51
|
de Aguiar Ferreira C, Heidari P, Ataeinia B, Sinevici N, Granito A, Kumar HM, Wehrenberg-Klee E, Mahmood U. Immune Checkpoint Inhibitor-Mediated Cancer Theranostics with Radiolabeled Anti-Granzyme B Peptide. Pharmaceutics 2022; 14:1460. [PMID: 35890355 PMCID: PMC9325142 DOI: 10.3390/pharmaceutics14071460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/25/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022] Open
Abstract
Although immune checkpoint inhibitors (ICI) have revolutionized cancer management, patient response can be heterogeneous, and the development of ICI resistance is increasingly reported. Novel treatment strategies are necessary not only to expand the use of ICI to previously unresponsive tumor types but also to overcome resistance. Targeted radionuclide therapy may synergize well with ICIs since it can promote a pro-inflammatory tumor microenvironment. We investigated the use of a granzyme B targeted peptide (GZP) as a cancer theranostic agent, radiolabeled with 68Ga (68Ga-GZP) as a PET imaging agent and radiolabeled with 90Y (90Y-GZP) as a targeted radionuclide therapy agent for combinational therapy with ICI in murine models of colon cancer. Our results demonstrate that GZP increasingly accumulates in tumor tissue after ICI and that the combination of ICI with 90Y-GZP promotes a dose-dependent response, achieving curative response in some settings and increased overall survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; (C.d.A.F.); (P.H.); (B.A.); (N.S.); (A.G.); (H.M.K.); (E.W.-K.)
| |
Collapse
|
52
|
Suppression of HIV-associated Macrophage Activation by a p75 Neurotrophin Receptor Ligand. J Neuroimmune Pharmacol 2022; 17:242-260. [PMID: 34296391 PMCID: PMC9386897 DOI: 10.1007/s11481-021-10002-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022]
Abstract
Previous studies indicated that nerve growth factor (NGF) and proNGF differentially regulate the phenotype of macrophages and microglia via actions at tropomyosin receptor kinase A (TrkA) and p75 neurotrophin receptors (p75NTR), respectively. The ability of HIV gp120 and virions to induce the secretion of factors toxic to neurons was suppressed by NGF and enhanced by proNGF, suggesting the potential for neurotrophin based "anti-inflammatory" interventions. To investigate the "anti-inflammatory" potential of the p75NTR ligand, LM11A-31, we treated cultured macrophages and microglia with HIV gp120 in the presence or absence of the ligand and evaluated the morphological phenotype, intrinsic calcium signaling, neurotoxic activity and proteins in the secretome. LM11A-31 at 10 nM was able to suppress the release of neurotoxic factors from both monocyte-derived macrophages (MDM) and microglia. The protective effects correlated with a shift in morphology and a unique secretory phenotype rich in growth factors that overrode the actions of HIV gp120. The protein pattern was generally consistent with anti-inflammatory, phagocytic and tissue remodeling functions. Although the toxic factor(s) and the source of the neuroprotection were not identified, the data indicated that an increased degradation of NGF induced by HIV gp120 was likely to contribute to neuronal vulnerability. Although substantial work is still needed to reveal the functions of many proteins in the mononuclear phagocyte secretome, such as growth and differentiation factors, the data clearly indicate that the ligand LM11A-31 has excellent therapeutic potential due to its ability to induce a more protective phenotype that restricts activation by HIV.
Collapse
|
53
|
Therapeutical Significance of Serpina3n Subsequent Cerebral Ischemia via Cytotoxic Granzyme B Inactivation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1557010. [PMID: 35677097 PMCID: PMC9168188 DOI: 10.1155/2022/1557010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/16/2022] [Indexed: 01/04/2023]
Abstract
Ischemic stroke is a devastating CNS insult with few clinical cures. Poor understanding of underlying mechanistic network is the primary limitation to develop novel curative therapies. Extracellular accumulation of granzyme B subsequent ischemia promotes neurodegeneration. Inhibition of granzyme B can be one of the potent strategies to mitigate neuronal damage. In present study, we investigated the effect of murine Serpina3n and human (homolog) SERPINA3 against cerebral ischemia through granzyme B inactivation. Recombinant Serpina3n/SERPINA3 were expressed by transfected 293 T cells, and eluted proteins were examined for postischemic influence both in vitro and in vivo. During in vitro test, Serpina3n was found effective enough to inhibit granzyme B, while SERPINA3 was ineffectual to counter cytotoxic protease. Treatment of hypoxic culture with recombinant Serpina3n/SERPINA3 significantly increased cell viability in dosage-dependent manner, recorded maximum at the highest concentration (4 mM). Infarct volume analysis confirmed that 50 mg/kg dosage of exogenous Serpina3n was adequate to reduce disease severity, while SERPINA3 lacked behind in analeptic effect. Immunohistochemical test, western blot analysis, and protease activity assay’s results illustrated successful diffusion of applied protein to the ischemic lesion and reactivity with the target protease. Taken together, our findings demonstrate therapeutic potential of Serpina3n by interfering granzyme B-mediated neuronal death subsequent cerebral ischemia.
Collapse
|
54
|
Dillon SM, Mickens KL, Thompson TA, Cooper EH, Nesladek S, Christians AJ, Castleman M, Guo K, Wood C, Frank DN, Kechris K, Santiago ML, Wilson CC. Granzyme B + CD4 T cells accumulate in the colon during chronic HIV-1 infection. Gut Microbes 2022; 14:2045852. [PMID: 35258402 PMCID: PMC8920224 DOI: 10.1080/19490976.2022.2045852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chronic HIV-1 infection results in the sustained disruption of gut homeostasis culminating in alterations in microbial communities (dysbiosis) and increased microbial translocation. Major questions remain on how interactions between translocating microbes and gut immune cells impact HIV-1-associated gut pathogenesis. We previously reported that in vitro exposure of human gut cells to enteric commensal bacteria upregulated the serine protease and cytotoxic marker Granzyme B (GZB) in CD4 T cells, and GZB expression was further increased in HIV-1-infected CD4 T cells. To determine if these in vitro findings extend in vivo, we evaluated the frequencies of GZB+ CD4 T cells in colon biopsies and peripheral blood of untreated, chronically infected people with HIV-1 (PWH). Colon and blood GZB+ CD4 T cells were found at significantly higher frequencies in PWH. Colon, but not blood, GZB+ CD4 T cell frequencies were associated with gut and systemic T cell activation and Prevotella species abundance. In vitro, commensal bacteria upregulated GZB more readily in gut versus blood or tonsil-derived CD4 T cells, particularly in inflammatory T helper 17 cells. Bacteria-induced GZB expression in gut CD4 T cells required the presence of accessory cells, the IL-2 pathway and in part, MHC Class II. Overall, we demonstrate that GZB+ CD4 T cells are prevalent in the colon during chronic HIV-1 infection and may emerge following interactions with translocated bacteria in an IL-2 and MHC Class II-dependent manner. Associations between GZB+ CD4 T cells, dysbiosis and T cell activation suggest that GZB+ CD4 T cells may contribute to gut HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Stephanie M. Dillon
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kaylee L. Mickens
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tezha A. Thompson
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Emily H. Cooper
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Sabrina Nesladek
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | | | - Moriah Castleman
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Kejun Guo
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Daniel N. Frank
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Katerina Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Mario L. Santiago
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Cara C. Wilson
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA,contact Cara C. Wilson Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
55
|
Scott JI, Mendive-Tapia L, Gordon D, Barth ND, Thompson EJ, Cheng Z, Taggart D, Kitamura T, Bravo-Blas A, Roberts EW, Juarez-Jimenez J, Michel J, Piet B, de Vries IJ, Verdoes M, Dawson J, Carragher NO, Connor RAO, Akram AR, Frame M, Serrels A, Vendrell M. A fluorogenic probe for granzyme B enables in-biopsy evaluation and screening of response to anticancer immunotherapies. Nat Commun 2022; 13:2366. [PMID: 35501326 PMCID: PMC9061857 DOI: 10.1038/s41467-022-29691-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy promotes the attack of cancer cells by the immune system; however, it is difficult to detect early responses before changes in tumor size occur. Here, we report the rational design of a fluorogenic peptide able to detect picomolar concentrations of active granzyme B as a biomarker of immune-mediated anticancer action. Through a series of chemical iterations and molecular dynamics simulations, we synthesize a library of FRET peptides and identify probe H5 with an optimal fit into granzyme B. We demonstrate that probe H5 enables the real-time detection of T cell-mediated anticancer activity in mouse tumors and in tumors from lung cancer patients. Furthermore, we show image-based phenotypic screens, which reveal that the AKT kinase inhibitor AZD5363 shows immune-mediated anticancer activity. The reactivity of probe H5 may enable the monitoring of early responses to anticancer treatments using tissue biopsies.
Collapse
Affiliation(s)
- Jamie I Scott
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Doireann Gordon
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Nicole D Barth
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Emily J Thompson
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Zhiming Cheng
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - David Taggart
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Takanori Kitamura
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | | | | | - Jordi Juarez-Jimenez
- EaStChem School of Chemistry, Joseph Black Building, The University of Edinburgh, Edinburgh, UK
| | - Julien Michel
- EaStChem School of Chemistry, Joseph Black Building, The University of Edinburgh, Edinburgh, UK
| | - Berber Piet
- Department of Pulmonary Diseases, Radboud University Medical Centre, Nijmegen, Netherlands
| | - I Jolanda de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, Netherlands
| | - John Dawson
- Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Richard A O' Connor
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Ahsan R Akram
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Margaret Frame
- Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, UK
| | - Alan Serrels
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Marc Vendrell
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
56
|
Jung K, Pawluk MA, Lane M, Nabai L, Granville DJ. Granzyme B in Epithelial Barrier Dysfunction and Related Skin Diseases. Am J Physiol Cell Physiol 2022; 323:C170-C189. [PMID: 35442832 DOI: 10.1152/ajpcell.00052.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The predominant function of the skin is to serve as a barrier - to protect against external insults and to prevent water loss. Junctional and structural proteins in the stratum corneum, the outermost layer of the epidermis, are critical to the integrity of the epidermal barrier as it balances ongoing outward migration, differentiation, and desquamation of keratinocytes in the epidermis. As such, epidermal barrier function is highly susceptible to upsurges of proteolytic activity in the stratum corneum and epidermis. Granzyme B is a serine protease scarce in healthy tissues but present at high levels in tissues encumbered by chronic inflammation. Discovered in the 1980s, Granzyme B is currently recognized for its intracellular roles in immune cell-mediated targeted apoptosis as well as extracellular roles in inflammation, chronic injuries, tissue remodeling, and processing of cytokines, matrix proteins, and autoantigens. Increasing evidence has emerged in recent years supporting a role for Granzyme B in promoting barrier dysfunction in the epidermis by direct cleavage of barrier proteins and eliciting immunoreactivity. Likewise, Granzyme B contributes to impaired epithelial function of the airways, retina, gut and vessels. In the present review, the role of Granzyme B in cutaneous epithelial dysfunction is discussed in the context of specific conditions with an overview of underlying mechanisms as well as utility of current experimental and therapeutic inhibitors.
