51
|
Genotype-expression interactions for BDNF across human brain regions. BMC Genomics 2021; 22:207. [PMID: 33757426 PMCID: PMC7989003 DOI: 10.1186/s12864-021-07525-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/11/2021] [Indexed: 01/20/2023] Open
Abstract
Background Genetic variations in brain-derived neurotrophic factor (BDNF) are associated with various psychiatric disorders including depression, obsessive-compulsive disorder, substance use disorders, and schizophrenia; altered gene expression triggered by these genetic variants may serve to create these phenotypes. But genotype-expression interactions for this gene have not been well-studied across brain regions relevant for psychiatric disorders. Results At false discovery rate (FDR) of 10% (q < 0.1), a total of 61 SNPs were associated with BDNF expression in cerebellum (n = 209), 55 SNPs in cortex (n = 205), 48 SNPs in nucleus accumbens (n = 202), 47 SNPs in caudate (n = 194), and 58 SNPs in cerebellar hemisphere (n = 175). We identified a set of 30 SNPs in 2 haplotype blocks that were associated with alterations in expression for each of these 5 regions. The first haplotype block included variants associated in the literature with panic disorders (rs16917204), addiction (rs11030104), bipolar disorder (rs16917237/rs2049045), and obsessive-compulsive disorder (rs6265). Likewise, variants in the second haplotype block have been previously associated with disorders such as nicotine addiction, major depressive disorder (rs988748), and epilepsy (rs6484320/rs7103411). Conclusions This work supports the association of variants within BDNF for expression changes in these key brain regions that may contribute to common behavioral phenotypes for disorders of compulsion, impulsivity, and addiction. These SNPs should be further investigated as possible therapeutic and diagnostic targets to aid in management of these and other psychiatric disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07525-1.
Collapse
|
52
|
p75NTR/proBDNF Modulates Basal Cell Carcinoma (BCC) Immune Microenvironment via Necroptosis Signaling Pathway. J Immunol Res 2021; 2021:6652846. [PMID: 33604392 PMCID: PMC7870300 DOI: 10.1155/2021/6652846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/03/2021] [Accepted: 01/11/2021] [Indexed: 02/05/2023] Open
Abstract
Basal cell carcinoma (BCC) is the most common skin cancer. While most of the basal cell carcinomas were localized lesion and can be easily managed, the treatment options to the advanced basal cell carcinomas are still remarkably limited. In recent years, proBDNF and its receptor p75NTR have been reported to play important roles in various diseases, including cancers and psychotic disorders. However, the role of p75NTR/proBDNF signaling in basal cell carcinoma remains unclear. Here, we found that the expression level of p75NTR/proBDNF was decreased in basal cell carcinoma patient samples and cell lines. In vitro study showed overexpression of p75NTR/proBDNF could significantly facilitate tumor cell death, including inflammatory-silent apoptosis and lytic inflammatory activated necroptosis. In vivo study showed overexpression of p75NTR/proBDNF dramatically promotes tumor-associated macrophage (M1) and T cell recruitment in a syngeneic mouse model of BCC. These results show a crucial role for p75NTR/proBDNF signaling in basal cell carcinoma immune microenvironment.
Collapse
|
53
|
Li WC, Chao HT, Lin MW, Shen HD, Chen LF, Hsieh JC. Neuroprotective effect of Val variant of BDNF Val66Met polymorphism on hippocampus is modulated by the severity of menstrual pain. NEUROIMAGE-CLINICAL 2021; 30:102576. [PMID: 33561695 PMCID: PMC7873439 DOI: 10.1016/j.nicl.2021.102576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 12/19/2022]
Abstract
Primary dysmenorrhea (PDM) refers to menstrual pain of which the pathological cause(s) are unknown. This study examined the associations among BDNF Val66Met polymorphisms, menstrual pain severity, and hippocampal volume among young PDM subjects. We recruited 115 PDM subjects, including severe cases (n = 66) and moderate cases (n = 44), and 117 young females (aged 20-30 years) as a control group (CON) for BDNF Val66Met genotyping and MRI examination. The assessment of hippocampal volume involved analysis at various anatomical resolutions, i.e., whole hippocampal volume, hippocampal subfields, and voxel-based morphometry (VBM) volumetric analysis. Two-way ANOVA analyses with planned contrasts and Bonferroni correction were conducted for the assessment of hippocampal volume. Linear regression was used to test for BDNF Val66Met Val allele dosage-dependent effects. We observed no main effects of group, genotype, or group-genotype interactions on bilateral whole hippocampal volumes. Significant interactions between PDM severity and BDNF Val66Met genotype were observed in the right whole hippocampus, subiculum, and molecular layer. Post-hoc analysis revealed that the average hippocampal volume of Val/Val moderate PDM subjects was greater than that of Val/Val severe PDM subjects. Note that right hippocampal volume was greater in the Val/Val group than in the Met/Met group, particularly in the right posterior hippocampal region. Dosage effect analysis revealed a positive dosage-dependent relationship between the Val allele and volume of the right whole hippocampus, subiculum, molecular layer, and VBM-defined right posterior hippocampal region in the moderate PDM subgroup only. These findings indicate that Val/Val PDM subjects are resistant to intermittent moderate pain-related stress, whereas Met carrier PDM subjects are susceptible. When confronted with years of repeated PDM stress, the hippocampus can undergo differential structural changes in accordance with the BDNF genotype and pain severity. This triad study on PDM (i.e., combining genotype with endophenotype imaging results and clinical phenotypes), underscores the potential neurobiological consequences of PDM, which may prefigure in neuroimaging abnormalities associated with various chronic pain disorders. Our results provide evidence for Val allele dosage-dependent protective effects on the hippocampal structure; however, in cases of the Val variant, these effects were modulated in accordance with the severity of menstrual pain.
Collapse
Affiliation(s)
- Wei-Chi Li
- Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiang-Tai Chao
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ming-Wei Lin
- Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Horng-Der Shen
- Laboratory of Microbiology, Division of Basic Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan; Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Jen-Chuen Hsieh
- Institute of Brain Science, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
54
|
Roos BB, Teske JJ, Bhallamudi S, Pabelick CM, Sathish V, Prakash YS. Neurotrophin Regulation and Signaling in Airway Smooth Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:109-121. [PMID: 34019266 PMCID: PMC11042712 DOI: 10.1007/978-3-030-68748-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Structural and functional aspects of bronchial airways are key throughout life and play critical roles in diseases such as asthma. Asthma involves functional changes such as airway irritability and hyperreactivity, as well as structural changes such as enhanced cellular proliferation of airway smooth muscle (ASM), epithelium, and fibroblasts, and altered extracellular matrix (ECM) and fibrosis, all modulated by factors such as inflammation. There is now increasing recognition that disease maintenance following initial triggers involves a prominent role for resident nonimmune airway cells that secrete growth factors with pleiotropic autocrine and paracrine effects. The family of neurotrophins may be particularly relevant in this regard. Long recognized in the nervous system, classical neurotrophins such as brain-derived neurotrophic factor (BDNF) and nonclassical ligands such as glial-derived neurotrophic factor (GDNF) are now known to be expressed and functional in non-neuronal systems including lung. However, the sources, targets, regulation, and downstream effects are still under investigation. In this chapter, we discuss current state of knowledge and future directions regarding BDNF and GDNF in airway physiology and on pathophysiological contributions in asthma.
Collapse
Affiliation(s)
- Benjamin B Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jacob J Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sangeeta Bhallamudi
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
55
|
Real AG, Fontanari AMV, Costa AB, Soll BMB, Bristot G, de Oliveira LF, Kamphorst AM, Schneider MA, Lobato MIR. Gender dysphoria: prejudice from childhood to adulthood, but no impact on inflammation. A cross-sectional controlled study. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2021; 43:37-46. [PMID: 33681906 PMCID: PMC7932037 DOI: 10.47626/2237-6089-2020-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/04/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Gender dysphoria (GD) is characterized by a marked incongruence between experienced gender and one's gender assigned at birth. Transsexual individuals present a higher prevalence of psychiatric disorders when compared to non-transsexual populations, and it has been proposed that minority stress, i.e., discrimination or prejudice, has a relevant impact on these outcomes. Transsexuals also show increased chances of having experienced maltreatment during childhood. Interleukin (IL)-1β, IL-6, IL-10 and tumor necrosis factor-alpha (TNF-α) are inflammatory cytokines that regulate our immune system. Imbalanced levels in such cytokines are linked to history of childhood maltreatment and psychiatric disorders. We compared differences in IL-1β, IL-6, IL-10 and TNF-α levels and exposure to traumatic events in childhood and adulthood in individuals with and without GD (DSM-5). METHODS Cross-sectional controlled study comparing 34 transsexual women and 31 non-transsexual men. They underwent a thorough structured interview, assessing sociodemographic information, mood and anxiety symptoms, childhood maltreatment, explicit discrimination and suicidal ideation. Inflammatory cytokine levels (IL-1β, IL-6, IL-10 and TNF-α) were measured by multiplex immunoassay. RESULTS Individuals with GD experienced more discrimination (p = 0.002) and childhood maltreatment (p = 0.046) than non-transsexual men. Higher suicidal ideation (p < 0.001) and previous suicide attempt (p = 0.001) rates were observed in transsexual women. However, no differences were observed in the levels of any cytokine. CONCLUSIONS These results suggest that transsexual women are more exposed to stressful events from childhood to adulthood than non-transsexual men and that GD per se does not play a role in inflammatory markers.
Collapse
Affiliation(s)
- André Gonzales Real
- Programa de Identidade de GêneroHospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilPrograma de Identidade de Gênero (PROTIG), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Psiquiatria e Ciências do ComportamentoUFRGSPorto AlegreRSBrazilPrograma de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil.
| | - Anna Martha Vaitses Fontanari
- Programa de Identidade de GêneroHospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilPrograma de Identidade de Gênero (PROTIG), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Psiquiatria e Ciências do ComportamentoUFRGSPorto AlegreRSBrazilPrograma de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil.
| | - Angelo Brandelli Costa
- Departamento de PsicologiaPontifícia Universidade Católica do Rio Grande do SulPorto AlegreRSBrazilDepartamento de Psicologia, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| | - Bianca Machado Borba Soll
- Programa de Identidade de GêneroHospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilPrograma de Identidade de Gênero (PROTIG), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Psiquiatria e Ciências do ComportamentoUFRGSPorto AlegreRSBrazilPrograma de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil.
| | - Giovana Bristot
- INCT Translacional em MedicinaHospital de Clinicas de Porto AlegreUFRGSPorto AlegreRSBrazil Laboratório de Psiquiatria Molecular, INCT Translacional em Medicina, Hospital de Clinicas de Porto Alegre (HCPA), UFRGS, Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em BioquímicaUFRGSPorto AlegreRSBrazilPrograma de Pós-Graduação em Bioquímica, UFRGS, Porto Alegre, RS, Brazil.
| | - Larissa Fagundes de Oliveira
- INCT Translacional em MedicinaHospital de Clinicas de Porto AlegreUFRGSPorto AlegreRSBrazil Laboratório de Psiquiatria Molecular, INCT Translacional em Medicina, Hospital de Clinicas de Porto Alegre (HCPA), UFRGS, Porto Alegre, RS, Brazil.
| | - Ana Maria Kamphorst
- Programa de Identidade de GêneroHospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilPrograma de Identidade de Gênero (PROTIG), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Maiko Abel Schneider
- Programa de Identidade de GêneroHospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilPrograma de Identidade de Gênero (PROTIG), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Psiquiatria e Ciências do ComportamentoUFRGSPorto AlegreRSBrazilPrograma de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil.
| | - Maria Inês Rodrigues Lobato
- Programa de Identidade de GêneroHospital de Clínicas de Porto AlegreUniversidade Federal do Rio Grande do SulPorto AlegreRSBrazilPrograma de Identidade de Gênero (PROTIG), Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
- Programa de Pós-Graduação em Psiquiatria e Ciências do ComportamentoUFRGSPorto AlegreRSBrazilPrograma de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
56
|
Wang K, Zhai Q, Wang S, Li Q, Liu J, Meng F, Wang W, Zhang J, Wang D, Zhao D, Liu C, Dai J, Li C, Cui M, Chen J. Cryptotanshinone ameliorates CUS-induced depressive-like behaviors in mice. Transl Neurosci 2021; 12:469-481. [PMID: 34900345 PMCID: PMC8633587 DOI: 10.1515/tnsci-2020-0198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Objectives Cryptotanshinone (CPT), a natural quinoid diterpene, isolated from Salvia miltiorrhiza, has shown various pharmacological properties. However, its effect on chronic unpredictable stress (CUS)-induced depression phenotypes and the underlying mechanism remain unclear. Therefore, the aim of this study was to investigate whether CPT could exert an antidepressant effect. Methods We investigated the effects of CPT in a CUS-induced depression model and explored whether these effects were related to the anti-inflammatory and neurogenesis promoting properties by investigating the expression levels of various signaling molecules at the mRNA and protein levels. Results Administration of CPT improved depression-like behaviors in CUS-induced mice. CPT administration increased the levels of doublecortin-positive cells and reversed the decrease in the expression levels of brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) signaling transduction, as well as the downstream functional proteins, phosphorylated extracellular regulated protein kinases (p-ERK), and cyclic adenosine monophosphate (cAMP)-response element-binding protein levels (p-CREB) in hippocampus. CPT treatment also inhibited the activation of microglia and suppressed M1 microglial polarization, while promoting M2 microglial polarization by monitoring the expression levels of arginase 1 (Arg-1) and inducible nitric oxide synthase (iNOS), and further inhibited the expression of proinflammatory cytokines, including interleukin (IL)-1, IL-6, and tumor necrosis factor-α (TNF-α), and increased the expression of the anti-inflammatory cytokine IL-10 by regulating nuclear factor-κB (NF-κB) activation. Conclusions CPT relieves the depressive-like state in CUS-induced mice by enhancing neurogenesis and inhibiting inflammation through the BDNF/TrkB and NF-κB pathways and could therefore serve as a promising candidate for the treatment of depression.
