CA, 92037, USA
| | - Sebok K Halder
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MEM-132, La Jolla, CA, 92037, USA
| | - Ravi Kant
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MEM-132, La Jolla, CA, 92037, USA
| | - Amin Boroujerdi
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MEM-132, La Jolla, CA, 92037, USA
| | - Richard Milner
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MEM-132, La Jolla, CA, 92037, USA.
| |
Collapse
|
61
|
Thomsen MS, Routhe LJ, Moos T. The vascular basement membrane in the healthy and pathological brain. J Cereb Blood Flow Metab 2017; 37:3300-3317. [PMID: 28753105 PMCID: PMC5624399 DOI: 10.1177/0271678x17722436] [Citation(s) in RCA: 286] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 12/24/2022]
Abstract
The vascular basement membrane contributes to the integrity of the blood-brain barrier (BBB), which is formed by brain capillary endothelial cells (BCECs). The BCECs receive support from pericytes embedded in the vascular basement membrane and from astrocyte endfeet. The vascular basement membrane forms a three-dimensional protein network predominantly composed of laminin, collagen IV, nidogen, and heparan sulfate proteoglycans that mutually support interactions between BCECs, pericytes, and astrocytes. Major changes in the molecular composition of the vascular basement membrane are observed in acute and chronic neuropathological settings. In the present review, we cover the significance of the vascular basement membrane in the healthy and pathological brain. In stroke, loss of BBB integrity is accompanied by upregulation of proteolytic enzymes and degradation of vascular basement membrane proteins. There is yet no causal relationship between expression or activity of matrix proteases and the degradation of vascular matrix proteins in vivo. In Alzheimer's disease, changes in the vascular basement membrane include accumulation of Aβ, composite changes, and thickening. The physical properties of the vascular basement membrane carry the potential of obstructing drug delivery to the brain, e.g. thickening of the basement membrane can affect drug delivery to the brain, especially the delivery of nanoparticles.
Collapse
Affiliation(s)
- Maj S Thomsen
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Lisa J Routhe
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Torben Moos
- Laboratory of Neurobiology, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
62
|
Ku JM, Taher M, Chin KY, Grace M, McIntyre P, Miller AA. Characterisation of a mouse cerebral microvascular endothelial cell line (bEnd.3) after oxygen glucose deprivation and reoxygenation. Clin Exp Pharmacol Physiol 2017; 43:777-86. [PMID: 27128638 DOI: 10.1111/1440-1681.12587] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 04/17/2016] [Accepted: 04/26/2016] [Indexed: 11/29/2022]
Abstract
Studies have utilised immortalised mouse cerebral endothelial cells (bEnd.3) exposed to oxygen glucose deprivation (OGD) to study blood-brain barrier (BBB) disruption after ischaemia. However, there is a paucity of literature describing the duration of OGD (and reoxygenation [RO]) required to best simulate BBB disruption in vivo. In this study we assessed BBB disruption in bEnd.3 cells after exposure to a range of OGD periods, and also after OGD + RO. Exposure of bEnd.3 monolayers to 4, 6, 16, or 24 hours of OGD resulted in a significant increase in permeability. The hyperpermeability after 16 or 24 hours was associated with decreased expression of tight junction proteins (occludin and claudin-5). Furthermore, there was a decrease in cell viability and increased expression of the pro-apoptotic protein, cleaved caspase-3. Exposure of bEnd.3 monolayers to 1 hour OGD+ 23 hours RO exacerbated hyperpermeability relative to 1 hour OGD, which was associated with decreased expression levels of occludin and ZO-1, but no change in cell viability or caspase-3. 4 hours OGD + 23 hours RO exacerbated hyperpermeability, decreased expression levels of tight junction proteins, decreased cell viability, and increased caspase-3 expression. Thus, bEnd.3 cells exhibit hyperpermeability, a loss of tight junction proteins, and undergo cell death, after exposure to prolonged periods of OGD. Moreover, they exhibit exacerbated hyperpermeability, a loss of tight junction proteins, and increased expression of caspase-3 after OGD + RO. These findings will facilitate the use of this cell line in studies of BBB disruption and for the testing of therapeutics.
Collapse
Affiliation(s)
- Jacqueline M Ku
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia
| | - Mohammadali Taher
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia
| | - Kai Yee Chin
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia
| | - Megan Grace
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia
| | - Peter McIntyre
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia
| | - Alyson A Miller
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Melbourne, Victoria, Australia
| |
Collapse
|
63
|
Hupe M, Li MX, Kneitz S, Davydova D, Yokota C, Kele J, Hot B, Stenman JM, Gessler M. Gene expression profiles of brain endothelial cells during embryonic development at bulk and single-cell levels. Sci Signal 2017; 10:10/487/eaag2476. [PMID: 28698213 DOI: 10.1126/scisignal.aag2476] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The blood-brain barrier is a dynamic interface that separates the brain from the circulatory system, and it is formed by highly specialized endothelial cells. To explore the molecular mechanisms defining the unique nature of vascular development and differentiation in the brain, we generated high-resolution gene expression profiles of mouse embryonic brain endothelial cells using translating ribosome affinity purification and single-cell RNA sequencing. We compared the brain vascular translatome with the vascular translatomes of other organs and analyzed the vascular translatomes of the brain at different time points during embryonic development. Because canonical Wnt signaling is implicated in the formation of the blood-brain barrier, we also compared the brain endothelial translatome of wild-type mice with that of mice lacking the transcriptional cofactor β-catenin (Ctnnb1). Our analysis revealed extensive molecular changes during the embryonic development of the brain endothelium. We identified genes encoding brain endothelium-specific transcription factors (Foxf2, Foxl2, Foxq1, Lef1, Ppard, Zfp551, and Zic3) that are associated with maturation of the blood-brain barrier and act downstream of the Wnt-β-catenin signaling pathway. Profiling of individual brain endothelial cells revealed substantial heterogeneity in the population. Nevertheless, the high abundance of Foxf2, Foxq1, Ppard, or Zic3 transcripts correlated with the increased expression of genes encoding markers of brain endothelial cell differentiation. Expression of Foxf2 and Zic3 in human umbilical vein endothelial cells induced the production of blood-brain barrier differentiation markers. This comprehensive data set may help to improve the engineering of in vitro blood-brain barrier models.