Collapse
Affiliation(s)
- Karen Jung
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - Megan A Pawluk
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - Michael Lane
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - Layla Nabai
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| | - David J Granville
- International Collaboration on Repair Discoveries (ICORD), Vancouver Coastal Health Research Institute (VCHRI), University of British Columbia (UBC), Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada.,British Columbia Professional Firefighters' Wound Healing Laboratory, VCHRI, Vancouver, British Columbia, Canada
| |
Collapse
|
57
|
Blimp-1 is a prognostic indicator for progression of cervical intraepithelial neoplasia grade 2. J Cancer Res Clin Oncol 2022; 148:1991-2002. [PMID: 35386001 PMCID: PMC9294030 DOI: 10.1007/s00432-022-03993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 11/10/2022]
Abstract
Background Progression of cervical intraepithelial neoplasia (CIN) to higher grade disease is associated with persistent human papillomavirus (HPV) infection and an absence of immune-mediated regression. However, the immune microenvironment that distinguishes progression from persistent or regressing lesions has not been well defined. Methods A total of 69 patients under the age of 25 with high-risk HPV-positive cytology and biopsy-confirmed p16-positive CIN2 were included in the study. Biopsies were stained using 20 antibodies to a range of immune markers. Based on a 2-year follow-up, samples were analysed in “progressor” (CIN3 +) or “persister/regressor” (CIN1, 2 or normal) groups. Results Progression was most strongly associated with Blimp-1 positive cell staining in the lesion (P = 0.0019) and with low numbers of infiltrating CD4 cells in the dermal region beneath the lesion (P = 0.0022). The presence of CD4, CD8 and T bet-positive cells in the dermal region most strongly correlated with CD11c cells in the persister/regressor but not the progressor group. Conclusion High numbers of Blimp-1 + cells in CIN2 lesions may predict progression to more severe disease. Measurement of Blimp-1 may have diagnostic utility for the determination of the need to treat women with cervical pre-cancer. Highlights CIN2 progression is associated with high numbers of Blimp-1 positive cells in the lesion. Detection of Blimp-1 in the lesion may have utility as a prognostic test to inform the need to treat CIN2. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-022-03993-4.
Collapse
|
58
|
Temizkan MC, Sonmez G. Are owned dogs or stray dogs more prepared to diseases? A comparative study of immune system gene expression of perforin and granzymes. Acta Vet Hung 2022. [PMID: 35238799 DOI: 10.1556/004.2022.00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/02/2022] [Indexed: 11/19/2022]
Abstract
Stray dogs are inevitably exposed to more infections than owned dogs living indoor. However, no studies have investigated whether the immune system gene expression differs between owned dogs kept in better care conditions and stray dogs living outside. To investigate this, blood samples were taken from 90 dogs (45 owned and 45 stray dogs) that were checked and confirmed as healthy. By using qPCR, the amples were analyzed for the expression of the perforin, granzyme A and granzyme B genes, which are associated with the activation of apoptotic pathways in the immune system. We found that the perforin and granzyme A gene expression levels were higher in stray dogs although the differences were not statistically significant. On the other hand, a 2.81 times higher and a notable difference (P < 0.001) was found in the expression level of granzyme B gene in stray dogs. These results indicate that the immune system in stray dogs might be more prepared for diseases than that of the owned dogs and the granzyme B gene plays a more dominant role in the immune response than granzyme A and perforin.
Collapse
Affiliation(s)
| | - Gonca Sonmez
- 2 Department of Genetics, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
59
|
Rasi V, Hameed OA, Matthey P, Bera S, Grandgenett DP, Salentinig S, Walch M, Hoft DF. Improved Purification of Human Granzyme A/B and Granulysin Using a Mammalian Expression System. Front Immunol 2022; 13:830290. [PMID: 35300343 PMCID: PMC8921980 DOI: 10.3389/fimmu.2022.830290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/08/2022] [Indexed: 01/14/2023] Open
Abstract
Cytotoxic lymphocytes release proteins contained within the cytoplasmic cytolytic granules after recognition of infected or tumor target cells. These cytotoxic granular proteins (namely granzymes, granulysin, and perforin) are key immunological mediators within human cellular immunity. The availability of highly purified cytotoxic proteins has been fundamental for understanding their function in immunity and mechanistic involvement in sepsis and autoimmunity. Methods for recovery of native cytotoxic proteins can be problematic leading to: 1) the co-purification of additional proteins, confounding interpretation of function, and 2) low yields of highly purified proteins. Recombinant protein expression of individual cytolytic components can overcome these challenges. The use of mammalian expression systems is preferred for optimal post-translational modifications and avoidance of endotoxin contamination. Some of these proteins have been proposed for host directed human therapies (e.g. - granzyme A), or treatment of systemic infections or tumors as in granulysin. We report here a novel expression system using HEK293T cells for cost-effective purification of high yields of human granzymes (granzyme A and granzyme B) and granulysin with enhanced biological activity than previous reports. The resulting proteins are free of native contaminants, fold correctly, and remain enzymatically active. Importantly, these improvements have also led to the first purification of biologically active recombinant human granulysin in high yields from a mammalian system. This method can be used as a template for purification of many other secreted cellular proteins and may lead to advances for human medicine.
Collapse
Affiliation(s)
- Valerio Rasi
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States,Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Owais Abdul Hameed
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland,Department of Chemistry, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Patricia Matthey
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Sibes Bera
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Duane P. Grandgenett
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Stefan Salentinig
- Department of Chemistry, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Michael Walch
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland,*Correspondence: Daniel F. Hoft, ; Michael Walch,
| | - Daniel F. Hoft
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States,Department of Internal Medicine, Division of Infectious Diseases, Allergy and Immunology, Saint Louis University School of Medicine, Saint Louis, MO, United States,*Correspondence: Daniel F. Hoft, ; Michael Walch,
| |
Collapse
|
60
|
Tripathi N, Danger R, Chesneau M, Brouard S, Laurent AD. Structural insights into the catalytic mechanism granzyme B upon substrate and inhibitor binding. J Mol Graph Model 2022; 114:108167. [DOI: 10.1016/j.jmgm.2022.108167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
|
61
|
Kawasaki N, Yamashita-Kashima Y, Fujimura T, Yoshiura S, Harada N, Kondoh O, Yoshimura Y. Resistance to obinutuzumab-induced antibody-dependent cellular cytotoxicity caused by abnormal Fas signaling is overcome by combination therapies. Mol Biol Rep 2022; 49:4421-4433. [PMID: 35218445 PMCID: PMC9262784 DOI: 10.1007/s11033-022-07280-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/16/2022] [Indexed: 11/29/2022]
Abstract
Background Obinutuzumab, a Type II anti-CD20 antibody, is used to treat follicular lymphoma. A major mode of action of obinutuzumab is antibody-dependent cellular cytotoxicity (ADCC). Knowledge of the mechanisms of resistance to obinutuzumab is important for the development of next-line strategies to follow obinutuzumab-containing therapy, including obinutuzumab retreatment. Unfortunately, the mechanisms by which tumor cells acquire resistance to ADCC are still poorly understood. To address this, we examined the mechanisms of resistance to obinutuzumab-induced ADCC and the combination efficacy of obinutuzumab and clinically available agents in the established resistant cells. Methods and results We established cells resistant to obinutuzumab-induced ADCC using the non-Hodgkin lymphoma cell line RL and examined their mechanisms of resistance and the combination efficacy of obinutuzumab and clinically available agents. Comprehensive analysis by RNA sequencing of resistance mechanisms revealed that abnormal Fas signaling decreased sensitivity to ADCC in resistant clones. Combination treatment with prednisolone, a component of CHOP and CVP, was found to enhance ADCC sensitivity of RL cells and resistant clones and to significantly suppress tumor growth in xenograft models. Treatment with prednisolone upregulated expression of CD20 and an apoptosis-inducing protein BIM, which might augment perforin/granzyme B-mediated cell death. Furthermore, pretreatment of the effector cells with bendamustine enhanced ADCC activity, and treatment with obinutuzumab plus bendamustine showed significant antitumor efficacy in xenograft models. It was speculated that bendamustine upregulates ADCC activity by potentiating granules-mediated cell killing. Conclusions Our study revealed a novel mechanism underlying obinutuzumab-induced ADCC resistance and indicated that ADCC resistance could be overcome by combining obinutuzumab with prednisolone or bendamustine. This study provides a scientific rationale for obinutuzumab-retreatment in combination with clinically available chemotherapeutic agents for obinutuzumab resistant follicular lymphoma. Supplementary Information The online version contains supplementary material available at 10.1007/s11033-022-07280-w.
Collapse
Affiliation(s)
- Natsumi Kawasaki
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Yoriko Yamashita-Kashima
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan.
| | - Takaaki Fujimura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Shigeki Yoshiura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Naoki Harada
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Osamu Kondoh
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Yasushi Yoshimura
- Product Research Department, Chugai Pharmaceutical Co., Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| |
Collapse
|
62
|
Zhou X, Suo F, Haslinger K, Quax WJ. Artemisinin-Type Drugs in Tumor Cell Death: Mechanisms, Combination Treatment with Biologics and Nanoparticle Delivery. Pharmaceutics 2022; 14:395. [PMID: 35214127 PMCID: PMC8875250 DOI: 10.3390/pharmaceutics14020395] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Artemisinin, the most famous anti-malaria drug initially extracted from Artemisia annua L., also exhibits anti-tumor properties in vivo and in vitro. To improve its solubility and bioavailability, multiple derivatives have been synthesized. However, to reveal the anti-tumor mechanism and improve the efficacy of these artemisinin-type drugs, studies have been conducted in recent years. In this review, we first provide an overview of the effect of artemisinin-type drugs on the regulated cell death pathways, which may uncover novel therapeutic approaches. Then, to overcome the shortcomings of artemisinin-type drugs, we summarize the recent advances in two different therapeutic approaches, namely the combination therapy with biologics influencing regulated cell death, and the use of nanocarriers as drug delivery systems. For the former approach, we discuss the superiority of combination treatments compared to monotherapy in tumor cells based on their effects on regulated cell death. For the latter approach, we give a systematic overview of nanocarrier design principles used to deliver artemisinin-type drugs, including inorganic-based nanoparticles, liposomes, micelles, polymer-based nanoparticles, carbon-based nanoparticles, nanostructured lipid carriers and niosomes. Both approaches have yielded promising findings in vitro and in vivo, providing a strong scientific basis for further study and upcoming clinical trials.
Collapse
Affiliation(s)
| | | | - Kristina Haslinger
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (X.Z.); (F.S.)
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (X.Z.); (F.S.)
| |
Collapse
|
63
|
Musolino A, Gradishar WJ, Rugo HS, Nordstrom JL, Rock EP, Arnaldez F, Pegram MD. Role of Fcγ receptors in HER2-targeted breast cancer therapy. J Immunother Cancer 2022; 10:jitc-2021-003171. [PMID: 34992090 PMCID: PMC8739678 DOI: 10.1136/jitc-2021-003171] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 01/03/2023] Open
Abstract
Several therapeutic monoclonal antibodies (mAbs), including those targeting epidermal growth factor receptor, human epidermal growth factor receptor 2 (HER2), and CD20, mediate fragment crystallizable gamma receptor (FcγR)–dependent activities as part of their mechanism of action. These activities include induction of antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP), which are innate immune mechanisms of cancer cell elimination. FcγRs are distinguished by their affinity for the Fc fragment, cell distribution, and type of immune response they induce. Activating FcγRIIIa (CD16A) on natural killer cells plays a crucial role in mediating ADCC, and activating FcγRIIa (CD32A) and FcγRIIIa on macrophages are important for mediating ADCP. Polymorphisms in FcγRIIIa and FcγRIIa generate variants that bind to the Fc portion of antibodies with different affinities. This results in differential FcγR-mediated activities associated with differential therapeutic outcomes across multiple clinical settings, from early stage to metastatic disease, in patients with HER2+ breast cancer treated with the anti-HER2 mAb trastuzumab. Trastuzumab has, nonetheless, revolutionized HER2+ breast cancer treatment, and several HER2-directed mAbs have been developed using Fc glyco-engineering or Fc protein-engineering to enhance FcγR-mediated functions. An example of an approved anti-HER2 Fc-engineered chimeric mAb is margetuximab, which targets the same epitope as trastuzumab, but features five amino acid substitutions in the IgG 1 Fc domain that were deliberately introduced to increase binding to activating FcγRIIIa and decrease binding to inhibitory FcγRIIb (CD32B). Margetuximab enhances Fc-dependent ADCC in vitro more potently than the combination of pertuzumab (another approved mAb directed against an alternate HER2 epitope) and trastuzumab. Margetuximab administration also enhances HER2-specific B cell and T cell–mediated responses ex vivo in samples from patients treated with prior lines of HER2 antibody-based therapies. Stemming from these observations, a worthwhile future goal in the treatment of HER2+ breast cancer is to promote combinatorial approaches that better eradicate HER2+ cancer cells via enhanced immunological mechanisms.