Collapse
Affiliation(s)
- Kaixin Wang
- Department of Neurology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.,Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Department of Internal Medicine, Jinan Hospital, Jinan, Shandong, China
| | - Qingling Zhai
- Department of Neurology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.,Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Sanwang Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
| | - Qiongyu Li
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fantao Meng
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wentao Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jinjie Zhang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dan Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Di Zhao
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Cuilan Liu
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Juanjuan Dai
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chen Li
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, China.,Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Minghu Cui
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
| | - Jinbo Chen
- Department of Neurology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
| |
Collapse
|
57
|
Larroya A, Pantoja J, Codoñer-Franch P, Cenit MC. Towards Tailored Gut Microbiome-Based and Dietary Interventions for Promoting the Development and Maintenance of a Healthy Brain. Front Pediatr 2021; 9:705859. [PMID: 34277527 PMCID: PMC8280474 DOI: 10.3389/fped.2021.705859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 01/07/2023] Open
Abstract
Mental health is determined by a complex interplay between the Neurological Exposome and the Human Genome. Multiple genetic and non-genetic (exposome) factors interact early in life, modulating the risk of developing the most common complex neurodevelopmental disorders (NDDs), with potential long-term consequences on health. To date, the understating of the precise etiology underpinning these neurological alterations, and their clinical management pose a challenge. The crucial role played by diet and gut microbiota in brain development and functioning would indicate that modulating the gut-brain axis may help protect against the onset and progression of mental-health disorders. Some nutritional deficiencies and gut microbiota alterations have been linked to NDDs, suggesting their potential pathogenic implications. In addition, certain dietary interventions have emerged as promising alternatives or adjuvant strategies for improving the management of particular NDDs, at least in particular subsets of subjects. The gut microbiota can be a key to mediating the effects of other exposome factors such as diet on mental health, and ongoing research in Psychiatry and Neuropediatrics is developing Precision Nutrition Models to classify subjects according to a diet response prediction based on specific individual features, including microbiome signatures. Here, we review current scientific evidence for the impact of early life environmental factors, including diet, on gut microbiota and neuro-development, emphasizing the potential long-term consequences on health; and also summarize the state of the art regarding the mechanisms underlying diet and gut microbiota influence on the brain-gut axis. Furthermore, we describe the evidence supporting the key role played by gut microbiota, diet and nutrition in neurodevelopment, as well as the effectiveness of certain dietary and microbiome-based interventions aimed at preventing or treating NDDs. Finally, we emphasize the need for further research to gain greater insight into the complex interplay between diet, gut microbiome and brain development. Such knowledge would help towards achieving tailored integrative treatments, including personalized nutrition.
Collapse
Affiliation(s)
- Ana Larroya
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain
| | - Jorge Pantoja
- Department of Pediatrics, University Hospital De la Plana, Vila-Real, Castellón, Spain.,Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Pilar Codoñer-Franch
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain.,Department of Pediatrics, Dr. Peset University Hospital, Valencia, Spain.,Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - María Carmen Cenit
- Microbial Ecology, Nutrition & Health Research Unit, Institute of Agrochemistry and Food Technology, National Research Council (IATA-CSIC), Valencia, Spain.,Department of Pediatrics, University Hospital De la Plana, Vila-Real, Castellón, Spain.,Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| |
Collapse
|
58
|
Bakusic J, Ghosh M, Polli A, Bekaert B, Schaufeli W, Claes S, Godderis L. Epigenetic perspective on the role of brain-derived neurotrophic factor in burnout. Transl Psychiatry 2020; 10:354. [PMID: 33077716 PMCID: PMC7573604 DOI: 10.1038/s41398-020-01037-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 09/11/2020] [Accepted: 10/01/2020] [Indexed: 11/09/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays a potential role in the neurobiology of burnout, but there are no studies investigating the underlying genetic and epigenetic mechanisms. Our aim is to further explore the role of BDNF in burnout, by focusing on the Val66Met polymorphism and methylation patterns of the BDNF gene and serum BDNF (sBDNF) protein expression. We conducted a cross-sectional study by recruiting 129 individuals (59 with burnout and 70 healthy controls). Participants underwent a clinical interview, psychological assessment and blood sample collection. Polymorphism and DNA methylation were measured on DNA from whole blood, using pyrosequencing and sBDNF levels were measured using ELISA. We found significantly increased methylation of promoter I and IV in the burnout group, which also correlated with burnout symptoms. In addition, DNA methylation of promoter I had a significant negative effect on sBDNF. For DNA methylation of exon IX, we did not find a significant difference between the groups, nor associations with sBDNF. The Val66Met polymorphism neither differed between groups, nor was it associated with sBDNF levels. Finally, we did not observe differences in sBDNF level between the groups. Interestingly, we observed a significant negative association between depressive symptoms and sBDNF levels. The current study is the first to show that BDNF DNA methylation changes might play an important role in downregulation of the BDNF protein levels in burnout. The presence of depressive symptoms might have an additional impact on these changes.
Collapse
Affiliation(s)
- Jelena Bakusic
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.
| | - Manosij Ghosh
- grid.5596.f0000 0001 0668 7884Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Andrea Polli
- grid.5596.f0000 0001 0668 7884Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium ,grid.8767.e0000 0001 2290 8069Pain in Motion research group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bram Bekaert
- grid.5596.f0000 0001 0668 7884Department of Forensic Medicine, Laboratory of Forensic Genetics and Molecular Archaeology; KU Leuven, Leuven, Belgium
| | - Wilmar Schaufeli
- grid.5596.f0000 0001 0668 7884Work, Organisational and Personnel Psychology, KU Leuven, Leuven, Belgium
| | - Stephan Claes
- grid.5596.f0000 0001 0668 7884Psychiatry Research Group, Department of Neuroscience, KU Leuven, Leuven, Belgium
| | - Lode Godderis
- grid.5596.f0000 0001 0668 7884Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium ,IDEWE, External Service for Prevention and Protection at Work, Heverlee, Belgium
| |
Collapse
|
59
|
Hu J, Cao S, Zhang Z, Wang L, Wang D, Wu Q, Li L. Effects of caffeic acid on epigenetics in the brain of rats with chronic unpredictable mild stress. Mol Med Rep 2020; 22:5358-5368. [PMID: 33173990 PMCID: PMC7647007 DOI: 10.3892/mmr.2020.11609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/11/2020] [Indexed: 12/16/2022] Open
Abstract
The present study hypothesized that caffeic acid (3,4-dihydroxycinnamic acid; CaA) may exert antidepressant-like effects in rats with chronic unpredictable mild stress via epigenetic mechanisms, such as DNA methylation and hydroxymethylation. The chronic unpredictable mild stress (CUMS) model was used to analyze the effects of CaA on behavioral phenotypes, and to evaluate the distribution of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in the hippocampus and prefrontal cortex using immunohistochemistry and immunofluorescence. mRNA levels of the genes encoding brain-derived neurotropic factor (BDNF) and catechol-O-methyltransferase (COMT), and key enzymes regulating DNA methylation [DNA methyltransferase (DNMT)1 and DNMT3A] and hydroxymethylation [Ten-eleven translocation (TET)1-3] were examined using quantitative (q)PCR. Furthermore, enrichment of 5mC and 5hmC at the promotor regions of the Bdnf and Comt genes was quantified using chromatin immunoprecipitation-qPCR. Behavioral data showed that CaA exerted a slight antidepressant-like effect. Bdnf and Comt genes showed differential expression patterns due to CUMS. CaA intervention induced different Dnmt1/Dnmt3a and Tet1/Tet2 mRNA levels in the hippocampus and prefrontal cortex, respectively. CaA regulated the ratio of 5mC/5hmC at the promotor region of the Bdnf and Comt genes and therefore influenced gene expression, which may be a valuable therapeutic option for major depressive disorder (MDD). In conclusion, there were epigenetic changes in the hippocampus and prefrontal cortex in CUMS rats, and CaA may function as a modulator of DNA methylation to regulate gene transcription, thus providing a mechanistic basis for the use of this phytochemical agent in the treatment of MDD.
Collapse
Affiliation(s)
- Jinye Hu
- Department of Health Inspection and Quarantine and Ministry of Education Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Shuyuan Cao
- Department of Health Inspection and Quarantine and Ministry of Education Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Zhan Zhang
- Department of Health Inspection and Quarantine and Ministry of Education Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Li Wang
- Department of Health Inspection and Quarantine and Ministry of Education Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Di Wang
- Department of Health Inspection and Quarantine and Ministry of Education Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Qian Wu
- Department of Health Inspection and Quarantine and Ministry of Education Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Lei Li
- Department of Health Inspection and Quarantine and Ministry of Education Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| |
Collapse
|
60
|
Blaze J, Choi I, Wang Z, Umali M, Mendelev N, Tschiffely AE, Ahlers ST, Elder GA, Ge Y, Haghighi F. Blast-Related Mild TBI Alters Anxiety-Like Behavior and Transcriptional Signatures in the Rat Amygdala. Front Behav Neurosci 2020; 14:160. [PMID: 33192359 PMCID: PMC7604767 DOI: 10.3389/fnbeh.2020.00160] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
The short and long-term neurological and psychological consequences of traumatic brain injury (TBI), and especially mild TBI (mTBI) are of immense interest to the Veteran community. mTBI is a common and detrimental result of combat exposure and results in various deleterious outcomes, including mood and anxiety disorders, cognitive deficits, and post-traumatic stress disorder (PTSD). In the current study, we aimed to further define the behavioral and molecular effects of blast-related mTBI using a well-established (3 × 75 kPa, one per day on three consecutive days) repeated blast overpressure (rBOP) model in rats. We exposed adult male rats to the rBOP procedure and conducted behavioral tests for anxiety and fear conditioning at 1-1.5 months (sub-acute) or 12-13 months (chronic) following blast exposure. We also used next-generation sequencing to measure transcriptome-wide gene expression in the amygdala of sham and blast-exposed animals at the sub-acute and chronic time points. Results showed that blast-exposed animals exhibited an anxiety-like phenotype at the sub-acute timepoint but this phenotype was diminished by the chronic time point. Conversely, gene expression analysis at both sub-acute and chronic timepoints demonstrated a large treatment by timepoint interaction such that the most differentially expressed genes were present in the blast-exposed animals at the chronic time point, which also corresponded to a Bdnf-centric gene network. Overall, the current study identified changes in the amygdalar transcriptome and anxiety-related phenotypic outcomes dependent on both blast exposure and aging, which may play a role in the long-term pathological consequences of mTBI.
Collapse
Affiliation(s)
- Jennifer Blaze
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Inbae Choi
- Research and Development Service, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
| | - Zhaoyu Wang
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michelle Umali
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Natalia Mendelev
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anna E Tschiffely
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, MD, United States
| | - Stephen T Ahlers
- Department of Neurotrauma, Operational and Undersea Medicine Directorate, Naval Medical Research Center, Silver Spring, MD, United States
| | - Gregory A Elder
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Neurology Service, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Fatemeh Haghighi
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Research and Development Service, James J. Peters Veterans Affairs Medical Center, Bronx, NY, United States.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
61
|
Pujol N, Mané A, Bergé D, Mezquida G, Amoretti S, Pérez L, González-Pinto A, Barcones F, Cuesta MJ, Sánchez-Tomico G, Vieta E, Castro-Fornieles J, Bernardo M, Parellada M. Influence of BDNF and MTHFR polymorphisms on hippocampal volume in first-episode psychosis. Schizophr Res 2020; 223:345-352. [PMID: 32988741 DOI: 10.1016/j.schres.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/26/2020] [Accepted: 08/04/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND The BDNF and MTHFR genes are independently linked to the pathogenesis of schizophrenia and its neuroimaging correlates. The aim of this study was to explore, for the first time, the individual and interactional effects of the Val66Met and C677T polymorphisms on hippocampal atrophy in first-episode psychosis (FEP). METHOD Multi-site case-control study based on clinical, genetic (rs 6265, rs 1801133) and structural magnetic resonance imaging data from 98 non-affective FEP patients and 117 matched healthy controls (HC). Hippocampal volume was estimated using FreeSurfer software and this volume was compared between diagnostic (FEP vs HC) and genotype (Val66Met, C677T) groups. The BDNF Val66Met x MTHFR C677T effect on hippocampal volume was further evaluated through stratified analyses. RESULTS After applying Bonferroni correction, diagnosis showed a significant effect for adjusted left and right hippocampal volume (FEP < HC). Stratified analyses showed that the interactive effect contributed to adjusted hippocampal size in both the HC (left and right hippocampus) and FEP groups (right hippocampus); among BDNF Met carriers, those with the CT-TT genotype exhibited decreased hippocampal volume compared to individuals with the homozygous normal CC genotype. CONCLUSIONS Our results provide preliminary evidence indicating that the Val66Met x C677T interaction may be a potential genetic risk factor for reduced hippocampal size in both healthy controls and in patients with FEP. Further research in independent samples including different ethnic groups is warranted to confirm this new finding.