Collapse
Affiliation(s)
- Mike Hupe
- Ludwig Institute for Cancer Research Ltd., Box 240, Stockholm SE-171 77, Sweden. .,Developmental Biochemistry, Theodor Boveri Institute (Biocenter), University of Wuerzburg, Wuerzburg D-97074, Germany
| | - Minerva Xueting Li
- Ludwig Institute for Cancer Research Ltd., Box 240, Stockholm SE-171 77, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Susanne Kneitz
- Physiological Chemistry, Theodor Boveri Institute (Biocenter), University of Wuerzburg, Wuerzburg D-97074, Germany
| | - Daria Davydova
- Institute for Clinical Neurobiology, University of Wuerzburg, Wuerzburg D-97078, Germany
| | - Chika Yokota
- Ludwig Institute for Cancer Research Ltd., Box 240, Stockholm SE-171 77, Sweden
| | - Julianna Kele
- Ludwig Institute for Cancer Research Ltd., Box 240, Stockholm SE-171 77, Sweden
| | - Belma Hot
- Ludwig Institute for Cancer Research Ltd., Box 240, Stockholm SE-171 77, Sweden
| | - Jan M Stenman
- Ludwig Institute for Cancer Research Ltd., Box 240, Stockholm SE-171 77, Sweden
| | - Manfred Gessler
- Developmental Biochemistry, Theodor Boveri Institute (Biocenter), University of Wuerzburg, Wuerzburg D-97074, Germany.,Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg D-97074, Germany
| |
Collapse
|
64
|
Zhang R, Yang J, Yuan J, Song B, Wang Y, Xu Y. The Therapeutic Value of Bone Marrow-Derived Endothelial Progenitor Cell Transplantation after Intracerebral Hemorrhage in Rats. Front Neurol 2017; 8:174. [PMID: 28512445 PMCID: PMC5411418 DOI: 10.3389/fneur.2017.00174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/13/2017] [Indexed: 01/30/2023] Open
Abstract
Aims To study the effect of endothelial progenitor cell (EPC) treatment on intracerebral hemorrhage (ICH) in rats and elucidate possible mechanisms. Methods The rats were randomly divided into three groups: (1) EPC group: ICH + EPC, (2) phosphate-buffered saline group: ICH + PBS, and (3) sham group. EPCs were transplanted intravenously 6 h after ICH. Modified neurological severity score was used to evaluate neurological function. Blood–brain barrier (BBB) integrity was evaluated. Dead cells, inflammatory cytokines, and neuroprotective cytokines were assessed to investigate possible mechanisms. Results The animals in the EPC group showed significant improvement in neurological function at 48 h, 72 h, and 7 days after ICH, compared with those in the PBS group. EPC transplantation significantly reduced brain edema and the number of dead cells in the hematoma boundary areas. The intensity of Evans Blue was decreased, and expression levels of zonula occluden-1 and claudin-5 were increased in the EPC group. Proinflammatory cytokines, including interferon-γ, IL-6, and TNF-α, were decreased, whereas anti-inflammatory cytokines, including transforming growth factor-β1 and IL-10, were increased in the EPC group. In addition, expression levels of brain-derived neurotrophic factor, vascular endothelial growth factor, and neurotrophic growth factor were increased following transplantation of EPCs. Conclusion EPC transplantation could improve neurological function of ICH rats. The protective effect may be mediated by promotion of neuroprotective cytokine secretion, restoration of the BBB, reduction of cell death, and the decrease in inflammation.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjing Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Song
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
65
|
Pérez-Hernández M, Fernández-Valle ME, Rubio-Araiz A, Vidal R, Gutiérrez-López MD, O'Shea E, Colado MI. 3,4-Methylenedioxymethamphetamine (MDMA, ecstasy) produces edema due to BBB disruption induced by MMP-9 activation in rat hippocampus. Neuropharmacology 2017; 118:157-166. [PMID: 28322979 DOI: 10.1016/j.neuropharm.2017.03.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/03/2017] [Accepted: 03/15/2017] [Indexed: 10/20/2022]
Abstract
The recreational drug of abuse, 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) disrupts blood-brain barrier (BBB) integrity in rats through an early P2X7 receptor-mediated event which induces MMP-9 activity. Increased BBB permeability often causes plasma proteins and water to access cerebral tissue leading to vasogenic edema formation. The current study was performed to examine the effect of a single neurotoxic dose of MDMA (12.5 mg/kg, i.p.) on in vivo edema development associated with changes in the expression of the perivascular astrocytic water channel, AQP4, as well as in the expression of the tight-junction (TJ) protein, claudin-5 and Evans Blue dye extravasation in the hippocampus of adult male Dark Agouti rats. We also evaluated the ability of the MMP-9 inhibitor, SB-3CT (25 mg/kg, i.p.), to prevent these changes in order to validate the involvement of MMP-9 activation in MDMA-induced BBB disruption. The results show that MDMA produces edema of short duration temporally associated with changes in AQP4 expression and a reduction in claudin-5 expression, changes which are prevented by SB-3CT. In addition, MDMA induces a short-term increase in both tPA activity and expression, a serine-protease which is involved in BBB disruption and upregulation of MMP-9 expression. In conclusion, this study provides evidence enough to conclude that MDMA induces edema of short duration due to BBB disruption mediated by MMP-9 activation.
Collapse
Affiliation(s)
- Mercedes Pérez-Hernández
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | | | - Ana Rubio-Araiz
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rebeca Vidal
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Dolores Gutiérrez-López
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Esther O'Shea
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - María Isabel Colado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Pza. Ramón y Cajal s/n, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre, 28041 Madrid, Spain; Red de Trastornos Adictivos del Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
66
|
Boutin ME, Kramer LL, Livi LL, Brown T, Moore C, Hoffman-Kim D. A three-dimensional neural spheroid model for capillary-like network formation. J Neurosci Methods 2017; 299:55-63. [PMID: 28143748 DOI: 10.1016/j.jneumeth.2017.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 01/19/2017] [Accepted: 01/24/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND In vitro three-dimensional neural spheroid models have an in vivo-like cell density, and have the potential to reduce animal usage and increase experimental throughput. The aim of this study was to establish a spheroid model to study the formation of capillary-like networks in a three-dimensional environment that incorporates both neuronal and glial cell types, and does not require exogenous vasculogenic growth factors. NEW METHOD We created self-assembled, scaffold-free cellular spheroids using primary-derived postnatal rodent cortex as a cell source. The interactions between relevant neural cell types, basement membrane proteins, and endothelial cells were characterized by immunohistochemistry. Transmission electron microscopy was used to determine if endothelial network structures had lumens. RESULTS Endothelial cells within cortical spheroids assembled into capillary-like networks with lumens. Networks were surrounded by basement membrane proteins, including laminin, fibronectin and collagen IV, as well as key neurovascular cell types. COMPARISON WITH EXISTING METHOD(S) Existing in vitro models of the cortical neurovascular environment study monolayers of endothelial cells, either on transwell inserts or coating cellular spheroids. These models are not well suited to study vasculogenesis, a process hallmarked by endothelial cell cord formation and subsequent lumenization. CONCLUSIONS The neural spheroid is a new model to study the formation of endothelial cell capillary-like structures in vitro within a high cell density three-dimensional environment that contains both neuronal and glial populations. This model can be applied to investigate vascular assembly in healthy or disease states, such as stroke, traumatic brain injury, or neurodegenerative disorders.
Collapse
Affiliation(s)
- Molly E Boutin
- Center for Biomedical Engineering, 175 Meeting Street, Brown University, Providence, RI, 02912, United States; Department of Molecular Pharmacology, Physiology, and Biotechnology, 175 Meeting Street, Brown University, Providence, RI, 02912, United States.
| | - Liana L Kramer
- Department of Molecular Pharmacology, Physiology, and Biotechnology, 175 Meeting Street, Brown University, Providence, RI, 02912, United States.
| | - Liane L Livi
- Center for Biomedical Engineering, 175 Meeting Street, Brown University, Providence, RI, 02912, United States; Department of Molecular Pharmacology, Physiology, and Biotechnology, 175 Meeting Street, Brown University, Providence, RI, 02912, United States.
| | - Tyler Brown
- Department of Neuroscience, 175 Meeting Street, Brown University, Providence, RI, 02912, United States; Brown Institute for Brain Science, 175 Meeting Street, Brown University, Providence, RI, 02912, United States.
| | - Christopher Moore
- Department of Neuroscience, 175 Meeting Street, Brown University, Providence, RI, 02912, United States; Brown Institute for Brain Science, 175 Meeting Street, Brown University, Providence, RI, 02912, United States.
| | - Diane Hoffman-Kim
- Center for Biomedical Engineering, 175 Meeting Street, Brown University, Providence, RI, 02912, United States; Department of Molecular Pharmacology, Physiology, and Biotechnology, 175 Meeting Street, Brown University, Providence, RI, 02912, United States; Brown Institute for Brain Science, 175 Meeting Street, Brown University, Providence, RI, 02912, United States.
| |
Collapse
|
67
|
Kawasaki H, Kosugi I, Meguro S, Iwashita T. Pathogenesis of developmental anomalies of the central nervous system induced by congenital cytomegalovirus infection. Pathol Int 2017; 67:72-82. [PMID: 28074532 DOI: 10.1111/pin.12502] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/08/2016] [Indexed: 01/23/2023]
Abstract
In humans, the herpes virus family member cytomegalovirus (CMV) is the most prevalent mediator of intrauterine infection-induced congenital defect. Central nervous system (CNS) dysfunction is a distinguishing symptom of CMV infection, and characterized by ventriculoencephalitis and microglial nodular encephalitis. Reports on the initial distribution of CMV particles and its receptors on the blood brain barrier (BBB) are rare. Nevertheless, several factors are suggested to affect CMV etiology. Viral particle size is the primary factor in determining the pattern of CNS infections, followed by the expression of integrin β1 in endothelial cells, pericytes, meninges, choroid plexus, and neural stem progenitor cells (NSPCs), which are the primary targets of CMV infection. After initial infection, CMV disrupts BBB structural integrity to facilitate the spread of viral particles into parenchyma. Then, the initial meningitis and vasculitis eventually reaches NSPC-dense areas such as ventricular zone and subventricular zone, where viral infection inhibits NSPC proliferation and differentiation and results in neuronal cell loss. These cellular events clinically manifest as brain malformations such as a microcephaly. The purpose of this review is to clearly delineate the pathophysiological basis of congenital CNS anomalies caused by CMV.
