51
|
Borsook D, Youssef AM, Simons L, Elman I, Eccleston C. When pain gets stuck: the evolution of pain chronification and treatment resistance. Pain 2018; 159:2421-2436. [PMID: 30234696 PMCID: PMC6240430 DOI: 10.1097/j.pain.0000000000001401] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It is well-recognized that, despite similar pain characteristics, some people with chronic pain recover, whereas others do not. In this review, we discuss possible contributions and interactions of biological, social, and psychological perturbations that underlie the evolution of treatment-resistant chronic pain. Behavior and brain are intimately implicated in the production and maintenance of perception. Our understandings of potential mechanisms that produce or exacerbate persistent pain remain relatively unclear. We provide an overview of these interactions and how differences in relative contribution of dimensions such as stress, age, genetics, environment, and immune responsivity may produce different risk profiles for disease development, pain severity, and chronicity. We propose the concept of "stickiness" as a soubriquet for capturing the multiple influences on the persistence of pain and pain behavior, and their stubborn resistance to therapeutic intervention. We then focus on the neurobiology of reward and aversion to address how alterations in synaptic complexity, neural networks, and systems (eg, opioidergic and dopaminergic) may contribute to pain stickiness. Finally, we propose an integration of the neurobiological with what is known about environmental and social demands on pain behavior and explore treatment approaches based on the nature of the individual's vulnerability to or protection from allostatic load.
Collapse
Affiliation(s)
- David Borsook
- Center for Pain and the Brain, Boston Children’s (BCH), McLean and Massachusetts Hospitals (MGH), Boston MA
- Departments of Anesthesia (BCH), Psychiatry (MGH, McLean) and Radiology (MGH)
| | - Andrew M Youssef
- Center for Pain and the Brain, Boston Children’s (BCH), McLean and Massachusetts Hospitals (MGH), Boston MA
| | - Laura Simons
- Department of Anesthesia, Stanford University, Palo Alto, CA
| | | | - Christopher Eccleston
- Centre for Pain Research, University of Bath, UK
- Department of Clinical and Health Psychology, Ghent University, Belgium
| |
Collapse
|
52
|
Yarushkina NI, Filaretova LP. Corticotropin-Releasing Factor (CRF) and Somatic Pain Sensitivity: the Contribution of CRF Receptors of Subtypes 1 and 2. NEUROCHEM J+ 2018. [DOI: 10.1134/s1819712418020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
53
|
|
54
|
Pitts EG, Li DC, Gourley SL. Bidirectional coordination of actions and habits by TrkB in mice. Sci Rep 2018; 8:4495. [PMID: 29540698 PMCID: PMC5852142 DOI: 10.1038/s41598-018-22560-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/22/2018] [Indexed: 12/26/2022] Open
Abstract
Specific corticostriatal structures and circuits are important for flexibly shifting between goal-oriented versus habitual behaviors. For example, the orbitofrontal cortex and dorsomedial striatum are critical for goal-directed action, while the dorsolateral striatum supports habits. To determine the role of neurotrophin signaling, we overexpressed a truncated, inactive form of tropomyosin receptor kinase B [also called tyrosine receptor kinase B (TrkB)], the high-affinity receptor for Brain-derived Neurotrophic Factor, in the orbitofrontal cortex, dorsomedial striatum and dorsolateral striatum. Overexpression of truncated TrkB interfered with phosphorylation of full-length TrkB and ERK42/44, as expected. In the orbitofrontal cortex and dorsomedial striatum, truncated trkB overexpression also occluded the ability of mice to select actions based on the likelihood that they would be reinforced. Meanwhile, in the dorsolateral striatum, truncated trkB blocked the development of habits. Thus, corticostriatal TrkB-mediated plasticity appears necessary for balancing actions and habits.
Collapse
Affiliation(s)
- Elizabeth G Pitts
- Graduate Program in Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Dan C Li
- Graduate Program in Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA
| | - Shannon L Gourley
- Graduate Program in Neuroscience, Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA.
- Departments of Pediatrics and Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
55
|
Johnson AC, Latorre R, Ligon CO, Greenwood-Van Meerveld B. Visceral hypersensitivity induced by optogenetic activation of the amygdala in conscious rats. Am J Physiol Gastrointest Liver Physiol 2018; 314:G448-G457. [PMID: 29351398 DOI: 10.1152/ajpgi.00370.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In vivo optogenetics identifies brain circuits controlling behaviors in conscious animals by using light to alter neuronal function and offers a novel tool to study the brain-gut axis. Using adenoviral-mediated expression, we aimed to investigate whether photoactivation with channelrhodopsin (ChR2) or photoinhibition with halorhodopsin (HR3.0) of fibers originating from the central nucleus of the amygdala (CeA) at the bed nucleus of the stria terminalis (BNST) had any effect on colonic sensitivity. We also investigated whether there was any deleterious effect of the adenovirus on the neuronal population or the neuronal phenotype within the CeA-BNST circuitry activated during the optogenetic stimulation. In male rats, the CeA was infected with vectors expressing ChR2 or HR3.0 and fiber optic cannulae were implanted on the BNST. After 8-10 wk, the response to graded, isobaric colonic distension was measured with and without laser stimulation of CeA fibers at the BNST. Immunohistochemistry and histology were used to evaluate vector expression, neuronal integrity, and neurochemical phenotype. Photoactivation of CeA fibers at the BNST with ChR2 induced colonic hypersensitivity, whereas photoinhibition of CeA fibers at the BNST with HR3.0 had no effect on colonic sensitivity. Control groups treated with virus expressing reporter proteins showed no abnormalities in neuronal morphology, neuronal number, or neurochemical phenotype following laser stimulation. Our experimental findings reveal that optogenetic activation of discrete brain nuclei can be used to advance our understanding of complex visceral nociceptive circuitry in a freely moving rat model. NEW & NOTEWORTHY Our findings reveal that optogenetic technology can be employed as a tool to advance understanding of the brain-gut axis. Using adenoviral-mediated expression of opsins, which were activated by laser light and targeted by fiber optic cannulae, we examined central nociceptive circuits mediating visceral pain in a freely moving rat. Photoactivation of amygdala fibers in the stria terminalis with channelrhodopsin induced colonic hypersensitivity, whereas inhibition of the same fibers with halorhodopsin did not alter colonic sensitivity.