Collapse
Affiliation(s)
- Nuria Pujol
- Institute of Neuropsychiatry and Addiction of the Barcelona MAR Health Park, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| | - Anna Mané
- Institute of Neuropsychiatry and Addiction of the Barcelona MAR Health Park, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain
| | - Daniel Bergé
- Institute of Neuropsychiatry and Addiction of the Barcelona MAR Health Park, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain
| | - Gisela Mezquida
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clinic of Barcelona, Neuroscience Institute; August Pi I Sunyer Biomedical Research Institute (IDIBAPS); University of Barcelona, Barcelona, Spain
| | - Silvia Amoretti
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clinic of Barcelona, Neuroscience Institute; August Pi I Sunyer Biomedical Research Institute (IDIBAPS); University of Barcelona, Barcelona, Spain
| | - Lucía Pérez
- Institute of Neuropsychiatry and Addiction of the Barcelona MAR Health Park, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Ana González-Pinto
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain; Servicio de Psiquiatría, Hospital Santiago, OSI Araba, Vitoria-Gasteiz, Spain
| | - Fe Barcones
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain; Department of Family Medicine, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Manuel J Cuesta
- Department of Psychiatry, Complejo Hospitalario de Navarra, IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Georgina Sánchez-Tomico
- Institute of Neuropsychiatry and Addiction of the Barcelona MAR Health Park, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Eduard Vieta
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain; Bipolar Disorder Unit, Institute of Neurosciences, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Josefina Castro-Fornieles
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain; Child and Adolescent Psychiatry and Psychology Department, 2017SGR881, Institute of Neurosciences, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Miquel Bernardo
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clinic of Barcelona, Neuroscience Institute; August Pi I Sunyer Biomedical Research Institute (IDIBAPS); University of Barcelona, Barcelona, Spain
| | - Mara Parellada
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain; Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | | |
Collapse
|
62
|
Poon CH, Heng BC, Lim LW. New insights on brain-derived neurotrophic factor epigenetics: from depression to memory extinction. Ann N Y Acad Sci 2020; 1484:9-31. [PMID: 32808327 DOI: 10.1111/nyas.14458] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/21/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
Advances in characterizing molecular profiles provide valuable insights and opportunities for deciphering the neuropathology of depression. Although abnormal brain-derived neurotrophic factor (BDNF) expression in depression has gained much support from preclinical and clinical research, how it mediates behavioral alterations in the depressed state remains largely obscure. Environmental factors contribute significantly to the onset of depression and produce robust epigenetic changes. Epigenetic regulation of BDNF, as one of the most characterized gene loci in epigenetics, has recently emerged as a target in research on memory and psychiatric disorders. Specifically, epigenetic alterations of BDNF exons are heavily involved in mediating memory functions and antidepressant effects. In this review, we discuss key research on stress-induced depression from both preclinical and clinical studies, which revealed that differential epigenetic regulation of specific BDNF exons is associated with depression pathophysiology. Considering that BDNF has a central role in depression, we argue that memory extinction, an adaptive response to fear exposure, is dependent on BDNF modulation and holds promise as a prospective target for alleviating or treating depression and anxiety disorders.
Collapse
Affiliation(s)
- Chi Him Poon
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Boon Chin Heng
- Peking University School of Stomatology, Beijing, China.,Department of Biological Sciences, Sunway University, Selangor, Malaysia
| | - Lee Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Biological Sciences, Sunway University, Selangor, Malaysia
| |
Collapse
|
63
|
Meng F, Liu J, Dai J, Wu M, Wang W, Liu C, Zhao D, Wang H, Zhang J, Li M, Li C. Brain-derived neurotrophic factor in 5-HT neurons regulates susceptibility to depression-related behaviors induced by subchronic unpredictable stress. J Psychiatr Res 2020; 126:55-66. [PMID: 32416387 DOI: 10.1016/j.jpsychires.2020.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/12/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Chronic stress is a major risk factor for the development of depression. Brain-derived neurotrophic factor (BDNF) plays an important role in neural functions and exhibits antidepressant effects. However, studies on depression-related behavioral response to BDNF have mainly focused on the limbic system, whereas other regions of the brain still require further exploration. Here, we report that exposure to chronic unpredictable stress (CUS) can induce depression-associated behaviors in mice. CUS could decrease total Bdnf mRNA and protein levels in the dorsal raphe nucleus (DRN), which correlated with depression-related behaviors. A corresponding reduction in exon-specific Bdnf mRNA was observed in the DRN of CUS mice. Bdnf was highly expressed in 5- Hydroxytryptamine (5-HT) neurons from the DRN. Selective deletion of Bdnf in 5-HT neurons alone could not induce anhedonia and behavioral despair in male or female mice, as indicated by the unchanged female urine sniffing time and preference for sucrose/saccharin. However, it could increase the latency to food in female mice, but not in male mice as shown by novelty-suppressed food test. Nevertheless, enhanced stress-induced susceptibility is observed in these male mice as suggested by the decrease in female urine sniffing time, and for female mice by the reduced sucrose preference and increased immobility in forced swim test. Furtherly, total Bdnf mRNA levels in DRN were correlated with depression-related behaviors of female, but not male 5-HT neurons specific Bdnf knockout mice. Our results indicate that BDNF might act on 5-HT neurons to regulate depression-related behaviors and stress vulnerability in a sex-dependent manner.
Collapse
Affiliation(s)
- Fantao Meng
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Juanjuan Dai
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Min Wu
- Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wentao Wang
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Cuilan Liu
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Di Zhao
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Hongcai Wang
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jingyan Zhang
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Min Li
- Department of Neurology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chen Li
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
64
|
Poon CH, Tse LSR, Lim LW. DNA methylation in the pathology of Alzheimer's disease: from gene to cognition. Ann N Y Acad Sci 2020; 1475:15-33. [PMID: 32491215 DOI: 10.1111/nyas.14373] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a debilitating disorder that manifests with amyloid beta plaque deposition, neurofibrillary tangles, neuronal loss, and severe cognitive impairment. Although much effort has been made to decipher the pathogenesis of this disease, the mechanisms causing these detrimental outcomes remain obscure. Over the past few decades, neuroepigenetics has emerged as an important field that, among other things, explores how reversible modifications can change gene expression to control behavior and cognitive abilities. Among epigenetic modifications, DNA methylation requires further elucidation for the conflicting observations from AD research and its pivotal role in learning and memory. In this review, we focus on the essential components of DNA methylation, the effects of aberrant methylation on gene expressions in the amyloidogenic pathway and neurochemical processes, as well as memory epigenetics in Alzheimer's disease.
Collapse
Affiliation(s)
- Chi Him Poon
- Neuromodulation Laboratory, Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, the University of Hong Kong, Hong Kong, P. R. China
| | - Long Sum Rachel Tse
- Neuromodulation Laboratory, Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, the University of Hong Kong, Hong Kong, P. R. China
| | - Lee Wei Lim
- Neuromodulation Laboratory, Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, the University of Hong Kong, Hong Kong, P. R. China
| |
Collapse
|
65
|
A valepotriate-enriched fraction from Valeriana glechomifolia decreases DNA methylation and up-regulate TrkB receptors in the hippocampus of mice. Behav Pharmacol 2020; 31:333-342. [DOI: 10.1097/fbp.0000000000000534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
66
|
Aberg KA, Dean B, Shabalin AA, Chan RF, Han LK, Zhao M, van Grootheest G, Xie LY, Milaneschi Y, Clark SL, Turecki G, Penninx BW, van den Oord EJ. Methylome-wide association findings for major depressive disorder overlap in blood and brain and replicate in independent brain samples. Mol Psychiatry 2020; 25:1344-1354. [PMID: 30242228 PMCID: PMC6428621 DOI: 10.1038/s41380-018-0247-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/26/2018] [Accepted: 08/08/2018] [Indexed: 12/31/2022]
Abstract
We present the first large-scale methylome-wide association studies (MWAS) for major depressive disorder (MDD) to identify sites of potential importance for MDD etiology. Using a sequencing-based approach that provides near-complete coverage of all 28 million common CpGs in the human genome, we assay methylation in MDD cases and controls from both blood (N = 1132) and postmortem brain tissues (N = 61 samples from Brodmann Area 10, BA10). The MWAS for blood identified several loci with P ranging from 1.91 × 10-8 to 4.39 × 10-8 and a resampling approach showed that the cumulative association was significant (P = 4.03 × 10-10) with the signal coming from the top 25,000 MWAS markers. Furthermore, a permutation-based analysis showed significant overlap (P = 5.4 × 10-3) between the MWAS findings in blood and brain (BA10). This overlap was significantly enriched for a number of features including being in eQTLs in blood and the frontal cortex, CpG islands and shores, and exons. The overlapping sites were also enriched for active chromatin states in brain including genic enhancers and active transcription start sites. Furthermore, three loci located in GABBR2, RUFY3, and in an intergenic region on chromosome 2 replicated with the same direction of effect in the second brain tissue (BA25, N = 60) from the same individuals and in two independent brain collections (BA10, N = 81 and 64). GABBR2 inhibits neuronal activity through G protein-coupled second-messenger systems and RUFY3 is implicated in the establishment of neuronal polarity and axon elongation. In conclusion, we identified and replicated methylated loci associated with MDD that are involved in biological functions of likely importance to MDD etiology.
Collapse
Affiliation(s)
- Karolina A. Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA,Correspondence should be addressed to: Karolina A. Aberg, P.O. Box 980533, Richmond, VA 23298, Phone: (804) 628-3023, Fax: (804) 628-3991,
| | - Brian Dean
- The Molecular Psychiatry Laboratory, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia,Centre for Mental Health, Swinburne University, Hawthorn, Victoria, Australia
| | - Andrey A. Shabalin
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Robin F. Chan
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Laura K.M. Han
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, GGZ inGeest, Amsterdam, The Netherlands
| | - Min Zhao
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Gerard van Grootheest
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, GGZ inGeest, Amsterdam, The Netherlands
| | - Lin Y. Xie
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, GGZ inGeest, Amsterdam, The Netherlands
| | - Shaunna L. Clark
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Gustavo Turecki
- Douglas Mental Health University Institute and McGill University, Montréal, Québec, Canada
| | - Brenda W.J.H. Penninx
- Department of Psychiatry, Amsterdam Neuroscience, VU University Medical Center, GGZ inGeest, Amsterdam, The Netherlands
| | - Edwin J.C.G. van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
67
|
Mokhtari T, Tu Y, Hu L. Involvement of the hippocampus in chronic pain and depression. BRAIN SCIENCE ADVANCES 2020. [DOI: 10.26599/bsa.2019.9050025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Increases in depressive behaviors have been reported in patients experiencing chronic pain. In these patients, the symptoms of pain and depression commonly coexist, impairing their lives and challenging effective treatment. The hippocampus may play a role in both chronic pain and depression. A reduction in the volume of the hippocampus is related to reduced neurogenesis and neuroplasticity in cases of chronic pain and depression. Moreover, an increase of proinflammatory factors and a reduction of neurotrophic factors have been reported to modulate the hippocampal neurogenesis and neuroplasticity in chronic pain and depression. This review discusses the mechanisms underlying the depressive-like behavior accompanying chronic pain, emphasizing the structural and functional changes in the hippocampus. We also discuss the hypothesis that pro-inflammatory factors and neurotrophic factors expressed in the hippocampus may serve as a therapeutic target for comorbid chronic pain and depression.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yiheng Tu
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
68
|
Sabatucci A, Berchet V, Bellia F, Maccarrone M, Dainese E, D'Addario C, Pucci M. A new methodological approach for in vitro determination of the role of DNA methylation on transcription factor binding using AlphaScreen® analysis: Focus on CREB1 binding at hBDNF promoter IV. J Neurosci Methods 2020; 341:108720. [PMID: 32416472 DOI: 10.1016/j.jneumeth.2020.108720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/09/2020] [Accepted: 04/01/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND DNA methylation plays a relevant role in the regulation of gene transcription, but currently the exact quantification of transcription factors binding to methylated DNA is not being determined. The binding of the transcription factor cAMP response element-binding protein-1 to its cognate CpG containing motif is known to be impaired upon methylation. It thus represents a paradigmatic system to experimentally verify the validity of a new in vitro method to measure the role of methylation on DNA/transcription factors binding. METHOD An AlphaScreen® assay was developed to quantitatively measure the contribution of DNA CpG methylation on the interaction with transcription factors. The method was validated measuring the variation in affinity of cAMP response element-binding protein-1 and its recognition motif in human Brain-derived neurotrophic factor gene exon IV promoter as a function of CpG methylation. RESULTS For the first time, a quantitative direct correlation between DNA methylation and transcription factors binding is reported showing a dramatic reduction in binding affinity between fully methylated and non-methylated DNA. COMPARISON WITH EXISTING METHODS This methodology allows to directly measure DNA/transcription factors binding ability as a function of DNA methylation levels thus improving not quantitative methods available today. Moreover, it allows to work with purified proteins and oligonucleotides without need of chromatin. CONCLUSIONS The present methodology is suggested as a new analytical tool for the quantitative determination of the effect of CpG methylation on the interaction of gene promoters with transcription factors regulating gene expression, a key epigenetic mechanism implicated in many physiological and pathological conditions.