Collapse
Affiliation(s)
- Antonino Musolino
- Department of Medicine and Surgery, University Hospital of Parma, Medical Oncology and Breast Unit, Parma, Italy
| | - William J Gradishar
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois, USA
| | - Hope S Rugo
- Helen Diller Family Comprehensive Cancer Center, Breast Oncology and Clinical Trials Education, University of California San Francisco, San Francisco, California, USA
| | | | | | | | - Mark D Pegram
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
64
|
Uranga-Murillo I, Morte E, Hidalgo S, Pesini C, García-Mulero S, Sierra JL, Santiago L, Arias M, De Miguel D, Encabo-Berzosa MDM, Gracia-Tello B, Sanz-Pamplona R, Martinez-Lostao L, Galvez EM, Paño-Pardo JR, Ramirez-Labrada A, Pardo J. Integrated analysis of circulating immune cellular and soluble mediators reveals specific COVID19 signatures at hospital admission with utility for prediction of clinical outcomes. Theranostics 2022; 12:290-306. [PMID: 34987646 PMCID: PMC8690910 DOI: 10.7150/thno.63463] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/28/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID19), caused by SARS-CoV-2, is a complex disease, with a variety of clinical manifestations ranging from asymptomatic infection or mild cold-like symptoms to more severe cases requiring hospitalization and critical care. The most severe presentations seem to be related with a delayed, deregulated immune response leading to exacerbated inflammation and organ damage with close similarities to sepsis. Methods: In order to improve the understanding on the relation between host immune response and disease course, we have studied the differences in the cellular (monocytes, CD8+ T and NK cells) and soluble (cytokines, chemokines and immunoregulatory ligands) immune response in blood between Healthy Donors (HD), COVID19 and a group of patients with non-COVID19 respiratory tract infections (NON-COV-RTI). In addition, the immune response profile has been analyzed in COVID19 patients according to disease severity. Results: In comparison to HDs and patients with NON-COV-RTI, COVID19 patients show a heterogeneous immune response with the presence of both activated and exhausted CD8+ T and NK cells characterised by the expression of the immune checkpoint LAG3 and the presence of the adaptive NK cell subset. An increased frequency of adaptive NK cells and a reduction of NK cells expressing the activating receptors NKp30 and NKp46 correlated with disease severity. Although both activated and exhausted NK cells expressing LAG3 were increased in moderate/severe cases, unsupervised cell clustering analyses revealed a more complex scenario with single NK cells expressing more than one immune checkpoint (PD1, TIM3 and/or LAG3). A general increased level of inflammatory cytokines and chemokines was found in COVID19 patients, some of which like IL18, IL1RA, IL36B and IL31, IL2, IFNα and TNFα, CXCL10, CCL2 and CCL8 were able to differentiate between COVID19 and NON-COV-RTI and correlated with bad prognosis (IL2, TNFα, IL1RA, CCL2, CXCL10 and CXCL9). Notably, we found that soluble NKG2D ligands from the MIC and ULBPs families were increased in COVID19 compared to NON-COV-RTI and correlated with disease severity. Conclusions: Our results provide a detailed comprehensive analysis of the presence of activated and exhausted CD8+T, NK and monocyte cell subsets as well as extracellular inflammatory factors beyond cytokines/chemokines, specifically associated to COVID19. Importantly, multivariate analysis including clinical, demographical and immunological experimental variables have allowed us to reveal specific immune signatures to i) differentiate COVID19 from other infections and ii) predict disease severity and the risk of death.
Collapse
|
65
|
Kondo A, Ma S, Lee MYY, Ortiz V, Traum D, Schug J, Wilkins B, Terry NA, Lee H, Kaestner KH. Highly Multiplexed Image Analysis of Intestinal Tissue Sections in Patients With Inflammatory Bowel Disease. Gastroenterology 2021; 161:1940-1952. [PMID: 34529988 PMCID: PMC8606000 DOI: 10.1053/j.gastro.2021.08.055] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/23/2021] [Accepted: 08/27/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND & AIMS Significant progress has been made since the first report of inflammatory bowel disease (IBD) in 1859, after decades of research that have contributed to the understanding of the genetic and environmental factors involved in IBD pathogenesis. Today, a range of treatments is available for directed therapy, mostly targeting the overactive immune response. However, the mechanisms by which the immune system contributes to disease pathogenesis and progression are not fully understood. One challenge hindering IBD research is the heterogeneous nature of the disease and the lack of understanding of how immune cells interact with one another in the gut mucosa. Introduction of a technology that enables expansive characterization of the inflammatory environment of human IBD tissues may address this gap in knowledge. METHODS We used the imaging mass cytometry platform to perform highly multiplex image analysis of IBD and healthy deidentified intestine sections (6 Crohn's disease compared to 6 control ileum; 6 ulcerative colitis compared to 6 control colon). The acquired images were graded for inflammation severity by analysis of adjacent H&E tissue sections. We assigned more than 300,000 cells to unique cell types and performed analyses of tissue integrity, epithelial activity, and immune cell composition. RESULTS The intestinal epithelia of patients with IBD exhibited increased proliferation rates and expression of HLA-DR compared to control tissues, and both features were positively correlated with the severity of inflammation. The neighborhood analysis determined enrichment of regulatory T cell interactions with CD68+ macrophages, CD4+ T cells, and plasma cells in both forms of IBD, whereas activated lysozyme C+ macrophages were preferred regulatory T cell neighbors in Crohn's disease but not ulcerative colitis. CONCLUSIONS Altogether, our study shows the power of imaging mass cytometry and its ability to both quantify immune cell types and characterize their spatial interactions within the inflammatory environment by a single analysis platform.
Collapse
Affiliation(s)
- Ayano Kondo
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Siyuan Ma
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michelle Y. Y. Lee
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivian Ortiz
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Department of Gastroenterology and Hepatology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia PA
| | - Daniel Traum
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Schug
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin Wilkins
- Department of Pathology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Hongzhe Lee
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Klaus H. Kaestner
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
66
|
Zhao S, Duan J, Lou Y, Gao R, Yang S, Wang P, Wang C, Han L, Li M, Ma C, Liang X, Liu H, Sang Y, Gao L. Surface specifically modified NK-92 cells with CD56 antibody conjugated superparamagnetic Fe 3O 4 nanoparticles for magnetic targeting immunotherapy of solid tumors. NANOSCALE 2021; 13:19109-19122. [PMID: 34766615 DOI: 10.1039/d1nr03329h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although there has been significant progress in the development of tumor immunotherapies, many challenges still exist for the treatment of solid tumors. Natural killer (NK) cells possess broad-spectrum cytotoxicity against tumors, but their limited migration and infiltration abilities restrict their application in solid tumor therapies. Here, we combined a facile and efficient magnetic-targeting strategy with NK cell-based therapy to develop a novel immunotherapy approach for treating solid tumors. Anti-CD56 antibodies were conjugated with Fe3O4 nanoparticles, which could specifically bind with NK-92 cells endowing them with a magnetic field driven targeting ability. These NK-Fe3O4 biohybrid nanoparticles were able to facilitate directional migration to the tumor site in vivo under external magnetic field guidance and efficiently inhibit tumor growth. These functionalized NK cells represent a novel approach for solid tumor therapy and may provide a promising modality for cancer interventions in the future.
Collapse
Affiliation(s)
- Songbo Zhao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China.
| | - Jiazhi Duan
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P.R. China.
| | - Yalin Lou
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China.
| | - Ruyun Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China.
| | - Shanshan Yang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China.
| | - Piming Wang
- Department of Clinical Laboratory, Shandong Provincial Corps Hospital of Chinese People's Armed Police Force, Jinan, Shandong, 250100, P.R. China
| | - Chunhua Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266000, P.R. China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266000, P.R. China
| | - Minghuan Li
- Shandong Institute of cancer prevention and treatment, Jinan, Shandong, 250117, P.R. China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China.
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China.
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P.R. China.
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P.R. China.
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity, and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China.
| |
Collapse
|
67
|
Kadin ME, Morgan J, Xu H, Glicksman C, Sieber D, Adams WP, McGuire P, Clemens MW, Thakur A, Lum LG. Granzyme B Is a Biomarker for Suspicion of Malignant Seromas Around Breast Implants. Aesthet Surg J 2021; 41:1359-1364. [PMID: 33165542 DOI: 10.1093/asj/sjaa302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Granzyme B (GrB) is a serine protease secreted, along with pore-forming perforin, by cytotoxic lymphocytes to mediate apoptosis in target cells. GrB has been detected in tumor cells associated with systemic and breast implant-associated anaplastic large cell lymphoma (BIA-ALCL) but its potential use for detection of early BIA-ALCL has not been fully investigated. OBJECTIVES Prompted by the increased incidence of BIA-ALCL, the aim of this study was to assess GrB as a new biomarker to detect early disease in malignant seromas and to better understand the nature of the neoplastic cell. METHODS A Human XL Cytokine Discovery Magnetic Luminex 45-plex Fixed Panel Performance Assay was used to compare cytokine levels in cell culture supernatants of BIA-ALCL and other T-cell lymphomas, as well as malignant and benign seromas surrounding breast implants. Immunohistochemistry was employed to localize GrB to cells in seromas and capsular infiltrates. RESULTS Differences in GrB concentrations between malignant and benign seromas were significant (P < 0.001). GrB was found in and around apoptotic tumor cells, suggesting that the protease may be involved in tumor cell death. CONCLUSIONS GrB is a useful marker for early detection of malignant seromas and to identify tumor cells in seromas and capsular infiltrates. Because there is an overlap between the lowest concentrations of soluble GrB in malignant seromas and the highest concentrations of GrB in benign seromas, it is recommended that GrB be used only as part of a panel of biomarkers for the screening and early detection of BIA-ALCL. LEVEL OF EVIDENCE: 5
Collapse
Affiliation(s)
- Marshall E Kadin
- pathology and laboratory medicine (research), Brown University Alpert Medical School, Providence, RI, USA
| | - John Morgan
- director of the Research Core Facility, Roger Williams Medical Center, Providence, RI, USA
| | - Haiying Xu
- Roger Williams Medical Center, Providence, RI, USA
| | | | | | - William P Adams
- Department of Plastic Surgery, University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Pat McGuire
- Parkcrest Plastic Surgery, St Louis, MO, USA
| | - Mark W Clemens
- Department of Plastic Surgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Archana Thakur
- University of Virginia Cancer Center, Charlottesville, VA, USA
| | - Lawrence G Lum
- University of Virginia Cancer Center, Charlottesville, VA, USA
| |
Collapse
|
68
|
Lavergne M, Hernández-Castañeda MA, Mantel PY, Martinvalet D, Walch M. Oxidative and Non-Oxidative Antimicrobial Activities of the Granzymes. Front Immunol 2021; 12:750512. [PMID: 34707614 PMCID: PMC8542974 DOI: 10.3389/fimmu.2021.750512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/23/2021] [Indexed: 01/11/2023] Open
Abstract
Cell-mediated cytotoxicity is an essential immune defense mechanism to fight against viral, bacterial or parasitic infections. Upon recognition of an infected target cell, killer lymphocytes form an immunological synapse to release the content of their cytotoxic granules. Cytotoxic granules of humans contain two membrane-disrupting proteins, perforin and granulysin, as well as a homologous family of five death-inducing serine proteases, the granzymes. The granzymes, after delivery into infected host cells by the membrane disrupting proteins, may contribute to the clearance of microbial pathogens through different mechanisms. The granzymes can induce host cell apoptosis, which deprives intracellular pathogens of their protective niche, therefore limiting their replication. However, many obligate intracellular pathogens have evolved mechanisms to inhibit programed cells death. To overcome these limitations, the granzymes can exert non-cytolytic antimicrobial activities by directly degrading microbial substrates or hijacked host proteins crucial for the replication or survival of the pathogens. The granzymes may also attack factors that mediate microbial virulence, therefore directly affecting their pathogenicity. Many mechanisms applied by the granzymes to eliminate infected cells and microbial pathogens rely on the induction of reactive oxygen species. These reactive oxygen species may be directly cytotoxic or enhance death programs triggered by the granzymes. Here, in the light of the latest advances, we review the antimicrobial activities of the granzymes in regards to their cytolytic and non-cytolytic activities to inhibit pathogen replication and invasion. We also discuss how reactive oxygen species contribute to the various antimicrobial mechanisms exerted by the granzymes.
