51
|
McCann RF, Ross DA. So Happy Together: The Storied Marriage Between Mitochondria and the Mind. Biol Psychiatry 2018; 83:e47-e49. [PMID: 29628043 PMCID: PMC6696908 DOI: 10.1016/j.biopsych.2018.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Ruth F. McCann
- Columbia University Department of Psychiatry, New York State Psychiatric Institute, New York, New York
| | - David A. Ross
- Yale University Department of Psychiatry, New Haven, Connecticut
| |
Collapse
|
52
|
Pinna M, Manchia M, Oppo R, Scano F, Pillai G, Loche AP, Salis P, Minnai GP. Clinical and biological predictors of response to electroconvulsive therapy (ECT): a review. Neurosci Lett 2018; 669:32-42. [DOI: 10.1016/j.neulet.2016.10.047] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/24/2016] [Indexed: 01/04/2023]
|
53
|
OGT-related mitochondrial motility is associated with sex differences and exercise effects in depression induced by prenatal exposure to glucocorticoids. J Affect Disord 2018; 226:203-215. [PMID: 28992584 DOI: 10.1016/j.jad.2017.09.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/19/2017] [Accepted: 09/27/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Prenatal exposure to glucocorticoids (GCs) has been found to trigger abnormal behaviors and deleterious neurological effects on offspring both in animals and in humans. The sex differences in depression have been replicated in numerous studies across cultures, persisting throughout the reproductive years. As an X-linked gene in rodents and in humans, O-GlcNAc transferase (OGT) may provide a novel perspective for the sex differences in depression. METHODS In the last third of pregnancy (gestational day 14-21), rats were subcutaneously administered either 0.13mg/kg dexamethasone-21-phosphate disodium salt (0.1mg/kg DEX) or vehicle (0.9% saline) once a day for 7 days. Adolescent (4 weeks) offspring were then trained in a swimming program or not. RESULTS Here we found that adult offspring rats exposed to DEX prenatally exhibited sex-specific depression-like behaviors, males being more vulnerable than females. Swimming exercise ameliorated the above-mentioned depressive syndromes, which may be a compensatory effect for male disadvantage suffering from prenatal stress. Furthermore, the effects of prenatal DEX exposure and swimming exercise on depression were associated with OGT-related mitochondrial motility, including PINK1/Parkin pathway and AKT/GSK3β pathway. LIMITATIONS Representative kymographs of mitochondrial motility were not detected and no causal effects were obtained by OGT gene overexpression or gene knockout in this study. CONCLUSIONS Our results provide a new perspective for better understanding sex differences and exercise effects in depression and may offer new mechanism-based therapeutic targets for depression.
Collapse
|
54
|
Kato TM, Kubota-Sakashita M, Fujimori-Tonou N, Saitow F, Fuke S, Masuda A, Itohara S, Suzuki H, Kato T. Ant1 mutant mice bridge the mitochondrial and serotonergic dysfunctions in bipolar disorder. Mol Psychiatry 2018; 23:2039-2049. [PMID: 29892051 PMCID: PMC6250678 DOI: 10.1038/s41380-018-0074-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/26/2018] [Accepted: 03/26/2018] [Indexed: 01/30/2023]
Abstract
Although mitochondrial and serotonergic dysfunctions have been implicated in the etiology of bipolar disorder (BD), the relationship between these unrelated pathways has not been elucidated. A family of BD and chronic progressive external ophthalmoplegia (CPEO) caused by a mutation of the mitochondrial adenine nucleotide translocator 1 (ANT1, SLC25A4) implicated that ANT1 mutations confer a risk of BD. Here, we sequenced ANT1 in 324 probands of NIMH bipolar disorder pedigrees and identified two BD patients carrying heterozygous loss-of-function mutations. Behavioral analysis of brain specific Ant1 heterozygous conditional knockout (cKO) mice using lntelliCage showed a selective diminution in delay discounting. Delay discounting is the choice of smaller but immediate reward than larger but delayed reward and an index of impulsivity. Diminution of delay discounting suggests an increase in serotonergic activity. This finding was replicated by a 5-choice serial reaction time test. An anatomical screen showed accumulation of COX (cytochrome c oxidase) negative cells in dorsal raphe. Dorsal raphe neurons in the heterozygous cKO showed hyperexcitability, along with enhanced serotonin turnover in the nucleus accumbens and upregulation of Maob in dorsal raphe. These findings altogether suggest that mitochondrial dysfunction as the genetic risk of BD may cause vulnerability to BD by altering serotonergic neurotransmission.