Collapse
Affiliation(s)
- A Sabatucci
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy.
| | - V Berchet
- PerkinElmer Espana S.L., Ronda de Poniente, 19-28760 Tres Cantos (Madrid), Spain.
| | - F Bellia
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy.
| | - M Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Via Álvaro del Portillo, 21-00128 Roma, Italy; European Center for Brain Research (CERC)/Santa Lucia Foundation, Via del Fosso di Fiorano, 64-00143 Roma, Italy.
| | - E Dainese
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy.
| | - C D'Addario
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy.
| | - M Pucci
- Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Via Balzarini 1, 64100 Teramo, Italy.
| |
Collapse
|
69
|
Nassan M, Veldic M, Winham S, Frye MA, Larrabee B, Colby C, Biernacka J, Bellia F, Pucci M, Terenius L, Vukojevic V, D'Addario C. Methylation of Brain Derived Neurotrophic Factor (BDNF) Val66Met CpG site is associated with early onset bipolar disorder. J Affect Disord 2020; 267:96-102. [PMID: 32063579 DOI: 10.1016/j.jad.2020.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/21/2020] [Accepted: 02/01/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The brain-derived neurotrophic factor (BDNF) rs6265 (Val66Met) Met allele is associated with early onset (≤ 19 years old) bipolar disorder (BD). Val66Met (G196A) creates a CpG site when the Val/G allele is present. We sought to study the methylation of the BDNF promoter and its interaction with Val66Met genotype in BD. METHODS Sex/age-matched previously genotyped DNA samples from BD-Type 1 cases [N = 166: early onset (≤ 19 years old) n = 79, late onset (> 20 years old) n = 87] and controls (N = 162) were studied. Pyrosequencing of four CpGs in Promoter-I, four CpGs in promoter-IV, and two CpGs in Promoter-IX (CpG2 includes G= Val allele) was performed. Logistic regression adjusting for batch effect was used to compare cases vs. controls. Analyses also included stratification by disease onset and adjustment for Val66Met genotype. Secondary exploratory analyses for the association of life stressors, comorbid substance abuse, and psychotropic use with methylation patterns were performed. RESULTS Comparing all BD cases vs. controls and adjusting for Val66Met genotype, BD cases had significantly higher methylation in promoter -IX/CPG-2 (p = 0.0074). This was driven by early onset cases vs. controls (p = 0.00039) and not late onset cases vs. controls (p = 0.2). LIMITATION Relatively small sample size. CONCLUSION Early onset BD is associated with increased methylation of CpG site created by Val=G allele of the Val66Met variance. Further studies could include larger sample size and postmortem brain samples in an attempt to replicate these findings.
Collapse
Affiliation(s)
- Malik Nassan
- Mayo Clinic, Psychiatry & Psychology, Rochester, MN, USA
| | - Marin Veldic
- Mayo Clinic, Psychiatry & Psychology, Rochester, MN, USA
| | - Stacey Winham
- Mayo Clinic, Psychiatry & Psychology, Rochester, MN, USA
| | - Mark A Frye
- Mayo Clinic, Psychiatry & Psychology, Rochester, MN, USA
| | - Beth Larrabee
- Mayo Clinic, Psychiatry & Psychology, Rochester, MN, USA
| | - Colin Colby
- Mayo Clinic, Psychiatry & Psychology, Rochester, MN, USA
| | | | | | | | - Lars Terenius
- Karolinska Institute, Clinical Neuroscience, Solna, Sweden
| | | | | |
Collapse
|
70
|
Gordovez FJA, McMahon FJ. The genetics of bipolar disorder. Mol Psychiatry 2020; 25:544-559. [PMID: 31907381 DOI: 10.1038/s41380-019-0634-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
Bipolar disorder (BD) is one of the most heritable mental illnesses, but the elucidation of its genetic basis has proven to be a very challenging endeavor. Genome-Wide Association Studies (GWAS) have transformed our understanding of BD, providing the first reproducible evidence of specific genetic markers and a highly polygenic architecture that overlaps with that of schizophrenia, major depression, and other disorders. Individual GWAS markers appear to confer little risk, but common variants together account for about 25% of the heritability of BD. A few higher-risk associations have also been identified, such as a rare copy number variant on chromosome 16p11.2. Large scale next-generation sequencing studies are actively searching for other alleles that confer substantial risk. As our understanding of the genetics of BD improves, there is growing optimism that some clear biological pathways will emerge, providing a basis for future studies aimed at molecular diagnosis and novel therapeutics.
Collapse
Affiliation(s)
- Francis James A Gordovez
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA.,College of Medicine, University of the Philippines Manila, 1000, Ermita, Manila, Philippines
| | - Francis J McMahon
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program, Department of Health and Human Services, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
71
|
Salehzadeh SA, Mohammadian A, Salimi F. Effect of chronic methamphetamine injection on levels of BDNF mRNA and its CpG island methylation in prefrontal cortex of rats. Asian J Psychiatr 2020; 48:101884. [PMID: 31830601 DOI: 10.1016/j.ajp.2019.101884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/16/2023]
Abstract
Methamphetamine (METH) is a highly addictive psychostimulant. Its abuse causes problems in cognition, attention, or psychiatric conditions such as psychosis. Prefrontal cortex is involved in many aspects of drug addiction and in mental disorders similar to those triggered by METH. Brain-derived neurotrophic factor (BDNF), plays important roles in modulating different aspects of addiction, and is implicated in psychiatric conditions reminiscent of those suffered by METH-abusers. Male Wistar rats were intra-peritoneally injected with METH (8 mg/kg/day) for 14 days while control group received normal saline. After extraction of prefrontal cortices, expression of BDNF IV splice variant and methylation level of its CpG island were evaluated. The relative expression of BDNF IV in METH-treated group was 2.15 fold higher than the control group. Seven out of 29 CpG sites were significantly hypomethylated in the METH group, although none survived Bonferroni adjustment. However, the overall methylation level of the 29 CpGs was significantly lower in METH cases than in controls. We discuss the importance of our results and its implications in detail.
Collapse
Affiliation(s)
- Seyed Ahmad Salehzadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Mohammadian
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fatemeh Salimi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
72
|
Claudino FCDA, Gonçalves L, Schuch FB, Martins HRS, da Rocha NS. The Effects of Individual Psychotherapy in BDNF Levels of Patients With Mental Disorders: A Systematic Review. Front Psychiatry 2020; 11:445. [PMID: 32508690 PMCID: PMC7249851 DOI: 10.3389/fpsyt.2020.00445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/01/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Brain-derived Neurotrophic Factor (BDNF) is considered the main cerebral neurotrophin and is produced in the central neural system and peripherals. Its levels are reduced in patients with several psychiatric disorders, but it is unclear if the response to psychotherapy can alter its concentration. OBJECTIVE To carry out a systematic review evaluating the effects of individual psychotherapy in BDNF levels in patients with mental disorders. METHODS The databases PubMed, EMBASE, PsycArticles, SciELO, Web of Science, and CENTRAL; the last search was performed on October 2019 for trials evaluating the effects of individual psychotherapy in BDNF levels in adults with mental disorders. PROSPERO registration: CRD42018108144. RESULTS Eight of 293 studies were included. A rise in BDNF levels was observed in depressive patients when psychotherapy was combined with medication. Patients with post-traumatic stress disorder (PTSD) who responded to therapy presented a raise in BDNF levels mostly when combined with physical activity. There was a rise in BDNF levels in those who responded to psychotherapy in patients with bulimia, in borderline patients, and in insomniacs. CONCLUSIONS The BDNF seems to present variations after psychotherapy especially in patients with bulimia, PTSD, insomnia, and borderline. These subjects also have symptom reduction. Thereby, BDNF could be a supplemental tool to analyze the success to psychotherapy. BDNF levels in patients with major depression after therapy are still controversial and the short follow-up of most studies is a limiting factor.
Collapse
Affiliation(s)
- Felipe Cesar de Almeida Claudino
- Center of Clinical Research and Center of Experiamental Research, Hospital de Clínicas de Porto Alegre (HCPA), Post-Graduation Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do SUl (UFRGS), Porto Alegre, Brazil
| | - Leonardo Gonçalves
- Center of Clinical Research and Center of Experiamental Research, Hospital de Clínicas de Porto Alegre (HCPA), Post-Graduation Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do SUl (UFRGS), Porto Alegre, Brazil
| | - Felipe Barreto Schuch
- Department of Sports Methods and Techniques, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Hugo Roberto Sampaio Martins
- Department of Internal Medicine, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Neusa Sica da Rocha
- Center of Clinical Research and Center of Experiamental Research, Hospital de Clínicas de Porto Alegre (HCPA), Post-Graduation Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do SUl (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
73
|
Metformin ameliorates stress-induced depression-like behaviors via enhancing the expression of BDNF by activating AMPK/CREB-mediated histone acetylation. J Affect Disord 2020; 260:302-313. [PMID: 31521867 DOI: 10.1016/j.jad.2019.09.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/22/2019] [Accepted: 09/02/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Metformin, a first-line antiglycemic drug, has been reported to have anti-depressant effects in patients with type 2 diabetes; however, its exact role and underlying mechanism still need to be investigated. METHOD C57BL/6J mice were subjected to the Chronic social defeat stress (SDS) and drug administration (Control + Vehicle, SDS + Vehicle, SDS + MET (200 mg kg-1), SDS + FLUOX (3 mg kg-1), SDS + MET + FLUOX). And the depression phenotypes were evaluated by the sucrose preference test, social interaction, tail suspension test and forced swimming test. The potential mechanisms underlying the effects of metformin on depression was discussed by using Chromatin immunoprecipitation, Quantitative real-time PCR mRNA expression analysis and Western blot in vivo and in primary cultured hippocampal neurons. RESULT The metformin treatment counteracted the development of depression-like behaviors in mice suffering SDS when administered alone and enhanced the anti-depressant effect of fluoxetine when combined with fluoxetine. Further RNA sequencing analysis revealed that metformin treatment prevented the transcriptional changes in the medial prefrontal cortex (mPFC) of the animals and Golgi staining indicated favorable morphological changes in the neurite plasticity of CA1 pyramidal neurons, which approximated to those found in unstressed mice. At a molecular level, metformin significantly upregulated the expression of the brain-derived neurotrophic factor (BDNF) by increasing the histone acetylation along with the BDNF promoter, which was attributed to the activation of AMP-activated protein kinase (AMPK) and cAMP-response element binding protein (CREB). CONCLUSION Our findings suggest that metformin can produce antidepressant effects, which provides empirical insights into the clinical value of metformin in the prevention and therapy of depression.
Collapse
|
74
|
Kumar A, Kumar P, Pareek V, Faiq MA, Narayan RK, Raza K, Prasoon P, Sharma VK. Neurotrophin mediated HPA axis dysregulation in stress induced genesis of psychiatric disorders: Orchestration by epigenetic modifications. J Chem Neuroanat 2019; 102:101688. [PMID: 31568825 DOI: 10.1016/j.jchemneu.2019.101688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022]
Abstract
Apart from their established role in embryonic development, neurotrophins (NTs) have diverse functions in the nervous system. Their role in the integration of physiological and biochemical aspects of the nervous system is currently attracting much attention. Based on a systematic analysis of the literature, we here propose a new paradigm that, by exploiting a novel role of NTs, may help explain the genesis of stress-related psychiatric disorders, opening new avenues for better management of the same. We hypothesize that NTs as an integrated network play a crucial role in maintaining an indivdual's psychological wellbeing. Given the evidence that stress can induce chronic disruption of the hypothalamic-pituitary-adrenal (HPA) axis which, in turn, is causally linked to several psychiatric disorders, this function may be mediated through the homeostatic mechanisms governing regulation of this axis. In fact, NTs, such as nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) are known to participate in neuroendocrine regulation. Recent studies suggest epigenetic modification of NT-HPA axis interplay in the precipitation of psychiatric disorders. Our article highlights why this new knowledge regarding NTs should be considered in the etiogenesis and treatment of stress-induced psychopathology.