Collapse
Affiliation(s)
- Hideya Kawasaki
- Department of Regenerative & Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Isao Kosugi
- Department of Regenerative & Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shiori Meguro
- Department of Regenerative & Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Toshihide Iwashita
- Department of Regenerative & Infectious Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
68
|
Roberts J, de Hoog L, Bix GJ. Mice deficient in endothelial α5 integrin are profoundly resistant to experimental ischemic stroke. J Cereb Blood Flow Metab 2017; 37:85-96. [PMID: 26661237 PMCID: PMC5363730 DOI: 10.1177/0271678x15616979] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/27/2015] [Accepted: 09/27/2015] [Indexed: 11/16/2022]
Abstract
Stroke is a disease in dire need of better therapies. We have previously shown that a fragment of the extracellular matrix proteoglycan, perlecan, has beneficial effects following cerebral ischemia via the α5β1 integrin receptor. We now report that endothelial cell selective α5 integrin deficient mice (α5 KO) are profoundly resistant to ischemic infarct after transient middle cerebral artery occlusion. Specifically, α5 KOs had little to no infarct 2-3 days post-stroke, whereas controls had an increase in mean infarct volume over the same time period as expected. Functional outcome is also improved in the α5 KOs compared with controls. Importantly, no differences in cerebrovascular anatomy or collateral blood flow were noted that could account for this difference in ischemic injury. Rather, we demonstrate that α5 KOs have increased blood-brain barrier integrity (increased expression of claudin-5, and absent brain parenchymal IgG extravasation) after stroke compared with controls, which could explain their resistance to ischemic injury. Additionally, inhibition of α5 integrin in vitro leads to decreased permeability of brain endothelial cells following oxygen-glucose deprivation. Together, these findings indicate endothelial cell α5 integrin plays an important role in stroke outcome and blood-brain barrier integrity, suggesting that α5 integrin could be a novel therapeutic target for stroke.
Collapse
Affiliation(s)
- Jill Roberts
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY, USA
| | - Leon de Hoog
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Gregory J Bix
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA .,Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY, USA.,Department of Neurology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
69
|
Barmeyer C, Fromm M, Schulzke JD. Active and passive involvement of claudins in the pathophysiology of intestinal inflammatory diseases. Pflugers Arch 2016; 469:15-26. [PMID: 27904960 DOI: 10.1007/s00424-016-1914-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/20/2016] [Accepted: 11/22/2016] [Indexed: 12/18/2022]
Abstract
Intestinal inflammatory diseases, four of which are discussed here, are associated with alterations of claudins. In ulcerative colitis, diarrhea and antigen entry into the mucosa occurs. Claudin-2 is upregulated but data on other claudins are still limited or vary (e.g., claudin-1 and -4). Apart from that, tight junction changes contribute to diarrhea via a leak flux mechanism, while protection against antigen entry disappears behind epithelial gross lesions (erosions) and apoptotic foci. Crohn's disease is additionally characterized by a claudin-5 and claudin-8 reduction which plays an active role in antigen uptake already before gross lesions appear. In microscopic colitis (MC), upregulation of claudin-2 expression is weak and a reduction in claudin-4 may be only passively involved, while sodium malabsorption represents the main diarrheal mechanism. However, claudin-5 is removed from MC tight junctions which may be an active trigger for inflammation through antigen uptake along the so-called leaky gut concept. In celiac disease, primary barrier defects are discussed in the context of candidate genes as PARD3 which regulate cell polarity and tight junctions. The loss of claudin-5 allows small antigens to invade, while the reductions in others like claudin-3 are rather passive events. Taken together, the specific role of single tight junction proteins for the onset and perpetuation of inflammation and the recovery from these diseases is far from being fully understood and is clearly dependent on the stage of the disease, the background of the other tight junction components, the transport activity of the mucosa, and the presence of other barrier features like gross lesions, an orchestral interplay which is discussed in this article.
Collapse
Affiliation(s)
- Christian Barmeyer
- Institute of Clinical Physiology, Charité-Universitätsmedizin Berlin, 12203, Berlin, Germany
| | - Michael Fromm
- Institute of Clinical Physiology, Charité-Universitätsmedizin Berlin, 12203, Berlin, Germany
| | - Jörg-Dieter Schulzke
- Institute of Clinical Physiology, Charité-Universitätsmedizin Berlin, 12203, Berlin, Germany.
| |
Collapse
|
70
|
Bosetti F, Galis ZS, Bynoe MS, Charette M, Cipolla MJ, Del Zoppo GJ, Gould D, Hatsukami TS, Jones TLZ, Koenig JI, Lutty GA, Maric-Bilkan C, Stevens T, Tolunay HE, Koroshetz W. "Small Blood Vessels: Big Health Problems?": Scientific Recommendations of the National Institutes of Health Workshop. J Am Heart Assoc 2016; 5:JAHA.116.004389. [PMID: 27815267 PMCID: PMC5210346 DOI: 10.1161/jaha.116.004389] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Francesca Bosetti
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD
| | - Zorina S Galis
- National Heart, Lung and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | | | - Marc Charette
- National Heart, Lung and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | | | | | | | | | - Teresa L Z Jones
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD
| | - James I Koenig
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD
| | | | - Christine Maric-Bilkan
- National Heart, Lung and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | | | - H Eser Tolunay
- National Heart, Lung and Blood Institute, National Institutes of Health (NIH), Bethesda, MD
| | - Walter Koroshetz
- National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), Bethesda, MD
| | | |
Collapse
|
71
|
Gautam J, Zhang X, Yao Y. The role of pericytic laminin in blood brain barrier integrity maintenance. Sci Rep 2016; 6:36450. [PMID: 27808256 PMCID: PMC5093438 DOI: 10.1038/srep36450] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/14/2016] [Indexed: 11/09/2022] Open
Abstract
Laminin, a major component of the basement membrane, plays an important role in blood brain barrier regulation. At the neurovascular unit, brain endothelial cells, astrocytes, and pericytes synthesize and deposit different laminin isoforms into the basement membrane. It has been shown that laminin α4 (endothelial laminin) regulates vascular integrity at embryonic/neonatal stage, while astrocytic laminin maintains vascular integrity in adulthood. Here, we investigate the function of pericyte-derived laminin in vascular integrity. Using a conditional knockout mouse line, we report that loss of pericytic laminin leads to hydrocephalus and BBB breakdown in a small percentage (10.7%) of the mutants. Interestingly, BBB disruption always goes hand-in-hand with hydrocephalus in these mutants, and neither symptom is observed in the rest 89.3% of the mutants. Further mechanistic studies show that reduced tight junction proteins, diminished AQP4 expression, and decreased pericyte coverage are responsible for the BBB disruption. Together, these data suggest that pericyte-derived laminin is involved in the maintenance of BBB integrity and regulation of ventricular size/development.
Collapse
Affiliation(s)
- Jyoti Gautam
- College of Pharmacy, University of Minnesota, 1110 Kirby Drive, Duluth, MN, 55812, USA
| | - Xuanming Zhang
- College of Pharmacy, University of Minnesota, 1110 Kirby Drive, Duluth, MN, 55812, USA
| | - Yao Yao
- College of Pharmacy, University of Minnesota, 1110 Kirby Drive, Duluth, MN, 55812, USA
| |
Collapse
|
72
|
Banerjee J, Shi Y, Azevedo HS. In vitro blood–brain barrier models for drug research: state-of-the-art and new perspectives on reconstituting these models on artificial basement membrane platforms. Drug Discov Today 2016; 21:1367-1386. [DOI: 10.1016/j.drudis.2016.05.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/14/2016] [Accepted: 05/31/2016] [Indexed: 12/21/2022]
|
73
|
Shi W, Wei X, Wang Z, Han H, Fu Y, Liu J, Zhang Y, Guo J, Dong C, Zhou D, Zhou Q, Chen Y, Yi F. HDAC9 exacerbates endothelial injury in cerebral ischaemia/reperfusion injury. J Cell Mol Med 2016; 20:1139-49. [PMID: 26865248 PMCID: PMC4882992 DOI: 10.1111/jcmm.12803] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/22/2015] [Indexed: 01/08/2023] Open
Abstract
Histone deacetylase (HDAC) 9, a member of class II HDACs, regulates a wide variety of normal and abnormal physiological functions, which is usually expressed at high levels in the brain and skeletal muscle. Although studies have highlighted the importance of HDAC-mediated epigenetic processes in the development of ischaemic stroke and very recent genome-wide association studies have identified a variant in HDAC9 associated with large-vessel ischemic stroke, the molecular events by which HDAC9 induces cerebral injury keep unclear. In this study, we found that HDAC9 was up-regulated in the ischaemic cerebral hemisphere after cerebral ischaemia/reperfusion (I/R) injury in rats and in vivo gene silencing of HDAC9 by recombinated lentivirus infection in the brain reduced cerebral injury in experimental stroke. We further demonstrated that HDAC9 contributed to oxygen-glucose deprivation-induced brain microvessel endothelial cell dysfunction as demonstrated by the increased inflammatory responses, cellular apoptosis and endothelial cell permeability dysfunction accompanied by reduced expression of tight-junction proteins. We further found that HDAC9 suppressed autophagy, which was associated with endothelial dysfunction. This study for the first time provides direct evidence that HDAC9 contributes to endothelial cell injury and demonstrates that HDAC9 is one of critical components of a signal transduction pathway that links cerebral injury to epigenetic modification in the brain.