Collapse
Affiliation(s)
| | - Rocco Latorre
- Oklahoma Center for Neuroscience , Oklahoma City, Oklahoma
| | - Casey O Ligon
- Oklahoma Center for Neuroscience , Oklahoma City, Oklahoma
| | - Beverley Greenwood-Van Meerveld
- Department of Veterans Affairs Medical Center , Oklahoma City, Oklahoma.,Oklahoma Center for Neuroscience , Oklahoma City, Oklahoma.,Department of Physiology, University of Oklahoma Health Sciences Center , Oklahoma City, Oklahoma
| |
Collapse
|
56
|
Chang L, Di Lorenzo C, Farrugia G, Hamilton FA, Mawe GM, Pasricha PJ, Wiley JW. Functional Bowel Disorders: A Roadmap to Guide the Next Generation of Research. Gastroenterology 2018; 154:723-735. [PMID: 29288656 DOI: 10.1053/j.gastro.2017.12.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In June 2016, the National Institutes of Health hosted a workshop on functional bowel disorders (FBDs), particularly irritable bowel syndrome, with the objective of elucidating gaps in current knowledge and recommending strategies to address these gaps. The workshop aimed to provide a roadmap to help strategically guide research efforts during the next decade. Attendees were a diverse group of internationally recognized leaders in basic and clinical FBD research. This document summarizes the results of their deliberations, including the following general conclusions and recommendations. First, the high prevalence, economic burden, and impact on quality of life associated with FBDs necessitate an urgent need for improved understanding of FBDs. Second, preclinical discoveries are at a point that they can be realistically translated into novel diagnostic tests and treatments. Third, FBDs are broadly accepted as bidirectional disorders of the brain-gut axis, differentially affecting individuals throughout life. Research must integrate each component of the brain-gut axis and the influence of biological sex, early-life stressors, and genetic and epigenetic factors in individual patients. Fourth, research priorities to improve diagnostic and management paradigms include enhancement of the provider-patient relationship, longitudinal studies to identify risk and protective factors of FBDs, identification of biomarkers and endophenotypes in symptom severity and treatment response, and incorporation of emerging "-omics" discoveries. These paradigms can be applied by well-trained clinicians who are familiar with multimodal treatments. Fifth, essential components of a successful program will include the generation of a large, validated, broadly accessible database that is rigorously phenotyped; a parallel, linkable biorepository; dedicated resources to support peer-reviewed, hypothesis-driven research; access to dedicated bioinformatics expertise; and oversight by funding agencies to review priorities, progress, and potential synergies with relevant stakeholders.
Collapse
Affiliation(s)
- Lin Chang
- Division of Gastroenterology, Oppenheimer Center for Neurobiology of Stress and Resilience at University of California, Los Angeles, California
| | - Carlo Di Lorenzo
- Division of Gastroenterology, Hepatology and Nutrition, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio
| | - Gianrico Farrugia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Frank A Hamilton
- Division of Digestive Diseases and Nutrition, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Gary M Mawe
- Department of Neurological Sciences, University of Vermont, Burlington, Vermont
| | | | - John W Wiley
- Department Internal Medicine, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
57
|
Greenwood-Van Meerveld B, Johnson AC. Mechanisms of Stress-induced Visceral Pain. J Neurogastroenterol Motil 2018; 24:7-18. [PMID: 29291604 PMCID: PMC5753899 DOI: 10.5056/jnm17137] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022] Open
Abstract
Evidence suggests that long-term stress facilitates visceral pain through sensitization of pain pathways and promotes chronic visceral pain disorders such as the irritable bowel syndrome (IBS). This review will describe the importance of stress in exacerbating IBS-induced abdominal pain. Additionally, we will briefly review our understanding of the activation of the hypothalamic-pituitary-adrenal axis by both chronic adult stress and following early life stress in the pathogenesis of IBS. The review will focus on the glucocorticoid receptor and corticotropin-releasing hormone-mediated mechanisms in the amygdala involved in stress-induced visceral hypersensitivity. One potential mechanism underlying persistent effects of stress on visceral sensitivity could be epigenetic modulation of gene expression. While there are relatively few studies examining epigenetically mediated mechanisms involved in stress-induced visceral nociception, alterations in DNA methylation and histone acetylation patterns within the brain, have been linked to alterations in nociceptive signaling via increased expression of pro-nociceptive neurotransmitters. This review will discuss the latest studies investigating the long-term effects of stress on visceral sensitivity. Additionally, we will critically review the importance of experimental models of adult stress and early life stress in enhancing our understanding of the basic molecular mechanisms of nociceptive processing.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK,
USA
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK,
USA
- VA Medical Center, University of Oklahoma Health Science Center, Oklahoma City, OK,
USA
| | - Anthony C Johnson
- VA Medical Center, University of Oklahoma Health Science Center, Oklahoma City, OK,
USA
| |
Collapse
|
58
|
Règue-Guyon M, Lanfumey L, Mongeau R. Neuroepigenetics of Neurotrophin Signaling: Neurobiology of Anxiety and Affective Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:159-193. [DOI: 10.1016/bs.pmbts.2018.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
59
|
Hattay P, Prusator DK, Johnson AC, Greenwood-Van Meerveld B. Stereotaxic Exposure of the Central Nucleus of the Amygdala to Corticosterone Increases Colonic Permeability and Reduces Nerve-Mediated Active Ion Transport in Rats. Front Neurosci 2018; 12:543. [PMID: 30154689 PMCID: PMC6103380 DOI: 10.3389/fnins.2018.00543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 07/18/2018] [Indexed: 12/25/2022] Open
Abstract
Background: Irritable bowel syndrome (IBS) is characterized by visceral pain and abnormal bowel habits that are worsened during stress. Evidence also suggests altered intestinal barrier function in IBS. Previously, we demonstrated that stereotaxic application of the stress hormone corticosterone (CORT) onto the central nucleus of the amygdala (CeA) induces colonic hyperalgesia and anxiety-like behavior in a rat model, however the effect on intestinal permeability and mucosal function remain to be evaluated. Methods: Male Fischer 344 rats underwent bilateral stereotaxic implantation of CORT or inert cholesterol (CHOL)-containing micropellets (30 μg) onto the dorsal margin of the CeA. Seven days later, colonic tissue was isolated to assess tissue permeability in modified Ussing chambers via transepithelial electrical resistance (TEER) and macromolecular flux of horseradish peroxidase (HRP). Secretory responses to electrical field stimulation (EFS) of submucosal enteric nerves as well as activation with forskolin were used to assess movements of ions across the isolated colonic tissues. In a separate cohort, colonic histology, and mast cell infiltration was assessed. Key Results: Compared to CHOL-implanted controls, we determined that exposing the CeA to elevated levels of CORT significantly increased macromolecular flux across the colonic epithelial layer without changing TEER. Nerve-mediated but not cAMP-mediated active transport was inhibited in response to elevated amygdala CORT. There were no histological changes or increases in mast cell infiltration within colonic tissue from CORT treated animals. Conclusion and Inferences: These observations support a novel role for the CeA as a modulator of nerve-mediated colonic epithelial function.