Collapse
Affiliation(s)
- Tomoaki M. Kato
- grid.474690.8Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Saitama, Japan ,0000 0004 0372 2033grid.258799.8Present Address: Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Mie Kubota-Sakashita
- grid.474690.8Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Noriko Fujimori-Tonou
- grid.474690.8Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Fumihito Saitow
- 0000 0001 2173 8328grid.410821.eDepartment of Pharmacology, Nippon Medical School, Tokyo, Japan
| | - Satoshi Fuke
- grid.474690.8Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Akira Masuda
- grid.474690.8Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Shigeyoshi Itohara
- grid.474690.8Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Hidenori Suzuki
- 0000 0001 2173 8328grid.410821.eDepartment of Pharmacology, Nippon Medical School, Tokyo, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Wako, Saitama, Japan.
| |
Collapse
|
55
|
Kato T. Neurobiological basis of bipolar disorder: Mitochondrial dysfunction hypothesis and beyond. Schizophr Res 2017; 187:62-66. [PMID: 27839913 DOI: 10.1016/j.schres.2016.10.037] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023]
Abstract
Bipolar disorder is one of two major psychotic disorders together with schizophrenia and causes severe psychosocial disturbance. Lack of adequate animal models hampers development of new mood stabilizers. We proposed a mitochondrial dysfunction hypothesis and have been studying the neurobiology of bipolar disorder based on this hypothesis. We showed that deletions of mitochondrial DNA (ΔmtDNA) play a pathophysiological role at least in some patients with bipolar disorder possibly by affecting intracellular calcium regulation. Mutant polymerase γ transgenic mice that accumulate ΔmtDNA in the brain showed recurrent spontaneous depression-like episodes which were prevented by a serotonin-selective reuptake inhibitor and worsened by lithium withdrawal. The animal model would be useful to develop new mood stabilizers.
Collapse
Affiliation(s)
- Tadafumi Kato
- Laboratory for Molecular Dynamic of Mental Disorders, RIKEN Brain Science Institute, Japan.
| |
Collapse
|
56
|
Kasahara T, Ishiwata M, Kakiuchi C, Fuke S, Iwata N, Ozaki N, Kunugi H, Minabe Y, Nakamura K, Iwata Y, Fujii K, Kanba S, Ujike H, Kusumi I, Kataoka M, Matoba N, Takata A, Iwamoto K, Yoshikawa T, Kato T. Enrichment of deleterious variants of mitochondrial DNA polymerase gene (POLG1) in bipolar disorder. Psychiatry Clin Neurosci 2017; 71:518-529. [PMID: 27987238 DOI: 10.1111/pcn.12496] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/15/2016] [Accepted: 12/06/2016] [Indexed: 12/13/2022]
Abstract
AIM Rare missense variants, which likely account for a substantial portion of the genetic 'dark matter' for a common complex disease, are challenging because the impacts of variants on disease development are difficult to substantiate. This study aimed to examine the impacts of amino acid substitution variants in the POLG1 found in bipolar disorder, as an example and proof of concept, in three different modalities of assessment: in silico predictions, in vitro biochemical assays, and clinical evaluation. We then tested whether deleterious variants in POLG1 contributed to the genetics of bipolar disorder. METHODS We searched for variants in the POLG1 gene in 796 Japanese patients with bipolar disorder and 767 controls and comprehensively investigated all 23 identified variants in the three modalities of assessment. POLG1 encodes mitochondrial DNA polymerase and is one of the causative genes for a Mendelian-inheritance mitochondrial disease, which is occasionally accompanied by mood disorders. The healthy control data from the Tohoku Medical Megabank Organization were also employed. RESULTS Although the frequency of carriers of deleterious variants varied from one method to another, every assessment achieved the same conclusion that deleterious POLG1 variants were significantly enriched in the variants identified in patients with bipolar disorder compared to those in controls. CONCLUSION Together with mitochondrial dysfunction in bipolar disorder, the present results suggested deleterious POLG1 variants as a credible risk for the multifactorial disease.