Collapse
Affiliation(s)
- Weichen Shi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China.,Department of Hepatobiliary Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xinbing Wei
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Ziying Wang
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Huirong Han
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Yi Fu
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Jiang Liu
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Yan Zhang
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Jian Guo
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Chuanqiao Dong
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Di Zhou
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Quan Zhou
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| | - Yuxin Chen
- Department of Hepatobiliary Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, China
| |
Collapse
|
74
|
Abstract
In autoimmune neurologic disorders, the blood-brain barrier (BBB) plays a central role in immunopathogenesis, since this vascular interface is an entry path for cells and effector molecules of the peripheral immune system to reach the target organ, the central nervous system (CNS). The BBB's unique anatomic structure and the tightly regulated interplay of its cellular and acellular components allow for maintenance of brain homeostasis, regulation of influx and efflux, and protection from harm; these ensure an optimal environment for the neuronal network to function properly. In both health and disease, the BBB acts as mediator between the periphery and the CNS. For example, immune cell trafficking through the cerebral vasculature is essential to clear microbes or cell debris from neural tissues, while poorly regulated cellular transmigration can underlie or worsen CNS pathology. In this chapter, we focus on the specialized multicellular structure and function of the BBB/neurovascular unit and discuss how BBB breakdown can precede or be a consequence of neuroinflammation. We introduce the blood-cerebrospinal fluid barrier and include a brief aside about evolutionary aspects of barrier formation and refinements. Lastly, since restoration of barrier function is considered key to ameliorate neurologic disease, we speculate about new therapeutic avenues to repair a damaged BBB.
Collapse
Affiliation(s)
| | - Ajay Verma
- Biomarkers and Experimental Medicine, Biogen, Cambridge, MA, USA
| | | |
Collapse
|
75
|
Almutairi MMA, Gong C, Xu YG, Chang Y, Shi H. Factors controlling permeability of the blood-brain barrier. Cell Mol Life Sci 2016; 73:57-77. [PMID: 26403789 PMCID: PMC11108286 DOI: 10.1007/s00018-015-2050-8] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/27/2022]
Abstract
As the primary protective barrier for neurons in the brain, the blood-brain barrier (BBB) exists between the blood microcirculation system and the brain parenchyma. The normal BBB integrity is essential in protecting the brain from systemic toxins and maintaining the necessary level of nutrients and ions for neuronal function. This integrity is mediated by structural BBB components, such as tight junction proteins, integrins, annexins, and agrin, of a multicellular system including endothelial cells, astrocytes, pericytes, etc. BBB dysfunction is a significant contributor to the pathogeneses of a variety of brain disorders. Many signaling factors have been identified to be able to control BBB permeability through regulating the structural components. Among those signaling factors are inflammatory mediators, free radicals, vascular endothelial growth factor, matrix metalloproteinases, microRNAs, etc. In this review, we provide a summary of recent progress regarding these structural components and signaling factors, relating to their roles in various brain disorders. Attention is also devoted to recent research regarding impact of pharmacological agents such as isoflurane on BBB permeability and how iron ion passes across BBB. Hopefully, a better understanding of the factors controlling BBB permeability helps develop novel pharmacological interventions of BBB hyperpermeability under pathological conditions.
Collapse
Affiliation(s)
- Mohammed M A Almutairi
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 5044, Lawrence, KS, 66045, USA
| | - Chen Gong
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 5044, Lawrence, KS, 66045, USA
| | - Yuexian G Xu
- Department of Anesthesiology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA
| | - Yanzhong Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang, 050016, China
| | - Honglian Shi
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 5044, Lawrence, KS, 66045, USA.
| |
Collapse
|
76
|
del Zoppo GJ, Moskowitz M, Nedergaard M. The Neurovascular Unit and Responses to Ischemia. Stroke 2016. [DOI: 10.1016/b978-0-323-29544-4.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
77
|
|
78
|
Tietz S, Engelhardt B. Brain barriers: Crosstalk between complex tight junctions and adherens junctions. ACTA ACUST UNITED AC 2015; 209:493-506. [PMID: 26008742 PMCID: PMC4442813 DOI: 10.1083/jcb.201412147] [Citation(s) in RCA: 340] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Unique intercellular junctional complexes between the central nervous system (CNS) microvascular endothelial cells and the choroid plexus epithelial cells form the endothelial blood–brain barrier (BBB) and the epithelial blood–cerebrospinal fluid barrier (BCSFB), respectively. These barriers inhibit paracellular diffusion, thereby protecting the CNS from fluctuations in the blood. Studies of brain barrier integrity during development, normal physiology, and disease have focused on BBB and BCSFB tight junctions but not the corresponding endothelial and epithelial adherens junctions. The crosstalk between adherens junctions and tight junctions in maintaining barrier integrity is an understudied area that may represent a promising target for influencing brain barrier function.
Collapse
Affiliation(s)
- Silvia Tietz
- Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, CH-3012 Bern, Switzerland
| |
Collapse
|
79
|
Blecharz KG, Colla R, Rohde V, Vajkoczy P. Control of the blood-brain barrier function in cancer cell metastasis. Biol Cell 2015; 107:342-71. [PMID: 26032862 DOI: 10.1111/boc.201500011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/22/2015] [Indexed: 12/25/2022]
Abstract
Cerebral metastases are the most common brain neoplasms seen clinically in the adults and comprise more than half of all brain tumours. Actual treatment options for brain metastases that include surgical resection, radiotherapy and chemotherapy are rarely curative, although palliative treatment improves survival and life quality of patients carrying brain-metastatic tumours. Chemotherapy in particular has also shown limited or no activity in brain metastasis of most tumour types. Many chemotherapeutic agents used systemically do not cross the blood-brain barrier (BBB), whereas others may transiently weaken the BBB and allow extravasation of tumour cells from the circulation into the brain parenchyma. Increasing evidence points out that the interaction between the BBB and tumour cells plays a key role for implantation and growth of brain metastases in the central nervous system. The BBB, as the tightest endothelial barrier, prevents both early detection and treatment by creating a privileged microenvironment. Therefore, as observed in several in vivo studies, precise targetting the BBB by a specific transient opening of the structure making it permeable for therapeutic compounds, might potentially help to overcome this difficult clinical problem. Moreover, a better understanding of the molecular features of the BBB, its interrelation with metastatic tumour cells and the elucidation of cellular mechanisms responsible for establishing cerebral metastasis must be clearly outlined in order to promote treatment modalities that particularly involve chemotherapy. This in turn would substantially expand the survival and quality of life of patients with brain metastasis, and potentially increase the remission rate. Therefore, the focus of this review is to summarise the current knowledge on the role and function of the BBB in cancer metastasis.
Collapse
Affiliation(s)
- Kinga G Blecharz
- Department of Experimental Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, 10119, Germany
| | - Ruben Colla
- Department of Neurosurgery, Göttingen University Medical Center, Göttingen, 37070, Germany
| | - Veit Rohde
- Department of Neurosurgery, Göttingen University Medical Center, Göttingen, 37070, Germany
| | - Peter Vajkoczy
- Department of Experimental Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, 10119, Germany.,Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, 13353, Germany
| |
Collapse
|
80
|
Hawkins BT, Gu YH, Izawa Y, del Zoppo GJ. Dabigatran abrogates brain endothelial cell permeability in response to thrombin. J Cereb Blood Flow Metab 2015; 35:985-92. [PMID: 25669912 PMCID: PMC4640263 DOI: 10.1038/jcbfm.2015.9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022]
Abstract
Atrial fibrillation (AF) increases the risk and severity of thromboembolic stroke. Generally, antithrombotic agents increase the hemorrhagic risk of thromboembolic stroke. However, significant reductions in thromboembolism and intracerebral hemorrhage have been shown with the antithrombin dabigatran compared with warfarin. As thrombin has been implicated in microvessel injury during cerebral ischemia, we hypothesized that dabigatran decreases the risk of intracerebral hemorrhage by direct inhibition of the thrombin-mediated increase in cerebral endothelial cell permeability. Primary murine brain endothelial cells (mBECs) were exposed to murine thrombin before measuring permeability to 4-kDa fluorescein isothiocyanate-dextran. Thrombin increased mBEC permeability in a concentration-dependent manner, without significant endothelial cell death. Pretreatment of mBECs with dabigatran completely abrogated the effect of thrombin on permeability. Neither the expressions of the endothelial cell β1-integrins nor the tight junction protein claudin-5 were affected by thrombin exposure. Oxygen-glucose deprivation (OGD) also increased permeability; this effect was abrogated by treatment with dabigatran, as was the additive effect of thrombin and OGD on permeability. Taken together, these results indicate that dabigatran could contribute to a lower risk of intracerebral hemorrhage during embolism-associated ischemia from AF by protection of the microvessel permeability barrier from local thrombin challenge.