Collapse
Affiliation(s)
- Priya Hattay
- Oklahoma Center for Neurosciences and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Dawn K. Prusator
- Oklahoma Center for Neurosciences and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | | | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neurosciences and Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Veterans Affairs Medical Center, Oklahoma City, OK, United States
- *Correspondence: Beverley Greenwood-Van Meerveld
| |
Collapse
|
60
|
Greenwood-Van Meerveld B, Johnson AC. Stress-Induced Chronic Visceral Pain of Gastrointestinal Origin. Front Syst Neurosci 2017; 11:86. [PMID: 29213232 PMCID: PMC5702626 DOI: 10.3389/fnsys.2017.00086] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
Visceral pain is generally poorly localized and characterized by hypersensitivity to a stimulus such as organ distension. In concert with chronic visceral pain, there is a high comorbidity with stress-related psychiatric disorders including anxiety and depression. The mechanisms linking visceral pain with these overlapping comorbidities remain to be elucidated. Evidence suggests that long term stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic visceral pain disorders such as irritable bowel syndrome (IBS). Early life stress (ELS) is a risk-factor for the development of IBS, however the mechanisms responsible for the persistent effects of ELS on visceral perception in adulthood remain incompletely understood. In rodent models, stress in adult animals induced by restraint and water avoidance has been employed to investigate the mechanisms of stress-induce pain. ELS models such as maternal separation, limited nesting, or odor-shock conditioning, which attempt to model early childhood experiences such as neglect, poverty, or an abusive caregiver, can produce chronic, sexually dimorphic increases in visceral sensitivity in adulthood. Chronic visceral pain is a classic example of gene × environment interaction which results from maladaptive changes in neuronal circuitry leading to neuroplasticity and aberrant neuronal activity-induced signaling. One potential mechanism underlying the persistent effects of stress on visceral sensitivity could be epigenetic modulation of gene expression. While there are relatively few studies examining epigenetically mediated mechanisms involved in visceral nociception, stress-induced visceral pain has been linked to alterations in DNA methylation and histone acetylation patterns within the brain, leading to increased expression of pro-nociceptive neurotransmitters. This review will discuss the potential neuronal pathways and mechanisms responsible for stress-induced exacerbation of chronic visceral pain. Additionally, we will review the importance of specific experimental models of adult stress and ELS in enhancing our understanding of the basic molecular mechanisms of pain processing.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- VA Medical Center, Oklahoma City, OK, United States
| | | |
Collapse
|
61
|
Hu XF, He XT, Zhou KX, Zhang C, Zhao WJ, Zhang T, Li JL, Deng JP, Dong YL. The analgesic effects of triptolide in the bone cancer pain rats via inhibiting the upregulation of HDACs in spinal glial cells. J Neuroinflammation 2017; 14:213. [PMID: 29096654 PMCID: PMC5668986 DOI: 10.1186/s12974-017-0988-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Background Bone cancer pain (BCP) severely compromises the quality of life, while current treatments are still unsatisfactory. Here, we tested the antinociceptive effects of triptolide (T10), a substance with considerable anti-tumor efficacies on BCP, and investigated the underlying mechanisms targeting the spinal dorsal horn (SDH). Methods Intratibial inoculation of Walker 256 mammary gland carcinoma cells was used to establish a BCP model in rats. T10 was intrathecally injected, and mechanical allodynia was tested by measuring the paw withdrawal thresholds (PWTs). In mechanism study, the activation of microglia, astrocytes, and the mitogen-activated protein kinase (MAPK) pathways in the SDH were evaluated by immunofluorescence staining or Western blot analysis of Iba-1, GFAP, p-ERK, p-p38, and p-JNK. The expression and cellular localization of histone deacetylases (HDACs) 1 and 2 were also detected to investigate molecular mechanism. Results Intrathecal injection of T10 inhibited the bone cancer-induced mechanical allodynia with an ED50 of 5.874 μg/kg. This effect was still observed 6 days after drug withdrawal. Bone cancer caused significantly increased expression of HDAC1 in spinal microglia and neurons, with HDAC2 markedly increased in spinal astrocytes, which were accompanied by the upregulation of MAPK pathways and the activation of microglia and astrocytes in the SDH. T10 reversed the increase of HDACs, especially those in glial cells, and inhibited the glial activation. Conclusions Our results suggest that the upregulation of HDACs contributes to the pathological activation of spinal glial cells and the chronic pain caused by bone cancer, while T10 help to relieve BCP possibly via inhibiting the upregulation of HDACs in the glial cells in the SDH and then blocking the neuroinflammation induced by glial activation.
Collapse
Affiliation(s)
- Xiao-Fan Hu
- Department of Human Anatomy & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiao-Tao He
- Department of Human Anatomy & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Disease, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Kai-Xiang Zhou
- Department of Human Anatomy & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, China
| | - Chen Zhang
- Department of Human Anatomy & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wen-Jun Zhao
- Department of Human Anatomy & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.,Student Brigade, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ting Zhang
- Department of Human Anatomy & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jin-Lian Li
- Department of Human Anatomy & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Jian-Ping Deng
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038, China.
| | - Yu-Lin Dong
- Department of Human Anatomy & K.K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
62
|
Abstract
Preclinical research remains an important tool for discovery and validation of novel therapeutics for gastrointestinal disorders. While in vitro assays can be used to verify receptor-ligand interactions and test for structural activity of new compounds, only whole-animal studies can demonstrate drug efficacy within the gastrointestinal system. Most major gastrointestinal disorders have been modeled in animals; however the translational relevance of each model is not equal. The purpose of this chapter is to provide a critical evaluation of common animal models that are being used to develop pharmaceuticals for gastrointestinal disorders. For brevity, the models are presented for upper gastrointestinal disorders involving the esophagus, stomach, and small intestine and lower gastrointestinal disorders that focus on the colon. Particular emphasis is used to explain the face and construct validity of each model, and the limitations of each model, including data interpretation, are highlighted. This chapter does not evaluate models that rely on surgical or other non-pharmacological interventions for treatment.
Collapse
|
63
|
Liu S, Hagiwara SI, Bhargava A. Early-life adversity, epigenetics, and visceral hypersensitivity. Neurogastroenterol Motil 2017; 29:10.1111/nmo.13170. [PMID: 28782197 PMCID: PMC5576863 DOI: 10.1111/nmo.13170] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/27/2017] [Indexed: 12/12/2022]
Abstract
Abdominal pain is associated with many gastrointestinal dysfunctions, such as irritable bowel syndrome (IBS), functional dyspepsia, and inflammatory bowel disease (IBD). Visceral hypersensitivity is a key reason for development of abdominal pain that presents in these gastrointestinal disorders/diseases. The pathogenesis of visceral hypersensitivity is complex and still far from being fully understood. In animal studies, visceral hypersensitivity has been linked to several early-life adverse (ELA) events. In humans, IBD, functional dyspepsia, and IBS can have adult onset, though the adverse events that lead to visceral hypersensitivity are largely uncharacterized. In this issue of the journal, Aguirre et al. report the interesting finding that epigenetics underlies the effects of ELA events on visceral hypersensitivity. This mini-review examines models of ELA events leading to visceral hypersensitivity and the potential role of epigenetics, as reported by Aguirre et al. and others.
Collapse
Affiliation(s)
- S. Liu
- Department of Biology, College of Science and Health, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA
| | - SI. Hagiwara
- The Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - A. Bhargava
- The Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, CA 94143, USA,Department of Ob-Gyn, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
64
|
Abstract
In mammals, recent studies have demonstrated that the brain, the hypothalamus in particular, is a key bidirectional integrator of humoral and neural information from peripheral tissues, thus influencing ageing both in the brain and at the 'systemic' level. CNS decline drives the progressive impairment of cognitive, social and physical abilities, and the mechanisms underlying CNS regulation of the ageing process, such as microglia-neuron networks and the activities of sirtuins, a class of NAD+-dependent deacylases, are beginning to be understood. Such mechanisms are potential targets for the prevention or treatment of age-associated dysfunction and for the extension of a healthy lifespan.