Collapse
Affiliation(s)
- Marilyne Lavergne
- Department of Oncology, Microbiology and Immunology, Anatomy Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Maria Andrea Hernández-Castañeda
- Division Infectious Disease and International Medicine, Department of Medicine, Center for Immunology, Minneapolis, MN, United States
| | - Pierre-Yves Mantel
- Department of Oncology, Microbiology and Immunology, Anatomy Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Denis Martinvalet
- Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Biomedical Sciences, University of Padua, Padova, Italy
| | - Michael Walch
- Department of Oncology, Microbiology and Immunology, Anatomy Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
69
|
Draghi A, Chamberlain CA, Khan S, Papp K, Lauss M, Soraggi S, Radic HD, Presti M, Harbst K, Gokuldass A, Kverneland A, Nielsen M, Westergaard MCW, Andersen MH, Csabai I, Jönsson G, Szallasi Z, Svane IM, Donia M. Rapid Identification of the Tumor-Specific Reactive TIL Repertoire via Combined Detection of CD137, TNF, and IFNγ, Following Recognition of Autologous Tumor-Antigens. Front Immunol 2021; 12:705422. [PMID: 34707600 PMCID: PMC8543011 DOI: 10.3389/fimmu.2021.705422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
Detecting the entire repertoire of tumor-specific reactive tumor-infiltrating lymphocytes (TILs) is essential for investigating their immunological functions in the tumor microenvironment. Current in vitro assays identifying tumor-specific functional activation measure the upregulation of surface molecules, de novo production of antitumor cytokines, or mobilization of cytotoxic granules following recognition of tumor-antigens, yet there is no widely adopted standard method. Here we established an enhanced, yet simple, method for identifying simultaneously CD8+ and CD4+ tumor-specific reactive TILs in vitro, using a combination of widely known and available flow cytometry assays. By combining the detection of intracellular CD137 and de novo production of TNF and IFNγ after recognition of naturally-presented tumor antigens, we demonstrate that a larger fraction of tumor-specific and reactive CD8+ TILs can be detected in vitro compared to commonly used assays. This assay revealed multiple polyfunctionality-based clusters of both CD4+ and CD8+ tumor-specific reactive TILs. In situ, the combined detection of TNFRSF9, TNF, and IFNG identified most of the tumor-specific reactive TIL repertoire. In conclusion, we describe a straightforward method for efficient identification of the tumor-specific reactive TIL repertoire in vitro, which can be rapidly adopted in most cancer immunology laboratories.
Collapse
Affiliation(s)
- Arianna Draghi
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Christopher Aled Chamberlain
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Shawez Khan
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Krisztian Papp
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Martin Lauss
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Samuele Soraggi
- Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
| | - Haja Dominike Radic
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Mario Presti
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Katja Harbst
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Lund University Cancer Centre, Lund University, Lund, Sweden
| | - Aishwarya Gokuldass
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Anders Kverneland
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Morten Nielsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Mads Hald Andersen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Istvan Csabai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Göran Jönsson
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
- Lund University Cancer Centre, Lund University, Lund, Sweden
| | | | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
70
|
Mbanefo EC, Yan M, Kang M, Alhakeem SA, Jittayasothorn Y, Yu CR, Parihar A, Singh S, Egwuagu CE. STAT3-Specific Single Domain Nanobody Inhibits Expansion of Pathogenic Th17 Responses and Suppresses Uveitis in Mice. Front Immunol 2021; 12:724609. [PMID: 34603297 PMCID: PMC8479182 DOI: 10.3389/fimmu.2021.724609] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/23/2021] [Indexed: 01/03/2023] Open
Abstract
STAT3 activates transcription of genes that regulate cell growth, differentiation, and survival of mammalian cells. Genetic deletion of Stat3 in T cells has been shown to abrogate Th17 differentiation, suggesting that STAT3 is a potential therapeutic target for Th17-mediated diseases. However, a major impediment to therapeutic targeting of intracellular proteins such as STAT3 is the lack of efficient methods for delivering STAT3 inhibitors into cells. In this study, we developed a novel antibody (SBT-100) comprised of the variable (V) region of a STAT3-specific heavy chain molecule and demonstrate that this 15 kDa STAT3-specific nanobody enters human and mouse cells, and induced suppression of STAT3 activation and lymphocyte proliferation in a concentration-dependent manner. To investigate whether SBT-100 would be effective in suppressing inflammation in vivo, we induced experimental autoimmune uveitis (EAU) in C57BL/6J mice by active immunization with peptide from the ocular autoantigen, interphotoreceptor retinoid binding protein (IRBP651-670). Analysis of the retina by fundoscopy, histological examination, or optical coherence tomography showed that treatment of the mice with SBT-100 suppressed uveitis by inhibiting expansion of pathogenic Th17 cells that mediate EAU. Electroretinographic (ERG) recordings of dark and light adapted a- and b-waves showed that SBT-100 treatment rescued mice from developing significant visual impairment observed in untreated EAU mice. Adoptive transfer of activated IRBP-specific T cells from untreated EAU mice induced EAU, while EAU was significantly attenuated in mice that received IRBP-specific T cells from SBT-100 treated mice. Taken together, these results demonstrate efficacy of SBT-100 in mice and suggests its therapeutic potential for human autoimmune diseases.
Collapse
Affiliation(s)
- Evaristus C Mbanefo
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Ming Yan
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Minkyung Kang
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Sahar A Alhakeem
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yingyos Jittayasothorn
- Immunoregulation Section, Laboratory of Immunology, NEI, NIH, Bethesda, MD, United States
| | - Cheng-Rong Yu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD, United States
| | | | | | - Charles E Egwuagu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
71
|
Ferreira CA, Heidari P, Ataeinia B, Sinevici N, Sise ME, Colvin RB, Wehrenberg-Klee E, Mahmood U. Non-invasive Detection of Immunotherapy-Induced Adverse Events. Clin Cancer Res 2021; 27:5353-5364. [PMID: 34253581 PMCID: PMC8752648 DOI: 10.1158/1078-0432.ccr-20-4641] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/27/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Cancer immunotherapy has markedly improved the prognosis of patients with a broad variety of malignancies. However, benefits are weighed against unique toxicities, with immune-related adverse events (irAE) that are frequent and potentially life-threatening. The diagnosis and management of these events are challenging due to heterogeneity of timing onset, multiplicity of affected organs, and lack of non-invasive monitoring techniques. We demonstrate the use of a granzyme B-targeted PET imaging agent (GZP) for irAE identification in a murine model. EXPERIMENTAL DESIGN We generated a model of immunotherapy-induced adverse events in Foxp3-DTR-GFP mice bearing MC38 tumors. GZP PET imaging was performed to evaluate organs non-invasively. We validated imaging with ex vivo analysis, correlating the establishment of these events with the presence of immune infiltrates and granzyme B upregulation in tissue. To demonstrate the clinical relevance of our findings, the presence of granzyme B was identified through immunofluorescence staining in tissue samples of patients with confirmed checkpoint inhibitor-associated adverse events. RESULTS GZP PET imaging revealed differential uptake in organs affected by irAEs, such as colon, spleen, and kidney, which significantly diminished after administration of the immunosuppressor dexamethasone. The presence of granzyme B and immune infiltrates were confirmed histologically and correlated with significantly higher uptake in PET imaging. The presence of granzyme B was also confirmed in samples from patients that presented with clinical irAEs. CONCLUSIONS We demonstrate an interconnection between the establishment of irAEs and granzyme B presence and, for the first time, the visualization of those events through PET imaging.
Collapse
Affiliation(s)
| | - Pedram Heidari
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Bahar Ataeinia
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Nicoleta Sinevici
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| | - Meghan E. Sise
- Department of Medicine, Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts
| | - Robert B. Colvin
- Department of Pathology and Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
72
|
The role of CD8 + Granzyme B + T cells in the pathogenesis of Takayasu's arteritis. Clin Rheumatol 2021; 41:167-176. [PMID: 34494213 DOI: 10.1007/s10067-021-05903-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/11/2021] [Accepted: 09/01/2021] [Indexed: 01/26/2023]
Abstract
OBJECTIVE T cell-mediated immune response plays a key role in Takayasu arteritis (TAK). Although previous studies have showed the roles of CD4+T cell and its subsets in TAK, the change of CD8+ T cell subsets remains unclear. This study investigated the role of CD8+ T cell subsets in TAK. METHODS The study consisted of 56 TA patients and 51 healthy controls. The percentages of CD8+T cells, CD8+GranzymeB+ T cells, CD8+Perforin+ T cells, and CD8+IFN-γ+ T cells in blood samples were analyzed by flow cytometry. RESULTS We found that the percentages of CD8+GranzymeB+ T cells (P = 0.030), CD8+Perforin+ T cells (P = 0.000), and CD8+IFN-γ+ T cells (P = 0.002) in CD8+T cells were higher in TAK patients compared to control group. After 6 months of treatment, the proportion of CD8+T cells in lymphocytes were significantly lower in TAK patients than the baseline assessment (P = 0.033). A lower ratio of CD8+GranzymeB+ T cells/CD8+ T cells were showed in TAK patents after treatment compared with TAK patients before treatments (P = 0.011). The change of CD8+GranzymeB+ T cells/CD8+ T cells ratio was positively correlated with the change of ITAS (r = 0.721, P = 0.002) and ITAS-A (r = 0.637, P = 0.008). Finally, the immunofluorescence staining showed the infiltration of CD8+ Granzyme B + cells in the aortic tissue of TAK patients. CONCLUSION Our results disclose that the CD8+ T lymphocytes may play a role in TAK pathogenesis. Targeting CD8+GranzymeB+ T lymphocytes or Granzyme B inhibitors could be a potential therapeutic approach for the treatment of TAK. Key Points • Our study investigated role the of CD8+ T cell subsets in TAK. • We found the percentages of CD8+GranzymeB+ T cells, CD8+Perforin+ T cells, and CD8+IFN-γ+ T cells in CD3+CD8+T cells were higher in TAK patients. • The proportion of CD8+T cells in lymphocytes and the ratio of CD8+GranzymeB+ T cells/CD8+ T cells were significantly lower in TAK patients after treatment.
Collapse
|
73
|
Granzyme B prevents aberrant IL-17 production and intestinal pathogenicity in CD4 + T cells. Mucosal Immunol 2021; 14:1088-1099. [PMID: 34183776 PMCID: PMC8380717 DOI: 10.1038/s41385-021-00427-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 05/06/2021] [Accepted: 06/14/2021] [Indexed: 02/04/2023]
Abstract
CD4+ T cell activation and differentiation are important events that set the stage for proper immune responses. Many factors are involved in the activation and differentiation of T cells, and these events are tightly controlled to prevent unwanted and/or exacerbated immune responses that may harm the host. It has been well-documented that granzyme B, a potent serine protease involved in cell-mediated cytotoxicity, is readily expressed by certain CD4+ T cells, such as regulatory T cells and CD4+CD8αα+ intestinal intraepithelial lymphocytes, both of which display cytotoxicity associated with granzyme B. However, because not all CD4+ T cells expressing granzyme B are cytotoxic, additional roles for this protease in CD4+ T cell biology remain unknown. Here, using a combination of in vivo and in vitro approaches, we report that granzyme B-deficient CD4+ T cells display increased IL-17 production. In the adoptive transfer model of intestinal inflammation, granzyme B-deficient CD4+ T cells triggered a more rapid disease onset than their WT counterparts, and presented a differential transcription profile. Similar results were also observed in granzyme B-deficient mice infected with Citrobacter rodentium. Our results suggest that granzyme B modulates CD4+ T cell differentiation, providing a new perspective into the biology of this enzyme.