Collapse
Affiliation(s)
- Brian Thomas Hawkins
- Department of Medicine (Hematology), Division of Hematology, Seattle, Washington, USA
| | - Yu-Huan Gu
- Department of Medicine (Hematology), Division of Hematology, Seattle, Washington, USA
| | - Yoshikane Izawa
- Department of Medicine (Hematology), Division of Hematology, Seattle, Washington, USA
| | - Gregory John del Zoppo
- 1] Department of Medicine (Hematology), Division of Hematology, Seattle, Washington, USA [2] Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
81
|
Guo J, Cheng C, Chen CS, Xing X, Xu G, Feng J, Qin X. Overexpression of Fibulin-5 Attenuates Ischemia/Reperfusion Injury After Middle Cerebral Artery Occlusion in Rats. Mol Neurobiol 2015; 53:3154-3167. [DOI: 10.1007/s12035-015-9222-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/21/2015] [Indexed: 02/07/2023]
|
82
|
Cytomegalovirus Initiates Infection Selectively from High-Level β1 Integrin–Expressing Cells in the Brain. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1304-23. [DOI: 10.1016/j.ajpath.2015.01.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 12/09/2014] [Accepted: 01/06/2015] [Indexed: 11/18/2022]
|
83
|
Pathways and progress in improving drug delivery through the intestinal mucosa and blood-brain barriers. Ther Deliv 2015; 5:1143-63. [PMID: 25418271 DOI: 10.4155/tde.14.67] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
One of the major hurdles in developing therapeutic agents is the difficulty in delivering drugs through the intestinal mucosa and blood-brain barriers (BBB). The goal here is to describe the general structures of the biological barriers and the strategies to enhance drug delivery across these barriers. Prodrug methods used to improve drug penetration via the transcellular pathway have been successfully developed, and some prodrugs have been used to treat patients. The use of transporters to improve absorption of some drugs (e.g., antiviral agents) has also been successful in treating patients. Other methods, including blocking the efflux pumps to improve transcellular delivery, and modulation of cell-cell adhesion in the intercellular junctions to improve paracellular delivery across biological barriers, are still in the investigational stage.
Collapse
|
84
|
Kanazawa M, Kawamura K, Takahashi T, Miura M, Tanaka Y, Koyama M, Toriyabe M, Igarashi H, Nakada T, Nishihara M, Nishizawa M, Shimohata T. Multiple therapeutic effects of progranulin on experimental acute ischaemic stroke. Brain 2015; 138:1932-48. [PMID: 25838514 DOI: 10.1093/brain/awv079] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 01/27/2015] [Indexed: 12/16/2022] Open
Abstract
In the central nervous system, progranulin, a glycoprotein growth factor, plays a crucial role in maintaining physiological functions, and progranulin gene mutations cause TAR DNA-binding protein-43-positive frontotemporal lobar degeneration. Although several studies have reported that progranulin plays a protective role against ischaemic brain injury, little is known about temporal changes in the expression level, cellular localization, and glycosylation status of progranulin after acute focal cerebral ischaemia. In addition, the precise mechanisms by which progranulin exerts protective effects on ischaemic brain injury remains unknown. Furthermore, the therapeutic potential of progranulin against acute focal cerebral ischaemia, including combination treatment with tissue plasminogen activator, remains to be elucidated. In the present study, we aimed to determine temporal changes in the expression and localization of progranulin after ischaemia as well as the therapeutic effects of progranulin on ischaemic brain injury using in vitro and in vivo models. First, we demonstrated a dynamic change in progranulin expression in ischaemic Sprague-Dawley rats, including increased levels of progranulin expression in microglia within the ischaemic core, and increased levels of progranulin expression in viable neurons as well as induction of progranulin expression in endothelial cells within the ischaemic penumbra. We also demonstrated that the fully glycosylated mature secretory isoform of progranulin (∼88 kDa) decreased, whereas the glycosylated immature isoform of progranulin (58-68 kDa) markedly increased at 24 h and 72 h after reperfusion. In vitro experiments using primary cells from C57BL/6 mice revealed that the glycosylated immature isoform was secreted only from the microglia. Second, we demonstrated that progranulin could protect against acute focal cerebral ischaemia by a variety of mechanisms including attenuation of blood-brain barrier disruption, neuroinflammation suppression, and neuroprotection. We found that progranulin could regulate vascular permeability via vascular endothelial growth factor, suppress neuroinflammation after ischaemia via anti-inflammatory interleukin 10 in the microglia, and render neuroprotection in part by inhibition of cytoplasmic redistribution of TAR DNA-binding protein-43 as demonstrated in progranulin knockout mice (C57BL/6 background). Finally, we demonstrated the therapeutic potential of progranulin against acute focal cerebral ischaemia using a rat autologous thrombo-embolic model with delayed tissue plasminogen activator treatment. Intravenously administered recombinant progranulin reduced cerebral infarct and oedema, suppressed haemorrhagic transformation, and improved motor outcomes (P = 0.007, 0.038, 0.007 and 0.004, respectively). In conclusion, progranulin may be a novel therapeutic target that provides vascular protection, anti-neuroinflammation, and neuroprotection related in part to vascular endothelial growth factor, interleukin 10, and TAR DNA-binding protein-43, respectively.
Collapse
Affiliation(s)
- Masato Kanazawa
- 1 Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kunio Kawamura
- 1 Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tetsuya Takahashi
- 1 Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Minami Miura
- 1 Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yoshinori Tanaka
- 2 Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Misaki Koyama
- 1 Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masafumi Toriyabe
- 1 Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hironaka Igarashi
- 3 Department of Centre for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tsutomu Nakada
- 3 Department of Centre for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Masugi Nishihara
- 2 Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masatoyo Nishizawa
- 1 Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takayoshi Shimohata
- 1 Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
85
|
Hawkins BT, Grego S, Sellgren KL. Three-dimensional culture conditions differentially affect astrocyte modulation of brain endothelial barrier function in response to transforming growth factor β1. Brain Res 2015; 1608:167-76. [PMID: 25721792 DOI: 10.1016/j.brainres.2015.02.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 01/30/2015] [Accepted: 02/06/2015] [Indexed: 02/06/2023]
Abstract
Blood-brain barrier (BBB) function is regulated by dynamic interactions among cell types within the neurovascular unit, including astrocytes and endothelial cells. Co-culture models of the BBB typically involve astrocytes seeded on two-dimensional (2D) surfaces, which recent studies indicate cause astrocytes to express a phenotype similar to that of reactive astrocytes in situ. We hypothesized that the culture conditions of astrocytes would differentially affect their ability to modulate BBB function in vitro. Brain endothelial cells were grown alone or in co-culture with astrocytes. Astrocytes were grown either as conventional (2D) monolayers, or in a collagen-based gel which allows them to grow in a three-dimensional (3D) construct. Astrocytes were viable in 3D conditions, and displayed a marked reduction in their expression of glial fibrillary acidic protein (GFAP), suggesting reduced activation. Stimulation of astrocytes with transforming growth factor (TGF)β1 decreased transendothelial electrical resistance (TEER) and reduced expression of claudin-5 in co-cultures, whereas treatment of endothelial cells in the absence of astrocytes was without effect. The effect of TGFβ1 on TEER was significantly more pronounced in endothelial cells cultured with 3D astrocytes compared to 2D astrocytes. These results demonstrate that astrocyte culture conditions differentially affect their ability to modulate brain endothelial barrier function, and suggest a direct relationship between reactive gliosis and BBB permeability. Moreover, these studies demonstrate the potential importance of physiologically relevant culture conditions to in vitro modeling of disease processes that affect the neurovascular unit.