Collapse
|
65
|
Hattay P, Prusator DK, Tran L, Greenwood-Van Meerveld B. Psychological stress-induced colonic barrier dysfunction: Role of immune-mediated mechanisms. Neurogastroenterol Motil 2017; 29. [PMID: 28300333 DOI: 10.1111/nmo.13043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/09/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Evidence suggests that patients with irritable bowel syndrome (IBS) exhibit increases in gut permeability and alterations in tight junction (TJ) protein expression. Although psychological stress worsens IBS symptoms, the mechanisms by which stress enhances gut permeability and affects TJ protein expression remain to be determined. Here, we test the hypothesis that chronic intermittent psychological stress activates the release of proinflammatory cytokines to alter TJ proteins and promotes increased gut permeability. METHODS Male Fischer-344 rats were subjected to 1 hour of water avoidance stress (WAS) or SHAM stress per day for 7 days. Following the stress protocol, colonic permeability was measured via transepithelial electrical resistance (TEER) and macromolecular flux of horseradish peroxidase (HRP). In tissue isolated from rats exposed to the WAS or SHAM stress, TJ proteins claudin-2, junctional adhesion molecule-A (JAM-A) and zonula occluden-1 (ZO-1) were measured via Western blotting, histological appearance of the colonic segments was assessed via hematoxylin and eosin staining, and an inflammatory cytokine panel was quantified via quantitative reverse transcription-polymerase chain reaction. KEY RESULTS Repetitive daily exposure to WAS decreased the TEER, increased the macromolecular flux of HRP, and altered the expression of claudin-2, JAM-A and ZO-1 proteins within colonic tissue compared to SHAM controls. In the absence of a histologically defined inflammation, the cytokine profiles of WAS-treated animals revealed an increase in interleukin-1β and tumor necrosis factor (TNF)-α. Subsequent analysis revealed a significant positive correlation between TNF-α and expression of TJ protein claudin-2. CONCLUSIONS & INFERENCES Our findings suggest that chronic stress increases colonic permeability via sub-inflammatory cytokine-mediated remodeling of TJ protein expression.
Collapse
Affiliation(s)
- P Hattay
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - D K Prusator
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - L Tran
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - B Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,VA Medical Center, Oklahoma City, OK, USA.,Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
66
|
Abstract
More than 20% of adults worldwide experience different types of chronic pain, which are frequently associated with several comorbidities and a decrease in quality of life. Several approved painkillers are available, but current analgesics are often hampered by insufficient efficacy and/or severe adverse effects. Consequently, novel strategies for safe, highly efficacious treatments are highly desirable, particularly for chronic pain. Epigenetic mechanisms such as DNA methylation, histone modifications and microRNAs (miRNAs) strongly affect the regulation of gene expression, potentially for long periods over years or even generations, and have been associated with pathophysiological pain. Several studies, mostly in animals, revealed that inhibitors of DNA methylation, activators and inhibitors of histone modification and modulators of miRNAs reverse a number of pathological changes in the pain epigenome, which are associated with altered expression of pain-relevant genes. This epigenetic modulation might then reduce the nociceptive response and provide novel therapeutic options for analgesic therapy of chronic pain states. However, a number of challenges, such as nonspecific effects and poor delivery to target cells and tissues, hinder the rapid development of such analgesics. In this Review, we critically summarize data on epigenetics and pain, focusing on challenges in clinical development as well as possible new approaches to the drug modulation of the pain epigenome.
Collapse
Affiliation(s)
- Ellen Niederberger
- Pharmazentrum Frankfurt, Zentrum für Arzneimittelforschung Entwicklung und Sicherheit (ZAFES), Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Eduard Resch
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group for Translational Medicine &Pharmacology, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group for Translational Medicine &Pharmacology, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt, Zentrum für Arzneimittelforschung Entwicklung und Sicherheit (ZAFES), Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany.,Fraunhofer Institute for Molecular Biology and Applied Ecology, Project Group for Translational Medicine &Pharmacology, Theodor Stern Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
67
|
Epigenetic mechanisms of alcoholism and stress-related disorders. Alcohol 2017; 60:7-18. [PMID: 28477725 DOI: 10.1016/j.alcohol.2017.01.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/30/2016] [Accepted: 01/03/2017] [Indexed: 12/20/2022]
Abstract
Stress-related disorders, such as anxiety, early life stress, and posttraumatic stress disorder appear to be important factors in promoting alcoholism, as alcohol consumption can temporarily attenuate the negative affective symptoms of these disorders. Several molecules involved in signaling pathways may contribute to the neuroadaptation induced during alcohol dependence and stress disorders, and among these, brain-derived neurotrophic factor (BDNF), corticotropin releasing factor (CRF), neuropeptide Y (NPY) and opioid peptides (i.e., nociceptin and dynorphin) are involved in the interaction of stress and alcohol. In fact, alterations in the expression and function of these molecules have been associated with the pathophysiology of stress-related disorders and alcoholism. In recent years, various studies have focused on the epigenetic mechanisms that regulate chromatin architecture, thereby modifying gene expression. Interestingly, epigenetic modifications in specific brain regions have been shown to be associated with the neurobiology of psychiatric disorders, including alcoholism and stress. In particular, the enzymes responsible for chromatin remodeling (i.e., histone deacetylases and methyltransferases, DNA methyltransferases) have been identified as common molecular mechanisms for the interaction of stress and alcohol and have become promising therapeutic targets to treat or prevent alcoholism and associated emotional disorders.
Collapse
|
68
|
Abstract
The gastrointestinal (GI) system is responsible for the digestion and absorption of ingested food and liquids. Due to the complexity of the GI tract and the substantial volume of material that could be covered under the scope of GI physiology, this chapter briefly reviews the overall function of the GI tract, and discusses the major factors affecting GI physiology and function, including the intestinal microbiota, chronic stress, inflammation, and aging with a focus on the neural regulation of the GI tract and an emphasis on basic brain-gut interactions that serve to modulate the GI tract. GI diseases refer to diseases of the esophagus, stomach, small intestine, colon, and rectum. The major symptoms of common GI disorders include recurrent abdominal pain and bloating, heartburn, indigestion/dyspepsia, nausea and vomiting, diarrhea, and constipation. GI disorders rank among the most prevalent disorders, with the most common including esophageal and swallowing disorders, gastric and peptic ulcer disease, gastroparesis or delayed gastric emptying, irritable bowel syndrome (IBS), and inflammatory bowel disease (IBD). Many GI disorders are difficult to diagnose and their symptoms are not effectively managed. Thus, basic research is required to drive the development of novel therapeutics which are urgently needed. One approach is to enhance our understanding of gut physiology and pathophysiology especially as it relates to gut-brain communications since they have clinical relevance to a number of GI complaints and represent a therapeutic target for the treatment of conditions including inflammatory diseases of the GI tract such as IBD and functional gut disorders such as IBS.
Collapse
|
69
|
The human BDNF gene: peripheral gene expression and protein levels as biomarkers for psychiatric disorders. Transl Psychiatry 2016; 6:e958. [PMID: 27874848 PMCID: PMC5314126 DOI: 10.1038/tp.2016.214] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/09/2016] [Accepted: 09/12/2016] [Indexed: 12/17/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) regulates the survival and growth of neurons, and influences synaptic efficiency and plasticity. The human BDNF gene consists of 11 exons, and distinct BDNF transcripts are produced through the use of alternative promoters and splicing events. The majority of the BDNF transcripts can be detected not only in the brain but also in the blood cells, although no study has yet investigated the differential expression of BDNF transcripts at the peripheral level. This review provides a description of the human BDNF gene structure as well as a summary of clinical and preclinical evidence supporting the role of BDNF in the pathogenesis of psychiatric disorders. We will discuss several mechanisms as possibly underlying BDNF modulation, including epigenetic mechanisms. We will also discuss the potential use of peripheral BDNF as a biomarker for psychiatric disorders, focusing on the factors that can influence BDNF gene expression and protein levels. Within this context, we have also characterized, for we believe the first time, the expression of BDNF transcripts in the blood, with the aim to provide novel insights into the molecular mechanisms and signaling that may regulate peripheral BDNF gene expression levels.