Collapse
|
74
|
Totzeck A, Ramakrishnan E, Schlag M, Stolte B, Kizina K, Bolz S, Thimm A, Stettner M, Marchesi JR, Buer J, Kleinschnitz C, Verhasselt HL, Hagenacker T. Gut bacterial microbiota in patients with myasthenia gravis: results from the MYBIOM study. Ther Adv Neurol Disord 2021; 14:17562864211035657. [PMID: 34394728 PMCID: PMC8361534 DOI: 10.1177/17562864211035657] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Myasthenia gravis (MG) is an autoimmune neuromuscular disease, with gut microbiota considered to be a pathogenetic factor. Previous pilot studies have found differences in the gut microbiota of patients with MG and healthy individuals. To determine whether gut microbiota has a pathogenetic role in MG, we compared the gut microbiota of patients with MG with that of patients with non-inflammatory and inflammatory neurological disorders of the peripheral nervous system (primary endpoint) and healthy volunteers (secondary endpoint). Methods: Faecal samples were collected from patients with MG (n = 41), non-inflammatory neurological disorder (NIND, n = 18), chronic inflammatory demyelinating polyradiculoneuropathy (CIDP, n = 6) and healthy volunteers (n = 12). DNA was isolated from these samples, and the variable regions of the 16S rRNA gene were sequenced and statistically analysed. Results: No differences were found in alpha- and beta-diversity indices computed between the MG, NIND and CIDP groups, indicating an unaltered bacterial diversity and structure of the microbial community. However, the alpha-diversity indices, namely Shannon, Chao 1 and abundance-based coverage estimators, were significantly reduced between the MG group and healthy volunteers. Deltaproteobacteria and Faecalibacterium were abundant within the faecal microbiota of patients with MG compared with controls with non-inflammatory diseases. Conclusion: Although the overall diversity and structure of the gut microbiota did not differ between the MG, NIND and CIDP groups, the significant difference in the abundance of Deltaproteobacteria and Faecalibacterium supports the possible role of gut microbiota as a contributor to pathogenesis of MG. Further studies are needed to confirm these findings and to develop possible treatment strategies.
Collapse
Affiliation(s)
- Andreas Totzeck
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr 55, Essen, 45147, Germany
| | - Elakiya Ramakrishnan
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melina Schlag
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Benjamin Stolte
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Kizina
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Saskia Bolz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Andreas Thimm
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Mark Stettner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Julian R Marchesi
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Hedda Luise Verhasselt
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Tim Hagenacker
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
75
|
Perišić Nanut M, Pawelec G, Kos J. Human CD4+ T-Cell Clone Expansion Leads to the Expression of the Cysteine Peptidase Inhibitor Cystatin F. Int J Mol Sci 2021; 22:8408. [PMID: 34445118 PMCID: PMC8395124 DOI: 10.3390/ijms22168408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 01/12/2023] Open
Abstract
The existence of CD4+ cytotoxic T cells (CTLs) at relatively high levels under different pathological conditions in vivo suggests their role in protective and/or pathogenic immune functions. CD4+ CTLs utilize the fundamental cytotoxic effector mechanisms also utilized by CD8+ CTLs and natural killer cells. During long-term cultivation, CD4+ T cells were also shown to acquire cytotoxic functions. In this study, CD4+ human T-cell clones derived from activated peripheral blood lymphocytes of healthy young adults were examined for the expression of cytotoxic machinery components. Cystatin F is a protein inhibitor of cysteine cathepsins, synthesized by CD8+ CTLs and natural killer cells. Cystatin F affects the cytotoxic efficacy of these cells by inhibiting the major progranzyme convertases cathepsins C and H as well as cathepsin L, which is involved in perforin activation. Here, we show that human CD4+ T-cell clones express the cysteine cathepsins that are involved in the activation of granzymes and perforin. CD4+ T-cell clones contained both the inactive, dimeric form as well as the active, monomeric form of cystatin F. As in CD8+ CTLs, cysteine cathepsins C and H were the major targets of cystatin F in CD4+ T-cell clones. Furthermore, CD4+ T-cell clones expressed the active forms of perforin and granzymes A and B. The levels of the cystatin F decreased with time in culture concomitantly with an increase in the activities of granzymes A and B. Therefore, our results suggest that cystatin F plays a role in regulating CD4+ T cell cytotoxicity. Since cystatin F can be secreted and taken up by bystander cells, our results suggest that CD4+ CTLs may also be involved in regulating immune responses through cystatin F secretion.
Collapse
Affiliation(s)
- Milica Perišić Nanut
- Department of Biotechnology, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
| | - Graham Pawelec
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15/3.008, 72076 Tübingen, Germany;
- Health Sciences North Research Institute, 56 Walford Rd, Sudbury, ON P3E 2H2, Canada
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia;
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
76
|
Affiliation(s)
- Huiling Wang
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| | - Yong Huang
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| | - Jian He
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| | - Liping Zhong
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| | - Yongxiang Zhao
- Guangxi Key Laboratory of Bio‐targeting Theranostics National Center for International Research of Bio‐targeting Theranostics Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy Guangxi Medical University Nanning China
| |
Collapse
|
77
|
Castleman MJ, Dillon SM, Thompson TA, Santiago ML, McCarter MD, Barker E, Wilson CC. Gut Bacteria Induce Granzyme B Expression in Human Colonic ILC3s In Vitro in an IL-15-Dependent Manner. THE JOURNAL OF IMMUNOLOGY 2021; 206:3043-3052. [PMID: 34117105 DOI: 10.4049/jimmunol.2000239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/13/2021] [Indexed: 12/13/2022]
Abstract
Group 3 innate lymphoid cells (ILC3s) in the gut mucosa have long been thought to be noncytotoxic lymphocytes that are critical for homeostasis of intestinal epithelial cells through secretion of IL-22. Recent work using human tonsillar cells demonstrated that ILC3s exposed to exogenous inflammatory cytokines for a long period of time acquired expression of granzyme B, suggesting that under pathological conditions ILC3s may become cytotoxic. We hypothesized that inflammation associated with bacterial exposure might trigger granzyme B expression in gut ILC3s. To test this, we exposed human colon lamina propria mononuclear cells to a panel of enteric bacteria. We found that the Gram-negative commensal and pathogenic bacteria induced granzyme B expression in a subset of ILC3s that were distinct from IL-22-producing ILC3s. A fraction of granzyme B+ ILC3s coexpressed the cytolytic protein perforin. Granzyme B expression was mediated, in part, by IL-15 produced upon exposure to bacteria. ILC3s coexpressing all three IL-15R subunits (IL15Rα/β/γ) increased following bacterial stimulation, potentially allowing for cis presentation of IL-15 during bacterial exposure. Additionally, a large frequency of colonic myeloid dendritic cells expressed IL-15Rα, implicating myeloid dendritic cells in trans presentation of IL-15 to ILC3s. Tonsillar ILC3s minimally expressed granzyme B when exposed to the same bacteria or to rIL-15. Overall, these data establish the novel, to our knowledge, finding that human colonic ILC3s can express granzyme B in response to a subset of enteric bacteria through a process mediated by IL-15. These observations raise new questions about the multifunctional role of human gut ILC3s.
Collapse
Affiliation(s)
- Moriah J Castleman
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Stephanie M Dillon
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Tezha A Thompson
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Mario L Santiago
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Martin D McCarter
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO; and
| | - Edward Barker
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL
| | - Cara C Wilson
- Division of Infectious Disease, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO;
| |
Collapse
|
78
|
Li S, van Dijk CGM, Meeldijk J, Kok HM, Blommestein I, Verbakel ALF, Kotte M, Broekhuizen R, Laclé MM, Goldschmeding R, Cheng C, Bovenschen N. Extracellular Granzyme K Modulates Angiogenesis by Regulating Soluble VEGFR1 Release From Endothelial Cells. Front Oncol 2021; 11:681967. [PMID: 34178673 PMCID: PMC8220216 DOI: 10.3389/fonc.2021.681967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/19/2021] [Indexed: 01/02/2023] Open
Abstract
Angiogenesis is crucial for normal development and homeostasis, but also plays a role in many diseases including cardiovascular diseases, autoimmune diseases, and cancer. Granzymes are serine proteases stored in the granules of cytotoxic cells, and have predominantly been studied for their pro-apoptotic role upon delivery in target cells. A growing body of evidence is emerging that granzymes also display extracellular functions, which largely remain unknown. In the present study, we show that extracellular granzyme K (GrK) inhibits angiogenesis and triggers endothelial cells to release soluble VEGFR1 (sVEGFR1), a decoy receptor that inhibits angiogenesis by sequestering VEGF-A. GrK does not cleave off membrane-bound VEGFR1 from the cell surface, does not release potential sVEGFR1 storage pools from endothelial cells, and does not trigger sVEGFR1 release via protease activating receptor-1 (PAR-1) activation. GrK induces de novo sVEGFR1 mRNA and protein expression and subsequent release of sVEGFR1 from endothelial cells. GrK protein is detectable in human colorectal tumor tissue and its levels positively correlate with sVEGFR1 protein levels and negatively correlate with T4 intratumoral angiogenesis and tumor size. In conclusion, extracellular GrK can inhibit angiogenesis via secretion of sVEGFR1 from endothelial cells, thereby sequestering VEGF-A and impairing VEGFR signaling. Our observation that GrK positively correlates with sVEGFR1 and negatively correlates with angiogenesis in colorectal cancer, suggest that the GrK-sVEGFR1-angiogenesis axis may be a valid target for development of novel anti-angiogenic therapies in cancer.
Collapse
Affiliation(s)
- Shuang Li
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Christian G M van Dijk
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jan Meeldijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Helena M Kok
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Isabelle Blommestein
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Annick L F Verbakel
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marit Kotte
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Roel Broekhuizen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Miangela M Laclé
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
79
|
Allam M, Hu T, Cai S, Laxminarayanan K, Hughley RB, Coskun AF. Spatially visualized single-cell pathology of highly multiplexed protein profiles in health and disease. Commun Biol 2021; 4:632. [PMID: 34045665 PMCID: PMC8160218 DOI: 10.1038/s42003-021-02166-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/29/2021] [Indexed: 11/08/2022] Open
Abstract
Deep molecular profiling of biological tissues is an indicator of health and disease. We used imaging mass cytometry (IMC) to acquire spatially resolved 20-plex protein data in tissue sections from normal and chronic tonsillitis cases. We present SpatialViz, a suite of algorithms to explore spatial relationships in multiplexed tissue images by visualizing and quantifying single-cell granularity and anatomical complexity in diverse multiplexed tissue imaging data. Single-cell and spatial maps confirmed that CD68+ cells were correlated with the enhanced Granzyme B expression and CD3+ cells exhibited enrichment of CD4+ phenotype in chronic tonsillitis. SpatialViz revealed morphological distributions of cellular organizations in distinct anatomical areas, spatially resolved single-cell associations across anatomical categories, and distance maps between the markers. Spatial topographic maps showed the unique organization of different tissue layers. The spatial reference framework generated network-based comparisons of multiplex data from healthy and diseased tonsils. SpatialViz is broadly applicable to multiplexed tissue biology.
Collapse
Affiliation(s)
- Mayar Allam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Thomas Hu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shuangyi Cai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Krishnan Laxminarayanan
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert B Hughley
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
80
|
Bouwman AC, van Daalen KR, Crnko S, Ten Broeke T, Bovenschen N. Intracellular and Extracellular Roles of Granzyme K. Front Immunol 2021; 12:677707. [PMID: 34017346 PMCID: PMC8129556 DOI: 10.3389/fimmu.2021.677707] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022] Open
Abstract
Granzymes are a family of serine proteases stored in granules inside cytotoxic cells of the immune system. Granzyme K (GrK) has been only limitedly characterized and knowledge on its molecular functions is emerging. Traditionally GrK is described as a granule-secreted, pro-apoptotic serine protease. However, accumulating evidence is redefining the functions of GrK by the discovery of novel intracellular (e.g. cytotoxicity, inhibition of viral replication) and extracellular roles (e.g. endothelial activation and modulation of a pro-inflammatory immune cytokine response). Moreover, elevated GrK levels are associated with disease, including viral and bacterial infections, airway inflammation and thermal injury. This review aims to summarize and discuss the current knowledge of i) intracellular and extracellular GrK activity, ii) cytotoxic and non-cytotoxic GrK functioning, iii) the role of GrK in disease, and iv) GrK as a potential therapeutic target.