Collapse
Affiliation(s)
- Brian T Hawkins
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA.
| | - Sonia Grego
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA.
| | - Katelyn L Sellgren
- RTI International, 3040 Cornwallis Road, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
86
|
Bauer HC, Krizbai IA, Bauer H, Traweger A. "You Shall Not Pass"-tight junctions of the blood brain barrier. Front Neurosci 2014; 8:392. [PMID: 25520612 PMCID: PMC4253952 DOI: 10.3389/fnins.2014.00392] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/14/2014] [Indexed: 12/31/2022] Open
Abstract
The structure and function of the barrier layers restricting the free diffusion of substances between the central nervous system (brain and spinal cord) and the systemic circulation is of great medical interest as various pathological conditions often lead to their impairment. Excessive leakage of blood-borne molecules into the parenchyma and the concomitant fluctuations in the microenvironment following a transient breakdown of the blood-brain barrier (BBB) during ischemic/hypoxic conditions or because of an autoimmune disease are detrimental to the physiological functioning of nervous tissue. On the other hand, the treatment of neurological disorders is often hampered as only minimal amounts of therapeutic agents are able to penetrate a fully functional BBB or blood cerebrospinal fluid barrier. An in-depth understanding of the molecular machinery governing the establishment and maintenance of these barriers is necessary to develop rational strategies allowing a controlled delivery of appropriate drugs to the CNS. At the basis of such tissue barriers are intimate cell-cell contacts (zonulae occludentes, tight junctions) which are present in all polarized epithelia and endothelia. By creating a paracellular diffusion constraint TJs enable the vectorial transport across cell monolayers. More recent findings indicate that functional barriers are already established during development, protecting the fetal brain. As an understanding of the biogenesis of TJs might reveal the underlying mechanisms of barrier formation during ontogenic development numerous in vitro systems have been developed to study the assembly and disassembly of TJs. In addition, monitoring the stage-specific expression of TJ-associated proteins during development has brought much insight into the “developmental tightening” of tissue barriers. Over the last two decades a detailed molecular map of transmembrane and cytoplasmic TJ-proteins has been identified. These proteins not only form a cell-cell adhesion structure, but integrate various signaling pathways, thereby directly or indirectly impacting upon processes such as cell-cell adhesion, cytoskeletal rearrangement, and transcriptional control. This review will provide a brief overview on the establishment of the BBB during embryonic development in mammals and a detailed description of the ultrastructure, biogenesis, and molecular composition of epithelial and endothelial TJs will be given.
Collapse
Affiliation(s)
- Hans-Christian Bauer
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University - Spinal Cord Injury and Tissue Regeneration Center Salzburg Salzburg, Austria ; Department of Traumatology and Sports Injuries, Paracelsus Medical University Salzburg, Austria ; Austrian Cluster for Tissue Regeneration Vienna, Austria
| | - István A Krizbai
- Biological Research Centre, Institute of Biophysics, Hungarian Academy of Sciences Szeged, Hungary ; Institute of Life Sciences, Vasile Goldis Western University of Arad Arad, Romania
| | - Hannelore Bauer
- Department of Organismic Biology, University of Salzburg Salzburg, Austria
| | - Andreas Traweger
- Institute of Tendon and Bone Regeneration, Paracelsus Medical University - Spinal Cord Injury and Tissue Regeneration Center Salzburg Salzburg, Austria ; Austrian Cluster for Tissue Regeneration Vienna, Austria
| |
Collapse
|
87
|
The effect of ASK1 on vascular permeability and edema formation in cerebral ischemia. Brain Res 2014; 1595:143-55. [PMID: 25446452 DOI: 10.1016/j.brainres.2014.11.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 01/24/2023]
Abstract
Apoptosis signal-regulating kinase-1 (ASK1) is the mitogen-activated protein kinase kinase kinase (MAPKKK) and participates in the various central nervous system (CNS) signaling pathways. In cerebral ischemia, vascular permeability in the brain is an important issue because regulation failure of it results in edema formation and blood-brain barrier (BBB) disruption. To determine the role of ASK1 on vascular permeability and edema formation following cerebral ischemia, we first investigated ASK1-related gene expression using microarray analyses of ischemic brain tissue. We then measured protein levels of ASK1 and vascular endothelial growth factor (VEGF) in brain endothelial cells after hypoxia injury. We also examined protein expression of ASK1 and VEGF, edema formation, and morphological alteration through cresyl violet staining in ischemic brain tissue using ASK1-small interference RNA (ASK1-siRNA). Finally, immunohistochemistry was performed to examine VEGF and aquaporin-1 (AQP-1) expression in ischemic brain injury. Based on our findings, we propose that ASK1 is a regulating factor of vascular permeability and edema formation in cerebral ischemia.
Collapse
|
88
|
DeSalvo MK, Hindle SJ, Rusan ZM, Orng S, Eddison M, Halliwill K, Bainton RJ. The Drosophila surface glia transcriptome: evolutionary conserved blood-brain barrier processes. Front Neurosci 2014; 8:346. [PMID: 25426014 PMCID: PMC4224204 DOI: 10.3389/fnins.2014.00346] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/10/2014] [Indexed: 12/29/2022] Open
Abstract
Central nervous system (CNS) function is dependent on the stringent regulation of metabolites, drugs, cells, and pathogens exposed to the CNS space. Cellular blood-brain barrier (BBB) structures are highly specific checkpoints governing entry and exit of all small molecules to and from the brain interstitial space, but the precise mechanisms that regulate the BBB are not well understood. In addition, the BBB has long been a challenging obstacle to the pharmacologic treatment of CNS diseases; thus model systems that can parse the functions of the BBB are highly desirable. In this study, we sought to define the transcriptome of the adult Drosophila melanogaster BBB by isolating the BBB surface glia with fluorescence activated cell sorting (FACS) and profiling their gene expression with microarrays. By comparing the transcriptome of these surface glia to that of all brain glia, brain neurons, and whole brains, we present a catalog of transcripts that are selectively enriched at the Drosophila BBB. We found that the fly surface glia show high expression of many ATP-binding cassette (ABC) and solute carrier (SLC) transporters, cell adhesion molecules, metabolic enzymes, signaling molecules, and components of xenobiotic metabolism pathways. Using gene sequence-based alignments, we compare the Drosophila and Murine BBB transcriptomes and discover many shared chemoprotective and small molecule control pathways, thus affirming the relevance of invertebrate models for studying evolutionary conserved BBB properties. The Drosophila BBB transcriptome is valuable to vertebrate and insect biologists alike as a resource for studying proteins underlying diffusion barrier development and maintenance, glial biology, and regulation of drug transport at tissue barriers.
Collapse
Affiliation(s)
- Michael K DeSalvo
- Department of Anesthesia and Perioperative Care, University of California San Francisco San Francisco, CA, USA
| | - Samantha J Hindle
- Department of Anesthesia and Perioperative Care, University of California San Francisco San Francisco, CA, USA
| | - Zeid M Rusan
- Department of Anesthesia and Perioperative Care, University of California San Francisco San Francisco, CA, USA
| | - Souvinh Orng
- Department of Anesthesia and Perioperative Care, University of California San Francisco San Francisco, CA, USA
| | - Mark Eddison
- Janelia Farm Research Campus, The Howard Hughes Medical Institute Ashburn, VA, USA
| | - Kyle Halliwill
- Pharmaceutical Sciences and Pharmacogenomics, University of California San Francisco San Francisco, CA, USA
| | - Roland J Bainton
- Department of Anesthesia and Perioperative Care, University of California San Francisco San Francisco, CA, USA
| |
Collapse
|
89
|
Abstract
Ischemic stroke, a devastating event caused by the blockage of a blood vessel(s) supplying the brain, continues to affect thousands of people in the USA every year. While no true advances in stroke therapy have arisen to further improve patient outcomes since the introduction of the blood clot buster tissue plasminogen activator and mechanical clot removal, fewer people are dying from the immediate stroke insult. Instead, patients often suffer significant morbidity due to post-recanalization secondary damage. Central to this damage is the breakdown of the blood-brain barrier, which, in addition to contributing to edema and inflammation, triggers an upregulation in angiogenic growth factors in the brain's attempt to salvage and repair itself. Recent studies have begun to improve our understanding of the post-stroke angiogenic response of brain endothelial cells in the ischemic penumbra, which has long been held to be an important site for medical intervention. These studies suggest that endothelial cell integrin matrix receptors play an important and therapeutically significant role in moderating cellular responses to ischemic brain injury.
Collapse
Affiliation(s)
- Kathleen Guell
- Department of Anatomy and Neurobiology, University of Kentucky, Sanders Brown Building 800 South Limestone, Lexington, Kentucky 40508, USA
| | | |
Collapse
|
90
|
Steiner E, Enzmann GU, Lyck R, Lin S, Rüegg MA, Kröger S, Engelhardt B. The heparan sulfate proteoglycan agrin contributes to barrier properties of mouse brain endothelial cells by stabilizing adherens junctions. Cell Tissue Res 2014; 358:465-79. [PMID: 25107608 PMCID: PMC4210653 DOI: 10.1007/s00441-014-1969-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 07/17/2014] [Indexed: 01/13/2023]
Abstract
Barrier characteristics of brain endothelial cells forming the blood–brain barrier (BBB) are tightly regulated by cellular and acellular components of the neurovascular unit. During embryogenesis, the accumulation of the heparan sulfate proteoglycan agrin in the basement membranes ensheathing brain vessels correlates with BBB maturation. In contrast, loss of agrin deposition in the vasculature of brain tumors is accompanied by the loss of endothelial junctional proteins. We therefore wondered whether agrin had a direct effect on the barrier characteristics of brain endothelial cells. Agrin increased junctional localization of vascular endothelial (VE)-cadherin, β-catenin, and zonula occludens-1 (ZO-1) but not of claudin-5 and occludin in the brain endothelioma cell line bEnd5 without affecting the expression levels of these proteins. This was accompanied by an agrin-induced reduction of the paracellular permeability of bEnd5 monolayers. In vivo, the lack of agrin also led to reduced junctional localization of VE-cadherin in brain microvascular endothelial cells. Taken together, our data support the notion that agrin contributes to barrier characteristics of brain endothelium by stabilizing the adherens junction proteins VE-cadherin and β-catenin and the junctional protein ZO-1 to brain endothelial junctions.