Collapse
|
70
|
Negrete R, García Gutiérrez MS, Manzanares J, Maldonado R. Involvement of the dynorphin/KOR system on the nociceptive, emotional and cognitive manifestations of joint pain in mice. Neuropharmacology 2016; 116:315-327. [PMID: 27567942 DOI: 10.1016/j.neuropharm.2016.08.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/29/2016] [Accepted: 08/23/2016] [Indexed: 12/18/2022]
Abstract
Joint pain is a major clinical problem mainly associated to osteoarthritis, and characterized by articular cartilage degradation resulting in a complex chronic pain state that includes nociceptive, emotional and cognitive manifestations. Memory impairment, depressive- and anxiety-like symptoms have been reported to be associated with chronic pain, leading to a decrease of life quality. In this study, we evaluated the involvement of the endogenous dynorphin/kappa opioid receptor (KOR) system on the nociceptive, emotional, cognitive, neurochemical and epigenetic manifestations of joint pain. The murine model of monosodium iodoacetate (MIA) was used to induce joint pain in knockout mice for KOR (KOR-KO), prodynorphin (PDYN-KO) and their wild-type (WT) littermates. KOR-KO and PDYN-KO mice developed mechanical allodynia after intra-articular injection of MIA. This allodynia was significantly increased in both KOR-KO and PDYN-KO when compared to WT mice. Accordingly, both mutants showed increased microglial activation on the lumbar section of the spinal cord after MIA. The emotional responses were evaluated by measuring anxiety-like behaviour in the elevated plus maze and anhedonia as depressive-like behaviour, and cognitive alterations in the object recognition paradigm. Emotional and cognitive impairments after joint pain were differently modified in KOR-KO and PDYN-KO mice. Alterations of corticotropin-releasing factor (CRF) on the amygdala and hippocampus and down regulation of histone 3 acetylation on the amygdala suggest a possible mechanism to explain these emotional and cognitive manifestations. Our results reveal a specific involvement of the dynorphin/KOR system on joint pain manifestations that are usually associated to osteoarthritis.
Collapse
Affiliation(s)
- Roger Negrete
- Laboratory of Neuropharmacology, Department of Experimental and Health Science, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| | - María Salud García Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology, Department of Experimental and Health Science, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain.
| |
Collapse
|
71
|
Prolonged Exposure of Primary Human Muscle Cells to Plasma Fatty Acids Associated with Obese Phenotype Induces Persistent Suppression of Muscle Mitochondrial ATP Synthase β Subunit. PLoS One 2016; 11:e0160057. [PMID: 27532680 PMCID: PMC4988792 DOI: 10.1371/journal.pone.0160057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/13/2016] [Indexed: 01/12/2023] Open
Abstract
Our previous studies show reduced abundance of the β-subunit of mitochondrial H+-ATP synthase (β-F1-ATPase) in skeletal muscle of obese individuals. The β-F1-ATPase forms the catalytic core of the ATP synthase, and it is critical for ATP production in muscle. The mechanism(s) impairing β-F1-ATPase metabolism in obesity, however, are not completely understood. First, we studied total muscle protein synthesis and the translation efficiency of β-F1-ATPase in obese (BMI, 36±1 kg/m2) and lean (BMI, 22±1 kg/m2) subjects. Both total protein synthesis (0.044±0.006 vs 0.066±0.006%·h-1) and translation efficiency of β-F1-ATPase (0.0031±0.0007 vs 0.0073±0.0004) were lower in muscle from the obese subjects when compared to the lean controls (P<0.05). We then evaluated these same responses in a primary cell culture model, and tested the specific hypothesis that circulating non-esterified fatty acids (NEFA) in obesity play a role in the responses observed in humans. The findings on total protein synthesis and translation efficiency of β-F1-ATPase in primary myotubes cultured from a lean subject, and after exposure to NEFA extracted from serum of an obese subject, were similar to those obtained in humans. Among candidate microRNAs (i.e., non-coding RNAs regulating gene expression), we identified miR-127-5p in preventing the production of β-F1-ATPase. Muscle expression of miR-127-5p negatively correlated with β-F1-ATPase protein translation efficiency in humans (r = - 0.6744; P<0.01), and could be modeled in vitro by prolonged exposure of primary myotubes derived from the lean subject to NEFA extracted from the obese subject. On the other hand, locked nucleic acid inhibitor synthesized to target miR-127-5p significantly increased β-F1-ATPase translation efficiency in myotubes (0.6±0.1 vs 1.3±0.3, in control vs exposure to 50 nM inhibitor; P<0.05). Our experiments implicate circulating NEFA in obesity in suppressing muscle protein metabolism, and establish impaired β-F1-ATPase translation as an important consequence of obesity.
Collapse
|
72
|
Greenwood-Van Meerveld B, Moloney RD, Johnson AC, Vicario M. Mechanisms of Stress-Induced Visceral Pain: Implications in Irritable Bowel Syndrome. J Neuroendocrinol 2016; 28. [PMID: 26749172 DOI: 10.1111/jne.12361] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/16/2015] [Accepted: 01/05/2016] [Indexed: 02/06/2023]
Abstract
Visceral pain is a term describing pain originating from the internal organs of the body and is a common feature of many disorders, including irritable bowel syndrome (IBS). Stress is implicated in the development and exacerbation of many visceral pain disorders. Recent evidence suggests that stress and the gut microbiota can interact through complementary or opposing factors to influence visceral nociceptive behaviours. The Young Investigator Forum at the International Society of Psychoneuroendocrinology (ISPNE) annual meeting reported experimental evidence suggesting the gut microbiota can affect the stress response to affect visceral pain. Building upon human imaging data showing abnormalities in the central processing of visceral stimuli in patients with IBS and knowledge that the amygdala plays a pivotal role in facilitating the stress axis, the latest experimental evidence supporting amygdala-mediated mechanisms in stress-induced visceral pain was reviewed. The final part of the session at ISPNE reviewed experimental evidence suggesting that visceral pain in IBS may be a result, at least in part, of afferent nerve sensitisation following increases in epithelial permeability and mucosal immune activation.
Collapse
Affiliation(s)
- B Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
- V.A. Medical Center, Oklahoma City, OK, USA
| | - R D Moloney
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - A C Johnson
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - M Vicario
- Department of Gastroenterology, Neuro-immuno-gastroenterology Laboratory, Digestive Diseases Research Unit, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron & Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| |
Collapse
|
73
|
Cao DY, Bai G, Ji Y, Karpowicz JM, Traub RJ. EXPRESS: Histone hyperacetylation modulates spinal type II metabotropic glutamate receptor alleviating stress-induced visceral hypersensitivity in female rats. Mol Pain 2016; 12:1744806916660722. [PMID: 27385724 PMCID: PMC4956148 DOI: 10.1177/1744806916660722] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/13/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022] Open
Abstract
Stress is often a trigger to exacerbate chronic pain including visceral hypersensitivity associated with irritable bowel syndrome, a female predominant functional bowel disorder. Epigenetic mechanisms that mediate stress responses are a potential target to interfere with visceral pain. The purpose of this study was to examine the effect of a histone deacetylase inhibitor, suberoylanilide hydroxamic acid, on visceral hypersensitivity induced by a subchronic stressor in female rats and to investigate the involvement of spinal glutamate receptors. Three daily sessions of forced swim induced visceral hypersensitivity. Intrathecal suberoylanilide hydroxamic acid prevented or reversed the stress-induced visceral hypersensitivity, increased spinal histone 3 acetylation and increased mGluR2 and mGluR3 expression. Chromatin immunoprecipitation (ChIP) analysis revealed enrichment of H3K9Ac and H3K18Ac at several promoter Grm2 and Grm3 regions. The mGluR2/3 antagonist LY341495 reversed the inhibitory effect of suberoylanilide hydroxamic acid on the stress-induced visceral hypersensitivity. In surprising contrast, stress and/or suberoylanilide hydroxamic acid had no effect on spinal NMDA receptor expression or function. These data reveal histone modification modulates mGluR2/3 expression in the spinal cord to attenuate stressinduced visceral hypersensitivity. HDAC inhibitors may provide a potential approach to relieve visceral hypersensitivity associated with irritable bowel syndrome.