Collapse
|
75
|
Wanner NM, Colwell ML, Faulk C. The epigenetic legacy of illicit drugs: developmental exposures and late-life phenotypes. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz022. [PMID: 31777665 PMCID: PMC6875650 DOI: 10.1093/eep/dvz022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 05/24/2023]
Abstract
The effects of in utero exposure to illicit drugs on adult offspring are a significant and widespread but understudied global health concern, particularly in light of the growing opioid epidemic and emerging therapeutic uses for cannabis, ketamine, and MDMA. Epigenetic mechanisms including DNA methylation, histone modifications, and expression of non-coding RNAs provide a mechanistic link between the prenatal environment and health consequences years beyond the original exposure, and shifts in the epigenome present in early life or adolescence can lead to disease states only appearing during adulthood. The current review summarizes the literature assessing effects of perinatal illicit drug exposure on adult disease phenotypes as mediated by perturbations of the epigenome. Both behavioral and somatic phenotypes are included and studies reporting clinical data in adult offspring, epigenetic readouts in offspring of any age, or both phenotypic and epigenetic measures are prioritized. Studies of licit substances of abuse (i.e. alcohol, nicotine) are excluded with a focus on cannabis, psychostimulants, opioids, and psychedelics; current issues in the field and areas of interest for further investigation are also discussed.
Collapse
Affiliation(s)
- Nicole M Wanner
- Department of Veterinary and Biomedical Sciences, University of Minnesota College of Veterinary Medicine, 1988 Fitch Ave, 495B AnSc/VetMed, St. Paul, MN 55108, USA
| | - Mathia L Colwell
- Department of Animal Science, University of Minnesota College of Food, Agricultural and Natural Resource Natural Resource Sciences, 1988 Fitch Ave, 495B AnSc/VetMed, St. Paul, MN 55108, USA
| | - Christopher Faulk
- Department of Veterinary and Biomedical Sciences, University of Minnesota College of Veterinary Medicine, 1988 Fitch Ave, 495B AnSc/VetMed, St. Paul, MN 55108, USA
- Department of Animal Science, University of Minnesota College of Food, Agricultural and Natural Resource Natural Resource Sciences, 1988 Fitch Ave, 495B AnSc/VetMed, St. Paul, MN 55108, USA
| |
Collapse
|
76
|
Wheeler AL, Felsky D, Viviano JD, Stojanovski S, Ameis SH, Szatmari P, Lerch JP, Chakravarty MM, Voineskos AN. BDNF-Dependent Effects on Amygdala-Cortical Circuitry and Depression Risk in Children and Youth. Cereb Cortex 2019; 28:1760-1770. [PMID: 28387866 DOI: 10.1093/cercor/bhx086] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/24/2017] [Indexed: 01/03/2023] Open
Abstract
The brain-derived neurotrophic factor (BDNF) is critical for brain development, and the functional BDNF Val66Met polymorphism is implicated in risk for mood disorders. The objective of this study was to determine how the Val66Met polymorphism influences amygdala-cortical connectivity during neurodevelopment and assess the relevance for mood disorders. Age- and sex-specific effects of the BDNF Val66Met polymorphism on amygdala-cortical connectivity were assessed by examining covariance of amygdala volumes with thickness throughout the cortex in a sample of Caucasian youths ages 8-22 that were part of the Philadelphia Neurodevelopmental Cohort (n = 339). Follow-up analyses assessed corresponding BDNF genotype effects on resting-state functional connectivity (n = 186) and the association between BDNF genotype and major depressive disorder (MDD) (n = 2749). In adolescents, amygdala-cortical covariance was significantly stronger in Met allele carriers compared with Val/Val homozygotes in amygdala-cortical networks implicated in depression; these differences were driven by females. In follow-up analyses, the Met allele was also associated with stronger resting-state functional connectivity in adolescents and increased likelihood of MDD in adolescent females. The BDNF Val66Met polymorphism may confer risk for mood disorders in females through effects on amygdala-cortical connectivity during adolescence, coinciding with a period in the lifespan when onset of depression often occurs, more commonly in females.
Collapse
Affiliation(s)
- Anne L Wheeler
- Research Imaging Centre, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada M5T 1R8.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada M5T 1R8.,Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Daniel Felsky
- Research Imaging Centre, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada M5T 1R8.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada M5T 1R8
| | - Joseph D Viviano
- Research Imaging Centre, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada M5T 1R8
| | - Sonja Stojanovski
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Stephanie H Ameis
- Research Imaging Centre, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada M5T 1R8.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada M5T 1R8.,Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,Child Youth and Emerging Adult Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada M5T 1R8
| | - Peter Szatmari
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada M5T 1R8.,Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,Child Youth and Emerging Adult Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada M5T 1R8
| | - Jason P Lerch
- Program in Neuroscience and Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4.,Medical Biophysics, University of Toronto, Toronto, Ontario, Canada M5G 1L7
| | - M Mallar Chakravarty
- Cerebral Imaging Centre, Douglas Institute, Montreal, Quebec, Canada H4H 1R3.,Department of Biomedical Engineering, McGill University, 3775 rue University Montreal, Quebec, Canada H3A 2B4
| | - Aristotle N Voineskos
- Research Imaging Centre, Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada M5T 1R8.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada M5T 1R8.,Child Youth and Emerging Adult Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada M5T 1R8
| |
Collapse
|
77
|
Matsuda S, Baba R, Oki H, Morimoto S, Toyofuku M, Igaki S, Kamada Y, Iwasaki S, Matsumiya K, Hibino R, Kamada H, Hirakawa T, Iwatani M, Tsuchida K, Hara R, Ito M, Kimura H. T-448, a specific inhibitor of LSD1 enzyme activity, improves learning function without causing thrombocytopenia in mice. Neuropsychopharmacology 2019; 44:1505-1512. [PMID: 30580376 PMCID: PMC6785089 DOI: 10.1038/s41386-018-0300-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/29/2018] [Accepted: 12/14/2018] [Indexed: 12/19/2022]
Abstract
Dysregulation of histone H3 lysine 4 (H3K4) methylation has been implicated in the pathogenesis of several neurodevelopmental disorders. Targeting lysine-specific demethylase 1 (LSD1), an H3K4 demethylase, is therefore a promising approach to treat these disorders. However, LSD1 forms complexes with cofactors including growth factor independent 1B (GFI1B), a critical regulator of hematopoietic differentiation. Known tranylcypromine-based irreversible LSD1 inhibitors bind to coenzyme flavin adenine dinucleotide (FAD) and disrupt the LSD1-GFI1B complex, which is associated with hematotoxicity such as thrombocytopenia, representing a major hurdle in the development of LSD1 inhibitors as therapeutic agents. To discover LSD1 inhibitors with potent epigenetic modulation and lower risk of hematotoxicity, we screened small molecules that enhance H3K4 methylation by the inhibition of LSD1 enzyme activity in primary cultured rat neurons but have little impact on LSD1-GFI1B complex in human TF-1a erythroblasts. Here we report the discovery of a specific inhibitor of LSD1 enzyme activity, T-448 (3-((1S,2R)-2-(cyclobutylamino)cyclopropyl)-N-(5-methyl-1,3,4-thiadiazol-2-yl)benzamide fumarate). T-448 has minimal impact on the LSD1-GFI1B complex and a superior hematological safety profile in mice via the generation of a compact formyl-FAD adduct. T-448 increased brain H3K4 methylation and partially restored learning function in mice with NMDA receptor hypofunction. T-448-type LSD1 inhibitors with improved safety profiles may provide unique therapeutic approaches for central nervous system disorders associated with epigenetic dysregulation.
Collapse
Affiliation(s)
- Satoru Matsuda
- 0000 0001 0673 6017grid.419841.1Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Rina Baba
- 0000 0001 0673 6017grid.419841.1Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Hideyuki Oki
- 0000 0001 0673 6017grid.419841.1Biomolecular Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Shinji Morimoto
- 0000 0001 0673 6017grid.419841.1Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Masashi Toyofuku
- 0000 0001 0673 6017grid.419841.1Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Shigeru Igaki
- 0000 0001 0673 6017grid.419841.1Biomolecular Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Yusuke Kamada
- 0000 0001 0673 6017grid.419841.1Biomolecular Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Shinji Iwasaki
- 0000 0001 0673 6017grid.419841.1Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Kota Matsumiya
- 0000 0001 0673 6017grid.419841.1Drug Metabolism and Pharmacokinetics Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Ryosuke Hibino
- 0000 0001 0673 6017grid.419841.1Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Hiroko Kamada
- 0000 0001 0673 6017grid.419841.1Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Takeshi Hirakawa
- 0000 0001 0673 6017grid.419841.1Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Misa Iwatani
- 0000 0001 0673 6017grid.419841.1Biomolecular Research Laboratories, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Ken Tsuchida
- 0000 0001 0673 6017grid.419841.1Extra Value Generation Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Ryujiro Hara
- 0000 0001 0673 6017grid.419841.1Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Mitsuhiro Ito
- 0000 0001 0673 6017grid.419841.1Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555 Japan
| | - Haruhide Kimura
- Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan.
| |
Collapse
|
78
|
Long lasting behavioral and electrophysiological action of early administration of guanosine: Analysis in the adult rat brain. Brain Res Bull 2019; 150:266-271. [PMID: 31181322 DOI: 10.1016/j.brainresbull.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/23/2019] [Accepted: 06/04/2019] [Indexed: 01/01/2023]
Abstract
Guanosine (GUO) is a guanine-based purine that has been extensively described in the literature as an endogenous nucleoside with participation in brain cell signalling pathways. Here, we evaluated whether chronic treatment with exogenous guanosine during brain development altered behavioral and electrophysiological parameters in adulthood. Rat pups received a daily intraperitoneal injection of 10, 50 or 100 mg/ kg/day GUO, or saline solution or no treatment (naive group) from postnatal (P) day 7 to P27. At P 60-65 the animals were behaviorally tested in the Elevated Plus-Maze (EPM). On P90-100, the electrophysiological phenomenon known as cortical spreading depression (CSD) was recorded on the right cortical surface for 4 h. With the EPM task, GUO treatment was associated with a significant increase in rearing behavior and a non-significant trend towards anxiogenic behavior. In a dose-dependent manner, GUO significantly (p < 0.01) increased weight gain on P90, and reduced the CSD propagation velocity from 3.42 ± 0.10 and 3.43 ± 0.10 mm/min in the Naive and Vehicle controls, respectively, to 3.05 ± 0.12 mm/min, 2.87 ± 0.07 mm/min and 2.25 ± 0.25 mm/min in the groups treated with 10, 50 and 100 mg/kg/d GUO, respectively. The results confirmed the hypothesis that the chronic treatment with GUO early in life modulates CSD and body weight. Data on CSD propagation suggest that, besides its suppressing action on glutamatergic transmission (via enhancement of astrocytic glutamate uptake), GUO might act as an antioxidant in the brain, a hypothesis that deserves further exploration.
Collapse
|
79
|
Polak S, Tylutki Z, Holbrook M, Wiśniowska B. Better prediction of the local concentration-effect relationship: the role of physiologically based pharmacokinetics and quantitative systems pharmacology and toxicology in the evolution of model-informed drug discovery and development. Drug Discov Today 2019; 24:1344-1354. [PMID: 31132414 DOI: 10.1016/j.drudis.2019.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 03/04/2019] [Accepted: 05/21/2019] [Indexed: 12/15/2022]
Abstract
Model-informed drug discovery and development (MID3) is an umbrella term under which sit several computational approaches: quantitative systems pharmacology (QSP), quantitative systems toxicology (QST) and physiologically based pharmacokinetics (PBPK). QSP models are built using mechanistic knowledge of the pharmacological pathway focusing on the putative mechanism of drug efficacy; whereas QST models focus on safety and toxicity issues and the molecular pathways and networks that drive these adverse effects. These can be mediated through exaggerated on-target or off-target pharmacology, immunogenicity or the physiochemical nature of the compound. PBPK models provide a mechanistic description of individual organs and tissues to allow the prediction of the intra- and extra-cellular concentration of the parent drug and metabolites under different conditions. Information on biophase concentration enables the prediction of a drug effect in different organs and assessment of the potential for drug-drug interactions. Together, these modelling approaches can inform the exposure-response relationship and hence support hypothesis generation and testing, compound selection, hazard identification and risk assessment through to clinical proof of concept (POC) and beyond to the market.