Collapse
Affiliation(s)
- Annemieke C Bouwman
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Kim R van Daalen
- Cardiovascular Epidemiology Unit, Department of Public Health & Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Sandra Crnko
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Toine Ten Broeke
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
81
|
Egwuagu CE, Alhakeem SA, Mbanefo EC. Uveitis: Molecular Pathogenesis and Emerging Therapies. Front Immunol 2021; 12:623725. [PMID: 33995347 PMCID: PMC8119754 DOI: 10.3389/fimmu.2021.623725] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/30/2021] [Indexed: 12/28/2022] Open
Abstract
The profound impact that vision loss has on human activities and quality of life necessitates understanding the etiology of potentially blinding diseases and their clinical management. The unique anatomic features of the eye and its sequestration from peripheral immune system also provides a framework for studying other diseases in immune privileged sites and validating basic immunological principles. Thus, early studies of intraocular inflammatory diseases (uveitis) were at the forefront of research on organ transplantation. These studies laid the groundwork for foundational discoveries on how immune system distinguishes self from non-self and established current concepts of acquired immune tolerance and autoimmunity. Our charge in this review is to examine how advances in molecular cell biology and immunology over the past 3 decades have contributed to the understanding of mechanisms that underlie immunopathogenesis of uveitis. Particular emphasis is on how advances in biotechnology have been leveraged in developing biologics and cell-based immunotherapies for uveitis and other neuroinflammatory diseases.
Collapse
Affiliation(s)
- Charles E Egwuagu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD, United States
| | - Sahar A Alhakeem
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD, United States.,Department of Biomedical Sciences, College of Health Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States
| | - Evaristus C Mbanefo
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
82
|
Wang W, Zou R, Qiu Y, Liu J, Xin Y, He T, Qiu Z. Interaction Networks Converging on Immunosuppressive Roles of Granzyme B: Special Niches Within the Tumor Microenvironment. Front Immunol 2021; 12:670324. [PMID: 33868318 PMCID: PMC8047302 DOI: 10.3389/fimmu.2021.670324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Granzyme B is a renowned effector molecule primarily utilized by CTLs and NK cells against ill-defined and/or transformed cells during immunosurveillance. The overall expression of granzyme B within tumor microenvironment has been well-established as a prognostic marker indicative of priming immunity for a long time. Until recent years, increasing immunosuppressive effects of granzyme B are unveiled in the setting of different immunological context. The accumulative evidence confounded the roles of granzyme B in immune responses, thereby arousing great interests in characterizing detailed feature of granzyme B-positive niche. In this paper, the granzyme B-related regulatory effects of major suppressor cells as well as the tumor microenvironment that defines such functionalities were longitudinally summarized and discussed. Multiplex networks were built upon the interactions among different transcriptional factors, cytokines, and chemokines that regarded to the initiation and regulation of granzyme B-mediated immunosuppression. The conclusions and prospect may facilitate better interpretations of the clinical significance of granzyme B, guiding the rational development of therapeutic regimen and diagnostic probes for anti-tumor purposes.
Collapse
Affiliation(s)
- Weinan Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Zou
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Jishuang Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yu Xin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Tianzhu He
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China.,School of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
83
|
Scott JI, Gutkin S, Green O, Thompson EJ, Kitamura T, Shabat D, Vendrell M. A Functional Chemiluminescent Probe for in Vivo Imaging of Natural Killer Cell Activity Against Tumours. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:5763-5767. [PMID: 38505495 PMCID: PMC10946790 DOI: 10.1002/ange.202011429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/10/2020] [Indexed: 12/24/2022]
Abstract
Natural killer (NK) cells are immune cells that can kill certain types of cancer cells. Adoptive transfer of NK cells represents a promising immunotherapy for malignant tumours; however, there is a lack of methods to validate anti-tumour activity of NK cells in vivo. Herein, we report a new chemiluminescent probe to image in situ the granzyme B-mediated killing activity of NK cells against cancer cells. We have optimised a granzyme B-specific construct using an activatable phenoxydioxetane reporter so that enzymatic cleavage of the probe results in bright chemiluminescence. The probe shows high selectivity for active granzyme B over other proteases and higher signal-to-noise ratios than commercial fluorophores. Finally, we demonstrate that the probe can detect NK cell activity in mouse models, being the first chemiluminescent probe for in vivo imaging of NK cell activity in live tumours.
Collapse
Affiliation(s)
- Jamie I. Scott
- Centre for Inflammation ResearchThe University of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| | - Sara Gutkin
- Tel Aviv UniversityDpt of Organic ChemistrySchool of Chemistry, Faculty of Exact SciencesTel Aviv69978Israel
| | - Ori Green
- Tel Aviv UniversityDpt of Organic ChemistrySchool of Chemistry, Faculty of Exact SciencesTel Aviv69978Israel
| | - Emily J. Thompson
- Centre for Inflammation ResearchThe University of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| | - Takanori Kitamura
- MRC Centre for Reproductive HealthThe University of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| | - Doron Shabat
- Tel Aviv UniversityDpt of Organic ChemistrySchool of Chemistry, Faculty of Exact SciencesTel Aviv69978Israel
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| |
Collapse
|
84
|
Scott JI, Gutkin S, Green O, Thompson EJ, Kitamura T, Shabat D, Vendrell M. A Functional Chemiluminescent Probe for in Vivo Imaging of Natural Killer Cell Activity Against Tumours. Angew Chem Int Ed Engl 2021; 60:5699-5703. [PMID: 33300671 PMCID: PMC7986153 DOI: 10.1002/anie.202011429] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/10/2020] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells are immune cells that can kill certain types of cancer cells. Adoptive transfer of NK cells represents a promising immunotherapy for malignant tumours; however, there is a lack of methods to validate anti-tumour activity of NK cells in vivo. Herein, we report a new chemiluminescent probe to image in situ the granzyme B-mediated killing activity of NK cells against cancer cells. We have optimised a granzyme B-specific construct using an activatable phenoxydioxetane reporter so that enzymatic cleavage of the probe results in bright chemiluminescence. The probe shows high selectivity for active granzyme B over other proteases and higher signal-to-noise ratios than commercial fluorophores. Finally, we demonstrate that the probe can detect NK cell activity in mouse models, being the first chemiluminescent probe for in vivo imaging of NK cell activity in live tumours.
Collapse
Affiliation(s)
- Jamie I. Scott
- Centre for Inflammation ResearchThe University of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| | - Sara Gutkin
- Tel Aviv UniversityDpt of Organic ChemistrySchool of Chemistry, Faculty of Exact SciencesTel Aviv69978Israel
| | - Ori Green
- Tel Aviv UniversityDpt of Organic ChemistrySchool of Chemistry, Faculty of Exact SciencesTel Aviv69978Israel
| | - Emily J. Thompson
- Centre for Inflammation ResearchThe University of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| | - Takanori Kitamura
- MRC Centre for Reproductive HealthThe University of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| | - Doron Shabat
- Tel Aviv UniversityDpt of Organic ChemistrySchool of Chemistry, Faculty of Exact SciencesTel Aviv69978Israel
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of Edinburgh47 Little France CrescentEdinburghEH16 4TJUK
| |
Collapse
|
85
|
Vizovisek M, Ristanovic D, Menghini S, Christiansen MG, Schuerle S. The Tumor Proteolytic Landscape: A Challenging Frontier in Cancer Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms22052514. [PMID: 33802262 PMCID: PMC7958950 DOI: 10.3390/ijms22052514] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, dysregulation of proteases and atypical proteolysis have become increasingly recognized as important hallmarks of cancer, driving community-wide efforts to explore the proteolytic landscape of oncologic disease. With more than 100 proteases currently associated with different aspects of cancer development and progression, there is a clear impetus to harness their potential in the context of oncology. Advances in the protease field have yielded technologies enabling sensitive protease detection in various settings, paving the way towards diagnostic profiling of disease-related protease activity patterns. Methods including activity-based probes and substrates, antibodies, and various nanosystems that generate reporter signals, i.e., for PET or MRI, after interaction with the target protease have shown potential for clinical translation. Nevertheless, these technologies are costly, not easily multiplexed, and require advanced imaging technologies. While the current clinical applications of protease-responsive technologies in oncologic settings are still limited, emerging technologies and protease sensors are poised to enable comprehensive exploration of the tumor proteolytic landscape as a diagnostic and therapeutic frontier. This review aims to give an overview of the most relevant classes of proteases as indicators for tumor diagnosis, current approaches to detect and monitor their activity in vivo, and associated therapeutic applications.
Collapse
|
86
|
Kist M, Vucic D. Cell death pathways: intricate connections and disease implications. EMBO J 2021; 40:e106700. [PMID: 33439509 PMCID: PMC7917554 DOI: 10.15252/embj.2020106700] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Various forms of cell death have been identified over the last decades with each relying on a different subset of proteins for the activation and execution of their respective pathway(s). In addition to the three best characterized pathways-apoptosis, necroptosis, and pyroptosis-other forms of regulated cell death including autophagy-dependent cell death (ADCD), mitochondrial permeability transition pore (MPTP)-mediated necrosis, parthanatos, NETosis and ferroptosis, and their relevance for organismal homeostasis are becoming better understood. Importantly, it is increasingly clear that none of these pathways operate alone. Instead, a more complex picture is emerging with many pathways sharing components and signaling principles. Finally, a number of cell death regulators are implicated in human diseases and represent attractive therapeutic targets. Therefore, better understanding of physiological and mechanistic aspects of cell death signaling should yield improved reagents for addressing unmet medical needs.
Collapse
Affiliation(s)
- Matthias Kist
- Department of Early Discovery BiochemistryGenentechSouth San FranciscoUSA
| | - Domagoj Vucic
- Department of Early Discovery BiochemistryGenentechSouth San FranciscoUSA
| |
Collapse
|
87
|
Benkafadar N, Janesick A, Scheibinger M, Ling AH, Jan TA, Heller S. Transcriptomic characterization of dying hair cells in the avian cochlea. Cell Rep 2021; 34:108902. [PMID: 33761357 DOI: 10.1016/j.celrep.2021.108902] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/11/2021] [Accepted: 03/03/2021] [Indexed: 12/28/2022] Open
Abstract
Sensory hair cells are prone to apoptosis caused by various drugs including aminoglycoside antibiotics. In mammals, this vulnerability results in permanent hearing loss because lost hair cells are not regenerated. Conversely, hair cells regenerate in birds, making the avian inner ear an exquisite model for studying ototoxicity and regeneration. Here, we use single-cell RNA sequencing and trajectory analysis on control and dying hair cells after aminoglycoside treatment. Interestingly, the two major subtypes of avian cochlear hair cells, tall and short hair cells, respond differently. Dying short hair cells show a noticeable transient upregulation of many more genes than tall hair cells. The most prominent gene group identified is associated with potassium ion conductances, suggesting distinct physiological differences. Moreover, the dynamic characterization of >15,000 genes expressed in tall and short avian hair cells during their apoptotic demise comprises a resource for further investigations toward mammalian hair cell protection and hair cell regeneration.
Collapse
Affiliation(s)
- Nesrine Benkafadar
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Amanda Janesick
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mirko Scheibinger
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Angela H Ling
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Taha A Jan
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Stefan Heller
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
88
|
Vincenti I, Merkler D. New advances in immune components mediating viral control in the CNS. Curr Opin Virol 2021; 47:68-78. [PMID: 33636592 DOI: 10.1016/j.coviro.2021.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/26/2022]
Abstract
Protective immune responses in the central nervous system (CNS) must act efficiently but need to be tightly controlled to avoid excessive damage to this vital organ. Under homeostatic conditions, the immune surveillance of the CNS is mediated by innate immune cells together with subsets of memory lymphocytes accumulating over lifetime. Accordingly, a wide range of immune responses can be triggered upon pathogen infection that can be associated with devastating clinical outcomes, and which most frequently are due to neurotropic viruses. Here, we discuss recent advances about our understanding of anti-viral immune responses with special emphasis on mechanisms operating in the various anatomical compartments of the CNS.