Collapse
Affiliation(s)
| | - Guang Bai
- University of Maryland School of Dentistry
| | - Yaping Ji
- University of Maryland School of Dentistry
| | - Jane M Karpowicz
- University of Maryland School of DentistryUniversity of Maryland School of DentistryUniversity of Maryland School of Dentistry
| | - Richard J Traub
- University of Maryland School of DentistryUniversity of Maryland School of DentistryUniversity of Maryland School of Dentistry
| |
Collapse
|
74
|
Gassen NC, Chrousos GP, Binder EB, Zannas AS. Life stress, glucocorticoid signaling, and the aging epigenome: Implications for aging-related diseases. Neurosci Biobehav Rev 2016; 74:356-365. [PMID: 27343999 DOI: 10.1016/j.neubiorev.2016.06.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 05/24/2016] [Accepted: 06/06/2016] [Indexed: 02/06/2023]
Abstract
Life stress has been associated with accelerated cellular aging and increased risk for developing aging-related diseases; however, the underlying molecular mechanisms remain elusive. A highly relevant process that may underlie this association is epigenetic regulation. In this review, we build upon existing evidence to propose a model whereby exposure to life stress, in part via its effects on the hypothalamic-pituitary axis and the glucocorticoid signaling system, may alter the epigenetic landscape across the lifespan and, consequently, influence genomic regulation and function in ways that are conducive to the development of aging-related diseases. This model is supported by recent studies showing that life stressors and stress-related phenotypes can accelerate epigenetic aging, a measure that is based on DNA methylation prediction of chronological age and has been associated with several aging-related disease phenotypes. We discuss the implications of this model for the prevention and treatment of aging-related diseases, as well as the challenges and limitations of this line of research.
Collapse
Affiliation(s)
- Nils C Gassen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - George P Chrousos
- First Department of Pediatrics, University of Athens Medical School, Athens, Greece
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Department of Psychiatry and Behavioral Sciences, Emory University Medical School, Atlanta, GA, USA
| | - Anthony S Zannas
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
75
|
Ligon CO, Moloney RD, Greenwood-Van Meerveld B. Targeting Epigenetic Mechanisms for Chronic Pain: A Valid Approach for the Development of Novel Therapeutics. J Pharmacol Exp Ther 2016; 357:84-93. [PMID: 26787772 DOI: 10.1124/jpet.115.231670] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/15/2016] [Indexed: 08/30/2023] Open
Abstract
Chronic pain is a multifaceted and complex condition. Broadly classified into somatic, visceral, or neuropathic pain, it is poorly managed despite its prevalence. Current drugs used for the treatment of chronic pain are limited by tolerance with long-term use, abuse potential, and multiple adverse side effects. The persistent nature of pain suggests that epigenetic machinery may be a critical factor driving chronic pain. In this review, we discuss the latest insights into epigenetic processes, including DNA methylation, histone modifications, and microRNAs, and we describe their involvement in the pathophysiology of chronic pain and whether epigenetic modifications could be applied as future therapeutic targets for chronic pain. We provide evidence from experimental models and translational research in human tissue that have enhanced our understanding of epigenetic processes mediating nociception, and we then speculate on the potential future use of more specific and selective agents that target epigenetic mechanisms to attenuate pain.
Collapse
Affiliation(s)
- Casey O Ligon
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (C.O.L., R.D.M., and B.G.-V.M.); and the Veterans Affairs Medical Center, Oklahoma City, Oklahoma (B.G.-V.M.)
| | - Rachel D Moloney
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (C.O.L., R.D.M., and B.G.-V.M.); and the Veterans Affairs Medical Center, Oklahoma City, Oklahoma (B.G.-V.M.)
| | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (C.O.L., R.D.M., and B.G.-V.M.); and the Veterans Affairs Medical Center, Oklahoma City, Oklahoma (B.G.-V.M.)
| |
Collapse
|
76
|
Dogra S, Sona C, Kumar A, Yadav PN. Epigenetic regulation of G protein coupled receptor signaling and its implications in psychiatric disorders. Int J Biochem Cell Biol 2016; 77:226-39. [PMID: 27046448 DOI: 10.1016/j.biocel.2016.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
G protein-coupled receptors (GPCRs) act as a relay center through which extracellular signals, in the form of neurotransmitters or therapeutics, are converted into an intracellular response, which ultimately shapes the overall response at the tissue and behavioral level. Remarkably in similar ways, epigenetic mechanisms also modulate the expression pattern of a large number of genes in response to the dynamic environment inside and outside of the body, and consequently overall response. Emerging evidences from the pharmacogenomics and preclinical studies clearly suggest that these two distinct mechanisms criss-cross each other in several neurological disorders. At one hand such cross-talks between two distinct mechanisms make disease etiology more challenging to understand, while on the other hand if dealt appropriately, such situations might provide an opportunity to find novel druggable target and strategy for the treatment of complex diseases. In this review article, we have summarized and highlighted the main findings that tie epigenetic mechanisms to GPCR mediated signaling in the pathophysiology of central nervous system (CNS) disorders, including depression, addiction and pain.
Collapse
Affiliation(s)
- Shalini Dogra
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Chandan Sona
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Ajeet Kumar
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - Prem N Yadav
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India.
| |
Collapse
|
77
|
Vanner S, Greenwood-Van Meerveld B, Mawe G, Shea-Donohue T, Verdu EF, Wood J, Grundy D. Fundamentals of Neurogastroenterology: Basic Science. Gastroenterology 2016; 150:S0016-5085(16)00184-0. [PMID: 27144618 PMCID: PMC5673591 DOI: 10.1053/j.gastro.2016.02.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 02/07/2023]
Abstract
This review examines the fundamentals of neurogastroenterology that may underlie the pathophysiology of functional GI disorders (FGIDs). It was prepared by an invited committee of international experts and represents an abbreviated version of their consensus document that will be published in its entirety in the forthcoming book and online version entitled ROME IV. It emphasizes recent advances in our understanding of the enteric nervous system, sensory physiology underlying pain, and stress signaling pathways. There is also a focus on neuroimmmune signaling and intestinal barrier function, given the recent evidence implicating the microbiome, diet, and mucosal immune activation in FGIDs. Together, these advances provide a host of exciting new targets to identify and treat FGIDs and new areas for future research into their pathophysiology.