Collapse
Affiliation(s)
- Sebastian Polak
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Kraków, Poland; Certara-Simcyp, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK.
| | - Zofia Tylutki
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Kraków, Poland; Certara-Simcyp, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Mark Holbrook
- Certara-Simcyp, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Barbara Wiśniowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Kraków, Poland
| |
Collapse
|
80
|
Choi J, Kim YK, Han PL. Extracellular Vesicles Derived from Lactobacillus plantarum Increase BDNF Expression in Cultured Hippocampal Neurons and Produce Antidepressant-like Effects in Mice. Exp Neurobiol 2019; 28:158-171. [PMID: 31138987 PMCID: PMC6526105 DOI: 10.5607/en.2019.28.2.158] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/26/2022] Open
Abstract
Gut microbiota play a role in regulating mental disorders, but the mechanism by which gut microbiota regulate brain function remains unclear. Gram negative and positive gut bacteria release membrane-derived extracellular vesicles (EVs), which function in microbiota-host intercellular communication. In the present study, we investigated whether Lactobacillus plantarum derived EVs (L-EVs) could have a role in regulating neuronal function and stress-induced depressive-like behaviors. HT22 cells treated with the stress hormone glucocorticoid (GC; corticosterone) had reduced expression of Bdnf and Sirt1, whereas L-EV treatment reversed GC-induced decreased expression of Bdnf and Sirt1. The siRNA-mediated knockdown of Sirt1 in HT22 cells decreased Bdnf4, a splicing variant of Bdnf, and Creb expression, suggesting that Sirt1 plays a role in L-EV-induced increase of BDNF and CREB expression. Mice exposed to restraint for 2-h daily for 14 days (CRST) exhibited depressive-like behaviors, and these CRST-treated mice had reduced expression of Bdnf and Nt4/5 in the hippocampus. In contrast, L-EV injection prior to each restraint treatment blocked the reduced expression of Bdnf and Nt4/5, and stress-induced depressive-like behaviors. Furthermore, L-EV treatment in CRST-treated mice also rescued the reduced expression of Bdnf, and blocked stress-induced depressive-like behaviors. These results suggest that Lactobacillus derived EVs can change the expression of neurotropic factors in the hippocampus and afford antidepressant-like effects in mice with stress-induced depression.
Collapse
Affiliation(s)
- Juli Choi
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | | | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea.,Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
81
|
Jaric I, Rocks D, Cham H, Herchek A, Kundakovic M. Sex and Estrous Cycle Effects on Anxiety- and Depression-Related Phenotypes in a Two-Hit Developmental Stress Model. Front Mol Neurosci 2019; 12:74. [PMID: 31031589 PMCID: PMC6470284 DOI: 10.3389/fnmol.2019.00074] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/11/2019] [Indexed: 12/13/2022] Open
Abstract
Stress during sensitive developmental periods can adversely affect physical and psychological development and contribute to later-life mental disorders. In particular, adverse experiences during childhood dramatically increase the risk for the development of depression and anxiety disorders. Although women of reproductive age are twice as likely to develop anxiety and depression than men of the corresponding age, little is known about sex-specific factors that promote or protect against the development of psychopathology. To examine potential developmental mechanisms driving sex disparity in risk for anxiety and depression, we established a two-hit developmental stress model including maternal separation in early life followed by social isolation in adolescence. Our study shows complex interactions between early-life and adolescent stress, between stress and sex, and between stress and female estrogen status in shaping behavioral phenotypes of adult animals. In general, increased locomotor activity and body weight reduction were the only two phenotypes where two stressors showed synergistic activity. In terms of anxiety- and depression-related phenotypes, single exposure to early-life stress had the most significant impact and was female-specific. We show that early-life stress disrupts the protective role of estrogen in females, and promotes female vulnerability to anxiety- and depression-related phenotypes associated with the low-estrogenic state. We found plausible transcriptional and epigenetic alterations in psychiatric risk genes, Nr3c1 and Cacna1c, that likely contributed to the stress-induced behavioral effects. In addition, two general transcriptional regulators, Egr1 and Dnmt1, were found to be dysregulated in maternally-separated females and in animals exposed to both stressors, respectively, providing insights into possible transcriptional mechanisms that underlie behavioral phenotypes. Our findings provide a novel insight into developmental risk factors and biological mechanisms driving sex differences in depression and anxiety disorders, facilitating the search for more effective, sex-specific treatments for these disorders.
Collapse
Affiliation(s)
- Ivana Jaric
- Department of Biological Sciences, Fordham University, Bronx, NY, United States
| | - Devin Rocks
- Department of Biological Sciences, Fordham University, Bronx, NY, United States
| | - Heining Cham
- Department of Psychology, Fordham University, Bronx, NY, United States
| | - Alice Herchek
- Department of Biological Sciences, Fordham University, Bronx, NY, United States
| | - Marija Kundakovic
- Department of Biological Sciences, Fordham University, Bronx, NY, United States
| |
Collapse
|
82
|
Oh JH, Nam TJ. Hydrophilic Glycoproteins of an Edible Green Alga Capsosiphon fulvescens Prevent Aging-Induced Spatial Memory Impairment by Suppressing GSK-3β-Mediated ER Stress in Dorsal Hippocampus. Mar Drugs 2019; 17:E168. [PMID: 30875947 PMCID: PMC6470841 DOI: 10.3390/md17030168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 02/27/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Endoplasmic reticulum (ER) stress is involved in various neurodegenerative disorders. We previously found that Capsosiphon fulvescens (C. fulvescens) crude proteins enhance spatial memory by increasing the expression of brain-derived neurotrophic factor (BDNF) in rat dorsal hippocampus. The present study investigated whether the chronic oral administration of hydrophilic C. fulvescens glycoproteins (Cf-hGP) reduces aging-induced cognitive dysfunction by regulating ER stress in the dorsal hippocampus. The oral administration of Cf-hGP (15 mg/kg/day) for four weeks attenuated the aging-induced increase in ER stress response protein glucose-regulated protein 78 (GRP78) in the synaptosome of the dorsal hippocampus; this was attenuated by the function-blocking anti-BDNF antibody (1 μg/μL) and a matrix metallopeptidase 9 inhibitor 1 (5 μM). Aging-induced GRP78 expression was associated with glycogen synthase kinase-3 beta (GSK-3β) (Tyr216)-mediated c-Jun N-terminal kinase phosphorylation, which was downregulated upon Cf-hGP administration. The Cf-hGP-induced increase in GSK-3β (Ser9) phosphorylation was downregulated by inhibiting tyrosine receptor kinase B and extracellular signal-regulated kinase (ERK)1/2 with cyclotraxin-B (200 nM) and SL327 (10 μM), respectively. Cf-hGP administration or the inhibition of ER stress with salubrinal (1 mg/kg, i.p.) significantly decreased aging-induced spatial memory impairment. These findings suggest that the activation of the synaptosomal BDNF-ERK1/2 signaling in the dorsal hippocampus by Cf-hGP attenuates age-dependent ER stress-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Jeong Hwan Oh
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea.
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea.
| |
Collapse
|
83
|
Bagheri A, Habibzadeh P, Razavipour SF, Volmar CH, Chee NT, Brothers SP, Wahlestedt C, Mowla SJ, Faghihi MA. HDAC Inhibitors Induce BDNF Expression and Promote Neurite Outgrowth in Human Neural Progenitor Cells-Derived Neurons. Int J Mol Sci 2019; 20:E1109. [PMID: 30841499 PMCID: PMC6429164 DOI: 10.3390/ijms20051109] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/19/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
Besides its key role in neural development, brain-derived neurotrophic factor (BDNF) is important for long-term potentiation and neurogenesis, which makes it a critical factor in learning and memory. Due to the important role of BDNF in synaptic function and plasticity, an in-house epigenetic library was screened against human neural progenitor cells (HNPCs) and WS1 human skin fibroblast cells using Cell-to-Ct assay kit to identify the small compounds capable of modulating the BDNF expression. In addition to two well-known hydroxamic acid-based histone deacetylase inhibitors (hb-HDACis), SAHA and TSA, several structurally similar HDAC inhibitors including SB-939, PCI-24781 and JNJ-26481585 with even higher impact on BDNF expression, were discovered in this study. Furthermore, by using well-developed immunohistochemistry assays, the selected compounds were also proved to have neurogenic potential improving the neurite outgrowth in HNPCs-derived neurons. In conclusion, we proved the neurogenic potential of several hb-HDACis, alongside their ability to enhance BDNF expression, which by modulating the neurogenesis and/or compensating for neuronal loss, could be propitious for treatment of neurological disorders.
Collapse
Affiliation(s)
- Amir Bagheri
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-111, Iran.
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Parham Habibzadeh
- Persian BayanGene Research and Training Center, Shiraz, P.O. Box 7134767617, Iran.
| | - Seyedeh Fatemeh Razavipour
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Nancy T Chee
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Shaun P Brothers
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Seyed Javad Mowla
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, P.O. Box 14115-111, Iran.
| | - Mohammad Ali Faghihi
- Center for Therapeutic Innovation and Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
- Persian BayanGene Research and Training Center, Shiraz, P.O. Box 7134767617, Iran.
| |
Collapse
|
84
|
Miguez MJ, Chan W, Espinoza L, Tarter R, Perez C. Marijuana use among adolescents is associated with deleterious alterations in mature BDNF. AIMS Public Health 2019; 6:4-14. [PMID: 30931339 PMCID: PMC6433615 DOI: 10.3934/publichealth.2019.1.4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/21/2018] [Indexed: 11/29/2022] Open
Abstract
Background With increases in marijuana use and legalization efforts, it is imperative to establish its impact on the developing brain. Therefore, we investigated whether exposure to marijuana alters brain derived neurotropic-factor (BDNF), given its critical role in brain development and plasticity. We then examined whether onset age of cannabis use was associated with more severe changes. A single site, cohort study following 500 urban healthy American adolescents. Changes in plasma m-BDNF levels were longitudinally assessed, and a multi-method approach was implemented to ascertain marijuana use. Multivariate and general linear model (GLM) regression modeling were utilized to test the main hypothesis, controlling for confounders. Results Group-based trajectory modeling identified four distinct groups, characterized by naive (60% control), starters (14%), chronic users (20%), and experimenting/quitters (6%). Compared to controls, those initiating marijuana use had similar pre-existent m-BDNF (1939.2 ± 221 vs. 2640.7 ± 1309 ng/ml, p=0.4) After adjusting for confounding factors, GLM analyses revealed that, compared to controls, younger adolescents increased BDNF levels when experimenting and during moderate marijuana use. Older adolescents had a steeper increase in endogenous BDNF levels, particularly when escalating use. Multivariate analyses confirmed marijuana use as a predictor of m-BDNF (p = 0.001). Conclusions This is the first study demonstrating BDNF alterations were not a precondition. Rather, BDNF alteration was secondary to marijuana use, serving as cautionary evidence of marijuana's deleterious effects. Findings suggest that when marijuana use escalates, the BDNF pathway becomes more deregulated. Analyses confirm that age of marijuana use onset influences the magnitude of these changes.
Collapse
Affiliation(s)
- Maria Jose Miguez
- School of Integrated Science and Humanity, Florida International University, Miami, USA
| | - Wenyaw Chan
- Department of Biostatistics and Data Science, University of Texas, Houston, USA
| | - Luis Espinoza
- Department of Medicine, University of Miami, Miami, USA
| | - Ralph Tarter
- Center for Education and Drug Abuse Research, University of Pittsburgh, Pittsburgh, USA
| | - Caroline Perez
- School of Integrated Science and Humanity, Florida International University, Miami, USA
| |
Collapse
|
85
|
Coelho A, Oliveira R, Antunes-Lopes T, Cruz CD. Partners in Crime: NGF and BDNF in Visceral Dysfunction. Curr Neuropharmacol 2019; 17:1021-1038. [PMID: 31204623 PMCID: PMC7052822 DOI: 10.2174/1570159x17666190617095844] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/23/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
Neurotrophins (NTs), particularly Nerve Growth Factor (NGF) and Brain-Derived Neurotrophic Factor (BDNF), have attracted increasing attention in the context of visceral function for some years. Here, we examined the current literature and presented a thorough review of the subject. After initial studies linking of NGF to cystitis, it is now well-established that this neurotrophin (NT) is a key modulator of bladder pathologies, including Bladder Pain Syndrome/Interstitial Cystitis (BPS/IC) and Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS. NGF is upregulated in bladder tissue and its blockade results in major improvements on urodynamic parameters and pain. Further studies expanded showed that NGF is also an intervenient in other visceral dysfunctions such as endometriosis and Irritable Bowel Syndrome (IBS). More recently, BDNF was also shown to play an important role in the same visceral dysfunctions, suggesting that both NTs are determinant factors in visceral pathophysiological mechanisms. Manipulation of NGF and BDNF improves visceral function and reduce pain, suggesting that clinical modulation of these NTs may be important; however, much is still to be investigated before this step is taken. Another active area of research is centered on urinary NGF and BDNF. Several studies show that both NTs can be found in the urine of patients with visceral dysfunction in much higher concentration than in healthy individuals, suggesting that they could be used as potential biomarkers. However, there are still technical difficulties to be overcome, including the lack of a large multicentre placebo-controlled studies to prove the relevance of urinary NTs as clinical biomarkers.