Collapse
Affiliation(s)
- Ilena Vincenti
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland
| | - Doron Merkler
- University of Geneva, Department of Pathology and Immunology, Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland.
| |
Collapse
|
89
|
Sefid F, Payandeh Z, Azamirad G, Baradaran B, Nabi Afjadi M, Islami M, Darvish M, Kalantar SM, Kahroba H, Ardakani MA. Atezolizumab and granzyme B as immunotoxin against PD-L1 antigen; an insilico study. In Silico Pharmacol 2021; 9:20. [PMID: 33680705 DOI: 10.1007/s40203-021-00076-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022] Open
Abstract
CD274 gene encodes programmed death-ligand 1 (PD-L1) protein, also known as B7 homolog 1 (B7-H1), which is a crucial hallmark for highly proliferation cells including cancer cells. PD-1 and PD-L1 interaction is assumed as a negative regulator for immune response which can inhibit the T cell growth and cytokine secretion and supports tumor cells evasion from immune system. therefore, PD-L1 could be assumed as a candidate target for immune-therapy. The predicted structure of PD-L1 indicates (Gly4Ser) 3 linker-based chains links. In that line, different simulation softwares applied to explore the structure of granzyme B (GrB), a serine protease in cytotoxic lymphocytes granules as an apoptosis mediator, was attached to its specific antibody structure (atezolizumab) via an adaptor sequence. Evaluation of accuracy, energy minimization and characterization of biological properties of the final processed structure were performed and our computational outcomes indicated that the employed method for structure prediction has been successfully managed to design the immunotoxin structure. It is necessary to mention that, the precise and accurate design of the immune-therapeutic agents against cancer cells can be confirmed by employment of in-silico approaches. Consequently, based on this approach we could introduce a capable immunotoxin which specifically targeting PD-L1 in an accurate orientation and initiates cancer cell destruction by its toxin domain. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-021-00076-z.
Collapse
Affiliation(s)
- Fateme Sefid
- Department of Medical Genetics, Shahid Sadoughi University of Medical Science, Yazd, Iran.,Department of Biology, Science and Art University, Yazd, Iran
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Hospital of Xi'an Jiaotong University (Xibei Hospital), 710004 Xi'an, China
| | - Ghasem Azamirad
- Department of Mechanical Engineering, Yazd University, Yazd, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Nabi Afjadi
- Institute of Biochemistry and Biophysics, Tehran University, Tehran, Iran
| | - Maryam Islami
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Science, Karaj, Iran
| | - Maryam Darvish
- Department of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Science, Arāk, Iran
| | - Seyed Mehdi Kalantar
- Department of Medical Genetics, Shahid Sadoughi University of Medical Science, Yazd, Iran.,Research and Clinical Center for Infertility, Reproduction Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Houman Kahroba
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
90
|
Martínez Cuesta L, Pérez SE. Perforin and granzymes in neurological infections: From humans to cattle. Comp Immunol Microbiol Infect Dis 2021; 75:101610. [PMID: 33453589 DOI: 10.1016/j.cimid.2021.101610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 01/14/2023]
Abstract
Perforin and granzymes are essential components of the cytotoxic granules present in cytotoxic T lymphocytes and natural killer cells. These proteins play a crucial role in a variety of conditions, including viral infections, tumor immune surveillance, and tissue rejection. Besides their beneficial effect in most of these situations, perforin and granzymes have also been associated with tissue damage and immune diseases. Moreover, it has been reported that perforin and granzymes released during viral infections could contribute to the pathogenesis of diseases. In this review, we summarize the information available on human perforin and granzymes and their relationship with neurological infections and immune disorders. Furthermore, we compare this information with that available for bovine and present data on perforin and granzymes expression in cattle infected with bovine alphaherpesvirus types1 and -5. To our knowledge, this is the first review analyzing the impact of perforin and granzymes on neurological infections caused by bovine herpesviruses.
Collapse
Affiliation(s)
- Lucía Martínez Cuesta
- Virology, SAMP Department, Centro de Investigación Veterinaria de Tandil (CIVETAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pinto 399, Tandil, PC7000, Buenos Aires, Argentina
| | - Sandra Elizabeth Pérez
- Virology, SAMP Department, Centro de Investigación Veterinaria de Tandil (CIVETAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Pinto 399, Tandil, PC7000, Buenos Aires, Argentina.
| |
Collapse
|
91
|
Hiroyasu S, Zeglinski MR, Zhao H, Pawluk MA, Turner CT, Kasprick A, Tateishi C, Nishie W, Burleigh A, Lennox PA, Van Laeken N, Carr NJ, Petersen F, Crawford RI, Shimizu H, Tsuruta D, Ludwig RJ, Granville DJ. Granzyme B inhibition reduces disease severity in autoimmune blistering diseases. Nat Commun 2021; 12:302. [PMID: 33436591 PMCID: PMC7804321 DOI: 10.1038/s41467-020-20604-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/07/2020] [Indexed: 02/08/2023] Open
Abstract
Pemphigoid diseases refer to a group of severe autoimmune skin blistering diseases characterized by subepidermal blistering and loss of dermal-epidermal adhesion induced by autoantibody and immune cell infiltrate at the dermal-epidermal junction and upper dermis. Here, we explore the role of the immune cell-secreted serine protease, granzyme B, in pemphigoid disease pathogenesis using three independent murine models. In all models, granzyme B knockout or topical pharmacological inhibition significantly reduces total blistering area compared to controls. In vivo and in vitro studies show that granzyme B contributes to blistering by degrading key anchoring proteins in the dermal-epidermal junction that are necessary for dermal-epidermal adhesion. Further, granzyme B mediates IL-8/macrophage inflammatory protein-2 secretion, lesional neutrophil infiltration, and lesional neutrophil elastase activity. Clinically, granzyme B is elevated and abundant in human pemphigoid disease blister fluids and lesional skin. Collectively, granzyme B is a potential therapeutic target in pemphigoid diseases.
Collapse
Affiliation(s)
- Sho Hiroyasu
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, VCHRI, Vancouver, BC, Canada
| | - Matthew R Zeglinski
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, VCHRI, Vancouver, BC, Canada
| | - Hongyan Zhao
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, VCHRI, Vancouver, BC, Canada
| | - Megan A Pawluk
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, VCHRI, Vancouver, BC, Canada
| | - Christopher T Turner
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, VCHRI, Vancouver, BC, Canada
| | - Anika Kasprick
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Chiharu Tateishi
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Wataru Nishie
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Angela Burleigh
- Department of Dermatology and Skin Science, UBC, Vancouver, BC, Canada
| | | | | | - Nick J Carr
- Department of Surgery, UBC, Vancouver, BC, Canada
| | - Frank Petersen
- Priority Area Asthma and Allergy, Members of the German Center for Lung Research, Research Center Borstel, Borstel, Germany
| | - Richard I Crawford
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada
- Department of Dermatology and Skin Science, UBC, Vancouver, BC, Canada
| | - Hiroshi Shimizu
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - David J Granville
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute (VCHRI), Vancouver, BC, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC, Canada.
- BC Professional Firefighters' Burn and Wound Healing Research Laboratory, VCHRI, Vancouver, BC, Canada.
| |
Collapse
|
92
|
Wu Z, Nicoll M, Ingham RJ. AP-1 family transcription factors: a diverse family of proteins that regulate varied cellular activities in classical hodgkin lymphoma and ALK+ ALCL. Exp Hematol Oncol 2021; 10:4. [PMID: 33413671 PMCID: PMC7792353 DOI: 10.1186/s40164-020-00197-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/07/2023] Open
Abstract
Classical Hodgkin lymphoma (cHL) and anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL) are B and T cell lymphomas respectively, which express the tumour necrosis factor receptor superfamily member, CD30. Another feature shared by cHL and ALK+ ALCL is the aberrant expression of multiple members of the activator protein-1 (AP-1) family of transcription factors which includes proteins of the Jun, Fos, ATF, and Maf subfamilies. In this review, we highlight the varied roles these proteins play in the pathobiology of these lymphomas including promoting proliferation, suppressing apoptosis, and evading the host immune response. In addition, we discuss factors contributing to the elevated expression of these transcription factors in cHL and ALK+ ALCL. Finally, we examine therapeutic strategies for these lymphomas that exploit AP-1 transcriptional targets or the signalling pathways they regulate.
Collapse
Affiliation(s)
- Zuoqiao Wu
- grid.17089.37Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada ,grid.17063.330000 0001 2157 2938Present Address: Department of Medicine, University of Toronto, Toronto, Canada
| | - Mary Nicoll
- grid.17089.37Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada ,grid.14709.3b0000 0004 1936 8649Present Address: Department of Biology, McGill University, Montreal, Canada
| | - Robert J. Ingham
- grid.17089.37Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
| |
Collapse
|
93
|
Transient Receptor Potential Vanilloid 6 (TRPV6) Proteins Control the Extracellular Matrix Structure of the Placental Labyrinth. Int J Mol Sci 2020; 21:ijms21249674. [PMID: 33352987 PMCID: PMC7767235 DOI: 10.3390/ijms21249674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Calcium-selective transient receptor potential Vanilloid 6 (TRPV6) channels are expressed in fetal labyrinth trophoblasts as part of the feto-maternal barrier, necessary for sufficient calcium supply, embryo growth, and bone development during pregnancy. Recently, we have shown a less- compact labyrinth morphology of Trpv6-deficient placentae, and reduced Ca2+ uptake of primary trophoblasts upon functional deletion of TRPV6. Trpv6-/- trophoblasts show a distinct calcium-dependent phenotype. Deep proteomic profiling of wt and Trpv6-/- primary trophoblasts using label-free quantitative mass spectrometry leads to the identification of 2778 proteins. Among those, a group of proteases, including high-temperature requirement A serine peptidase 1 (HTRA1) and different granzymes are more abundantly expressed in Trpv6-/- trophoblast lysates, whereas the extracellular matrix protein fibronectin and the fibronectin-domain-containing protein 3A (FND3A) were markedly reduced. Trpv6-/-placenta lysates contain a higher intrinsic proteolytic activity increasing fibronectin degradation. Our results show that the extracellular matrix formation of the placental labyrinth depends on TRPV6; its deletion in trophoblasts correlates with the increased expression of proteases controlling the extracellular matrix in the labyrinth during pregnancy.
Collapse
|
94
|
Gapud EJ, Trejo-Zambrano MI, Gomez-Banuelos E, Tiniakou E, Antiochos B, Granville DJ, Andrade F, Casciola-Rosen L, Rosen A. Granzyme B Induces IRF-3 Phosphorylation through a Perforin-Independent Proteolysis-Dependent Signaling Cascade without Inducing Cell Death. THE JOURNAL OF IMMUNOLOGY 2020; 206:335-344. [PMID: 33288544 DOI: 10.4049/jimmunol.2000546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/11/2020] [Indexed: 11/19/2022]
Abstract
Granzyme B (GrB) is an immune protease implicated in the pathogenesis of several human diseases. In the current model of GrB activity, perforin determines whether the downstream actions of GrB occur intracellularly or extracellularly, producing apoptotic cytotoxicity or nonapoptotic effects, respectively. In the current study, we demonstrate the existence of a broad range of GrB-dependent signaling activities that 1) do not require perforin, 2) occur intracellularly, and 3) for which cell death is not the dominant outcome. In the absence of perforin, we show that GrB enzymatic activity still induces substoichiometric activation of caspases, which through nonlethal DNA damage response signals then leads to activity-associated phosphorylation of IFN regulatory factor-3. These findings illustrate an unexpected potential interface between GrB and innate immunity separate from the traditional role of GrB in perforin-dependent GrB-mediated apoptosis that could have mechanistic implications for human disease.