Collapse
Affiliation(s)
- Takaoki Kasahara
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Japan
| | - Mizuho Ishiwata
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Japan
| | - Chihiro Kakiuchi
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Japan
| | - Satoshi Fuke
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Japan
| | - Nakao Iwata
- Faculty of Medicine, Department of Psychiatry, Fujita Health University, Japan
| | - Norio Ozaki
- Faculty of Medicine, Department of Psychiatry, Nagoya University, Nagoya, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yoshio Minabe
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuhiko Nakamura
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuhide Iwata
- Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kumiko Fujii
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Japan.,Department of Psychiatry, Dokkyo Medical University School of Medicine, Mibu, Japan
| | - Shigenobu Kanba
- Department of Psychiatry, Kyushu University School of Medicine, Fukuoka, Japan
| | - Hiroshi Ujike
- Department of Psychiatry, Okayama University School of Medicine, Okayama, Japan
| | - Ichiro Kusumi
- Department of Psychiatry, Hokkaido University School of Medicine, Sapporo, Japan
| | - Muneko Kataoka
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Japan
| | - Nana Matoba
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Japan
| | - Atsushi Takata
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Japan
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medicine, Kumamoto University, Kumamoto, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Brain Science Institute, Wako, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Wako, Japan
| |
Collapse
|
57
|
Mizoguchi T, Minakuchi H, Ishisaka M, Tsuruma K, Shimazawa M, Hara H. Behavioral abnormalities with disruption of brain structure in mice overexpressing VGF. Sci Rep 2017; 7:4691. [PMID: 28680036 PMCID: PMC5498671 DOI: 10.1038/s41598-017-04132-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/10/2017] [Indexed: 01/01/2023] Open
Abstract
VGF nerve growth factor inducible (VGF) is a neuropeptide induced by nerve growth factor and brain-derived neurotrophic factor. This peptide is involved in synaptic plasticity, neurogenesis, and neurite growth in the brain. Patients with depression and bipolar disorder have lower-than-normal levels of VGF, whereas patients with schizophrenia and other cohorts of patients with depression have higher-than-normal levels. VGF knockout mice display behavioral abnormalities such as higher depressive behavior and memory dysfunction. However, it is unclear whether upregulation of VGF affects brain function. In the present study, we generated mice that overexpress VGF and investigated several behavioral phenotypes and the brain structure. These adult VGF-overexpressing mice showed (a) hyperactivity, working memory impairment, a higher depressive state, and lower sociality compared with wild-type mice; (b) lower brain weight without a change in body weight; (c) increased lateral ventricle volume compared with wild-type mice; and (d) striatal morphological defects. These results suggest that VGF may modulate a variety of behaviors and brain development. This transgenic mouse line may provide a useful model for research on mental illnesses.
Collapse
Affiliation(s)
- Takahiro Mizoguchi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hiroko Minakuchi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Mitsue Ishisaka
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuhiro Tsuruma
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
58
|
Toyoda A. Social defeat models in animal science: What we have learned from rodent models. Anim Sci J 2017; 88:944-952. [PMID: 28436163 PMCID: PMC5518448 DOI: 10.1111/asj.12809] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 02/13/2017] [Indexed: 12/30/2022]
Abstract
Studies on stress and its impacts on animals are very important in many fields of science, including animal science, because various stresses influence animal production and animal welfare. In particular, the social stresses within animal groups have profound impact on animals, with the potential to induce abnormal behaviors and health problems. In humans, social stress induces several health problems, including psychiatric disorders. In animal stress models, social defeat models are well characterized and used in various research fields, particularly in studies concerning mental disorders. Recently, we have focused on behavior, nutrition and metabolism in rodent models of social defeat to elucidate how social stresses affect animals. In this review, recent significant progress in studies related to animal social defeat models are described. In the field of animal science, these stress models may contribute to advances in the development of functional foods and in the management of animal welfare.
Collapse
Affiliation(s)
- Atsushi Toyoda
- College of Agriculture, Ibaraki University, Ami, Ibaraki, Japan.,Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM), Ami, Ibaraki, Japan.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu-city, Tokyo, Japan
| |
Collapse
|
59
|
maLPA1-null mice as an endophenotype of anxious depression. Transl Psychiatry 2017; 7:e1077. [PMID: 28375206 PMCID: PMC5416683 DOI: 10.1038/tp.2017.24] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/16/2017] [Accepted: 01/22/2017] [Indexed: 12/29/2022] Open
Abstract
Anxious depression is a prevalent disease with devastating consequences and a poor prognosis. Nevertheless, the neurobiological mechanisms underlying this mood disorder remain poorly characterized. The LPA1 receptor is one of the six characterized G protein-coupled receptors (LPA1-6) through which lysophosphatidic acid acts as an intracellular signalling molecule. The loss of this receptor induces anxiety and several behavioural and neurobiological changes that have been strongly associated with depression. In this study, we sought to investigate the involvement of the LPA1 receptor in mood. We first examined hedonic and despair-like behaviours in wild-type and maLPA1 receptor null mice. Owing to the behavioural response exhibited by the maLPA1-null mice, the panic-like reaction was assessed. In addition, c-Fos expression was evaluated as a measure of the functional activity, followed by interregional correlation matrices to establish the brain map of functional activation. maLPA1-null mice exhibited anhedonia, agitation and increased stress reactivity, behaviours that are strongly associated with the psychopathological endophenotype of depression with anxiety features. Furthermore, the functional brain maps differed between the genotypes. The maLPA1-null mice showed increased limbic-system activation, similar to that observed in depressive patients. Antidepressant treatment induced behavioural improvements and functional brain normalisation. Finally, based on validity criteria, maLPA1-null mice are proposed as an animal model of anxious depression. Here, for we believe the first time, we have identified a possible relationship between the LPA1 receptor and anxious depression, shedding light on the unknown neurobiological basis of this subtype of depression and providing an opportunity to explore new therapeutic targets for the treatment of mood disorders, especially for the anxious subtype of depression.