Collapse
Affiliation(s)
- Esther Steiner
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012, Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
91
|
Yang F, Wang Z, Wei X, Han H, Meng X, Zhang Y, Shi W, Li F, Xin T, Pang Q, Yi F. NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J Cereb Blood Flow Metab 2014; 34:660-7. [PMID: 24424382 PMCID: PMC3982086 DOI: 10.1038/jcbfm.2013.242] [Citation(s) in RCA: 332] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 01/10/2023]
Abstract
Although the innate immune response to induce postischemic inflammation is considered as an essential step in the progression of cerebral ischemia injury, the role of innate immunity mediator NLRP3 in the pathogenesis of ischemic stroke is unknown. In this study, focal ischemia was induced by middle cerebral artery occlusion in NLRP3(-/-), NOX2(-/-), or wild-type (WT) mice. By magnetic resonance imaging (MRI), Evans blue permeability, and electron microscopic analyses, we found that NLRP3 deficiency ameliorated cerebral injury in mice after ischemic stroke by reducing infarcts and blood-brain barrier (BBB) damage. We further showed that the contribution of NLRP3 to neurovascular damage was associated with an autocrine/paracrine pattern of NLRP3-mediated interleukin-1β (IL-1β) release as evidenced by increased brain microvessel endothelial cell permeability and microglia-mediated neurotoxicity. Finally, we found that NOX2 deficiency improved outcomes after ischemic stroke by mediating NLRP3 signaling. This study for the first time shows the contribution of NLRP3 to neurovascular damage and provides direct evidence that NLRP3 as an important target molecule links NOX2-mediated oxidative stress to neurovascular damage in ischemic stroke. Pharmacological targeting of NLRP3-mediated inflammatory response at multiple levels may help design a new approach to develop therapeutic strategies for prevention of deterioration of cerebral function and for the treatment of stroke.
Collapse
Affiliation(s)
- Fan Yang
- Department of Pharmacology, Shandong University School of Medicine, Jinan, PR China
| | - Ziying Wang
- Department of Pharmacology, Shandong University School of Medicine, Jinan, PR China
| | - Xinbing Wei
- Department of Pharmacology, Shandong University School of Medicine, Jinan, PR China
| | - Huirong Han
- Department of Pharmacology, Shandong University School of Medicine, Jinan, PR China
| | - Xianfang Meng
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Yan Zhang
- Department of Pharmacology, Shandong University School of Medicine, Jinan, PR China
| | - Weichen Shi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, PR China
| | - Fengli Li
- Department of Pharmacology, Shandong University School of Medicine, Jinan, PR China
| | - Tao Xin
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong University, Jinan, PR China
| | - Qi Pang
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong University, Jinan, PR China
| | - Fan Yi
- Department of Pharmacology, Shandong University School of Medicine, Jinan, PR China
| |
Collapse
|
92
|
Lopez‐Ramirez MA, Wu D, Pryce G, Simpson JE, Reijerkerk A, King‐Robson J, Kay O, Vries HE, Hirst MC, Sharrack B, Baker D, Male DK, Michael GJ, Romero IA. MicroRNA‐155 negatively affects blood–brain barrier function during neuroinflammation. FASEB J 2014; 28:2551-65. [DOI: 10.1096/fj.13-248880] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Dongsheng Wu
- Department of Life, Health, and Chemical Sciences, Biomedical Research NetworkThe Open UniversityMilton KeynesUK
| | - Gareth Pryce
- Center for Neuroscience and Trauma, Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Julie E. Simpson
- Sheffield Institute for Translational NeuroscienceSheffield Teaching Hospitals National Health Service (NHS) TrustUniversity of SheffieldSheffieldUK
| | - Arie Reijerkerk
- Blood–Brain Barrier Research Group, Molecular Cell Biology and ImmunologyVU University Medical CenterAmsterdamThe Netherlands
| | - Josh King‐Robson
- Center for Neuroscience and Trauma, Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Oliver Kay
- Center for Neuroscience and Trauma, Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Helga E. Vries
- Blood–Brain Barrier Research Group, Molecular Cell Biology and ImmunologyVU University Medical CenterAmsterdamThe Netherlands
| | - Mark C. Hirst
- Department of Life, Health, and Chemical Sciences, Biomedical Research NetworkThe Open UniversityMilton KeynesUK
| | - Basil Sharrack
- Department of NeurologySheffield Teaching Hospitals National Health Service (NHS) TrustUniversity of SheffieldSheffieldUK
| | - David Baker
- Center for Neuroscience and Trauma, Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - David Kingsley Male
- Department of Life, Health, and Chemical Sciences, Biomedical Research NetworkThe Open UniversityMilton KeynesUK
| | - Gregory J. Michael
- Center for Neuroscience and Trauma, Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of LondonLondonUK
| | - Ignacio Andres Romero
- Department of Life, Health, and Chemical Sciences, Biomedical Research NetworkThe Open UniversityMilton KeynesUK
| |
Collapse
|
93
|
Engelhardt B, Liebner S. Novel insights into the development and maintenance of the blood-brain barrier. Cell Tissue Res 2014; 355:687-99. [PMID: 24590145 PMCID: PMC3972432 DOI: 10.1007/s00441-014-1811-2] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 01/13/2014] [Indexed: 01/20/2023]
Abstract
The blood-brain barrier (BBB) is essential for maintaining homeostasis within the central nervous system (CNS) and is a prerequisite for proper neuronal function. The BBB is localized to microvascular endothelial cells that strictly control the passage of metabolites into and out of the CNS. Complex and continuous tight junctions and lack of fenestrae combined with low pinocytotic activity make the BBB endothelium a tight barrier for water soluble moleucles. In combination with its expression of specific enzymes and transport molecules, the BBB endothelium is unique and distinguishable from all other endothelial cells in the body. During embryonic development, the CNS is vascularized by angiogenic sprouting from vascular networks originating outside of the CNS in a precise spatio-temporal manner. The particular barrier characteristics of BBB endothelial cells are induced during CNS angiogenesis by cross-talk with cellular and acellular elements within the developing CNS. In this review, we summarize the currently known cellular and molecular mechanisms mediating brain angiogenesis and introduce more recently discovered CNS-specific pathways (Wnt/β-catenin, Norrin/Frizzled4 and hedgehog) and molecules (GPR124) that are crucial in BBB differentiation and maturation. Finally, based on observations that BBB dysfunction is associated with many human diseases such as multiple sclerosis, stroke and brain tumors, we discuss recent insights into the molecular mechanisms involved in maintaining barrier characteristics in the mature BBB endothelium.
Collapse
Affiliation(s)
- Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Freiestrasse 1, 3012 Bern, Switzerland
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Heinrich-Hoffmann-Strasse 7, 60528 Frankfurt/Main, Germany
| |
Collapse
|
94
|
Engelhardt S, Patkar S, Ogunshola OO. Cell-specific blood-brain barrier regulation in health and disease: a focus on hypoxia. Br J Pharmacol 2014; 171:1210-30. [PMID: 24641185 PMCID: PMC3952799 DOI: 10.1111/bph.12489] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/02/2013] [Accepted: 10/16/2013] [Indexed: 01/16/2023] Open
Abstract
The blood-brain barrier (BBB) is a complex vascular structure consisting of microvascular endothelial cells that line the vessel wall, astrocyte end-feet, pericytes, as well as the basal lamina. BBB cells act in concert to maintain the characteristic impermeable and low paracellular flux of the brain vascular network, thus ensuring a homeostatic neuronal environment. Alterations in BBB stability that occur during injury have dire consequences on disease progression and it is clear that BBB cell-specific responses, positive or negative, must make a significant contribution to injury outcome. Reduced oxygenation, or hypoxia, is a characteristic of many brain diseases that significantly increases barrier permeability. Recent data suggest that hypoxia-inducible factor (HIF-1), the master regulator of the hypoxic response, probably mediates many hypoxic effects either directly or indirectly via its target genes. This review discusses current knowledge of physiological cell-specific regulation of barrier function, their responses to hypoxia as well as consequences of hypoxic- and HIF-1-mediated mechanisms on barrier integrity during select brain diseases. In the final sections, the potential of current advances in targeting HIF-1 as a therapeutic strategy will be overviewed.