Collapse
Affiliation(s)
- Eric J Gapud
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | | | - Eduardo Gomez-Banuelos
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Eleni Tiniakou
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Brendan Antiochos
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - David J Granville
- International Collaboration on Repair Discoveries Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Felipe Andrade
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Livia Casciola-Rosen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Antony Rosen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224; .,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21224; and.,Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| |
Collapse
|
95
|
Campos TM, Novais FO, Saldanha M, Costa R, Lordelo M, Celestino D, Sampaio C, Tavares N, Arruda S, Machado P, Brodskyn C, Scott P, Carvalho EM, Carvalho LP. Granzyme B Produced by Natural Killer Cells Enhances Inflammatory Response and Contributes to the Immunopathology of Cutaneous Leishmaniasis. J Infect Dis 2020; 221:973-982. [PMID: 31748808 DOI: 10.1093/infdis/jiz538] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Skin lesions from patients infected with Leishmania braziliensis has been associated with inflammation induced by cytotoxic CD8+ T cells. In addition, CD8+ T cell-mediated cytotoxicity has not been linked to parasite killing. Meanwhile, the cytotoxic role played by natural killer (NK) cells in cutaneous leishmaniasis (CL) remains poorly understood. METHODS In this study, we observed higher frequencies of NK cells in the peripheral blood of CL patients compared with healthy subjects, and that NK cells expressed more interferon-γ, tumor necrosis factor (TNF), granzyme B, and perforin than CD8+ T cells. RESULTS We also found that most of the cytotoxic activity in CL lesions was triggered by NK cells, and that the high levels of granzyme B produced in CL lesions was associated with larger lesion size. Furthermore, an in vitro blockade of granzyme B was observed to decrease TNF production. CONCCLUSIONS Our data, taken together, suggest an important role by NK cells in inducing inflammation in CL, thereby contributing to disease immunopathology.
Collapse
Affiliation(s)
- Taís M Campos
- Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil.,Serviço de Imunologia, Complexo Hospitalar Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Fernanda O Novais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maíra Saldanha
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | - Rúbia Costa
- Serviço de Imunologia, Complexo Hospitalar Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Morgana Lordelo
- Laboratório de Interação Parasito-Hospedeiro e Epidemiologia, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | - Daniela Celestino
- Serviço de Imunologia, Complexo Hospitalar Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Camilla Sampaio
- Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil.,Serviço de Imunologia, Complexo Hospitalar Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil
| | - Natália Tavares
- Laboratório de Interação Parasito-Hospedeiro e Epidemiologia, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | - Sérgio Arruda
- Laboratório Avançado de Saúde Pública, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | - Paulo Machado
- Serviço de Imunologia, Complexo Hospitalar Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais, Salvador, Brazil
| | - Cláudia Brodskyn
- Laboratório de Interação Parasito-Hospedeiro e Epidemiologia, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edgar M Carvalho
- Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil.,Serviço de Imunologia, Complexo Hospitalar Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais, Salvador, Brazil
| | - Lucas P Carvalho
- Laboratório de Pesquisas Clínicas, Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Brazil.,Serviço de Imunologia, Complexo Hospitalar Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciências e Tecnologia-Doenças Tropicais, Salvador, Brazil
| |
Collapse
|
96
|
Yoon T, Yoo J, Ahn SS, Song JJ, Park YB, Lee SW. Serum granzyme B is associated with otorhinolaryngological, pulmonary, and renal involvement of antineutrophil cytoplasmic antibody-associated vasculitis. J Investig Med 2020; 69:91-95. [PMID: 33184057 DOI: 10.1136/jim-2020-001365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 11/04/2022]
Abstract
We investigated whether serum granzyme B (GrB) can reflect the inflammatory burden such as cross-sectional disease activity and organ-specific involvement in immunosuppressive drug-naïve patients with antineutrophil cytoplasmic antibody-associated vasculitis (AAV). Seventy-eight immunosuppressive drug-naïve patients with AAV were included in this study. At the time of the first classification, whole blood was obtained from each patient and sera was immediately isolated and stored at - 80℃. On the day of the blood sampling, we performed routine laboratory tests including antineutrophil cytoplasmic antibody tests and collected both clinical and laboratory data. AAV-specific indices included Birmingham Vasculitis Activity Score (BVAS) and Five-Factor Score (FFS). The median age of patients with AAV was 62 years and 26 patients were men. Serum GrB was not associated with the cross-sectional BVAS; however, patients with serum GrB positivity exhibited higher frequencies of otorhinolaryngological manifestation than those without (p=0.037). When serum GrB levels were compared after dividing the patients into two groups based on the presence of organ-specific involvement, patients with pulmonary involvement exhibited a significantly higher serum GrB than those without (p=0.042). On the other hand, patients with renal involvement showed a significantly lower serum GrB than those without (p=0.023). In addition, serum GrB was inversely correlated with the cross-sectional FFS (r=-0.249, p=0.028). Even though serum GrB could not reflect the inflammatory burden of AAV, serum GrB was associated with otorhinolaryngological, pulmonary, and renal involvement in immunosuppressive drug-naïve patients with AAV.
Collapse
Affiliation(s)
- Taejun Yoon
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Juyoung Yoo
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Sung Soo Ahn
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Jason Jungsik Song
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (the Republic of).,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (the Republic of).,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (the Republic of) .,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| |
Collapse
|
97
|
Velotti F, Barchetta I, Cimini FA, Cavallo MG. Granzyme B in Inflammatory Diseases: Apoptosis, Inflammation, Extracellular Matrix Remodeling, Epithelial-to-Mesenchymal Transition and Fibrosis. Front Immunol 2020; 11:587581. [PMID: 33262766 PMCID: PMC7686573 DOI: 10.3389/fimmu.2020.587581] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Inflammation is strictly interconnected to anti-inflammatory mechanisms to maintain tissue homeostasis. The disruption of immune homeostasis can lead to acute and chronic inflammatory diseases, as cardiovascular, pulmonary, metabolic diseases and cancer. The knowledge of the mechanisms involved in the development and progression of these pathological conditions is important to find effective therapies. Granzyme B (GrB) is a serine protease produced by a variety of immune, non-immune and tumor cells. Apoptotic intracellular and multiple extracellular functions of GrB have been recently identified. Its capability of cleaving extracellular matrix (ECM) components, cytokines, cell receptors and clotting proteins, revealed GrB as a potential multifunctional pro-inflammatory molecule with the capability of contributing to the pathogenesis of different inflammatory conditions, including inflammaging, acute and chronic inflammatory diseases and cancer. Here we give an overview of recent data concerning GrB activity on multiple targets, potentially allowing this enzyme to regulate a wide range of crucial biological processes that play a role in the development, progression and/or severity of inflammatory diseases. We focus our attention on the promotion by GrB of perforin-dependent and perforin-independent (anoikis) apoptosis, inflammation derived by the activation of some cytokines belonging to the IL-1 cytokine family, ECM remodeling, epithelial-to-mesenchymal transition (EMT) and fibrosis. A greater comprehension of the pathophysiological consequences of GrB-mediated multiple activities may favor the design of new therapies aim to inhibit different inflammatory pathological conditions such as inflammaging and age-related diseases, EMT and organ fibrosis.
Collapse
Affiliation(s)
- Francesca Velotti
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Viterbo, Italy
| | - Ilaria Barchetta
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Flavia Agata Cimini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
98
|
Qiao J, Zhou M, Li Z, Ren J, Gao G, Zhen J, Cao G, Ding L. Elevated serum granzyme B levels are associated with disease activity and joint damage in patients with rheumatoid arthritis. J Int Med Res 2020; 48:300060520962954. [PMID: 33143503 PMCID: PMC7780569 DOI: 10.1177/0300060520962954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/04/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Little is known about the roles of granzyme B in rheumatoid arthritis (RA). We aimed to evaluate the serum level of granzyme B in patients with RA and determine relationships with clinical features and joint destruction of RA. METHODS We enrolled 100 patients with RA, 50 patients with osteoarthritis (OA), and 50 healthy controls (HC). Granzyme B serum concentrations were measured by ELISA; we then analyzed associations between granzyme B levels, clinical features, and joint destruction by calculating Sharp scores and disease activity as measured by Disease Activity Score-28 based on erythrocyte sedimentation rate (DAS28-ESR) in patients with RA. RESULTS Compared with HC and patients with OA, serum granzyme B levels in patients with RA were remarkably elevated. Serum granzyme B levels did not differ between patients with OA and HC. Granzyme B levels correlated with ESR, rheumatoid factor, swollen joint counts, joint erosion scores, total Sharp scores, and DAS28-ESR. Moreover, patients with RA with high disease activity had higher granzyme B levels. CONCLUSIONS Serum granzyme B levels were elevated significantly in patients with RA and correlated positively with disease activity and joint destruction. Serum granzyme B may have potential applications in laboratory evaluation of patients with RA.
Collapse
Affiliation(s)
- Junjie Qiao
- Department of Orthopedics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Meng Zhou
- Department of Orthopedics, Beijing Jishuitan Hospital, Fourth Medical College of Peking University, Beijing, China
| | - Zheng Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jie Ren
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guanghan Gao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jumei Zhen
- Department of Orthopedics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Guanglei Cao
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lixiang Ding
- Department of Orthopedics, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
99
|
Granzymes in cardiovascular injury and disease. Cell Signal 2020; 76:109804. [PMID: 33035645 DOI: 10.1016/j.cellsig.2020.109804] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/17/2022]
Abstract
Chronic inflammation and impaired wound healing play important roles in the pathophysiology of cardiovascular diseases. Moreover, the aberrant secretion of proteases plays a critical role in pathological tissue remodeling in chronic inflammatory conditions. Human Granzymes (Granule secreted enzymes - Gzms) comprise a family of five (GzmA, B, H, K, M) cell-secreted serine proteases. Although each unique in function and substrate specificities, Gzms were originally thought to share redundant, intracellular roles in cytotoxic lymphocyte-induced cell death. However, an abundance of evidence has challenged this dogma. It is now recognized, that individual Gzms exhibit unique substrate repertoires and functions both intracellularly and extracellularly. In the extracellular milieu, Gzms contribute to inflammation, vascular dysfunction and permeability, reduced cell adhesion, release of matrix-sequestered growth factors, receptor activation, and extracellular matrix cleavage. Despite these recent findings, the non-cytotoxic functions of Gzms in the context of cardiovascular disease pathogenesis remain poorly understood. Minimally detected in tissues and bodily fluids of normal individuals, GzmB is elevated in patients with acute coronary syndromes, coronary artery disease, and myocardial infarction. Pre-clinical animal models have exemplified the importance of GzmB in atherosclerosis, aortic aneurysm, and cardiac fibrosis as animals deficient in GzmB exhibit reduced tissue remodeling, improved disease phenotypes and increased survival. Although a role for GzmB in cardiovascular disease is described, further work to elucidate the mechanisms that underpin the remaining human Gzms activity in cardiovascular disease is necessary. The present review provides a summary of the pre-clinical and clinical evidence, as well as emerging areas of research pertaining to Gzms in tissue remodeling and cardiovascular disease.
Collapse
|
100
|
Pinheiro PF, Justino GC, Marques MM. NKp30 - A prospective target for new cancer immunotherapy strategies. Br J Pharmacol 2020; 177:4563-4580. [PMID: 32737988 PMCID: PMC7520444 DOI: 10.1111/bph.15222] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/23/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
Natural killer (NK) cells are an important arm of the innate immune system. They constitutively express the NKp30 receptor. NKp30-mediated responses are triggered by the binding of specific ligands e.g. tumour cell-derived B7-H6 and involve the secretion of cytotoxic mediators including TNF-α, IFN-γ, perforins and granzymes. The latter two constitute a target cell-directed response that is critical in the process of immunosurveillance. The structure of NKp30 is presented, focusing on the ligand-binding site, on the ligand-induced structural changes and on the experimental data available correlating structure and binding affinity. The translation of NKp30 structural changes to disease progression is also reviewed. NKp30 role in immunotherapy has been explored in chimeric antigen receptor T-cell (CAR-T) therapy. However, antibodies or small ligands targeting NKp30 have not yet been developed. The data reviewed herein unveil the key structural aspects that must be considered for drug design in order to develop novel immunotherapy approaches.
Collapse
Affiliation(s)
- Pedro F. Pinheiro
- Centro de Química Estrutural, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
| | - Gonçalo C. Justino
- Centro de Química Estrutural, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
| | - M. Matilde Marques
- Centro de Química Estrutural, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
- Departamento de Engenharia Química, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
| |
Collapse
|