Collapse
|
60
|
Kageyama Y, Kasahara T, Morishita H, Mataga N, Deguchi Y, Tani M, Kuroda K, Hattori K, Yoshida S, Inoue K, Kato T. Search for plasma biomarkers in drug-free patients with bipolar disorder and schizophrenia using metabolome analysis. Psychiatry Clin Neurosci 2017; 71:115-123. [PMID: 27676126 DOI: 10.1111/pcn.12461] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/22/2016] [Accepted: 09/22/2016] [Indexed: 12/18/2022]
Abstract
AIM There is an urgent need for diagnostic biomarkers of bipolar disorder (BD) and schizophrenia (SZ); however, confounding effects of medication hamper biomarker discovery. In this study, we conducted metabolome analyses to identify novel plasma biomarkers in drug-free patients with BD and SZ. METHODS We comprehensively analyzed plasma metabolites using capillary electrophoresis time-of-flight mass spectrometry in patients with SZ (n = 17), BD (n = 6), and major depressive disorder (n = 9) who had not received psychotropics for at least 2 weeks, and in matched healthy controls (n = 19). The results were compared with previous reports, or verified in an independent sample set using an alternative analytical approach. RESULTS Lower creatine level and higher 2-hydroxybutyric acid level were observed in SZ than in controls (uncorrected P = 0.016 and 0.043, respectively), whereas they were unaltered in a previously reported dataset. Citrulline was nominally significantly decreased in BD compared to controls (uncorrected P = 0.043); however, this finding was not replicated in an independent sample set of medicated patients with BD. N-methyl-norsalsolinol, a metabolite of dopamine, was suggested as a candidate biomarker of BD; however, it was not detected by the other analytical method. Levels of betaine, a previously reported candidate biomarker of schizophrenia, were unchanged in the current dataset. CONCLUSION Our preliminary findings suggest that the effect of confounding factors, such as duration of illness and medication, should be carefully controlled when searching for plasma biomarkers. Further studies are required to establish robust biomarkers for these disorders.
Collapse
Affiliation(s)
- Yuki Kageyama
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan.,Department of Neuropsychiatry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Takaoki Kasahara
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan
| | - Hiromasa Morishita
- Research Resources Center, RIKEN Brain Science Institute, Saitama, Japan
| | - Nobuko Mataga
- Research Resources Center, RIKEN Brain Science Institute, Saitama, Japan
| | - Yasuhiko Deguchi
- Department of Neuropsychiatry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | | | - Kenji Kuroda
- Department of Psychiatry, Hannan Hospital, Osaka, Japan
| | - Kotaro Hattori
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Sumiko Yoshida
- Medical Genome Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Laboratory Medicine, National Center of Neurology and Psychiatry Hospital, Tokyo, Japan
| | - Koki Inoue
- Department of Neuropsychiatry, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Brain Science Institute, Saitama, Japan
| |
Collapse
|
61
|
Kambe Y, Miyata A. [Possible roles of mitochondrial dysfunctions and SIRT1 in major depressive disorder]. Nihon Yakurigaku Zasshi 2017; 150:204-206. [PMID: 28966220 DOI: 10.1254/fpj.150.204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
|
62
|
Do Monte FH, Quirk GJ, Li B, Penzo MA. Retrieving fear memories, as time goes by…. Mol Psychiatry 2016; 21:1027-36. [PMID: 27217148 PMCID: PMC4956525 DOI: 10.1038/mp.2016.78] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/22/2016] [Accepted: 04/05/2016] [Indexed: 12/12/2022]
Abstract
Research in fear conditioning has provided a comprehensive picture of the neuronal circuit underlying the formation of fear memories. In contrast, our understanding of the retrieval of fear memories is much more limited. This disparity may stem from the fact that fear memories are not rigid, but reorganize over time. To bring some clarity and raise awareness about the time-dependent dynamics of retrieval circuits, we review current evidence on the neuronal circuitry participating in fear memory retrieval at both early and late time points following auditory fear conditioning. We focus on the temporal recruitment of the paraventricular nucleus of the thalamus (PVT) for the retrieval and maintenance of fear memories. Finally, we speculate as to why retrieval circuits change with time, and consider the functional strategy of recruiting structures not previously considered as part of the retrieval circuit.
Collapse
Affiliation(s)
- Fabricio H. Do Monte
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, PO Box 365067, San Juan 00936, Puerto Rico
| | - Gregory J. Quirk
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, PO Box 365067, San Juan 00936, Puerto Rico
| | - Bo Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Mario A. Penzo
- National Institute of Mental Health, 35 Convent Drive, Bldg. 35A Room 2E621, Bethesda, MD 20850
| |
Collapse
|