Collapse
Affiliation(s)
- S Engelhardt
- Institute of Veterinary Physiology, University of ZurichZurich, Switzerland
| | - S Patkar
- Institute of Veterinary Physiology, University of ZurichZurich, Switzerland
| | - O O Ogunshola
- Institute of Veterinary Physiology, University of ZurichZurich, Switzerland
| |
Collapse
|
95
|
Jia W, Lu R, Martin TA, Jiang WG. The role of claudin-5 in blood-brain barrier (BBB) and brain metastases (review). Mol Med Rep 2013; 9:779-85. [PMID: 24366267 DOI: 10.3892/mmr.2013.1875] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 11/19/2013] [Indexed: 11/05/2022] Open
Abstract
Metastatic brain tumours are frequently observed in patients with lung, breast and malignant melanoma and a severe complication of metastatic cancers. With improved primary cancer treatments, including surgery, radiation therapy and chemotherapy, patients are now living longer following initial treatment, compared with previous treatments. Brain metastasis (BM) remains a significant clinical issue. Since BM represents a major therapeutic challenge, it is vital that the mechanisms of interaction between tumour cells and the blood‑brain barrier (BBB), as well as the method by which tumour cells establish metastatic tumours in the brain, are understood. A key step in BM is the interaction and penetration of the BBB by cancer cells. The BBB consists of endothelial cells, pericytes, astrocytes and a number of molecular structures between these cells. The BBB relies on the tight junctions (TJs) that are present between the endothelial cells of the brain capillaries to provide a closed environment for the brain. TJs comprise a number of proteins, including occludin, claudins and junctional adhesion molecules (JAMs). Among them, claudins are the key integral proteins that regulate BBB permeability. It has previously been shown that claudin‑5, not only regulates paracellular ionic selectivity, but also plays a role in the regulation of tumour cell motility, suggesting that TJs and claudin‑5 contribute to the control of BM. This study reviews the role of claudin‑5 in the regulation of BBB permeability during the brain metastatic process.
Collapse
Affiliation(s)
- Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Runchun Lu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Tracey A Martin
- Cardiff University‑Capital Medical University Joint Centre for Biomedical Research, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Wen G Jiang
- Cardiff University‑Capital Medical University Joint Centre for Biomedical Research, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| |
Collapse
|
96
|
Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood-brain barrier. Nat Med 2013; 19:1584-96. [PMID: 24309662 DOI: 10.1038/nm.3407] [Citation(s) in RCA: 1593] [Impact Index Per Article: 144.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 10/22/2013] [Indexed: 01/01/2023]
Abstract
The interface between the blood circulation and the neural tissue features unique characteristics that are encompassed by the term 'blood-brain barrier' (BBB). The main functions of this barrier, namely maintenance of brain homeostasis, regulation of influx and efflux transport, and protection from harm, are determined by its specialized multicellular structure. Every constituent cell type makes an indispensable contribution to the BBB's integrity. But if one member of the BBB fails, and as a result the barrier breaks down, there can be dramatic consequences and neuroinflammation and neurodegeneration can occur. In this Review, we highlight recently gained mechanistic insights into the development and maintenance of the BBB. We then discuss how BBB disruption can cause or contribute to neurological disease. Finally, we examine how this knowledge can be used to explore new possibilities for BBB repair.
Collapse
Affiliation(s)
- Birgit Obermeier
- Neuroinflammation Research Center, Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | |
Collapse
|
97
|
PKC-β exacerbates in vitro brain barrier damage in hyperglycemic settings via regulation of RhoA/Rho-kinase/MLC2 pathway. J Cereb Blood Flow Metab 2013; 33:1928-36. [PMID: 23963366 PMCID: PMC3851902 DOI: 10.1038/jcbfm.2013.151] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/16/2013] [Accepted: 07/29/2013] [Indexed: 12/26/2022]
Abstract
Stroke patients with hyperglycemia (HG) develop higher volumes of brain edema emerging from disruption of blood-brain barrier (BBB). This study explored whether inductions of protein kinase C-β (PKC-β) and RhoA/Rho-kinase/myosin-regulatory light chain-2 (MLC2) pathway may account for HG-induced barrier damage using an in vitro model of human BBB comprising human brain microvascular endothelial cells (HBMEC) and astrocytes. Hyperglycemia (25 mmol/L D-glucose) markedly increased RhoA/Rho-kinase protein expressions (in-cell westerns), MLC2 phosphorylation (immunoblotting), and PKC-β (PepTag assay) and RhoA (Rhotekin-binding assay) activities in HBMEC while concurrently reducing the expression of tight junction protein occludin. Hyperglycemia-evoked in vitro barrier dysfunction, confirmed by decreases in transendothelial electrical resistance and concomitant increases in paracellular flux of Evan's blue-labeled albumin, was accompanied by malformations of actin cytoskeleton and tight junctions. Suppression of RhoA and Rho-kinase activities by anti-RhoA immunoglobulin G (IgG) electroporation and Y-27632, respectively prevented morphologic changes and restored plasma membrane localization of occludin. Normalization of glucose levels and silencing PKC-β activity neutralized the effects of HG on occludin and RhoA/Rho-kinase/MLC2 expression, localization, and activity and consequently improved in vitro barrier integrity and function. These results suggest that HG-induced exacerbation of the BBB breakdown after an ischemic stroke is mediated in large part by activation of PKC-β.
Collapse
|
98
|
Summers L, Kangwantas K, Rodriguez-Grande B, Denes A, Penny J, Kielty C, Pinteaux E. Activation of brain endothelial cells by interleukin-1 is regulated by the extracellular matrix after acute brain injury. Mol Cell Neurosci 2013; 57:93-103. [DOI: 10.1016/j.mcn.2013.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 10/04/2013] [Accepted: 10/15/2013] [Indexed: 11/15/2022] Open
|
99
|
Abstract
Modulation of coagulation has been successfully applied to ischemic disorders of the central nervous system (CNS). Some components of the coagulation system have been identified in the CNS, yet with limited exception their functions have not been clearly defined. Little is known about how events within the cerebral tissues affect hemostasis. Nonetheless, the interaction between cerebral cells and vascular hemostasis and the possibility that endogenous coagulation factors can participate in functions within the neurovascular unit provide intriguing possibilities for deeper insight into CNS functions and the potential for treatment of CNS injuries. Here, we consider the expression of coagulation factors in the CNS, the coagulopathy associated with focal cerebral ischemia (and its relationship to hemorrhagic transformation), the use of recombinant tissue plasminogen activator (rt-PA) in ischemic stroke and its study in animal models, the impact of rt-PA on neuron and CNS structure and function, and matrix protease generation and matrix degradation and hemostasis. Interwoven among these topics is evidence for interactions of coagulation factors with and within the CNS. How activation of hemostasis occurs in the cerebral tissues and how the brain responds are difficult questions that offer many research possibilities.
Collapse
Affiliation(s)
- Gregory J. del Zoppo
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington
| | - Yoshikane Izawa
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Brian T. Hawkins
- Division of Hematology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
100
|
Lopez-Ramirez MA, Male DK, Wang C, Sharrack B, Wu D, Romero IA. Cytokine-induced changes in the gene expression profile of a human cerebral microvascular endothelial cell-line, hCMEC/D3. Fluids Barriers CNS 2013; 10:27. [PMID: 24050303 PMCID: PMC3849656 DOI: 10.1186/2045-8118-10-27] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 09/09/2013] [Indexed: 11/10/2022] Open
Abstract
Background The human cerebral microvascular endothelial cell line, hCMEC/D3, has been used extensively to model the blood–brain barrier (BBB) in vitro. Recently, we reported that cytokine-treatment induced loss of brain endothelial barrier properties. In this study, we further determined the gene expression pattern of hCMEC/D3 cells in response to activation with TNFα and IFNγ. Findings Using a microarray approach, we observed that expression of genes involved in the control of barrier permeability, including inter-brain endothelial junctions (e.g. claudin-5, MARVELD-2), integrin-focal adhesions complexes (e.g. integrin β1, ELMO-1) and transporter systems (e.g. ABCB1, SLC2A1), are altered by pro-inflammatory cytokines. Conclusions Our study shows that previously-described cytokine-induced changes in the pattern of gene expression of endothelium are reproduced in hCMEC/D3 cells, suggesting that this model is suitable to study inflammation at the BBB, while at the same time it has provided insights into novel key molecular processes that are altered in brain endothelium during neuroinflammation, such as modulation of cell-to-matrix contacts.
Collapse
|