Collapse
Affiliation(s)
- Stephen Vanner
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Kingston, Ontario, Canada.
| | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, Department of Physiology, VA Medical Center, University of Oklahoma, Health Sciences Center, Oklahoma City, Oklahoma
| | - Gary Mawe
- Department of Neurological Sciences, Pharmacology and Medicine Division, Gastroenterology and Hepatology, University of Vermont, Burlington, Vermont
| | - Terez Shea-Donohue
- Department of Medicine and Physiology, University of Maryland, School of Medicine, Baltimore, Maryland
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University, Health Sciences Center, Hamilton, Ontario, Canada
| | - Jackie Wood
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
| | - David Grundy
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
78
|
Moloney RD, Johnson AC, O'Mahony SM, Dinan TG, Greenwood‐Van Meerveld B, Cryan JF. Stress and the Microbiota-Gut-Brain Axis in Visceral Pain: Relevance to Irritable Bowel Syndrome. CNS Neurosci Ther 2016; 22:102-17. [PMID: 26662472 PMCID: PMC6492884 DOI: 10.1111/cns.12490] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 02/06/2023] Open
Abstract
Visceral pain is a global term used to describe pain originating from the internal organs of the body, which affects a significant proportion of the population and is a common feature of functional gastrointestinal disorders (FGIDs) such as irritable bowel syndrome (IBS). While IBS is multifactorial, with no single etiology to completely explain the disorder, many patients also experience comorbid behavioral disorders, such as anxiety or depression; thus, IBS is described as a disorder of the gut-brain axis. Stress is implicated in the development and exacerbation of visceral pain disorders. Chronic stress can modify central pain circuitry, as well as change motility and permeability throughout the gastrointestinal (GI) tract. More recently, the role of the gut microbiota in the bidirectional communication along the gut-brain axis, and subsequent changes in behavior, has emerged. Thus, stress and the gut microbiota can interact through complementary or opposing factors to influence visceral nociceptive behaviors. This review will highlight the evidence by which stress and the gut microbiota interact in the regulation of visceral nociception. We will focus on the influence of stress on the microbiota and the mechanisms by which microbiota can affect the stress response and behavioral outcomes with an emphasis on visceral pain.
Collapse
Affiliation(s)
- Rachel D. Moloney
- Laboratory of NeurogastroenterologyAPC Microbiome InstituteUniversity College CorkCorkIreland
- Present address:
Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
| | - Anthony C. Johnson
- Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
| | - Siobhain M. O'Mahony
- Laboratory of NeurogastroenterologyAPC Microbiome InstituteUniversity College CorkCorkIreland
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
| | - Timothy G. Dinan
- Laboratory of NeurogastroenterologyAPC Microbiome InstituteUniversity College CorkCorkIreland
- Department of Psychiatry and Neurobehavioural ScienceUniversity College CorkCorkIreland
| | - Beverley Greenwood‐Van Meerveld
- Oklahoma Center for NeuroscienceUniversity of Oklahoma Health Science CenterOklahoma CityOKUSA
- V.A. Medical CenterOklahoma CityOKUSA
| | - John F. Cryan
- Laboratory of NeurogastroenterologyAPC Microbiome InstituteUniversity College CorkCorkIreland
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
| |
Collapse
|
79
|
Johnson AC, Greenwood-Van Meerveld B. The Pharmacology of Visceral Pain. ADVANCES IN PHARMACOLOGY 2016; 75:273-301. [PMID: 26920016 DOI: 10.1016/bs.apha.2015.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Visceral pain describes pain emanating from the internal thoracic, pelvic, or abdominal organs. Unlike somatic pain, visceral pain is generally vague, poorly localized, and characterized by hypersensitivity to a stimulus such as organ distension. While current therapeutics provides some relief from somatic pain, drugs used for treatment of chronic visceral pain are typically less efficacious and limited by multiple adverse side effects. Thus, the treatment of visceral pain represents a major unmet medical need. Further, more basic research into the physiology and pathophysiology of visceral pain is needed to provide novel targets for future drug development. In concert with chronic visceral pain, there is a high comorbidity with stress-related psychiatric disorders including anxiety and depression. The mechanisms linking visceral pain with these overlapping comorbidities remain to be elucidated. However, persistent stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic visceral pain disorders. We will focus on stress-induced exacerbation of chronic visceral pain and provide supporting evidence that centrally acting drugs targeting the pain and stress-responsive brain regions may represent a valid target for the development of novel and effective therapeutics.
Collapse
Affiliation(s)
- Anthony C Johnson
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; Veterans Affairs Medical Center, Oklahoma City, Oklahoma, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
80
|
Wiley JW, Higgins GA, Athey BD. Stress and glucocorticoid receptor transcriptional programming in time and space: Implications for the brain-gut axis. Neurogastroenterol Motil 2016; 28:12-25. [PMID: 26690871 PMCID: PMC4688904 DOI: 10.1111/nmo.12706] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/20/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Chronic psychological stress is associated with enhanced abdominal pain and altered intestinal barrier function that may result from a perturbation in the hypothalamic-pituitary-adrenal (HPA) axis. The glucocorticoid receptor (GR) exploits diverse mechanisms to activate or suppress congeneric gene expression, with regulatory variation associated with stress-related disorders in psychiatry and gastroenterology. PURPOSE During acute and chronic stress, corticotropin-releasing hormone drives secretion of adrenocorticotropic hormone from the pituitary, ultimately leading to the release of cortisol (human) and corticosterone (rodent) from the adrenal glands. Cortisol binds with the GR in the cytosol, translocates to the nucleus, and activates the NR3C1 (nuclear receptor subfamily 3, group C, member 1 [GR]) gene. This review focuses on the rapidly developing observations that cortisol is responsible for driving circadian and ultradian bursts of transcriptional activity in the CLOCK (clock circadian regulator) and PER (period circadian clock 1) gene families, and this rhythm is disrupted in major depressive disorder, bipolar disorder, and stress-related gastrointestinal and immune disorders. Glucocorticoid receptor regulates different sets of transcripts in a tissue-specific manner, through pulsatile waves of gene expression that includes occupancy of glucocorticoid response elements located within constitutively open spatial domains in chromatin. Emerging evidence supports a potentially pivotal role for epigenetic regulation of how GR interacts with other chromatin regulators to control the expression of its target genes. Dysregulation of the central and peripheral GR regulome has potentially significant consequences for stress-related disorders affecting the brain-gut axis.
Collapse
Affiliation(s)
- John W. Wiley
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| | - Gerald A. Higgins
- Department of Pharmacogenomic Science, Assurex Health, Inc., 6030 South Mason Montgomery Road, Mason, OH 45040, USA,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| | - Brian D. Athey
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
81
|
Abstract
Despite an extensive body of reported information about peripheral and central mechanisms involved in the pathophysiology of IBS symptoms, no comprehensive disease model has emerged that would guide the development of novel, effective therapies. In this Review, we will first describe novel insights into some key components of brain-gut interactions, starting with the emerging findings of distinct functional and structural brain signatures of IBS. We will then point out emerging correlations between these brain networks and genomic, gastrointestinal, immune and gut-microbiome-related parameters. We will incorporate this new information, as well as the reported extensive literature on various peripheral mechanisms, into a systems-based disease model of IBS, and discuss the implications of such a model for improved understanding of the disorder, and for the development of more-effective treatment approaches in the future.