Collapse
Affiliation(s)
| | | | | | - Célia Duarte Cruz
- Address correspondence to this author at the Department of Experimental Biology, Experimental Biology Unit, Faculty of Medicine of the University of Porto, Alameda Hernâni Monteiro; Tel: 351 220426740; Fax: +351 225513655; E-mail:
| |
Collapse
|
86
|
Cosín-Tomás M, Álvarez-López MJ, Companys-Alemany J, Kaliman P, González-Castillo C, Ortuño-Sahagún D, Pallàs M, Griñán-Ferré C. Temporal Integrative Analysis of mRNA and microRNAs Expression Profiles and Epigenetic Alterations in Female SAMP8, a Model of Age-Related Cognitive Decline. Front Genet 2018; 9:596. [PMID: 30619445 PMCID: PMC6297390 DOI: 10.3389/fgene.2018.00596] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/15/2018] [Indexed: 01/05/2023] Open
Abstract
A growing body of research shows that epigenetic mechanisms are critically involved in normal and pathological aging. The Senescence-Accelerated Mouse Prone 8 (SAMP8) can be considered a useful tool to better understand the dynamics of the global epigenetic landscape during the aging process since its phenotype is not fully explained by genetic factors. Here we investigated dysfunctional age-related transcriptional profiles and epigenetic programming enzymes in the hippocampus of 2- and 9-month-old SAMP8 female mice using the Senescent-Accelerated Resistant 1 (SAMR1) mouse strain as control. SAMP8 mice presented 1,062 genes dysregulated at 2 months of age, and 1,033 genes at 9 months, with 92 genes concurrently dysregulated at both ages compared to age-matched SAMR1. SAMP8 mice showed a significant decrease in global DNA methylation (5-mC) at 2 months while hydroxymethylation (5-hmC) levels were increased in SAMP8 mice at 2 and 9 months of age compared to SAMR1. These changes were accompanied by changes in the expression of several enzymes that regulate 5-mC and methylcytosine oxidation. Acetylated H3 and H4 histone levels were significantly diminished in SAMP8 mice at 2-month-old compared to SAMR1 and altered Histone DeACetylase (HDACs) profiles were detected in both young and old SAMP8 mice. We analyzed 84 different mouse miRNAs known to be altered in neurological diseases or involved in neuronal development. Compared with SAMR1, SAMP8 mice showed 28 and 17 miRNAs differentially expressed at 2 and 9 months of age, respectively; 6 of these miRNAs overlapped at both ages. We used several bioinformatic approaches to integrate our data in mRNA:miRNA regulatory networks and functional predictions for young and aged animals. In sum, our study reveals interplay between epigenetic mechanisms and gene networks that seems to be relevant for the progression toward a pathological aging and provides several potential markers and therapeutic candidates for Alzheimer's Disease (AD) and age-related cognitive impairment.
Collapse
Affiliation(s)
- Marta Cosín-Tomás
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Departments of Human Genetics and Pediatrics, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - María Jesús Álvarez-López
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Júlia Companys-Alemany
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Perla Kaliman
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain.,Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | | | - Daniel Ortuño-Sahagún
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mercè Pallàs
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Christian Griñán-Ferré
- Department of Pharmacology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| |
Collapse
|
87
|
Ardah MT, Parween S, Varghese DS, Emerald BS, Ansari SA. Saturated fatty acid alters embryonic cortical neurogenesis through modulation of gene expression in neural stem cells. J Nutr Biochem 2018; 62:230-246. [DOI: 10.1016/j.jnutbio.2018.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/30/2018] [Accepted: 09/17/2018] [Indexed: 12/16/2022]
|
88
|
Andreatta M, Neueder D, Genheimer H, Schiele MA, Schartner C, Deckert J, Domschke K, Reif A, Wieser MJ, Pauli P. Human BDNF rs6265 polymorphism as a mediator for the generalization of contextual anxiety. J Neurosci Res 2018; 97:300-312. [PMID: 30402941 DOI: 10.1002/jnr.24345] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/11/2018] [Accepted: 10/01/2018] [Indexed: 12/24/2022]
Abstract
The Met allele of the human brain-derived neurotrophic factor (BDNF) gene might be a risk factor for anxiety disorders and is associated with reduced hippocampal volume. Notably, hippocampus plays a crucial role in contextual learning and generalization. The role of the BDNF gene variation in human context-conditioning and generalization is still unknown. We investigated 33 carriers of the Met allele (18 females) and 32 homozygous carriers of the Val allele (15 females) with a virtual-reality context-conditioning paradigm. Electric stimulations (unconditioned stimulus, US) were unpredictably delivered in one virtual office (CTX+), but never in another virtual office (CTX-). During generalization, participants revisited CTX+ and CTX- and a generalization office (G-CTX), which was a mix of the other two. Rating data indicated successful conditioning (more negative valence, higher arousal, anxiety and contingency ratings for CTX+ than CTX-), and generalization of conditioned anxiety by comparable ratings for G-CTX and CTX+. The startle data indicated discriminative learning for Met allele carriers, but not for Val homozygotes. Moreover, a trend effect suggests that startle responses of only the Met carriers were slightly potentiated in G-CTX versus CTX-. In sum, the BDNF polymorphism did not affect contextual learning and its generalization on a verbal level. However, the physiological data suggest that Met carriers are characterized by fast discriminative contextual learning and a tendency to generalize anxiety responses to ambiguous contexts. We propose that such learning may be related to reduced hippocampal functionality and the basis for the risk of Met carriers to develop anxiety disorders.
Collapse
Affiliation(s)
- Marta Andreatta
- Department of Psychology (Biological Psychology, Clinical Psychology and Psychotherapy), University of Würzburg, Würzburg, Germany
| | - Dorothea Neueder
- Department of Psychology (Biological Psychology, Clinical Psychology and Psychotherapy), University of Würzburg, Würzburg, Germany
| | - Hannah Genheimer
- Department of Psychology (Biological Psychology, Clinical Psychology and Psychotherapy), University of Würzburg, Würzburg, Germany
| | - Miriam A Schiele
- Department of Psychiatry and Psychotherapy, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Schartner
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Psychiatry, Psychosomatics, and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Matthias J Wieser
- Department of Psychology (Biological Psychology, Clinical Psychology and Psychotherapy), University of Würzburg, Würzburg, Germany.,Department of Psychology, University of Rotterdam, Rotterdam, the Netherlands
| | - Paul Pauli
- Department of Psychology (Biological Psychology, Clinical Psychology and Psychotherapy), University of Würzburg, Würzburg, Germany.,Center of Mental Health, University of Würzburg, Würzburg, Germany
| |
Collapse
|
89
|
Ko HM, Jin Y, Park HH, Lee JH, Jung SH, Choi SY, Lee SH, Shin CY. Dual mechanisms for the regulation of brain-derived neurotrophic factor by valproic acid in neural progenitor cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:679-688. [PMID: 30402028 PMCID: PMC6205935 DOI: 10.4196/kjpp.2018.22.6.679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/15/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental disorders that share behavioral features, the results of numerous studies have suggested that the underlying causes of ASDs are multifactorial. Behavioral and/or neurobiological analyses of ASDs have been performed extensively using a valid model of prenatal exposure to valproic acid (VPA). Abnormal synapse formation resulting from altered neurite outgrowth in neural progenitor cells (NPCs) during embryonic brain development has been observed in both the VPA model and ASD subjects. Although several mechanisms have been suggested, the actual mechanism underlying enhanced neurite outgrowth remains unclear. In this study, we found that VPA enhanced the expression of brain-derived neurotrophic factor (BDNF), particularly mature BDNF (mBDNF), through dual mechanisms. VPA increased the mRNA and protein expression of BDNF by suppressing the nuclear expression of methyl-CpG-binding protein 2 (MeCP2), which is a transcriptional repressor of BDNF. In addition, VPA promoted the expression and activity of the tissue plasminogen activator (tPA), which induces BDNF maturation through proteolytic cleavage. Trichostatin A and sodium butyrate also enhanced tPA activity, but tPA activity was not induced by valpromide, which is a VPA analog that does not induce histone acetylation, indicating that histone acetylation activity was required for tPA regulation. VPA-mediated regulation of BDNF, MeCP2, and tPA was not observed in astrocytes or neurons. Therefore, these results suggested that VPA-induced mBDNF upregulation was associated with the dysregulation of MeCP2 and tPA in developing cortical NPCs.
Collapse
Affiliation(s)
- Hyun Myung Ko
- Department of Life Science, College of Science and Technology, Woosuk University, Jincheon 27841, Korea
| | - Yeonsun Jin
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Jong Hyuk Lee
- Department of Pharmaceutical Engineering, College of Life and Health Science, Hoseo University, Asan 31499, Korea
| | - Seung Hyo Jung
- Department of Medicine, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Korea
| | - So Young Choi
- Department of Biomedical Science & Technology, Konkuk University, Seoul 05029, Korea
| | - Sung Hoon Lee
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 06974, Korea
| | - Chan Young Shin
- Department of Pharmacology and Advanced Translational Medicine, School of Medicine, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
90
|
Oh JH, Choi JS, Nam TJ. Fucosterol from an Edible Brown Alga Ecklonia stolonifera Prevents Soluble Amyloid Beta-Induced Cognitive Dysfunction in Aging Rats. Mar Drugs 2018; 16:E368. [PMID: 30301140 PMCID: PMC6213915 DOI: 10.3390/md16100368] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/26/2018] [Accepted: 10/03/2018] [Indexed: 12/13/2022] Open
Abstract
Fucosterol from edible brown seaweeds has various biological activities, including anti-inflammatory, anti-adipogenic, antiphotoaging, anti-acetylcholinesterase, and anti-beta-secretase 1 activities. However, little is known about its effects on soluble amyloid beta peptide (sAβ)-induced endoplasmic reticulum (ER) stress and cognitive impairment. Fucosterol was isolated from the edible brown seaweed Ecklonia stolonifera, and its neuroprotective effects were analyzed in primary hippocampal neurons and in aging rats. Fucosterol attenuated sAβ1-42-induced decrease in the viability of hippocampal neurons and downregulated sAβ1-42-induced increase in glucose-regulated protein 78 (GRP78) expression in hippocampal neurons via activation of tyrosine receptor kinase B-mediated ERK1/2 signaling. Fucosterol co-infusion attenuated sAβ1-42-induced cognitive impairment in aging rats via downregulation of GRP78 expression and upregulation of mature brain-derived neurotrophic factor expression in the dentate gyrus. Fucosterol might be beneficial for the management of cognitive dysfunction via suppression of aging-induced ER stress.
Collapse
Affiliation(s)
- Jeong Hwan Oh
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea.
| | - Jae Sue Choi
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea.
| | - Taek-Jeong Nam
- Institute of Fisheries Sciences, Pukyong National University, Busan 46041, Korea.
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea.
| |
Collapse
|
91
|
Rodríguez-Rojo IC, Cuesta P, López ME, de Frutos-Lucas J, Bruña R, Pereda E, Barabash A, Montejo P, Montenegro-Peña M, Marcos A, López-Higes R, Fernández A, Maestú F. BDNF Val66Met Polymorphism and Gamma Band Disruption in Resting State Brain Functional Connectivity: A Magnetoencephalography Study in Cognitively Intact Older Females. Front Neurosci 2018; 12:684. [PMID: 30333719 PMCID: PMC6176075 DOI: 10.3389/fnins.2018.00684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/11/2018] [Indexed: 11/13/2022] Open
Abstract
The pathophysiological processes undermining brain functioning decades before the onset of the clinical symptoms associated with dementia are still not well understood. Several heritability studies have reported that the Brain Derived Neurotrophic Factor (BDNF) Val66Met genetic polymorphism could contribute to the acceleration of cognitive decline in aging. This mutation may affect brain functional connectivity (FC), especially in those who are carriers of the BDNF Met allele. The aim of this work was to explore the influence of the BDNF Val66Met polymorphism in whole brain eyes-closed, resting-state magnetoencephalography (MEG) FC in a sample of 36 cognitively intact (CI) older females. All of them were ε3ε3 homozygotes for the apolipoprotein E (APOE) gene and were divided into two subgroups according to the presence of the Met allele: Val/Met group (n = 16) and Val/Val group (n = 20). They did not differ in age, years of education, Mini-Mental State Examination scores, or normalized hippocampal volumes. Our results showed reduced antero-posterior gamma band FC within the Val/Met genetic risk group, which may be caused by a GABAergic network impairment. Despite the lack of cognitive decline, these results might suggest a selective brain network vulnerability due to the carriage of the BDNF Met allele, which is linked to a potential progression to dementia. This neurophysiological signature, as tracked with MEG FC, indicates that age-related brain functioning changes could be mediated by the influence of particular genetic risk factors.