Collapse
Affiliation(s)
- Emeran A Mayer
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-7378, USA
| | - Jennifer S Labus
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-7378, USA
| | - Kirsten Tillisch
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-7378, USA and West Los Angeles VA Medical Center, 11301 Wilshire Boulevard, Los Angeles, CA 90073, USA
| | - Steven W Cole
- Department of Medicine, University of California at Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-7378, USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, University of California at Irvine, 4038 Bren Hall, Irvine, CA 92697-3435, USA
| |
Collapse
|
82
|
Greenwood-Van Meerveld B, Prusator DK, Johnson AC. Animal models of gastrointestinal and liver diseases. Animal models of visceral pain: pathophysiology, translational relevance, and challenges. Am J Physiol Gastrointest Liver Physiol 2015; 308:G885-903. [PMID: 25767262 DOI: 10.1152/ajpgi.00463.2014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/11/2015] [Indexed: 02/08/2023]
Abstract
Visceral pain describes pain emanating from the thoracic, pelvic, or abdominal organs. In contrast to somatic pain, visceral pain is generally vague, poorly localized, and characterized by hypersensitivity to a stimulus such as organ distension. Animal models have played a pivotal role in our understanding of the mechanisms underlying the pathophysiology of visceral pain. This review focuses on animal models of visceral pain and their translational relevance. In addition, the challenges of using animal models to develop novel therapeutic approaches to treat visceral pain will be discussed.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Veterans Affairs Medical Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma; and Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Dawn K Prusator
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Anthony C Johnson
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
83
|
Johnson AC, Tran L, Greenwood-Van Meerveld B. Knockdown of corticotropin-releasing factor in the central amygdala reverses persistent viscerosomatic hyperalgesia. Transl Psychiatry 2015; 5:e517. [PMID: 25734510 PMCID: PMC4354346 DOI: 10.1038/tp.2015.16] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/18/2014] [Accepted: 01/12/2015] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal nociception is exacerbated by chronic stress through an unknown mechanism. The amygdala is a key nucleus involved in the autonomic and neuroendocrine responses to stress. The goal of this study was to test the hypothesis that prolonged exposure of the central amygdala (CeA) to stress or the stress hormone cortisol (or corticosterone in rats) induces nociceptive behaviors mediated by corticotropin-releasing factor (CRF) within the CeA. We selectively knocked down CRF in the CeA via antisense oligodeoxynucleotides (ASO) in animals with targeted, stereotaxically placed corticosterone (CORT) micropellets or following repeated water avoidance stress (WAS). CRF expression in the CeA was analyzed concurrently with the assessment of visceral hypersensitivity to colonic distension and mechanical somatic withdrawal threshold. The responses were characterized at 7 or 28 days post implantation of the CORT micropellet or following 7 days of WAS. Exposure of the CeA to elevated CORT or WAS increased CRF expression and heightened visceral and somatic sensitivity. Infusion of CRF ASO into the CeA decreased CRF expression and attenuated visceral and somatic hypersensitivity in both models. Our study provides important evidence for a CRF-mediated mechanism specifically within the CeA that regulates stress-induced visceral and somatic nociception.
Collapse
Affiliation(s)
- A C Johnson
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - L Tran
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - B Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, USA,Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA,VA Medical Center, University of Oklahoma Health Science Center, Oklahoma City, OK, USA,VA Medical Center, Research Administration Room 151G, 921 NE 13th Street, Oklahoma City, OK 73104, USA. E-mail:
| |
Collapse
|
84
|
Knockdown of steroid receptors in the central nucleus of the amygdala induces heightened pain behaviors in the rat. Neuropharmacology 2015; 93:116-23. [PMID: 25656477 DOI: 10.1016/j.neuropharm.2015.01.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/25/2014] [Accepted: 01/21/2015] [Indexed: 01/25/2023]
Abstract
Previously we demonstrated that exposure of the central nucleus of the amygdala (CeA) to elevated corticosterone (CORT) induces nociceptive behaviors that are reversed by glucocorticoid and/or mineralocorticoid (GR/MR) receptor antagonism. Here we test the hypothesis that in a cholesterol (CHOL)-implanted control rat, selective knockdown of GR/MR in the CeA would, via a corticotropin-releasing factor (CRF)-mediated mechanism, replicate the nociceptive behaviors produced by elevated amygdala CORT. Micropellets of CHOL or CORT were stereotaxically placed on the dorsal margin of the CeA. Cannulae were implanted into the CeA for the delivery of vehicle or oligodeoxynucleotide (ODN) of either antisense (ASO) or random sequences (RSO) targeting GR or MR. Visceromotor behavioral response quantified visceral sensitivity in response to colonic distension, while von Frey filaments assessed somatic sensitivity. Receptor expression was determined with qRT-PCR. In CHOL implanted controls, knockdown of GR in the CeA increased both colonic and somatic sensitivity, whereas selective knockdown of MR in the CeA induced colonic hypersensitivity without affecting somatic sensitivity. CRF expression in the CeA was increased in CHOL-implanted rats treated with GR or MR ASO and resembled the augmented CRF expression seen in the CORT-implanted rats. This is the first study to demonstrate that decreasing either GR or MR within the CeA is sufficient to induce visceral hypersensitivity whereas somatic hypersensitivity developed after only GR knockdown. The loss of either GR or MR was associated with an increased CRF expression, and may represent a common mechanism for the development of CeA-mediated nociceptive behaviors.
Collapse
|
85
|
Moloney RD, O'Mahony SM, Dinan TG, Cryan JF. Stress-induced visceral pain: toward animal models of irritable-bowel syndrome and associated comorbidities. Front Psychiatry 2015; 6:15. [PMID: 25762939 PMCID: PMC4329736 DOI: 10.3389/fpsyt.2015.00015] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/28/2015] [Indexed: 12/12/2022] Open
Abstract
Visceral pain is a global term used to describe pain originating from the internal organs, which is distinct from somatic pain. It is a hallmark of functional gastrointestinal disorders such as irritable-bowel syndrome (IBS). Currently, the treatment strategies targeting visceral pain are unsatisfactory, with development of novel therapeutics hindered by a lack of detailed knowledge of the underlying mechanisms. Stress has long been implicated in the pathophysiology of visceral pain in both preclinical and clinical studies. Here, we discuss the complex etiology of visceral pain reviewing our current understanding in the context of the role of stress, gender, gut microbiota alterations, and immune functioning. Furthermore, we review the role of glutamate, GABA, and epigenetic mechanisms as possible therapeutic strategies for the treatment of visceral pain for which there is an unmet medical need. Moreover, we discuss the most widely described rodent models used to model visceral pain in the preclinical setting. The theory behind, and application of, animal models is key for both the understanding of underlying mechanisms and design of future therapeutic interventions. Taken together, it is apparent that stress-induced visceral pain and its psychiatric comorbidities, as typified by IBS, has a multifaceted etiology. Moreover, treatment strategies still lag far behind when compared to other pain modalities. The development of novel, effective, and specific therapeutics for the treatment of visceral pain has never been more pertinent.
Collapse
Affiliation(s)
- Rachel D Moloney
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland
| | - Siobhain M O'Mahony
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Anatomy and Neuroscience, University College Cork , Cork , Ireland
| | - Timothy G Dinan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Psychiatry, University College Cork , Cork , Ireland
| | - John F Cryan
- Laboratory of Neurogastroenterology, Alimentary Pharmabiotic Centre, Biosciences Institute, University College Cork , Cork , Ireland ; Department of Anatomy and Neuroscience, University College Cork , Cork , Ireland
| |
Collapse
|