Collapse
Affiliation(s)
- Inmaculada C Rodríguez-Rojo
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain.,Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Pablo Cuesta
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain.,Electrical Engineering and Bioengineering Lab, Department of Industrial Engineering and IUNE, Universidad de La Laguna, Tenerife, Spain
| | - María Eugenia López
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain.,Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Jaisalmer de Frutos-Lucas
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain.,Biological and Health Psychology Department, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ricardo Bruña
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain.,Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Ernesto Pereda
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain.,Electrical Engineering and Bioengineering Lab, Department of Industrial Engineering and IUNE, Universidad de La Laguna, Tenerife, Spain
| | - Ana Barabash
- Laboratory of Psychoneuroendocrinology and Genetics, Hospital Clínico San Carlos, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Pedro Montejo
- Center for the Prevention of Cognitive Impairment, Public Health Institute, Madrid-Salud, Madrid, Spain
| | - Mercedes Montenegro-Peña
- Center for the Prevention of Cognitive Impairment, Public Health Institute, Madrid-Salud, Madrid, Spain
| | - Alberto Marcos
- Neurology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - Ramón López-Higes
- Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain
| | - Alberto Fernández
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain.,Department of Legal Medicine, Psychiatry, and Pathology, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology, Universidad Complutense and Universidad Politécnica de Madrid, Madrid, Spain.,Department of Experimental Psychology, Cognitive Processes and Speech Therapy, Universidad Complutense de Madrid, Madrid, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
92
|
Huang P, Gao T, Dong Z, Zhou C, Lai Y, Pan T, Liu Y, Zhao X, Sun X, Hua H, Wen G, Gao L, Lv Z. Neural circuitry among connecting the hippocampus, prefrontal cortex and basolateral amygdala in a mouse depression model: Associations correlations between BDNF levels and BOLD – fMRI signals. Brain Res Bull 2018; 142:107-115. [DOI: 10.1016/j.brainresbull.2018.06.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 01/16/2023]
|
93
|
del Blanco B, Barco A. Impact of environmental conditions and chemicals on the neuronal epigenome. Curr Opin Chem Biol 2018; 45:157-165. [DOI: 10.1016/j.cbpa.2018.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 05/28/2018] [Accepted: 06/02/2018] [Indexed: 01/04/2023]
|
94
|
Liu H, Peng L, So J, Tsang KH, Chong CH, Mak PHS, Chan KM, Chan SY. TSPYL2 Regulates the Expression of EZH2 Target Genes in Neurons. Mol Neurobiol 2018; 56:2640-2652. [PMID: 30051352 PMCID: PMC6459796 DOI: 10.1007/s12035-018-1238-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/11/2018] [Indexed: 01/07/2023]
Abstract
Testis-specific protein, Y-encoded-like 2 (TSPYL2) is an X-linked gene in the locus for several neurodevelopmental disorders. We have previously shown that Tspyl2 knockout mice had impaired learning and sensorimotor gating, and TSPYL2 facilitates the expression of Grin2a and Grin2b through interaction with CREB-binding protein. To identify other genes regulated by TSPYL2, here, we showed that Tspyl2 knockout mice had an increased level of H3K27 trimethylation (H3K27me3) in the hippocampus, and TSPYL2 interacted with the H3K27 methyltransferase enhancer of zeste 2 (EZH2). We performed chromatin immunoprecipitation (ChIP)-sequencing in primary hippocampal neurons and divided all Refseq genes by k-mean clustering into four clusters from highest level of H3K27me3 to unmarked. We confirmed that mutant neurons had an increased level of H3K27me3 in cluster 1 genes, which consist of known EZH2 target genes important in development. We detected significantly reduced expression of genes including Gbx2 and Prss16 from cluster 1 and Acvrl1, Bdnf, Egr3, Grin2c, and Igf1 from cluster 2 in the mutant. In support of a dynamic role of EZH2 in repressing marked synaptic genes, the specific EZH2 inhibitor GSK126 significantly upregulated, while the demethylase inhibitor GSKJ4 downregulated the expression of Egr3 and Grin2c. GSK126 also upregulated the expression of Bdnf in mutant primary neurons. Finally, ChIP showed that hemagglutinin-tagged TSPYL2 co-existed with EZH2 in target promoters in neuroblastoma cells. Taken together, our data suggest that TSPYL2 is recruited to promoters of specific EZH2 target genes in neurons, and enhances their expression for proper neuronal maturation and function.
Collapse
Affiliation(s)
- Hang Liu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,University Research Facility in Chemical and Environmental Analysis, The Hong Kong Polytechnic University, Hong Kong, China
| | - Lei Peng
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Joan So
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ka Hing Tsang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Research and Development, Clinical Projects and Development, New B Innovation, Hong Kong, China
| | - Chi Ho Chong
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Priscilla Hoi Shan Mak
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, the City University of Hong Kong, Hong Kong, China. .,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| | - Siu Yuen Chan
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
95
|
Xu J, Yabuki Y, Yu M, Fukunaga K. T-type calcium channel enhancer SAK3 produces anti-depressant-like effects by promoting adult hippocampal neurogenesis in olfactory bulbectomized mice. J Pharmacol Sci 2018; 137:333-341. [PMID: 30196018 DOI: 10.1016/j.jphs.2018.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/20/2018] [Accepted: 05/24/2018] [Indexed: 10/28/2022] Open
Abstract
T-type calcium channels are involved in the pathophysiology of epilepsy, pain, and sleep. Recently, we developed a novel spiroimidazopyridine compound, SAK3 (ethyl 8'-methyl-2',4-dioxo-2-(piperidin-1-yl)-2'H-spiro[cyclopentane-1,3'-imidazo[1,2-a]pyridine]-2-ene-3-carboxylate), which enhances T-type calcium channel currents and improves memory deficits in olfactory bulbectomized (OBX) mice. Here, we demonstrated the anti-depressant effects of SAK3 in OBX mice. Chronic SAK3 administration (0.5 or 1.0 mg/kg, p.o.) improved depressive-like behaviors in OBX mice. The impaired adult neurogenesis in the hippocampal dentate gyrus (DG) that occurred 4 weeks after OBX administration was significantly restored by chronic SAK3 administration (0.5 or 1.0 mg/kg, p.o.). Additionally, SAK3 (0.5 mg/kg, p.o.) promoted the proliferation and survival of newborn cells in the naïve DG. Moreover, SAK3 administration (0.5 mg/kg, p.o.) antagonized the reduction of calcium/calmodulin-dependent protein kinase II (CaMKII) and CaMKIV phosphorylation levels, thereby rescuing the decreased levels of cAMP response element-binding protein (CREB)/brain derived neurotrophic factor (BDNF) signaling in the OBX DG. The effects of SAK3 were completely blocked by the T-type calcium channel selective blocker NNC 55-0396 (12.5 mg/kg, i.p.). Altogether, these results suggest that SAK3 improves depressive-like behaviors by promoting adult neurogenesis via T-type calcium channel stimulation in the hippocampus.
Collapse
Affiliation(s)
- Jing Xu
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki-Aoba Aoba-ku, Sendai 980-8578, Japan
| | - Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki-Aoba Aoba-ku, Sendai 980-8578, Japan
| | - Mengze Yu
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki-Aoba Aoba-ku, Sendai 980-8578, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aramaki-Aoba Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
96
|
Exercise Training Protects Against Aging-Induced Cognitive Dysfunction via Activation of the Hippocampal PGC-1α/FNDC5/BDNF Pathway. Neuromolecular Med 2018; 20:386-400. [DOI: 10.1007/s12017-018-8500-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/30/2018] [Indexed: 12/28/2022]
|
97
|
Remor AP, da Silva RA, de Matos FJ, Glaser V, de Paula Martins R, Ghisoni K, da Luz Scheffer D, Andia DC, Portinho D, de Souza AP, de Oliveira PA, Prediger RD, Torres AI, Linhares RMM, Walz R, Ronsoni MF, Hohl A, Rafacho A, Aguiar AS, De Paul AL, Latini A. Chronic Metabolic Derangement-Induced Cognitive Deficits and Neurotoxicity Are Associated with REST Inactivation. Mol Neurobiol 2018; 56:1539-1557. [DOI: 10.1007/s12035-018-1175-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/01/2018] [Indexed: 01/14/2023]
|
98
|
Kim KM, Choi SW, Lee J, Kim JW. EEG correlates associated with the severity of gambling disorder and serum BDNF levels in patients with gambling disorder. J Behav Addict 2018; 7:331-338. [PMID: 29865867 PMCID: PMC6174577 DOI: 10.1556/2006.7.2018.43] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background and aims This study aimed to evaluate the association between the severity of pathological gambling, serum brain-derived neurotrophic factor (BDNF) level, and the characteristics of quantitative electroencephalography (EEG) in patients with gambling disorder. Methods A total of 55 male patients aged 18-65 with gambling disorder participated. The severity of pathological gambling was assessed with the nine-item Problem Gambling Severity Index from the Canadian Problem Gambling Index (CPGI-PGSI). The Beck Depression Inventory and Lubben Social Network Scale were also assessed. Serum BDNF levels were assessed from blood samples. The resting-state EEG was recorded while the eyes were closed, and the absolute power of five frequency bands was analyzed: delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), and gamma (30-50 Hz). Results Serum BDNF level was positively correlated with theta power in the right parietal region (P4, r = .403, p = .011), beta power in the right parietal region (P4, r = .456, p = .010), and beta power in the right temporal region (T8, r = .421, p = .008). Gambling severity (CPGI-PGSI) was positively correlated with absolute beta power in the left frontal region (F7, r = .284, p = .043) and central region [(C3, r = .292, p = .038), (C4, r = .304, p = .030)]. Conclusions These findings support the hypothesis that right-dominant lateralized correlations between BDNF and beta and theta power reflect right-dominant brain activation in addiction. The positive correlations between beta power and the severity of gambling disorder may be associated with hyperexcitability and increased cravings. These findings contribute to a better understanding of brain-based electrophysiological changes and BDNF levels in patients with pathological gambling.
Collapse
Affiliation(s)
- Kyoung Min Kim
- Department of Psychiatry, Dankook University Hospital, Cheonan, Republic of Korea
| | - Sam-Wook Choi
- Department of Psychiatry, Korea Institute on Behavioral Addictions, True Mind Mental Health Clinic, Seoul, Republic of Korea
| | - Jaewon Lee
- Department of Psychiatry, Korea Institute on Neuromodulation, Easybrain Center, Seoul, Republic of Korea,Corresponding authors: Jaewon Lee, MD, PhD; Department of Psychiatry, Korea Institute on Neuromodulation, EasyBrain Center, 1330-9 Seocho-dong, Seocho-gu, Seoul, Republic of Korea; Phone: +82 2 583 9081; Fax: +82 2 583 9082; E-mail: ; Jun Won Kim, MD, PhD; Department of Psychiatry, Catholic University of Daegu School of Medicine, 33 Duryugongwon-ro 17-gil, Nam-Gu, Daegu 42472, Republic of Korea; Phone: +82 53 650 4332; Fax: +82 53 623 1694; E-mail:
| | - Jun Won Kim
- Department of Psychiatry, Catholic University of Daegu School of Medicine, Daegu, Republic of Korea,Corresponding authors: Jaewon Lee, MD, PhD; Department of Psychiatry, Korea Institute on Neuromodulation, EasyBrain Center, 1330-9 Seocho-dong, Seocho-gu, Seoul, Republic of Korea; Phone: +82 2 583 9081; Fax: +82 2 583 9082; E-mail: ; Jun Won Kim, MD, PhD; Department of Psychiatry, Catholic University of Daegu School of Medicine, 33 Duryugongwon-ro 17-gil, Nam-Gu, Daegu 42472, Republic of Korea; Phone: +82 53 650 4332; Fax: +82 53 623 1694; E-mail:
| |
Collapse
|
99
|
Dong BE, Xue Y, Sakata K. The effect of enriched environment across ages: A study of anhedonia and BDNF gene induction. GENES BRAIN AND BEHAVIOR 2018; 17:e12485. [PMID: 29717802 DOI: 10.1111/gbb.12485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 12/19/2022]
Abstract
Enriched environment treatment (EET) is a potential intervention for depression by inducing brain-derived neurotrophic factor (BDNF). However, its age dependency remains unclear. We recently found that EET during early-life development (ED) was effective in increasing exploratory activity and anti-despair behavior, particularly in promoter IV-driven BDNF deficient mice (KIV), with the largest BDNF protein induction in the hippocampus and frontal cortex. Here, we further determined age dependency of EET effects on anhedonia and promoter-specific BDNF transcription, by using the sucrose preference test and qRT-PCR. Wild-type (WT) and KIV mice received 2 months of EET during ED, young-adulthood and old-adulthood (0-2, 2-4 and 12-14 months, respectively). All KIV groups showed reduced sucrose preference, which EET equally reversed regardless of age. EET increased hippocampal BDNF mRNA levels for all ages and genotypes, but increased frontal cortex BDNF mRNA levels only in ED KIV and old WT mice. Transcription by promoters I and IV was age-dependent in the hippocampus of WT mice: more effective induction of exon IV or I during ED or old-adulthood, respectively. Transcription by almost all 9 promoters was age-specific in the frontal cortex, mostly observed in ED KIV mice. After discontinuance of EET, the EET effects on anti-anhedonia and BDNF transcription in both regions persisted only in ED KIV mice. These results suggested that EET was equally effective in reversing anhedonia and inducing hippocampal BDNF transcription, but was more effective during ED in inducing frontal cortex BDNF transcription and for lasting anti-anhedonic and BDNF effects particularly in promoter IV-BDNF deficiency.
Collapse
Affiliation(s)
- B E Dong
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Y Xue
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - K Sakata
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
100
|
The Gender-Biased Effects of Intranasal MPTP Administration on Anhedonic- and Depressive-Like Behaviors in C57BL/6 Mice: the Role of Neurotrophic Factors. Neurotox Res 2018; 34:808-819. [DOI: 10.1007/s12640-018-9912-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/24/2018] [Accepted: 05/16/2018] [Indexed: 01/10/2023]
|